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Abstract

Efficient broadcast scheduling is essential to the per-
formance of wireless data broadcast systems. Existing al-
gorithms for broadcast scheduling are mostly based on the
knowledge of users’ data access pattern. Unfortunately,
the requirement of exposing individual preference profile
becomes a serious threat to user privacy. In this paper,
we investigate the issue of securely collecting user access
patterns in real-time for broadcast scheduling. We pro-
pose a novel secure user profile collection protocol which
protects the privacy of individual users yet facilitates ef-
ficient wireless data broadcast scheduling. To address the
crucial issue of power conservation in mobile devices,
our scheme does not rely on expensive public key cryp-
tography. Light computation and communication at the
user end makes the scheme feasible for mobile devices
with limited resource. Our theoretical security analysis
shows that the proposed protocol preserves user privacy
against eavesdroppers and malicious broadcast servers.
Moreover, our extensive performance evaluation experi-
ments show that the proposed scheme has low computa-
tion and communication cost.

1. Introduction

The landscape for mobile computing is rapidly
changing. As wireless access becomes faster, cheaper,
more reliable and ubiquitous, the wireless cover-
age is increasing rapidly. Information service providers
(ISPs) are vying for customers by delivering or en-
hancing their data services wirelessly. In order to save
operational cost and provide better services, most
ISPs outsource their information services to a wire-
less telecommunication carrier.

The specific wireless technologies in use vary from
application to application. However, the underlying ap-
proaches to delivering information in wireless appli-
cations are either point-to-point connection or broad-

cast. Different from point-to-point connection which al-
locates an exclusive channel for one client, broadcast
approach publishes data on a public channel shared
by all the clients. As a result, a simultaneous access
is enabled. Due to its constant cost and high scalabil-
ity, broadcast approach is the ideal dissemination ap-
proach for information services with a huge number
of potential users. One typical application of wireless
data broadcast is the real-time stock quote update. A
broadcast server periodically broadcasts the up-to-date
quotes of stocks via the wireless channel to guarantee
that each user can retrieve his desired information.

To retrieve data items, a user monitors (i.e., receive
and check) the broadcast channel until his desired data
items arrive. The response time, i.e., the duration be-
tween a user starting to listen to the channel and receiv-
ing all his interested data items, is a common metric to
evaluate the performance of a broadcast system. Broad-
cast performance is of paramount importance due to
the fact that most users are only interested in a tiny
portion of a large data set. Seemingly, a flat broadcast
approach whereby all the objects share the same prior-
ity in the wireless channel can produce the best aver-
age performance for all users. Nonetheless, data items
are not uniformly accessed in most, if not all, real ap-
plications. As pointed out by the Pareto’s Principle,
20% of the data items can satisfy 80% of the require-
ments from the clients.

Therefore, scheduling algorithms are motivated to
achieve the near optimal response time by adjusting
the broadcast program according to the collective in-
terests of current clients. Various approaches have been
proposed in the literature [2, 3, 13, 14, 15]. To the best
of our knowledge, all existing scheduling algorithms
are based on users’ access preferences on data items.
They either assume that the access patterns of users
are known to the server, or require the users to explic-
itly upload their preference profiles. Both approaches
are at the cost of user privacy. On the other hand,
due to the widespread public awareness on privacy, the



concerns on personal privacy are growing. In our stock
quote broadcast example, the subscribers may not want
to share with the broadcast server what stocks they
are interested in, especially when the server is man-
aged by an untrusted network carrier. The privacy con-
cern dampens users’s willingness to subscribe services
from ISPs.

We observe that an efficient wireless information ser-
vice with user privacy preservation is highly desirable,
as privacy usually tops customers’ concern list when
they sign up for services. Unfortunately, how to protect
user preference privacy in wireless broadcast schedul-
ing has not been addressed in the literature. A naive
solution is to introduce an online trusted third party
(TTP). Instead of informing the broadcast server ac-
cess preferences, users send their information to TTP,
which gathers all the preferences and sends the accu-
mulated result to the broadcast server. However, this
approach has two fatal drawbacks. First, it is imprac-
tical to require a large amount of heterogenous mobile
users to trust a common entity. Second, as in all other
applications with online TTPs, the TTP naturally be-
comes a single point of failure in terms of both perfor-
mance and security. A TTP is usually chosen as the tar-
get of attacks by adversaries. Therefore, relying on an
online TTP is not an appropriate solution. Another in-
tuitive approach is to make use of so-called ”anonymiz-
ers”, like Tarzan[12] or Mix[9]. This approach requires
additional servers or interactions among peer nodes.
Considering the broadcast servers are typically base
stations of a cellular network, adding new servers will
significantly change the communication infrastructure.
Therefore, an anonymous network is not a satisfying
approach either.

Contribution In this paper, we propose a novel user
preference collection scheme which allows a broad-
cast server to aggregate the information needed by a
scheduling algorithm, while an individual user’s pref-
erences are not exposed. Specifically, the main contri-
bution of this paper is three-fold.

• Our study is the first addressing user preference
privacy in the wireless scheduling settings.

• A secure and practical user preference collection
scheme is proposed with low computation and
communication cost. Neither additional server nor
peer interactions are required in our solution.

• A detailed analysis on the security, communication
cost and computation cost of our scheme is pro-
vided. The analysis is verified and complemented
by our experiment results.

Related Work

Theoretically, the problem of secure user profile col-
lection can be solved by a secure e-voting scheme,
whereby each user casts his votes on every data item
and broadcast server tallies all votes. However, we ar-
gue that it is infeasible in practice. Many electronic
voting schemes have been proposed, e.g. [4, 6, 7]. Ba-
sically, there are two approaches. One approach is to
use mix-net, as in [1, 16, 19]. Nonetheless, it requires a
number of additional mix servers between subscribers
and the broadcast server so that a significant change
has to be made on the underlying communication in-
frastructure. The other approach, as used in [4, 6, 18],
is to employ homomorphic encryptions [10, 17] and
threshold decryption [11]. Unfortunately, these schemes
incur a heavy computation load on the voters and re-
quire the collaboration among multiple servers, which
is unrealistic for a broadcast system disseminating hun-
dreds of data items to mobile devices.

The computation paradigm of our problem has sim-
ilarity to data aggregation in wireless sensor networks,
where the data collected by sensors are encrypted, ag-
gregated and sent to a sink node. However, the exist-
ing schemes, e.g. [8, 22], protect data confidentiality
only against eavesdroppers. The sink node has the col-
lection of keys and is able to decrypt individual cipher-
text, which is undesirable in our scenario.

Recent work [23] by Yang et. al is very close to ours.
Their scheme allows a data miner to anonymously col-
lect data from a group of users. The basic idea is to
use re-encryption, which has been widely used in mix
networks. We argue that this approach is not a solu-
tion to our problem since it requires t rounds of com-
munication between the miner and a set of t users.
The incurred communication cost is too high for real-
time broadcast scheduling. Moreover, re-encryption in-
curs multiple modular exponentiations. Considering
the number of data items involved and the limited com-
putation resource in mobile devices, the computation
cost is prohibitively high.

Organization The rest of the paper is organized as fol-
lows. In Section 2, the problem is formally defined with
all the challenges we are facing. The detailed secure
user profile collection approach is described in Sec-
tion 3. In Section 4 and Section 5, we analyze the se-
curity and performance of the proposed approach re-
spectively. Finally, we conclude this paper in Section 6
and point out the future work.



2. Problem Formulation

In this section, we provide a detailed description of
the problem settings.

System Model Throughout this paper, we consider a
wireless data broadcast system consisting of three types
of entities:

• Service Registration Server(SRS): SRS locates at
the ISP’s site and takes the charge of system ini-
tialization and service subscription. For initializing
a system, SRS determines the set of data items to
broadcast, based on the specific application. The
size of the data set is application-dependent, vary-
ing from a few hundred to a few thousand. It is
also responsible for the selection of the schedul-
ing algorithm, used by BS in the broadcast pro-
gram, and an integer range for preference specifi-
cation, e.g. [0,1,. . . ,10]. A larger integer indicates a
stronger interest. SRS passes the system parame-
ters to a wireless carrier, whose base stations deal
with the actual data delivery. For service subscrip-
tion, it acknowledges the request from a new user
via passing the user a set of parameters.

• Broadcast Server(BS): A BS is a base station op-
erated by a wireless carrier. It periodically delivers
the data set to subscribers in its domain. Before
scheduling a broadcast, BS requests all its receivers
to upload their preferences. With subscribers’ col-
lective preferences, BS sorts out the data set and
assigns priorities to each item. Then, it broadcasts
the data set accordingly. The issues of scheduling
algorithm and data delivery are out of the scope
of this paper.

• Subscribers: A subscriber is an end-user subscrib-
ing the broadcast service1. Registration at the SRS
is required for a subscriber to receive data broad-
cast from BS. Each subscriber independently de-
termines his own user interest profile, i.e., a list
of desired items with corresponding preferences in
the range defined by SRS. All preferences are in-
dependent of each other.

Trust Model We assume that SRS is fully trusted
whereas BS is not. BS may take advantage of its par-
ticipation in the scheme and attempt to compromise
end-users’ privacy. The end-users are assumed to be
honest. They do not collude with malicious BS. We as-
sume the channel between a user and BS is authen-
tic and reliable. However, we do not assume the con-
fidentiality of the broadcast channel. An eavesdropper

1 Without causing ambiguity, we use subscribers and users al-
ternatively in the rest of this paper.

is able to sniff all traffic. In addition, BS is able to ob-
tain the subscriber’s information, e.g their identities,
locations and SIM card numbers. Therefore, no com-
munication source anonymity is provided in existing
networking infrastructure.

Objectives A secure user profile collection has two ob-
jectives. First, BS is able to compute the sum of all
subscribers’ preferences on every data item, which is
required by the scheduling algorithm. Second, the pro-
tocol should preserve every subscriber’s preference pri-
vacy. In other words, a user’s individual preferences
should not be exposed to either BS or other end-users.
It implies that an adversary is unable to determine, ex-
cept by random guessing, whether a data item is pre-
ferred by a user.

Caveat User preference privacy is different from user
data privacy. The latter prevents the adversary from
knowing what data a user obtains from the communi-
cation channel. We remark that the nature of broad-
cast obviously offers user data privacy.

Requirements We list below the requirements of a pro-
file collection protocol.

• computation cost. Most mobile devices, e.g. cel-
lular phones, are powered by batteries and have
very limited computation capacity. A secure pref-
erence aggregation scheme should not levy the de-
vices’s resource by imposing heavy computations.
This requirement implies that many cryptographic
techniques based on large number operations are
not suitable for common mobile devices.

• communication cost. Note that communica-
tions also consume CPU cycles and battery power.
Moreover, in many wireless networks, a device’s
upload channel has narrower bandwidth compared
to its download channel. The volume of traffic
and the number of rounds of communications are
tightly constrained. Out of this concern, interac-
tions among subscribers should be avoided. Fur-
thermore, it is undesirable to introduce extra en-
tities due to both cost and policy reasons. A prac-
tical preference collection scheme should be built
on top of the existing network infrastructure.

• accuracy. The preference aggregation protocol
should not degrade the performance of the exist-
ing broadcast schedule algorithm. A broadcast ser-
vice may cover hundreds of data items. Ideally, the
protocol is able to count every user’s preference on
every data item.

Table 1 summarizes the notations used in the fol-
lowing description.



Notation Description

Ux User with identity x ∈ Z+

wx User Ux’s secret key

D the set of data items to broadcast

N the cardinality of D, i.e. the number of
items to broadcast

Di the i-th data item, i ∈ [1, N ]

Nu the number of users in BS’s domain

[0, 1, · · · , s] the integer range of a preference on a data
item

t the threshold group size, i.e. the number of
users in each group

Gi the i-th threshold group of t users

‖m‖ the bit length of an integer m

HK() a one-way collision-resistant keyed hash
function with the secret key K

Table 1. Notations

3. Secure Preference Aggregation Pro-
tocol

The basic idea of our approach is similar to the jig-
saw puzzle. Each individual piece of a jigsaw puzzle
seems random, whereas the outcome from a correct as-
sembly of them is expressive. In our approach, a group
of users share a public data using a threshold secret
sharing scheme. Each user’s key share is kept secret by
herself and serves as the encryption key to encrypt his
preferences. The server collects users’ preferences and
aggregates user preferences on all data items to broad-
cast.

3.1. System Setup and User Registration

SRS is responsible for system setup and user reg-
istration. For an information service, SRS initializes
D = {D1, D2, . . . , DN}, the set of data items to broad-
cast. SRS also selects [0, . . . , s], the range of the user
preference on a data item. It picks a security para-
meter t ∈ Z+ as the threshold group size, and se-
lects a system parameter Y ∈ Z+ satisfying Y >
t · s. Then, it selects the smallest prime p satisfying
p > Y N+1. To use a t-out-of-t threshold secret shar-
ing scheme [21], it initializes a (t−1)-degree polynomial
f(x) =

∑t−1
i=0 bix

i mod p, where b1, b2, · · · , bt−1 ∈R Z∗p
and b0 = 0. A collision-resistant keyed hash function [5]
HK() is selected, where K denotes the hash key. SRS
keeps b1, . . . , bt−1 and K secret and all others are pub-
lic.

Once a user subscribes to an information service at
SRS, it receives a unique random x ∈R Z∗p as its iden-
tity, a secret key wx = f(x), and the hash key K. The
user keeps wx and K secret and lets x be public. As

an option, a user may download Y, Y 2, . . . , Y N−1 from
SRS in order to save computation cost in future proto-
col executions.

3.2. The Protocol

The preference aggregation protocol consists of three
steps.

1. Advertising: BS divides all users in its domain into
groups of size t. It broadcasts to all users their
membership together with the next time slot for
preference uploading.

2. Reporting: Upon receiving the advertisement from
BS, all users report their encrypted preferences to
BS concurrently.

3. Aggregation: On receiving all t encrypted prefer-
ences from the same group, BS aggregates them
and computes the sum of preferences for each data
item.

Advertising Algorithm 1 describes the details of ad-
vertising, which is executed by BS when re-scheduling
of the broadcast program is demanded2. Let Nu de-
note the number of users in BS’s domain. They are
partitioned into groups of size t. For user Ux, BS as-
signs cx as Ux’s membership token, which enables the
aggregation of preferences from the same group. Fi-
nally, it broadcasts the results to all subscribers.

Algorithm 1 Advertising (By BS)
Input: threshold group size t, all users’ identities;
Output: all users’ group membership;
Procedure: (Executed by BS)

1: Divide all users into groups of size t. The following steps
are with respect to every group.

2: Pick a new integer G ∈ Z+ as the identity of this
group. Let the group members’ identities be denoted by
x1, x2, · · · , xt.

3: for i = 1; i ≤ t; i ++ do
4: calculate cxi :

cxi =
Y

1≤k≤t;k 6=i

xk

xk − xi
mod p (1)

5: output < xi, cxi , G >
6: end for
7: Broadcast 〈xi, cxi , G〉, for all 1 ≤ i ≤ Nu and T to all

users, where T is the expected data broadcast time.

2 When the re-scheduling process is triggered is out of the scope
of this paper. Generally, a base station can re-schedule the
broadcast program periodically or based on the real applica-
tion requirements.



Reporting The Reporting algorithm shown in Algo-
rithm 2 below is executed independently by every user.
Consider a user Uxi in a threshold group G. Let aj de-
note Uxi

’s preference on data item Dj , for 1 ≤ j ≤ N .
Uxi first cumulates a1, . . . , aN into vxi in order to save
communication cost. Note that a large portion of the
preferences are zeroes. Therefore, the computation of
vxi

is not expensive. vxi
is then padded and encrypted.

The ciphertext zxi
is sent to BS.

Algorithm 2 Reporting (by user Uxi
)

Input: Uxi ’s preference set: {a1, a2, . . . , aN}, membership
token cxi , group identity G, schedule time T , secret key wxi ,
hash key K.
Output: zxi as Uxi ’s reply to BS
Procedure:

1: Compute:
vxi =

NX
j=1

ajY
j−1 (2)

zxi = vxi + c−1
xi

wxiHK(T ||G) mod p (3)

2: Send 〈xi, zxi〉 to BS.

Aggregation When BS receives the reports from all
users, it starts Aggregation step as depicted in Algo-
rithm 3. BS first evaluates Equation 4, which returns
the aggregated preferences for all users from the same
threshold group. Essentially, Γ =

∑N
j=1 rjY

j−1, where
rj is exactly the sum of all group members’ preferences
on data item Dj . Thereafter, by evaluating Equation 5
and Equation 6, the sums of preferences for all data
items are recovered.

We show the correctness of the protocol. Since
Ux1 , Ux2 , · · · , Uxt are in the same threshold group Gi,
we have

∑t
k=1 cxk

wxk
= 0 mod p by virtue of the (t, t)

threshold secret sharing scheme, which distributes the
value 0. Therefore,

Γ =
t∑

k=1

zxk
mod p

=
t∑

k=1

vxk
mod p +HK(T ||Gi)

t∑

k=1

cxk
wxk

mod p

=
t∑

k=1

vxk
mod p

=
(
r1 + r2Y + r3Y

2 · · ·+ rNY N−1
)

mod p

∵ p > Y N+1 and Y > s·t and rj < s·t, ∀j ∈ [1, N ]
∴ Γ = r1 + r2Y + r3Y

2 · · ·+ rNY N−1

where rj is exactly the sum of Ux1 , · · · , Uxt ’s prefer-
ences on data item Dj . The above computation jus-
tifies the requirements for selecting p and Y in Sec-
tion 3.1.

Algorithm 3 Aggregation (by BS)
Input: threshold groups Gi, parameters cx for all users

Ux ∈ Gi,All zx reported by all users;
Output: R1, R2, . . . , RN as the collective preferences on

D1, D2, . . . , DN respectively;
Procedure:

1: Let R1, . . . , RN be all 0.
2: for each threshold group Gi, 1 ≤ i ≤ bNu/tc. Let their

members be denoted by Ux1 , Ux2 , · · · , Uxt do
3: BS computes

Γ =

tX
k=1

zxk mod p (4)

4: for j = 1; j ≤ N ; j ++ do
5:

rj = Γ mod Y ; (5)

Γ = (Γ− rj)/Y ; (6)

Rj = Rj + rj (7)

(8)6: end for
7: end for
8: Output R1, R2, · · · , RN as the cell’s collective prefer-

ences.

4. Security Analysis

In this section, we conduct both a theoretical dis-
cussion and an experimental simulation to analyze the
information security of the proposed preference aggre-
gation approach. Without loss of generality, the adver-
sary fixes its target: a victim U1 ’s preference on certain
data item3 Dj . Let U1 and U2, · · · , Ut form a thresh-
old group. We use a1, a2, · · · , at to denote U1, · · · , Ut’s
preferences on Dj respectively. Since a user is only in-
terested in a small subset of D, the adversary will claim
his success if he correctly determines whether U1 has in-
terests in Dj . Namely, the adversary guesses whether
a1 = 0 or a1 6= 0. Note that this type of attack is much
stronger than those attempting to determine the ex-
act value of a1. In the following, our discussion focuses
on the privacy with respect to a1. The conclusion is ap-
plicable to any other user preferences.

Notion of Privacy The notion of privacy is defined as
the amount of related information revealed by the sys-
tem to the adversary. Formally, let A be the discrete
random variable for U1’s preference on the targeted
data item. A = 0 iff a1 = 0 and A = 1 iff a1 6= 0.
Let H(A) be the entropy of A. Let H ′(A) be the en-
tropy of A based on the adversary’s observation after
mounting attacks. Note that H ′(A) captures the infor-
mation obtained by an adversary regarding to A. Let
ρ denote the security strength of our scheme with re-

3 Note that the preferences on different data items are com-
pletely independent from each other.



spect to a1. It is defined as

ρ = H(A)−H ′(A)

The semantic of ρ is the magnitude of information leak-
age regarding to whether a1 = 0. It shows that approx-
imately ρ-bit information is exposed to the adversary
by the system.

Adversary In our adversary model, we consider a mali-
cious BS, since it is more powerful than eavesdroppers.
BS may exploit its participation in protocol execution.
It is clear that from Algorithm 3, BS only obtains two
pieces of information relevant to a1: the user’s report
z1, which is directly sent by U1; and the sum of prefer-
ences r =

∑t
i=1 ai which is computed by BS in Equa-

tion 5.
We first prove in Lemma 4.1 that the adversary

does not obtain additional information about users’
preferences, except the sum. For the purpose of clar-
ity, suppose that there exist 2t users in BS’s domain,
who are divided into two threshold groups G1 and G2.
Lemma 4.1 and its proof also apply to multiple thresh-
old groups. We regard the protocol as a batch encryp-
tion scheme, which takes a set of users’ preferences
{v1, · · · , v2t} as input and outputs {z1, · · · , z2t}. Its se-
cret key is in fact the (t−1)-degree polynomial f(x)
over Zp.

Let {x1, · · · , x2t} be the users’ identities re-
spectively. Let Tf denote the transcript of
the protocol execution using f(x). In specific,
Tf = {w1, · · · , w2t,HK(T ||G1),HK(T ||G2)}. Let
Vf denote the adversary’s view of the protocol ex-
ecution. In specific, Vf = {z1, · · · , z2t, σ1, σ2},
where σ1 =

∑t
i=1 zi mod p =

∑t
i=1 vi and

σ2 =
∑t

i=1 zt+i mod p =
∑t

i=1 vt+i.

Lemma 4.1 Given a transcript Tf and a view Vf with
respect to a polynomial f(x) and a set of preference in-
puts {v1, · · · , v2t}, the adversary is able to construct an-
other (t−1)-degree polynomial f ′(x) overZp and another
set of inputs {v′1, · · · , v′2t}, such that (1) Vf ′ = Vf ; (2) Tf

and Tf ′ are indistinguishable.

Proof : For the threshold group G1, the adversary
randomly chooses the inputs {v′1, · · · , v′t}, such that∑t

i=1 v′i =
∑t

i=1 vi. Then it picks h̄∈R Z∗p, and com-
putes w′i = (zi − v′i)c

−1
xi

h̄−1 mod p, for all i ∈ [1, t].
Clearly, for 1 ≤ i ≤ t,

z′i = v′i + h̄w′icxi = zi mod p

Now the adversary constructs f ′(x). Use
(x1, w

′
1), · · · , (xt, w

′
t) as t points and calculate a

(t − 1)-degree polynomial f ′(x) by Lagrange In-
terpolation so that f ′(xi) = w′i. It is clear to ob-

serve that f ′(0) = 0 since f ′(0) =
∑t

i=1 w′ici =
h̄−1

∑t
i=1(z

′
i − v′i) = h̄−1(

∑t
i=1 zi −

∑t
i=1 vi) = 0.

Thus, set w′i = f ′(xi) for all i∈[t + 1, 2t]. Then, the
adversary selects a random ĥ ∈R Z∗p, satisfying zi −
ĥw′icxi mod p < Y N+1, for all i ∈ [t + 1, 2t]. Compute
v′i = zi − ĥw′icxi mod p, for all i ∈ [t + 1, 2t]. Thus,

2t∑

i=t+1

v′i =
2t∑

i=t+1

zi − ĥ

2t∑

i=t+1

w′icxi mod p

Since
∑t

i=t+1 w′icxi = f ′(0) = 0,
∑2t

i=t+1 v′i =∑2t
i=t+1 zi = σ2. Therefore, the Vf ′ = Vf .
Tf ′ = {w′1, · · · , w′wt, h̄, ĥ}, which is indistinguishable

from Tf when the hash function HK(·) is modelled as
a pseudo-random number generator.
¤

The Lemma above shows that the protocol exe-
cution does not reveal additional information about
{v1, · · · , v2t} except the view Vf , which exposes the
sum of vi-s. Therefore, BS obtains the sum of t user’s
preferences on all N data items.

Hereafter, we proceed to analyze the information
leakage from knowing the sum of preferences for Dj . In
other words, we analyze the inference of r =

∑t
i=1 ai

with respect to a1. For example, when r = 0, a1 must
be zero since all preferences are non-negative. To facil-
itate the discussion, we assume that in average every
user is interested in n data items, and n << N . There-
fore, A follows the distribution below:

Pr(A = 0) = 1− n

N
and Pr(A = 1) =

n

N

Consequently,

H(A) = − n

N
log(

n

N
)− (1− n

N
) log(1− n

N
)

Let random variable R represent
∑t

i=1 ai, which takes
on the integer set {0, 1, · · · , st}. Because the adversary
obtains the information R = r during every protocol
execution, H ′(A) is computed as the conditional en-
tropy of A given R. Specifically,

H ′(A) , H(A|R) =
st∑

r=0

Pr(R = r)H(A|R = r)

where

H(A|R = r) =
−

∑

i∈{0,1}
Pr(A= i|R=r) log(Pr(A = i|R = r))

Hence,

ρ = H(A)−
st∑

r=0

Pr(R = r)H(A|R = r) (9)



Next, we proceed to evaluate ρ. The challenge here
is how to compute Pr(R = r) and Pr(A = 0|R = r).
To evaluate Pr(A = 0|R = r), we introduce another
random variable R′ representing

∑t
i=2 ai, i.e. R = R′+

a1. R′ takes on the integer set {0, · · · , s(t−1)}. Hence,

Pr(A = 0|R = r) = Pr(A = 0, R = r)/Pr(R = r)
= Pr(A = 0, R′ = r)/Pr(R = r)

∵ A and R′ are independent random variables

∴ Pr(A = 0|R = r) = Pr(A = 0)Pr(R′ = r)/Pr(R = r)

Since Pr(A = 1|R = r) = 1− Pr(A = 0|R = r), we are
able to evaluate Equation 9, provided that Pr(R = r)
and Pr(R′ = r) are available.

Unfortunately, it is prohibitively complex to deter-
mine the probability distribution of R and R′ by using
the multinomial distribution and integer partition the-
ories. Instead, we have to acquire the distribution of R
and R′ from the observation of 100,000 experiments.
The distributions are shown in Figure 1.
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Figure 1. The distribution functions of R and R′: t =

100, N = 1000, n = 50, s = 10

We ran the protocol using different threshold group
size t. After obtaining the distribution of R and R′, we
compute ρ based on Equation 9. The results are shown
in Table 2. For instance, it shows that our scheme only
reveals approximately 0.0071-bit information when us-
ing t = 100 and n = 50. Moreover, it is evident that
ρ decreases when t increases. It implies that a larger
t will reduce the information leakage. The intuitive
reason behind this is that when a threshold group is
formed by more users, there are more randomness in-
troduced and more possible partitions of the preference
sum. Thus, inferring a1 from the sum is less effective.

t ρ (n = 50) ρ (n = 200)

10 0.0625 0.0533
30 0.0249 0.0197
50 0.0146 0.0137
80 0.0086 0.0087
100 0.0071 0.0072
130 0.0057 0.0067
200 0.0037 0.0055

Table 2. The information leakage with different
t and n (N = 1000).

In short, we model the notion of privacy of our
scheme as the amount of exposed information regarding
to a user’s interest. We have shown that our scheme re-
veals insignificant information to the malicious broad-
cast servers when t is reasonably large.

Discussion on (t, t) Access Structure

In our scheme, all subscribers in BS’s domain are di-
vided into groups of size t. For each group, only when
t reports from its members are available, can BS suc-
cessfully run the Aggregation algorithm to compute the
preference sum. Such a requirement is called a t-out-
of-t access structure, or (t, t) access structure. One may
observe that it does not provide reliability since if one
member fails, the rest t−1 reports cannot be taken into
account by BS. However, we argue that a flexible ac-
cess structure will allow BS to mount cross-set attacks
as explained below.

If BS obtains a preference sum r for a user set G
and another sum r′ for another set G′, it computes
r − r′, which is the difference of preferences for users
in G−G′. The privacy for users in G−G′ is compro-
mised when the size of G − G′ is small. In particular,
if BS is allowed to compute the sum for any t− 1 users
out of t users, the difference between two user’s prefer-
ence can be easily obtained by BS. Since a user’s prefer-
ence is not uniformly distributed across all data items,
such a difference reveals their interests. A (t, t) struc-
ture ensures that there is no overlap between any le-
gitimate user groups.

5. Performance Analysis

Computation Cost In order to minimize the compu-
tation load on wireless devices, our protocol avoids ex-
pensive public key cryptographic techniques. Our ap-
proach only incurs modular multiplications and addi-
tions. Y, Y 2, · · · , Y N−1 are computed by the system ad-
ministrator when initializing the system. A user down-



loads them on the basis of her personal needs and stores
them on her device. During protocol executions, the
computation load for a user is the evaluation of Equa-
tion 2 and Equation 3. Since a user is only interested
in n data items, it needs n multiplication and addi-
tion operations in evaluating Equation 2. We observe
that since all ai-s are small numbers bounded by s,
the computation is cheap despite the fact that some
Y i-s are relatively large numbers. To evaluate Equa-
tion 3, the user executes two modular multiplications
and one hash function. Therefore, the user totally eval-
uates 2 modular multiplications of N(log2 t + log2 s)
bits, 1 hash function, and n regular multiplications. To
avoid huge modulus due to large N , one approach is
to divide the whole data set into subsects, and run the
same protocol over each subsect.

To show the performance on mobile devices, rather
than PCs in our experiments, we use the results from
E. Savas et.al. [20]. They measured the computation
cost of modular multiplications by software and hard-
ware on ARM processors, a popular processor in PDAs,
with results shown in Table 3. This is a conservative es-
timation of the performance as modern mobile devices
usually have a faster CPU than ARM 80MHz. In our
experimental settings, N = 1000, s = 10, the modu-
lus p could be as long as a few kilo-bits. To avoid us-
ing a huge modulus, we split the whole data set into
smaller sets of size 100, so that the modulus is around
1024bits. According to Table 3, it may only take a num-
ber of milliseconds for an old-fashion mobile device to
execute the protocol in our experimental setting.

Precision
(bit)

Hardware(µs)
(80MHz)

Software (µs) (on
ARM with Assem-
bly)

224 5.9 33.2
256 6.6 42.3
1024 61 570

Table3.Execution timeof hardwareand software
implementationsof theGF (p)multiplication[20]

In Algorithm 3, the broadcast server evaluates t
modular multiplications in Equation 4. Since there are
Nu/t groups of users, the broadcast server totally needs
Nu modular multiplications to calculate all aggregated
preferences on all data items. Considering the fact that
modular operations and division operations have neg-
ligible cost for a regular PC, we dismiss this portion of
cost for Equation 5 and 6. In our experiment, we imple-

mented the broadcast server on a PC with 1GHz CPU
and 1GB memory. It costs 14µs for a 1024-bit modu-
lar multiplication. Therefore, the computation load on
the broadcast server side is only in milliseconds.

Communication Cost The protocol in Section 3 only
requires one round communication. The data sent by
a user in Algorithm 2 has the same size of the mod-
ulus p. Therefore, the total number of bits to send is
log2 p which is O(N(log t + log s)) bits. Note that for
a preference collection scheme without privacy preser-
vation, the communication cost is O(n log N +n log s),
which is much smaller than our cost. Therefore, the
communication cost is mainly the price paid for pri-
vacy protection. We argue that transmission of a few
thousand bits is still affordable for modern mobile de-
vices.

Selection of t A larger t entails higher computation and
communication cost. Both costs grow linearly with the
bit length of t. However, considering N is not a small
integer, attentions should be paid to select an appropri-
ate t. Table 2 shows the relation between t and security
strength. It is visualized in Figure 2 below. We observe
that when t is around 100, increasing t does not pro-
vide significant enhancement on security. Therefore, we
recommend to choose a 6- or 7-bit integer for t.
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Figure 2. The relation between t and ρ = H(A0) −
H ′(A0) (N = 1000)

6. Conclusion and Future Work

In this paper, we propose a new secure user pro-
file collection protocol. Without compromising user pri-
vacy, the proposed scheme meets the demands by all
broadcast scheduling algorithm. A broadcast server is



able to schedule a data broadcast based on collec-
tive preference profile, while each individual user’s per-
sonal interests remain secret. From the protocol execu-
tion, the adversaries, either eavesdroppers or malicious
broadcast servers, obtain insignificant amount of infor-
mation. Our scheme does not involve expensive large
number operations, such as modular exponentiations.
With low computation and communication cost, our
scheme is feasible for light-weight mobile devices with
scarce computational and communication resource.

Nonetheless, our construction has two drawbacks.
First, our scheme is built on top of (t, t) threshold se-
cret sharing, which is not fault tolerant. A malfunc-
tion of one user will fail the preference aggregation for
the related threshold group. However, it is demanded
to have such rigid group access structure as pointed out
in Section 3. It is an open problem how to harmonize
security and reliability. Second, our scheme is vulnera-
ble to collusion attacks by a malicious BS and a sub-
scriber. Knowing the secret key K will expose more in-
formation about user preferences, even though the ad-
versary is still unable to correctly determine a prefer-
ence with an overwhelming probability.
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