
Presence Attestation: The Missing Link in Dynamic Trust
Bootstrapping

Zhangkai Zhang∗
Beihang University

zhangzhangkai315@gmail.com

Xuhua Ding
Singapore Management University

xhding@smu.edu.sg

Gene Tsudik
University of California, Irvine

gts@ics.uci.edu

Jinhua Cui
Singapore Management University

jhcui@smu.edu.sg

Zhoujun Li
Beihang University
lizj@buaa.edu.cn

ABSTRACT
Many popular modern processors include an important hardware
security feature in the form of a DRTM (Dynamic Root of Trust
for Measurement) that helps bootstrap trust and resists software
attacks. However, despite substantial body of prior research on trust
establishment, security of DRTM was treated without involvement
of the human user, who represents a vital missing link. The basic
challenge is: how can a human user determine whether an expected
DRTM is currently active on her device?

In this paper, we define the notion of “presence attestation”,
which is based on mandatory, though minimal, user participation.
We present three concrete presence attestation schemes: sight-
based, location-based and scene-based. They vary in terms of secu-
rity and usability features, and are suitable for different application
contexts. After analyzing their security, we assess their usability
and performance based on prototype implementations.

KEYWORDS
trusted computing, attestation, dynamic root of trust, human-in-
the-loop, device I/O

1 INTRODUCTION
Many currently popular x86 and ARM processors are equipped
with a special hardware feature, called Dynamic Root of Trust for
Measurement (DRTM), e.g., Intel TXT [12], AMD SVM [2], and ARM
TrustZone1 [3]. DRTM is designed to withstand software attacks,
even from the operating system level. When activated at runtime, it
securely measures and launches some software which may further
measure and load another layer of software. Such iterations of
measure-then-launch form a trust chain rooted in DRTM allowing

∗The work was mainly done when the author visited SMU as a student intern.
1We slightly expand the notion of DRTM as TrustZone functions differently from the
TXT and SVM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134094

a remote entity (verifier) to establish trust in the system, after
checking integrity of the latter’s software stack.

Popularity of DRTM has also fueled some new directions in
system security research. Several designs [4, 5, 19, 32, 33] have been
proposed to cope with OS-level threats directly by using various
DRTM instantiations to ensure security of the Trusted Computing
Base (TCB).

However, most prior efforts either overlooked or side-stepped an
important factor – the human user. As noted by Parno et al. [23], it
is challenging for a human user to “bootstrap trust” in DRTM itself,
since she is not assured that the chain of trust is indeed rooted in
her DRTM. The main reason is the difficulty for a human user to
establish an authenticated and secure channel with her own DRTM.
Although DRTM is trusted, the user cannot determine whether her
DRTM is indeed engaged. In particular, malware can impersonate
the user’s DRTM using a so-called “cuckoo attack” [23].

Two mitigation approaches are proposed and discussed in [23].
The first relies on a hardware-based secure channel, e.g., a special-
purpose I/O interface through which an external verification device
directly interacts with DRTM. The second establishes a crypto-
graphically secured communication channel and requires the user
to have prior knowledge of the public key identifier of her DRTM.

The former offers stronger security and better usability. For
example, an LED light securely wired to TrustZone can confirm
to the user that her DRTM is active. Most COTS x86 and ARM
devices are not equipped with such a feature and implementing it
would require cooperation of hardware manufacturers. The latter
approach also requires manufacturers’ cooperation (though to a
lesser extent) in order to export the DRTM’s public key identifier
to the user via either: (1) an out-of-band channel, e.g., etched or
printed on the exterior of the device itself, or (2) a special protected
interface. In any case, dealing with DRTM’s public key identifier
represents added burden for the user.

We observe that a user’s trust in her device is based not only
on physical availability of DRTM. Rather, to a greater extent, it is
based on availability and security of software directly measured and
loaded by DRTM, which constitutes the TCB of the user’s device.
For ease of presentation, we refer to the initial software in the trust
chain following DRTM as the trust anchor.

In this paper, we use the divide-and-conquer approach to boot-
strapping user’s trust in her own device, without imposing afore-
mentioned burden on manufacturers and users:

https://doi.org/10.1145/3133956.3134094

(1) The user checks whether a genuine DRTM has launched the
trust anchor and is currently interacting with her.2

(2) The user verifies whether the trust anchor launched in the
preceding step actually resides on her own device.

The second step is cryptographically bound to the first by an
ephemeral secret key. Also, the implicit logical link between the
two steps is based on trust anchor’s runtime security being ensured
by DRTM. We argue that this is a widely adopted trust assump-
tion in many DRTM-based secure systems. If DRTM cannot ensure
runtime security of the trust anchor, i.e., the very first software
in the chain, its measurements are of little value since they only
momentarily reflect static software integrity3.

Based on the general approach outlined above, we design and
implement three presence attestation schemes. By taking advantage
of hardware DRTM’s security assurance and software capability
of the trust anchor, these schemes allow a human user to establish
trust in her device after confirming that DRTM and the trust anchor
are active. Proposed schemes are based on different physical prop-
erties: sight, scene and location. The sight-based scheme achieves
strongest security since it resists analog cuckoo attacks, while the
other two offer better usability commensurate with slightly weaker
security. We implement all three protocols and assess their security
and performance.

Organization. The next section describes the system setting as
well as the adversary model, and overviews the proposed approach.
Section 3 details the sight-based attestation scheme, followed by
location-based and scene-based variants in Section 4. Implementa-
tion details are presented in Section 5 and experimental results are
reported in Section 6. Section 7 discusses related work and Section 8
concludes the paper.

2 SYNOPSIS
This section sets the stage for the rest of the paper by describing the
assumed environment, (including the devices and the adversary)
and overviewing the notion of presence attestation.

2.1 System Model & Problem Definition
We consider the following system model widely used in the litera-
ture. A human user (Alice) physically controls a computing device
Dev equipped with a hardware DRTM denoted as ROTD instanti-
ation of which is dependent on Dev’s platform architecture. For
example, if Dev is a smartphone with an ARM processor, ROTD is
the processor’s TrustZone component, including code running in it.
At runtime, ROTD loads a trust anchor denoted by TA. For exam-
ple, TA could be a bare-metal micro-hypervisor launched on Dev in
order to protect a security-sensitive application. Figure 1 shows the
chain of the actions leading to application-level security by tapping
into the strong security assurance provided by the built-in DRTM.

The chain of actions is also the chain of trust propagation. Trust
is bootstrapped from ROTD, followed by TA and then, the secured
application, in the sense that another device can verify the trust
chain and establish trust in Dev. Unfortunately, Alice cannot es-
tablish trust on any of them. Note that the system is not trusted
2The main goal here is to ascertain whether any DRTM is involved in the interaction,
not necessarily the one on the user’s device.
3For the same reason DRTM is not used in the literature to directly launch the OS,
which is vulnerable to runtime attacks.

ROTD TAD
secured	
app

Dev

analog	channel

Alice

Fig. 1: Trust bootstrapping expected byAlice: TA corresponds to the
first software component in the trust chain rooted at ROTD.

prior to the launch of ROTD. Malware residing on Dev can pretend
to launch ROTD and produce user-perceptible effects (e.g., audio,
visual, etc.) identical to the real ROTD. In other words, Alice cannot
reliably determine whether trust is indeed bootstrapped in Dev.

The problem at hand is how to help Alice to securely verify
whether ROTD is currently active on Dev. Since she physically con-
trols Dev, Alice is certain that ROTD is installed on Dev. Nonethe-
less, she cannot determine ROTD’s status at runtime, due to lack of
an authentic and secure channel between herself and her DRTM.
Even worse, current DRTM manufacturers do not offer a way for
Alice to identify DRTM on her device. Alice may not even know
anything about ROTD’s public key certificate issued by the manu-
facturer.

Assumptions. We assume that each DRTM is secure against soft-
ware attacks; this is, in fact, one of the main design goals of DRTM.
Albeit, actual DRTM products are not assumed to be free of vulner-
abilities. We assume that there exists a public key infrastructure
(PKI), with each DRTM assigned a unique public/private key-pair
and a credential, i.e., a public key certificate (PKC). Each DRTM
can produce cryptographic evidence (e.g., in the form of a signa-
ture) to authenticate itself and thus prove its genuineness, by using
its private key which is securely stored along with a credential.
Nonetheless, as mentioned earlier, Alice is not assumed to have any
prior knowledge of ROTD’s public key.

We also assume that the trust anchor launched by the DRTM
is secure against kernel-level attacks, since hardware places the
trust anchor in a more privileged environment than the OS. Other
software components that follow the trust anchor in the chain are
not relevant to our work.

2.2 Portrait of The Adversary
The anticipated embodiment of the adversary is malware running
on Dev with kernel privileges. This malware controls all software
and hardware resources accessible to the OS (except the TCBs
which DRTM depends on). We parameterize the adversary with
two aspects: (1) collusion with external entities, and (2) capability
of using analog devices.

Local vs. Collusive. A local adversary is represented by stand-
alone malware running on Dev with no runtime collusion with
other devices. Although it might have the ability to communicate,
it is not assisted by any external entity.

A collusive adversary consists of malware resident on Dev and
a remote accomplice residing on at least one other device denoted
byM, equipped with its own DRTM denoted by ROTM. (We assume
that M is a genuine device, of the same type as Dev, that has not
been physically attacked; specifically, ROTM is inviolate.) The local
and remote adversarial components interact over a network. They
might be physically near each other and communicate directly, e.g.,

via Bluetooth. Alternatively, they can be far apart and communicate
over a Wi-Fi or cellular interface. The adversary does not use a
wired connection, since Alice can easily unplug all cables connected
to Dev prior to attestation. Also, although Alice can, in principle,
muffle or jam all Dev’s wireless communications, doing so requires
additional specialized equipment.

A collusive adversary can mount a cuckoo attack (see Figure 2)
described by Parno, et al. [23] which defeats TPM-based attesta-
tion. It is a special form of the man-in-the-middle (MITM) attack,
whereby Dev forwards the attestation challenge to an accomplice
device which then produces a valid response. The cuckoo attack
is based on verifier’s inability to determine the exact hardware
origin of the attestation response. This stems from the fact that
the communication channel between the verifier and Dev is not
authenticated. It is also not perceivable by the human user.

Verifier Dev M
1.	request

2.	response
ROTMROTD

Fig. 2: Cuckoo attack example [23]. ROTD in Dev is not active. Mal-
ware in Dev uses ROTM in an accomplice device to produce a legit-
imate attestation response to the verifier which intends to assess
Dev’s trustworthiness.

Software-only vs. Analog. We also consider whether the adver-
sary’s reach extends into the physical (analog) world. A software-
only adversary does not use anything beyond software, i.e., its
attacks are performed entirely by malware. Such an adversary can-
not eavesdrop on (or influence) analog signals emitted from any
device.

An analog adversary exploits the physical environment and
uses additional equipment to eavesdrop on, intercept, transmit, or
modify analog data. Since Dev is physically controlled by Alice,
an analog adversary must be a collusive one. The analog attack is
conducted on the remote accomplice’s side. A concrete example
of an accomplice might be a screen that displays photos or videos
transmitted by malware in Dev.

Caveat. We do not consider physical attacks that modify any
hardware behavior or physically extract secrets (by brute force
or via side-channels) from a DRTM. Such attacks fundamentally
undermine DRTM security and are beyond the scope of this paper.

2.3 Overview of Presence Attestation
To bootstrap Alice’s trust in her device Dev, we propose an attes-
tation scheme to verify presence of an active ROTD on Dev. We
assume that, during attestation, Alice is assisted by a trusted com-
puter, denoted as Verifier.4 Verifier engages Dev over a digital or
analog channel to verify ROTD’s presence. We believe that Ver-
ifier is a necessary component since Alice can neither securely
communicate with ROTD nor perform necessary computations.

Strawman Approach: Before describing the proposed scheme,
we consider an intuitive “strawman” approach and show how it
4In a typical setting, we expect that Dev would be Alice’s smartphone or similar-class
device and Verifier – Alice’s laptop or desktop.

fails, which highlights the subtlety of the problem at hand. The
strawman approach is simple:

ROTD securely controls Dev’s display and uses
it to output its public key for Alice to validate

This approach is insecure since Alice does not have ameans to verify
whether the displayed public key is indeed from ROTD. Since Alice
has no prior knowledge of this public key, the adversary can display
an arbitrary value on Dev’s screen without invoking ROTD and
Alice can not visually authenticate its origin. The main challenge
stems from Alice having no identifiable information with respect
to ROTD.

The proposed presence attestation scheme splits the problem into
two parts: (1) existence problem, i.e., whether some DRTM interacts
with Verifier, and (2) residence problem, i.e., whether the DRTM that
participates in the interaction actually resides on Dev. The main
benefit of this approach is the flexibility of taking advantage of
DRTM security assurances and software trust anchor’s capabilities.
The scheme proceeds as follows:

Phase 1. Existence Checking. Verifier and Dev engage in an en-
hanced static integrity attestation protocol. Its outcome allows
Verifier to determine whether it is interacting with a true DRTM
which has launched a trust anchor. Nonetheless, it does not confirm
that DRTM is indeed ROTD on Dev, due to the possible presence
of the collusive adversary. At the end of the protocol, Verifier and
the DRTM share a secret key k , needed in Phase 2 .

Existence checking determines whether Verifier is interacting
with a genuine DRTM based on the latter’s ability to generate a
valid signature, i.e., verifiable using the public key from the DRTM’s
certificate. It extends conventional integrity attestation with verifi-
cation of ownership of the private key and establishment of a fresh
shared secret key.

Existence checking is based on the following logic: an entity that
can, based on a challenge, produce a signed response verified using
the public key (contained in a valid DRTM’s certificate issued by a
recognized CA) must know the corresponding private key. Recall
that, according to our trust and adversary model, the adversary
cannot extract the private key from any DRTM.

Interaction between Verifier and Dev is shown in Protocol 1.
Because of the threat of cuckoo attacks, the response received by
Verifier could be computed by ROTM instead of ROTD, though Veri-
fier exchanges data with Dev, from the communication perspective.

Caveat 1. Successful completion of Step 3 implies that Verifier
shares a fresh random secret key k with ROTD. In case of a cuckoo
attack, ROTM obtains k ; however, neither Dev nor (untrusted) soft-
ware on M knows k .

Caveat 2. The certificate in Step 1 does not provide sufficient
identification information for Verifier to authenticate Dev, since
Alice does not have sufficient knowledge to link this certificate to
Dev.

Phase 2. Residence Checking. The trust anchor attests to its physi-
cal environment and sends to Verifier its attestation token, integrity
of which is protected by k . Using the analog interface provided by
Verifier, Alice checks the physical environment vouched for by the
trust anchor and determines whether it is indeed TA in Dev.

Existence Checking ()

1. Verifier verifies DRTM’s public key certificate provided by Dev. If
valid, it extracts public keys PKe and PKv .

2. Verifier
c
→ Dev. Verifier generates random number r , random secret

key k , and computes c = EPKe (r | |k).
3. Verifier

σ
← Dev. ROTD computes r | |k = DSKd (c) and generates

signature σ = SSKs (r | |Hk (TA)) where TA is the code and data
image of the loaded trust anchor.

4. Verifier
b
→ Dev Verifier verifies the signature by computing

b = VPKv (σ , r | |Hk (TA)) where Hk (TA) is HMAC of expected
trust anchor image. If σ is successfully verified, b = 1 is returned to
Dev. Both parties proceed to Phase 2. Otherwise, Verifier terminates
attestation and displays an error message to Alice.

Protocol 1: Phase 1: Existence Checking; ROTD’s public and pri-
vate key pairs for encryption and signing are: (PKe , SKd) and
(PKv , SKs), respectively.

The main challenge in designing a residence checking protocol
is that Verifier, as a computer, cannot identify its protocol peer. All
commonly used identifiers – such as MAC or IP addresses as well
as IMEI numbers – are subject to modification attacks. Although a
hardware identifier can be unforgeable, it requires the manufacturer
to explicitly convey it to Alice whomust then keep it at all times. On
the other hand, although Alice can easily identify Dev physically,
she can neither engage in any protocol with Dev, nor hold its
(trusted) logic identifier.

Our general idea is to challenge the alleged DRTM (and its trust
anchor) to respond with attestation for a physical feature of its
hosting device’s physical environment.Verifier first checks response
integrity to ensure that it indeed originates from the alleged trust
anchor. Then, Alice assesses whether this matches the expected
physical environment.

There are two prerequisites: First, the physical property in use
should be unique to the environment and not reproducible by the
adversary without detection. Therefore, some intuitive physical
properties such as velocity and altitude are not ideal. Second, the
physical property must be securely capturable by the trust anchor,
despite the threat from the untrusted kernel on Dev. This require-
ment rules out certain TA choices, e.g., software launched by Intel
SGX can not act as TA, since it lacks I/O capability.

In the following sections, we introduce three types of residence
checking based on scene, sight and location, with different security
and usability.

3 SIGHT-BASED RESIDENCE CHECKING
The residence checking protocol is designed to resist attacks by the
collusive and analog adversary. This section focuses on protocol
logic only. The operational model of analog I/O devices is simplified
to consist of rendering (delivering) data from/to main memory at
fixed-length intervals. The next section presents implementation
details of complex low-level I/O operations.

3.1 Basic Protocol
After a successful existence attestation phase, Verifier is assured
that a genuine DRTM and its TA took part in the interaction. The
next step is to check whether they both reside on ROTD or ROTM.

Using the general approach described in Section 2.3, we propose
to use the line-of-sight between Verifier and Dev to verify DRTM
residence. Before initiating attestation, Alice positionsDev’s camera
to face Verifier’s screen. The line-of-sight channel between Verifier
and Dev is then used to convey Verifier’s attestation challenge to
Dev. Our rationale is based on the physical property of line-of-sight:
since the attestation challenge is sent and received via the analog
channel, a man-in-the-middle adversary must perform the same
type of analog I/O operations to relay the challenge. It therefore
needs to take a longer time than an uncorrupted device would take.
Hence, our scheme needs to measure the interval between sending
a challenge in Verifier and arrival of that challenge at Dev.

3.1.1 Design Considerations. Although the basic idea is quite
simple, the scheme is challenging to realize, for several reasons:

First, it is very difficult to precisely measure the desired time
interval. The two events take place on Verifier andDev, respectively.
Since they are not expected to have perfectly synchronized clocks,
we cannot obtain precise start and end times in the two devices.

Second, displaying an image on the screen and capturing that
image are independent events. The camera periodically generates
the image frame according to its frame rate. The image may be
displayed anytime during the camera’ operation cycle denoted by
τcam . In the rest of the paper, we refer to this as the D2C (display-
to-camera) interval, as illustrated in Figure 3. Thus, the difference
between the shortest and longest D2C intervals is about τcam ,
Naturally, we must consider the shortest interval for the benefit of
the attacker, and the longest – for the normal case.

time

image	
capture

image	
capture

image	
capture

end	of
display

τcam τcam

D2C	interval

Fig. 3: The shadowed box represents the D2C interval. Its length is
uniformly distributed in [0, τcam].

Caveat: The D2C interval can not be precisely measured by soft-
ware, because the exact moment when the image is fully displayed is
not known to the CPU. Unless τcam is significantly short, variance
of the D2C interval should not be neglected.

Third, an image frame is essentially a matrix of pixels, displayed
row-wise. If the adversary can derive the entire frame data after
observing the first few rows, it does not need to wait for the entire
frame to be displayed, and can hence take less time than expected.
For example, after scanning the top row of a standard barcode, the
adversary can infer the encoded binary string. Hence, images used
between Verifier and Dev must not allow such shortcut attacks.
For ease of presentation, we refer to qualifying images as full-view
images.

Finally, the recipient must detect whether the camera captured
the entire image of the displayed challenge. As shown in Figure 4,

the image produced by the camera might only take part of the chal-
lenge image, because the display has not yet rendered the entire
screen when the camera took the picture. This partial capture could
result in: (1) false positives with a genuine device, or (2) false nega-
tives, since the adversary’s cost is reduced by relaying only part of
the challenge. We refer to this issue as the full-screen problem.

time

image	
capture	j

image	
capture	j+1

start	of
display

τdis

τcam
end	of
display

image	
capture	j+2

τcam

Fig. 4: Illustration of the full-screen problem: j-th capture only gets
the tophalf of the displayed challenge,while both (j+1)-st and (j+2)-
nd captures produce the entire image of the challenge.

3.1.2 Protocol Details. The residence checking scheme uses the
analog display-to-camera (D2C) channel, where the former is the
sender and the latter – the receiver. Success of the scheme hinges
on this channel’s analog transmission latency, as defined below.

Definition 3.1. Analog Transmission Latency (ATL) of the D2C
channel is the interval between (1) the timewhen the sender’s display
starts to render the image on the screen, and (2) the time when the
complete image is stored by the camera in the receiver’s memory.

Since both display and camera run at a constant rate, ATL of a
D2C channel is expected to be relatively constant, except for any
variance due to the D2C interval. Moreover, any analog relay in a
D2C channel significantly increases its ATL. The idea behind the
basic sight-based residence checking scheme is as follows:

TA (which is verified in the existence checking phase) asks Veri-
fier to display a challenge image. It then captures that image and
reports it along with measured raw latency. To compute ATL, Veri-
fier refines raw latency by removing time intervals which are within
raw latency, but not within ATL. For ease of presentation, we refer
to them as noise intervals. If the image is genuine and the refined
ATL is lower than the pre-defined threshold, Verifier asserts that
TA indeed resides on Dev. Details are shown in Protocol 2.

As shown, TA and Verifier communicate over the normal net-
work and the D2C channel. We use: network-send, network-receive,
camera-receive and display-send to denote two sets of communica-
tion primitives for the respective channel. While the first two are
standard network operations, the last two are elaborated below:

display-send To send an image, trusted software (e.g., TA in
Dev or the kernel on Verifier) writes it directly to the frame
buffer. The hardware automatically retrieves this data and
renders it on the screen. If trusted software runs in an un-
trusted device, it cordons off the frame buffer to prevent any
read access from the untrusted kernel.

camera-receive Trusted software responds to the camera’s
interrupt which signals the arrival of a new batch of image
blocks. It immediately copies buffer contents to its own pro-
tected buffer and reconstructs the image. A camera-receive
operation returns successfully if the received frame is a full-
screen image. If trusted software runs on an untrusted device

Residence Checking (∆max , P)
Before execution, Verifier generates a random picture P . TA in Dev is
prepared for camera-receive.
5. (Dev) TA in Dev reads its clock to get current time Ts , and network-

sends (Ts , σ1) to Verifier, where σ1 = Hk (Ts)
6. (Verifier) Challenge: It network-receives (Ts , σ1) and verifies in-

tegrity of Ts against σ1. It display-sends P and measures network
latency, τnet , as well as noise interval, δV .

7. (Dev) Response: After network-sending (Ts , Hk (Ts)), TA camera-
receives eP ′. It reads the clock to get current time Te , and network-
sends (Te , P ′, σ2) to Verifier, where σ2 = Hk (Te −Ts , P ′).

8. (Verifier) Verification: After network-receiving (Te , P ′, σ2), Verifier
performs the following steps:
(a) Verifies integrity of Te and P ′ against σ2.
(b) If Te − Ts − δV − τnet < ∆max and P ′ ≡ P , declares that

DRTM and TA reside on Dev. Otherwise, they reside onM.

Protocol 2: (Cont. from Protocol 1) Basic sight-based residence
checking protocol: ∆max = τdis + 2τcam . Notation P ′ ≡ P means
that they are visually equal.

(e.g., Dev), it cordons off the camera buffer to prevent any
write access from the untrusted kernel.

Note that it is difficult to directly measure ATL because the start
and end involve two distinct devices. In our protocol, TA times
two events and obtains Te −Ts , which is the raw latency. All noise
intervals for Protocol 2 are in Verifier. They include network trans-
mission (τnet) and time (δV) between packet arrival and Verifier’s
display starting to render the image.

MaximumLatency with No Attack. Figure 5 illustrates time lapses
measured by raw latency (Te −Ts) in Protocol 2. The channel’s ATL
refers to the period between t1 and Te , as shown in Figure 5. It

time

image	data
written	to	
memory

τcam
Ts t0packet	

arrival
image	
displayed	
on	screen

t2

camera	
starting	
capturing

Tet3

packet	
sentDev

Verifier
τdis

t1
starting	
rendering

δV

ATL

Fig. 5: Sequence of events betweenTe andTs . Dashed lines indicate
variable times, while solid lines denote constant times. t0, t1, t2, t3
denote events of: packet arrival at Verifier, image rendering start,
image displayed on screen, and image capture, respectively.

includes three intervals, all of which involve hardware operations:
t1 → t2: Time for Verifier’s screen to display the image. This de-

pends on the display frame rate. Let τdis denote the time to
render the entire screen, which is close to the inverse of the
refresh rate.

t2 → t3: D2C interval, at most τcam , which is the inverse of the
camera’s frame-per-second (fps) rate.

t3 → Te : Time for the camera to deliver the image frame to the
DMA buffer; its length is also τcam .

Therefore, ∆max = τdis + 2τcam is the longest possible ATL for
intact Dev in the basic sight-based residence checking protocol.

3.1.3 Security Analysis. Wefirst show that a collusive and software-
only attack cannot pass presence attestation, and then analyze ana-
log attacks. In the analysis below, we ignore CPU time consumed by
code execution. Since no heavy computation is involved, the sum
of CPU time in both Verifier and Dev is two orders of magnitude
less than the time for analog operations.

Software-Only Attacks. Residing on Dev and M, the adversary is
represented by malware with no hardware assistance. This malware
controls the kernels of both Dev and M. If neither Dev nor M
launches genuine DRTM-s, the adversary cannot pass existence
attestation.

Suppose that the adversary launches DRTM and TA onM. The
cuckoo attack allows it to successfully pass the existence checking
phase. Since the resulting secret key k is securely held by TA, it is
infeasible for malware to access k . Note that TA reads the challenge
image directly from the camera’s DMA buffer which can only be
written to by the camera. Hence, malware cannot “feed” the image
to TA, and a well-formed response cannot be returned to Verifier.

Analog Attacks. An analog adversary enhances the plain cuckoo
attack by attacking the D2C channel. In essence, the adversary sets
up an “image relay” that acts as the man-in-the-middle between
Verifier and TA inM.

Ahead of time, the adversary sets up another computer (accom-
plice) with a display facing M’s camera. TA on M successfully runs
Protocol 1 and sends a request to Verifier via the network. When
Verifier displays a challenge image, Dev’s camera captures it, passes
it to malware which then forwards it (via the network) to the ac-
complice, to be displayed. Finally, TA in M captures the image and
computes channel latency.

Figure 6 illustrates minimum channel latency for this attack.
t1, t2, t3 are defined the same as in Figure 5. To give the adversary
maximal advantage, we assume that D2C intervals (as defined in
Section 3.1.1) are of negligible length, meaning that both t3 − t2 and
t7 − t6 are close to zero. The interval between t4 and t5 depends on
the adversary’s network channel between Dev and the accomplice.
We consider t5 − t4 to be negligible, assuming that the network
used by the adversary is invisible to Verifier. We also disregard (as
negligible) the CPU time taken by the adversary. Let ∆̄min denote
minimum channel latency under the analog cuckoo attack. Hence,
we have:

∆̄min = 2τdis + 2τcam and ∆̄min − ∆max = τdis

Thus, in the best case, the adversary still needs τdis longer time
than the longest delay incurred by uncorrupted Dev. Since τdis is
the inverse of the display refresh rate (e.g., 60Hz for many modern
displays), it is large enough to be detected by Verifier.

3.2 Extension: Iterative Checking
We extend the basic scheme to detect the presence of the analog
adversary, armed with a high-end display with τdis of only a few
milliseconds. The basic idea is to amplify a relatively short delay of
one-round analog transmission into a substantially higher latency.

time

image	
written	to	
memory

τcamTs t1 t2 Te

packet	
sent

Dev

τdis

M

image	
arrival

τdis

image	
displayed	
on	screen

Remote	
Display

camera	
starting	
capturing

t3

t4 t5 t6

image	
written	to	
memory

τcam

t7

Attacker

ATL	of	the	attacked	D2C	channel

Fig. 6: Example of ATL of D2C channel under analogy cuckoo at-
tack.

The extended protocol requires multiple consecutive rounds of D2C
channel transmission, which clearly incurs additional user burden.

For effective latency amplification, a new round of transmission
must begin after completion of the prior round, i.e., there should
be no pipelining. Therefore, the receiver has to securely notify the
sender about completion. We use the same D2C channel for the
returning notification, such that a man-in-the-middle attack would
incur higher delays. Hence, the extended scheme requires both Ver-
ifier and Dev to have their cameras facing the other’s display. The
resulting scheme is described in Protocol 3. The notification sent
from TA to Verifier in Step 5 is a visualized HMAC, that allows Veri-
fier to verify authenticity. Thus, the adversary cannot impersonate
TA by sending a fake notification, which would lead to pipelined
transmission and defeat the purpose of amplification.

Noise intervals onDev and Verifier– of lengths δD and δV – refer
to the time from receipt of a valid image frame produced by the
camera, until the display starts rendering, on respective devices.
These intervals, as well as images of hi -s, are described in detail in
Section 5.

Maximum Latency under No Attack. At completion of Proto-
col 3, TA display-sends (h0, · · · ,hn) and Verifier display-sends
(P0, · · · , Pn−1). Note that starting time Ts is right after receiving
h0. Thus, only transmission times for (h1, · · · ,hn) are factored into
Te −Ts . In total, the protocol involves 2n D2C transmissions and
maximum latency of accumulated ATL is: ∆Imax = 2n(τdis +2τcam),
assuming identical hardware at both end-points.

Minimum Latency for Adversary. The adversary can use both
a display and a camera to relay images between Verifier and TA.
Minimum delay in relaying Pi , denoted as ∆̄v2d

min , is the same as in
the basic protocol. Thus, we have:

∆̄v2d
min = τdis + 2τcam + τ̄dis

where τ̄dis is the frame rate of the adversary’s special (i.e., faster
refresh rate) display. Minimum delay in relaying hi , denoted as
∆̄d2v
min , is computed as:

∆̄d2v
min = 2τdis + τcam + τ̄cam

Iterative Residence Checking (∆itemax , n, P0, P1, · · · , Pn−1)
Before execution, Verifier generates n random images
{P0, P1, · · · , Pn−1 }, and TA computes {h0, · · · , hn } where
hi = Hk (i, Verifier | |TA) for i ∈ [0, n], and converts them into
n + 1 images. Both Verifier and TA are ready for camera-receive with
counter i = 0.
5. (Dev) TA in Dev display-sends the image for hi . Next, based on the

value of i :
• i < n, TA camera-receives P ′i and saves it. It computes i = i + 1,
and goes to Step 5.

• i = n, goes to Step 7.
6. (Verifier) Challenge: It camera-receives and decodes hi , and verifies

integrity. Abort, if not valid. Next, based on the value of i :
• i = 0: It reads its clock to get Ts , sets i = i + 1 and display-sends
P0. Go to Step 6.

• i < n: it display-sends Pi and sets i = i + 1. Go to Step 6.
• i = n: It reads its clock to get Te . Go to Step 8.

7. (Dev) Response: TA network-sends (P ′0, · · · , P
′
n−1, δD, σ2) to Ver-

ifier, where δD is duration of noise intervals in TA, and σ2 =
Hk (P ′0, · · · , P

′
n−1, δD).

8. (Verifier) Verification: Verifier performs the following steps:
(a) It network-receives (P ′0, · · · , P

′
n−1 − δD, σ2), and verifies its

integrity.
(b) If Ts −Te − δD − δV < ∆Imax and P ′i ≡ Pi , for all i ∈ [1, c], it

declares that the DRTM and TA reside on Dev. Otherwise, they
reside onM.

Protocol 3: (Cont. from Protocol 1) Iterative Sight-based Residence
Checking: ∆Imax = 2n (τdis + 2τcam)

where τ̄cam is the frame rate of the adversary’s camera. Total mini-
mum latency ∆̄Imin is then computed as:

∆̄Imin = n(∆̄
v2d
min + ∆̄

d2v
min) = 3n(τdis + τcam) + n(τ̄dis + τ̄cam)

Hence, we have:

∆̄Imin − ∆Imax = n(τdis − τcam) + n(τ̄dis + τ̄cam) (1)

Equation 1 implies that, even if the adversary uses the fastest display
and camera, such that τ̄dis ≈ τ̄cam ≈ 0, our scheme can still detect
the fastest attack, provided that τdis > τcam . Note that neither τdis
nor τcam is chosen by the attacker. Moreover, it can be amplified
linearly with multiple iterations. In practice, a typical smartphone
display has a 60 Hz refresh rate, while a high-end camera can
reach a rate of about 120 frames per second. In such a setting,
τdis − τcam alone is about 8 msec. Hence, the iterative residence
checking scheme can detect an analog cuckoo attack.

4 SECURITY AND USABILITY
Residence checking protocols proposed in Section 3 require a line-
of-sight channel between Verifier and Dev. In the basic protocol,
Alice needs to position Dev to point at Verifier, while the extended
protocol requires both Verifier and Dev have to be properly po-
sitioned. Moreover, Alice has to inform Verifier about relevant
parameters, including τdis and τcam . This results in strong security,
which is, unfortunately, commensurate with relatively poor usabil-
ity. In this section, we consider software-only attacks and propose
two protocols with better usability, though weaker security.

4.1 Scene-Based Residence Checking
Scene-based attestation also assumes that Dev has a camera. The
scheme is essentially a challenge-response protocol between Alice
and TA. Alice picks a random physical object in its physical prox-
imity or environment and uses it as a challenge. TA is expected to
respond with the object’s image directly produced from its own
camera. Assuming integrity of the hardware, and that the analog
channel is not attacked by the software-only adversary, a correct
response implies that TA’s hosting device’s camera indeed “sees”
the challenge object. Therefore, the device in question must be Dev.

Scene-based Residence Checking Protocol.

5. After receiving b from Verifier, TA prepares for residence attestation
by clearing the camera’s DMA buffer and locking it.

6. After sending b , Verifier notifies Alice to prepare the challenge. Alice
randomly chooses a physical object in her current environment. For
example, she might use the whiteboard or a piece of paper to write
one or more random number(s) or draw arbitrary pictures, or simply
select a random scene in her immediate vicinity. Alice then points
Dev at the chosen object (from a close distance) and takes a photo
with Dev.

7. Verifier
σ ,I
← Dev. TA obtains the image of the object by directly fetch-

ing raw bytes from the camera’s DMA buffer. Let I denote the image
data. TA computes σ = Hk (I).

8. Verifier verifies validity of σ using k and I. If verified, it displays I
on its screen; otherwise, Verifier displays an error message.

9. Alice manually checks whether I displayed by Verifier matches her
chosen object. If so, she concludes that the trust anchor is indeed on
Dev and protected by ROTD.

Protocol 4: (Cont. from Protocol 1) Scene-based Residence Check-
ing Protocol

Details are described in Protocol 4, which runs after Protocol 1.
Basically, TA clears the camera’s DMAbuffer on its hosting platform,
and locks it (Step 5), such that only the camera can write into it. It
ensures that data later fetched from the buffer is indeed delivered
by the camera, and not by malware. Thus, TA’s response (in Step 7)
faithfully reflects the physical environment of the hosting device.

Discussion. Protocol 4 is secure against software-only cuckoo
attacks. Under such an attack, TA on M only takes input from
hardware, and a software-only adversary cannot feed TA any images
captured by Dev’s camera.

Theoretically, this protocol can be defeated by the analog ad-
versary using the scenario described in Section 3. Nonetheless, we
believe that, in practice, the protocol may withstand analog at-
tacks to some extent. There is notable difference in effort between
(adversarial) ability to photograph: (1) a physical object in Alice’s
and Dev’s private environment, and (2) an image displayed on the
screen in a separate (adversary-controlled) environment. This differ-
ence is based on several factors, such as: ambient lighting, distance
between the camera lens and the target, as well as reflections of
various nearby objects. The adversary that photographs displayed
images would quite likely sacrifice fidelity of the real object, or
include objects that are not in Dev’s environment.

Furthermore, the scene-based scheme can be extended to replace
a photo with a short video clip. The camera in Alice’s environment

would record a normal clip, while the clip produced in the adver-
sary’s environment would show the refreshing of the screen when
the camera’s frame rate is higher than that of the screen. Therefore,
Alice would be able to decide whether the result is indeed obtained
from her environment. Unfortunately, this would significantly com-
plicate the design of TA due to the video clip being generated from
raw data. We leave this issue for future work.

4.2 Location-Based Residence Checking
Location-based residence checking assumes that Alice is aware of
her present location and Dev has a GPS5. The basic idea is to use
Alice’s present location as an implicit challenge to TA which is
expected to report a matching location by securely obtaining its
hosting device’s GPS data. Since GPS signals can be spoofed by
the adversary with physical equipment, this scheme is secure just
against software-only attacks.

Similar to the scene-based attestation protocol, TA needs to clear
the GPS DMA buffer and lock it, such that any data in the buffer is
faithfully reported by GPS. The protocol is presented in Protocol 5.

Location-Based Residence Attestation.

5. After receiving b from Verifier, TA prepares for residence attestation
by locking the DMA buffer used by the device’s GPS.

6. Verifier
σ ,L
← Dev. TA obtains its present location coordinates by di-

rectly fetching raw bytes from the GPS DMA buffer. Let L denote the
location data. TA computes σ = Hk (L).

7. Verifier verifies validity of σ using k and L. If verified, it highlights L
on the displayed map; otherwise it displays an error message on the
screen.

8. Alice manually checks whether the highlighted location matches
her present environment. If positive, Alice concludes that the trust
anchor is indeed on Dev and protected by ROTD.

Protocol 5: (Cont. from Protocol 1) Location-based Residence
Checking Protocol

The main advantage of this scheme is its minimal human in-
volvement, since Alice does not need to move or reposition Dev.
The protocol can even be combined with the existence checking
protocol without time gaps in Protocol 2, 3 and 4.

Caveat. The present scheme is not secure against the adversary
positioned very near Alice, since, in that case, TA on the adversary’s
device reports the same location as Dev.

4.3 Other Analog Attacks
We now consider another potential attack setting for the analog
adversary. In it, the adversary takes advantage of at least one extra-
neous camera (denoted by CAM) in the immediate vicinity of Alice,
Dev and Verifier. The attack is more similar to shoulder-surfing,
than to a cuckoo attack. Themain idea is that, if properly positioned,
CAM can take a reasonably accurate photo of the screen at about
the same time as Dev’s camera. Therefore, if CAM is wired to M
(or they are one and the same), the proposed sight-based schemes
can be defeated, since the adversary no longer needs any analog
relay. There are two flavors of this attack:
5Although it is possible to locate a device via Wi-Fi and cellular signals, the complex
analysis is ill-suited for the trust anchor due to bulky code.

[1]: The adversary has prior physical access to the premises where
presence attestation will take place. Placement of CAM and M
must be proactive and precise to anticipate the exact location of
the presence attestation process. Although possible, this attack is
complicated. If a ceiling-mounted camera is used, its angle must
be sufficient to subsume Verifier’s screen. Also, any screen privacy
film used on Verifier would make it nearly impossible take a photo.
Of course, if during attestation Alice is physically accompanied by
a live (real-time) adversary Eve, who surreptitiously takes a photo
using her device (CAM+M), all bets are off.
[2]: The adversary that has no physical access to the premises. How-
ever, it takes advantage of cameras common in many office and
workplace environments. Having control over a multitude of CAM-
s, the adversary is not limited to targeting only one space, such as
Alice’s office. On the other hand, recall that M is assumed to be of
the same type as Dev, which is different from a typical IoT-style
camera exemplified by pre-installed CAM. Specifically, CAMwould
most probably lack a DRTM. Therefore, a successful attack would
require negligible communication delays between M and CAM,
which is highly unlikely.

5 IMPLEMENTATION
We implemented Protocols 1–5 for a typical setting, whereDev (e.g.,
a smart-phone) has an ARMprocessor, whileVerifier is a commodity
x86-based computer. Specifically, we use a laptop as Verifier, and, as
Dev, we use an ARM development board with an LCD screen, a USB
camera and a GPS unit. There are no technical barriers for adapting
this implementation to other platform settings, though some low-
level hardware-dependent modifications would be necessary. This
initial prototype implementation is rather complex, since it involves
system security techniques, as well as intricate I/O mechanisms
used by the display and the camera, as well as relevant image
processing techniques.

5.1 DRTM and Trust Anchor
We built the DRTM agent in Dev’s secure world as well as a micro-
hypervisor running in Dev’s HYP mode of the non-secure world.
The agent, as well as the supporting ARM TrustZone hardware,
are collectively considered to represent DRTM, while the micro-
hypervisor acts as TA.

The hypervisor is measured and launched by DRTM agent at
runtime, instead of during boot-up. Dynamic hypervisor launching
on ARM platforms is supported by ARM specifications and has
been implemented by Cho, et. al. [10]. Basically, the user-space
application issues a system call to the underlying kernel, which
in turn issues an SMC call to DRTM in the secure world. DRTM
measures the hypervisor image and deploys it. Besides loading the
hypervisor into memory, deployment includes setting up Stage I
and II page tables and installing the hypervisor call (HVC) handler.
Then, the DRTM agent returns to the kernel, which issues an HVC
and traps to the hypervisor. The main drawback of this approach is
that DRTM takes up too much responsibility and its code base is
significantly expanded, due to hypervisor deployment.

Our implementation employs a more direct approach with the
same security strength, yet with a smaller DRTM code base. When
handling the SMC call for hypervisor launch, the DRTM agent still

loads the measured hypervisor. However, it manipulates the hard-
ware context, such that the SMC return goes to HYP mode, instead
of the SMC calling site in the untrusted kernel. Specifically, lr_mon
and spsr_mon registers are configured such that execution of the
eret instruction in the secure world causes CPU to switch to HYP
mode and returns to the hypervisor code previously prepared by the
agent. Once the hypervisor takes control, it configures all paging
structures and the HVC handler. In a similar way, the hypervisor
creates a new hardware context, such that execution of eret in
HYP mode returns to the untrusted kernel’s SMC calling site. Note
that, when the CPU runs in secure world, or in HYP mode, the
untrusted kernel cannot preempt its execution.

Compared with the standard mechanism in Cho, et. al. [10],
our system saves one CPU mode switch and the DRTM agent is
hypervisor-agnostic, since it does not handle internals of the hy-
pervisor, such as paging structures. Therefore, the logic is much
simpler and the code-base for dynamic loading is smaller. Our im-
plementation requires only 90 lines of assembly and 230 lines of C
code for dynamic measured launch.

5.2 Sight-based Residence Checking Schemes
Since sight-based Protocols 2 and 3 are time-critical, we carefully
implemented them for Verifier and TA to ensure that incurred CPU
time is minimized and as stable as possible. Both requirements are
crucial to protocol security.

5.2.1 The Verifier. We implement a protocol agent which runs
as a kernel thread to execute residence checking protocols. Since
Verifier is fully trusted, we do not consider security issues in the
implementation. Figure 7 depicts the main steps of Verifier as well
as the breakdown of Verifier’s noise intervals in Protocol 2 and 3. To
accurately measure these noise intervals, the protocol agent stalls
all other CPU cores in Verifier and sets itself as non-preemptive,
such that it does not yield CPU to other threads.

camera-receive

decode	&	
Verification

display-send

image	
recon.

full-screen	
detection

FIQ frame	buffer	
write

vblank
arrival

Timenoise	interval

network-receive

Verification

display-send

packet	
recon.

NIQ frame	buffer	
write

vblank
arrival

Timenoise	interval

(a) Verifier in Protocol 2

camera-receive

decode	&	
Verification

display-send

image	
recon.

full-screen	
detection

FIQ frame	buffer	
write

vblank
arrival

Timenoise	interval

network-receive

Verification

display-send

packet	
recon.

NIQ frame	buffer	
write

vblank
arrival

Timenoise	interval

(b) Verifier in Protocol 3

Fig. 7: Breakdown of noise intervals in Verifier.

Below, we discuss the details of display-send and camera-receive.
Some tasks, such as random picture generation and HMAC compu-
tation, are not time-sensitive since their CPU time is not factored
into raw latency.

Camera-receive. The high-level scheme of USB camera I/O is
as follows: To produce an image frame, the camera can transfer
one or multiple groups of image blocks. An interrupt called FIQ

is generated upon each block group transfer. The corresponding
handler reads the blocks and assembles them into a frame.

Verifier camera-receives hi in Protocol 3. The FIQ interrupt han-
dler is hooked, such that, whenever a frame is successfully recon-
structed, the protocol agent reads its birth time.

Caveat A camera’s frame rate is not the frequency of block-
group transfer. It refers to the number of image frames recon-
structed by software in a second. In other words, τcam is essentially
the time between two image reconstructions.

Another issue is the full-screen problem described in Section 3.1.1.
Our method is based on two consecutive frames being approxi-
mately the same. The rationale is that, after Dev’s display is fully
rendered from the top-left to the bottom-right corner, it appears
as a still picture to the camera. Therefore, images captured by the
camera at different times should be visually the same and their pixel
values should be close to each other6. As illustrated by (j + 1)-st
and (j + 2)-nd captures in Figure 4, if two consecutive images have
little variation, the former is the first image for the full screen and
its birth time is exactly the starting time of the noise interval of
Verifier in Protocol 3.

After successful image reconstruction from the camera buffer,
Verifier recovers hi from the image. Details are described in Sec-
tion 5.2.3; this involves image encoding techniques.

Display-send. Since security is not a concern here, we take ad-
vantage of the existing graphic framework to display Pi in both
protocols. The crux of Verifier’s display-send operation is to pre-
cisely measure the end-point of the noise interval. We leverage Intel
Direct Rendering Management (DRM). The graphics card driver
prepares two frame buffers which are used alternatively: one is
used by the hardware for displaying, and the other – for update.
A periodic vblank interrupt triggers the driver to switch to the
updated buffer for displaying.

The vblank interrupt handler is instrumented to check whether
Pi has been placed in the frame buffer. If so, the hander reads the
clock which marks the end of Verifier’s noise interval.

5.2.2 The Device. The implementation on Dev is more complex
than on Verifier, because it is built into the ARM hypervisor and
Dev is not a trusted device. On one hand, the implementation must
ensure protocol security with high accuracy and little time variation.
On the other hand, we must refrain from significantly expanding
hypervisor code size and logic. Our strategy is to maximize the
use of the untrusted kernel to perform non-sensitive tasks. The
hypervisor, acting as TA, runs the attestation protocol(s) involving
two main primitives as follows:7

camera-receive display-send

image	
recon.

full-screen	
detection

FIQ frame	buffer	
write

vsyn
arrival

Timenoise	interval

Fig. 8: Implementation details of Dev in Protocol 3.

6The two images are not byte-wise identical due to inaccuracy of the image sensing.
7Note that the hypervisor also stalls other CPU cores and acquires the highest sched-
uling priority for precise and stable time measurement.

camera-receive. The hypervisor uses the camera-receive to ob-
tain random images from Verifier. It uses the same technique to
solve the full-screen problem as Verifier. Note that there is no noise
interval for Dev in the basic sight-based protocol, since TA’s op-
erations after reconstruction of P are not included in raw latency.
The breakdown of the noise interval in the iterative sight-based
protocol is described in Figure 8. The only difference between Fig-
ure 7(b) and Figure 8 is that the latter does not need to verify data
authenticity. Similar to camera-receive of Verifier, the start of the
noise interval in the iterative protocol is the time when the random
image from Verifier is completely assembled.

The main security requirement is that the origin of the image
must be Dev’s camera. In other words, any update to the camera
buffer can only come from the camera itself. Any software’s write
access to the buffer breaks the security premise of residence check-
ing. Since memory operations are orders of magnitude faster than
camera’s analog operation, the adversary with write accesses to
the buffer can significantly reduce its ATL and easily pass the time
checking.

For this purpose, the hypervisor uses Stage II page table to con-
figure the camera’s frame buffer as read-only. The untrusted kernel
can still read the buffer. However, any write to the buffer (from
kernel or user spaces) is blocked by hardware. To deal with DMA
attacks from the kernel, the hypervisor also configures the SMMU
page tables used by peripheral devices, such that no device (ex-
cept the camera) can access the buffer. For ARM platforms without
SMMU page tables, the hypervisor intercepts I/O operations and
inspects the DMA descriptors.

The FIQ interrupt handler in Dev’s kernel is also hooked such
that its execution is trapped to the hypervisor, which then assembles
blocks in the camera buffers into an image frame. Although the
kernel is untrusted, protection of the FIQ handler is actually not
necessary. Any tampering with the handler leads the hypervisor to
mistakenly assemble image blocks. However, this does not feed any
counterfeit data (i.e., not from the camera) to the hypervisor. Thus,
the adversary gains no advantage, except protocol disruption.

display-send. Our prototype of Dev is a development board with
a low-end graphic card. Thus, there is no hardware signal synchro-
nizing LCD refreshing and kernel frame buffer update. Since the
display fetches the frame buffer data at fixed intervals, we simu-
late it by setting a timer with the same frequency. Note that the
simulation has no effect to the basic protocol, which does not use
display-send in Dev. We acknowledge that it introduces a constant
offset between obtained δD and real values for the iterative protocol.
Nonetheless, their distribution and average values are the same.

The security requirement of Dev’s display-send is that displayed
data must not be read by the adversary frommemory. The adversary
is thus forced to use the analog channel, which increases ATL.
Therefore, the hypervisor properly configures the Stage II page
tables and the SMMU tables to set the frame buffer as inaccessible.

5.2.3 Image Related Issues. As noted in Section 3, we can only
use full-view images. Below we describe how full-view images are
chosen and generated in our implementation.

P and Pi -s. Images displayed by Verifier to Dev are random, i.e.,
(almost) every region of the image is randomly generated. These

images are prepared by Verifier before running presence attestation,
in order to avoid the runtime overhead.

Note that the hypervisor is not burdened with image recognition.
Instead, it only reconstructs the picture produced by the camera
using the data in the camera buffer and offset information stored
in registers. More details are in Section 5.4, which describes the
implementation of the scene-based protocol.

Our current implementation does not include the algorithm to
evaluate P ′ ≡ P . Instead, Alice is required to physically check for
similarity. Image processing techniques can be applied to automate
the process. We leave this item for future work.

Image of hi -s. We do not use randomly generated images for the
hypervisor, for two reasons: First, it is costly for the hypervisor to
generate random images, in terms of code size/complexity, storage
size, and time. Second, it is difficult for Verifier to check authenticity
of those images. Since software in Verifier is trusted and has the full-
fledged capability of image recognition and decoding data, it is more
advantageous for the hypervisor to display visualized HMACs.

The hypervisor splits hi into two binary strings, and converts
them into two barcodes. It then constructs an image with one
barcode at the top rows of the screen and the other – at the bottom.
The rest of the image is solid white color. This layout ensures that
any camera receiver must wait until the full image is displayed on
the screen, because the screen always renders pixel rows top-down.
Once Verifier camera-receives the image, it extracts two binary
strings from the barcodes and reconstructs hi for verification.

Since the time to reconstruct hi is within the time measurement,
it must be both short and constant. Verifier’s camera is configured
to produce images using the YUYV format, so that the camera’s
raw data is not compressed. The protocol agent in Verifier scans
the image to read out the barcodes. Specifically, the agent reads
pixel colors in a row. If a short black pixel segment is encountered,
the agent outputs ‘0’, and if a long black pixel segment is detected,
it outputs ‘1’.

5.3 Location-based Residence Checking
GPS Receiver of Dev receives GPS data stream from the satellite in
the form of the National Maritime Electronics Association (NEMA)
sentences. These sentences are a sequence of ASCII characters, start-
ing with ‘$’ and ending with a carriage return. In every sentence,
the first word describes its type. Geographic location information
of Dev, including longitude and latitude, is in the “GPRMC” type.
The receiver writes sentences to the Data Register (DR) one byte
at a time. Arrival of a byte is indicated by the Flag Register (FR)
where a flag bit is automatically set when the byte in DR is read by
software.

For Protocol 5, the hypervisor in Dev denies all write accesses
to DR by configuring Stage II page tables and SMMU page tables
(if available). This ensures that data in the register is genuinely
produced by on-board GPS receiver.

After setting up the restriction, the hypervisor continuously
checks FR and reads one byte from DR. If it detects theword "$GPRMC",
it copies subsequent characters to its buffer until it encounters a
carriage return. The captured sentence contains the location of Dev.
Hypervisor computes an HMAC and sends both GPS message and
HMAC to Verifier. Since message secrecy is not a concern and it

is not time sensitive, hypervisor calls a user-space application to
send them over the network.

Most users do not know the exact longitude and latitude of
their locations. Thus, Verifier displays the location reported by
hypervisor on a map and Alice manually verifies its correctness.
Since GPS location accuracy can be within 5 to 10 meters, Alice
might only be able to recognize the location based on buildings and
street blocks.

5.4 Scene-based Residence Checking
In our platform for Dev, the device has a USB-camera which uses
five DMA buffers at fixed physical addresses. The camera periodi-
cally writes to these buffers with a batch of image blocks of variable
lengths. An image frame consists of one or more blocks, depending
on image size. Although an image frame has a header with a unique
frame identifier, a block has no header. A block’s offset within the
image and its size are stored in an array of USB Host Channel reg-
isters. Software is responsible for assembling the blocks into an
image frame with the assistance of the registers.

We place a hook into the kernel’s FIQ interrupt handler, which
is invoked by hardware when the camera completes one batch of
block delivery. The hook traps to hypervisor only when the latter
is in the residence checking session. With the assistance of USB
channel registers, hypervisor reads new blocks and assembles those
with the same frame identifier into an image frame.

Hypervisor computes an HMAC over the image frame. Simi-
lar to the location-based scheme, we use a user space application
to forward the image frame and its HMAC to Verifier over the
network.

6 EVALUATION
We experimented with the prototypes to assess performance and
security. In our setting, Dev is a Raspberry Pi-2 model B develop-
ment board with 900MHz quad-core ARM Cortex-A7 CPU and 1
GB RAM8. It is connected with a Microstack GPS module9 and a
Logitech HD webcam C525 with maximum 30 fps10, both of which
are via USB. Verifier is a Toshiba laptop with 2.4 GHz Intel Core
i7-5500 CPU and 8 GB RAM, with the same web camera as Dev.

In the rest of this section, we evaluate performance of proposed
protocols before assessing their security. We do it in this order,
since execution time is crucial to security of the two sight-based
protocols.

6.1 Performance
We implemented DRTM in the TrustZone. It mainly consists of a
hypervisor loader (90 lines of assembly and 234 lines of C code), and
a 187KB cryptographic library customized from the Mbed TLS11
version 1.3.10. We also implemented the hypervisor as the trust
anchor on the Raspberry PI board. Table 1 lists sizes of all major
prototype components inDev and Verifier. The TCB inDev consists
of DRTM code and the hypervisor. The development board that we
use was not shipped with a public key certificate. To this end, we

8https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
9http://www.microstack.org.uk/products/microstack-gps/
10http://www.logitech.com/en-sg/product/hd-webcam-c525
11https://tls.mbed.org

manually installed RSA public/private key-pairs into its TrustZone
to simulate the DRTM credential.

It takes about 4.5 msec to dynamically launch a hypervisor, from
the moment of the application issuing an SMC call to the CPU
returning to user mode. The main cost is due to hash operations.
We also measure performance of the existence checking protocol.
It takes about 998.5 msec on Dev to execute Protocol 1, where the
dominant cost is RSA decryption and signing, each performed with
a 1024-bit key. With a 2048-bit RSA key, the time shoots up to
5.16 sec.

6.1.1 Sight-based Residence Checking. Table 2 lists performance
constants that can be measured without running the protocols. The
image to send refers to data that Verifier or Dev needs to place
into graphic frame buffers, which is not the same as image file
size. The image to receive refers to the image frame reconstructed
by software using data delivered by the camera. Values of τcam
and τdis are derived from the respective hardware specifications,
and τnet is based on measurement on a lightly-loaded LAN. LAN
congestion during the first network-send operation in Protocol 2
can only induce false positives, since it increases ATL. In our setting,
τnet = 6.3 msec, τcam = 33 msec, and τdis = 16 msec.

We also assess average CPU time of display-send and camera-
receive. For the former, we measured the time for software’s frame
buffer update, and waiting period between completion of frame
buffer update and arrival of the display synchronization signal. We
split CPU time of camera-receive into image reconstruction and full-
screen detection. We measured the period between the interrupt
of the first block of an image frame to the time of the frame being
assembled in memory. The time for full-screen detection is between
completion of frame reconstruction and the moment when it is
determined as full-screen. Results are summarized in Table 3. Note
that image reconstruction time is not counted within the noise
interval. In the camera I/O model, the fps rate takes into account
image reconstruction time.

To assess overall performance, Table 4 shows average turn-
around time of the two protocols, We also measured noise intervals
in both Dev and Verifier. The dominant component of δD is full-
screen detection time in Table 3, and dominant components of
δV are: (1) display-send in the basic protocol, and (2) full-screen
detection in the iterative protocol.

6.1.2 Location-based and Scene-based Protocols. We measured
the turnaround time (as reported in Table 5) for both location-based
and scene-based residence checking protocols. As a slow-speed
device, GPS sends stream data to the buffer at 10 Hz frequency,
which is the performance bottleneck for the protocol. Nonetheless,
this protocol can be combined with existence checking to reduce
overhead.

Turn-around time of the scene-based protocol is the sum of
hypervisor’s image reconstruction, network transmission delay and
Verifier’s user-space execution time, including HMAC verification
and invocation of graphics library functions.

In both protocols, Alice’s manual verification of the location
and the image is not factored into the turnaround time. In our
experiments, it does not take a noticeable delay for the user to
verify presence. As part of our future work, we plan to conduct a
user study to better understand verification behavior.

CPU Mode Sight-based (Basic) Sight-based (Iterative) Location-based Scene-based

Dev

Hyp 248 (142) 380 (150) 248 (88) 248 (127)
Usr 204 54 272 282
Svc 109 89 141 197

Verifier User 703 710 286 248
Kernel 46 347 - -

Table 1: Code size in Dev and Verifier (in SLOC). The numbers of assembly code lines are in the brackets.

Verifier Dev
Image to send (KB) 54 306

Image to receive (KB) 203 21
barcode detection (msec) 0.012 -
HMAC speed (ms/KB) 0.05 0.1

Table 2: Constants in performance measurement.

Verifier Dev

Display-send frame buffer update 0.02 0.5
waiting time 7.9 8.2

Camera-receive Image reconstruction 31.9 14.9
Full-screen detection 33.2 31.8

Table 3: Time for component steps in display-send and camera-
receive (msec)

Basic Iterative (n = 1)
Protocol Turnaround 132 200.8

Verifier’s noise interval δV 15.6 17.0
Dev’s noise interval δD - 44.7

Table 4: Turn-around for two sight-based protocols and noise in-
tervals in Dev and Verifier (msec)

Location-based Scene-based
Dev Verifier Dev Verifier

Turnaround 403.1 23.0 23.9 4.4
Table 5: Turn-around for location- and scene-based protocols
(msec)

6.2 Security of Sight-based Protocols
Since security of sight-based protocols depends on ATL of the
channel, we ran experiments to evaluate whether basic and iterative
protocols correctly verify an uncorrupted device and detect analog
cuckoo attacks.

6.2.1 Attestation under No Attack. As described in Section 3,
the D2C interval is uniformly distributed in [0,τcam]. Hence, ATL
in the basic protocol follows the uniform distribution between:
∆min = τdis + τcam and ∆max = τdis + 2τcam , which are 49
msec and 82 msec, respectively. Thus, the average is 65.5 msec and
standard deviation is 9.5 msec.

ATL in the iterative protocol for n = 1 is the sum of two indepen-
dent ATL-s for two separate D2C channels. Therefore, it follows
Irwin−Hall distribution between [∆Imin ,∆

I
max], where ∆Imax =

2∆max = 164 msec, and ∆Imin = 2∆min = 98. The average is
2× 65.5 = 131 msec and standard deviation is

√
2× 9.5 = 13.4 msec.

We ran each protocol 50 times and computed: average, maximum,
minimum, and standard deviation of measured ATLs. As shown
in Table 6, results corroborate our analytical ATL models in each
protocol. Largest ATLs are below ∆max and ∆Imax . Furthermore,
we observed no false positives.

Basic Iterative (n = 1)
∆min 49 ∆Imin 98
∆max 82 ∆Imax 164

Analytic Experiment Analytic ExperimentModel Model
ATL 65.5 64.0 131 127.5

max. ATL 82 81.7 164 156.3
min. ATL 49 50.1 98 108.5

std. of ATL 9.5 8.1 13.4 16.9
Table 6: ATL in the basic and iterative protocols (msec)

6.2.2 Attestation Under Analog Cuckoo Attacks. To mimic the
attack on the basic protocol, we used a Sony Cybershot DSC-RX100
camera to simulate both Dev and the accomplice display. The Sony
camera’s lens faces Verifier’s display, while the camera attached
to the Raspberry board (acting as M) is faces the Sony camera’s
LCD screen. We turn the Sony camera into the video mode, such
that it simultaneously plays the role of Dev and the accomplice
screen. Compared with the attack setting in Section 3, this exper-
iment setting involves no network transmission and no software
execution.

Results are shown in Table 7. All attacks are detected by Verifier
since incurred ATLs are above ∆max . Under our analytic model,
the smallest ATL the adversary can achieve is 98 msec. In fact,
attack ATL follows the same distribution as the ATL of the iterative
protocol with n = 1, since both scenarios have two transmissions
over the D2C channel. Note that the adversary cannot predict (or
manipulate) the D2C interval.

Basic Iterative (n = 1)
ATL 129.9 248.3

max. ATL 164.0 275.1
min. ATL 110.0 220.3

Table 7:ATLof basic and iterative protocols,manipulated by the ad-
versary. Theoretical lowest values are: ∆̄min = 98 msec and ∆̄Imin =

196 msec.

To simulate the attack on the iterative protocol, we introduce
another digital camera (Olympus OM-D EM-10). The Olympus cam-
era’s lens faces the Raspberry board’s display while its LCD screen
faces Verifier’s camera. Both digital cameras then concurrently re-
lay screen images from Verifier toM and vice-versa. As shown in
Table 7, all ATLs are above ∆Imax . In other words, no false negatives
are observed.

Basic v.s. Iterative Table 7 also shows that the iterative protocol
is stronger than the basic protocol. We compare the gap between
observed smallest ATL and its largest legal value. It is 28 msec
for the basic protocol and 56.3 msec for the iterative one. We also
compare the observed smallest ATL against its lower bound. It is

only 2 msec for the basic protocol, while it rises to 24 msec for
the iterative one. This is because the probability of reaching the
lowest value in the iterative protocol (n = 1) is the square of the
probability in the basic protocol.

7 RELATEDWORK
The topic of this paper is related to several research areas. This
section overviews related work in each.

DRTM. The first effort to take advantage of hardware DRTM
is Flicker [20] which launches a tiny secure execution environ-
ment based on AMD SVM technology [2]. Subsequent results, no-
tably TrustVisor [19] and XMHF [32], launch a bare-metal micro-
hypervisor by using Intel TXT [12] which is also used by Intel’s
own trusted boot-loader. Recent advent of Intel SGX [11] represents
a stronger form of DRTM. It was shown to be a powerful tool in
some recent literature [6, 26]. ARM TrustZone [3] could also be
considered as a special type of DRTM, although its TCB is bigger
than those of its counterparts on x86 platforms. Code protected
by TrustZone can dynamically measure and launch the hypervisor
[10]. Azab, et. al. propose to use TrustZone to provide kernel’s run-
time security [4]. Although the aforementioned schemes are secure
in their respective adversary models, none of them considers the
role of the human user in trust establishment.

Attestation. Research on remote attestation starts with TPM-
based[31] static attestation [25] which only allows a trusted remote
verifier to check static code integrity of the untrusted remote prover.
Many subsequent research efforts have extended remote attestation
from code integrity to encompass more expressive and dynamic
properties [1, 7, 9, 14].

Some static attestation methods are based purely on software,
under some assumptions about underlying hardware performance.
For example, SWATT [28] and VIPER [18] do not require a hard-
ware root of trust. Instead, by relying on carefully crafted memory
traversal algorithms that compute measurements, these schemes
can detect malware presence by precise timings (under the assump-
tion that malware attempts to hide its presence and is thus forced
to copy itself in chunks, which takes extra time). Similar to our
schemes, a malware-infested device takes longer time to attest than
an intact one. However, our schemes are more reliable and effective,
since they are based on analog operations with more significant
delays.

Distance Bounding. Since our work involve measuring commu-
nication delays, it is also somewhat related to distance-bounding
protocols [8, 24]. In principle, distance bounding protocols might
be applicable to the presence attestation problem, since the verifier
can use them to determine the upper bound on the distance to the
prover. Nonetheless, such protocols are extremely sensitive to time
and require high-precision clocks. Also, they cannot tolerate the
variance caused by software execution.

Virtualization-based Security. Many security architectures have
been proposed based on a bare-metal micro-hypervisor, including:
SecVisor[27], TrustVisor [19], InkTag[15], and MiniBox[17] on x86
platforms, as well as: XNpro [22], OSP [10], and H-Binder [29] on
ARM platforms. Compared with DRTM, the hypervisor is more

versatile and adaptive. As shown by XMHF [32], the DRTM mea-
sures and launches a micro-hypervisor, and the latter (acting as a
trust anchor) extends the security perimeter to protect higher-level
software. This paradigm combines the advantages of both DRTM
and the hypervisor.

User Involvement. Both Lange, et. al. [16] and Danisevskis, et. al.
[13] describe a means for a human user to establish trusts in her
device via a secure user interface. The main idea is to isolate a small
bar at the top of the device’s screen that shows whether the critical
virtual machine is running. In these methods, the hypervisor is
launched before kernel initialization, and it is trusted to be always
present. In contrast, our focus is on presence attestation – a more
difficult problem, since the hypervisor is launched after (potentially
corrupted) kernel execution.

TrustICE [30] is a TrustZone-based isolation method which in-
volves an LED light solely controlled by software in the TrusZone’s
“SecureWorld”. As acknowledged in the beginning of this paper, this
currently represents the strongest hardware-based approach. Un-
fortunately, it lacks compatibility and requires hardware vendors’
cooperation. Another less related result is “Seeing-is-Believing”
[21], wherein the human-aided camera-based channel is used to
obtain a public-key credential from a smartphone and bootstrap a
secure channel.

8 CONCLUSIONS
This paper investigated how a human user can ascertain DRTM
presence on her own computing device. The threat of cuckoo at-
tacks makes this a challenging problem due to the gap between the
hardware and the human user. We tackled this challenge with a
two-step approach: (1) assisted by a trusted verifier device, the user
first checks for existence of a DRTM in the interaction, and then
(2) uses the residence-checking protocol to decide whether DRTM
indeed resides on her device. We proposed three flavors of presence
attestation: sight-, location- and scene-based. The sight-based vari-
ant offers the strongest security, since it can detect analog cuckoo
attacks, while the other two offer better usability, commensurate
with slightly weaker security.

Future work is planned in two directions. First, we intend to
better understand proposed schemes via usability studies. and thus
assess user burden, as well as reliability and error-prone-ness. Sec-
ond, we plan to explore new presence attestation techniques under
weaker security assumptions and resistant to compromised verifier
devices.

ACKNOWLEDGEMENTS
Authors are grateful to the ACM CCS’17 anonymous reviewers
for their constructive suggestions. This research was supported,
in part, by the Singapore National Research Foundation under the
NCR Award: NRF2014NCR-NCR001-012. Gene Tsudik’s research
was supported by funding from: (1) the Department of Homeland
Security, under subcontract from the HRL Laboratories, (2) the
Army Research Office (ARO) under contract: W911NF-16-1-0536,
and (3) the Fulbright Foundation. Zhoujun Li’s work was funded
by National High Technology Research and Development Program
of China (No.2015AA016004), National Natural Science Foundation
of China (61672081, 61602237, 61370126,U1636211,U1636208).

REFERENCES
[1] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadegi, and

G. Tsudik. C-FLAT: Control-flow ATtestation for embedded systems software.
In Proceedings of ACM CCS, 2016.

[2] AMD. Secure virtual machine architecture reference manual. Technical report,
Advanced Micro Devices, 2005.

[3] ARM. ARM security technology - building a secure system using trust-
zone technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[4] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen.
Hypervision across worlds: Real-time kernel protection from the arm trustzone
secure world. In Proceedings of the 21st ACM Conference on Computer and Com-
munications Security (CCS), 2014.

[5] A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang, and P. Ning.
SKEE: A lightweight secure kernel-level execution environment for ARM. In
Proceedings of NDSS, 2016.

[6] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi. Foundations of hardware-
based attested computation and application to sgx. In Proceedings of IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), 2016.

[7] E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In
V. Atluri, B. Pfitzmann, and P. D. McDaniel, editors, ACM Conference on Computer
and Communications Security, pages 132–145. ACM, 2004.

[8] S. Capkun and J.-P. Hubaux. Secure positioning in wireless networks. IEEE
Journal on Selected Areas in Communications: Special Issue on Security in Wireless
Ad Hoc Networks, February.

[9] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi, and
C. Stüble. A protocol for property-based attestation. In STC ’06: Pro-
ceedings of the first ACM workshop on Scalable trusted computing, pages 7–16,
New York, NY, USA, 2006. ACM Press.

[10] Y. Cho, J. Shin, D. Kwon, M. J. Ham, Y. Kim, and Y. Paek. Hardware-assisted
on-demand hypervisor activation for efficient security critical code execution on
mobile devices. In USENIX ATC, 2016.

[11] I. Corporation. Innovative instructions and software model for isolated exe-
cution. http://privatecore.com/wp-content/uploads/2013/06/HASP-instruction-
presentation-release.pdf.

[12] I. Corporation. Intel Trusted Execution Technology (Intel TXT) software devel-
opment guide, Dec 2009.

[13] J. Danisevskis, M. Peter, J. Nordholz, M. Petschick, and J. Vetter. Graphical user
interface for virtualized mobile handsets. In MOST, 2015.

[14] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik. SMART: Secure andMinimal
Architecture for (Establishing a Dynamic) Root of Trust. In Proceedings of the
19th Annual Network and Distributed System Security Symposium, February 5-8,
San Diego, USA, San Diego, UNITED STATES, 02 2012.

[15] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. Inktag: secure
applications on an untrusted operating system. In Proceedings of the 18th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[16] M. Lange and S. Liebergeld. Crossover: secure and usable user interface for
mobile devices with multiple isolated OS personalities. In Annual Computer
Security Applications Conference, ACSAC ’13, New Orleans, LA, USA, December

9-13, 2013, pages 249–257, 2013.
[17] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, andW. Drewry. Minibox: A two-

way sandbox for x86 native code. In 2014 USENIX Annual Technical Conference,
2014.

[18] Y. Li, J. M. McCune, and A. Perrig. VIPER: verifying the integrity of periph-
eral’s firmware. In Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS), 2011.

[19] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. Trustvisor:
Efficient TCB reduction and attestation. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy (S&P), 2010.

[20] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An execu-
tion infrastructure for TCB minimization. In Proceedings of the ACM European
Conference in Computer Systems (EuroSys), Apr. 2008.

[21] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using camera
phones for human-verifiable authentication. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy (S&P’05, 2005.

[22] J. Nordholz, J. Vetter, M. Peter, M. Junker-Petschick, and J. Danisevskis. Xnpro:
Low-impact hypervisor-based execution prevention on arm. In Proceedings of
the 5th International Workshop on Trustworthy Embedded Devices, TrustED ’15,
pages 55–64, New York, NY, USA, 2015. ACM.

[23] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in Modern Computers.
Springer, 2011.

[24] K. B. Rasmussen and S. Capkun. Realization of rf distance bounding. In Proceed-
ings of the 19th USENIX Security Symposium, 2010.

[25] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation
of a TCG-based integrity measurement architecture. In Proceedings of the 13th
conference on USENIX Security Symposium, pages 16–16, 2004.

[26] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. Trustworthy data analytics in the cloud using sgx. In Proceedings
of the 35th IEEE Symposium on Security and Privacy (S&P), 2015.

[27] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles (SOSP), 2007.

[28] A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla. SWATT: Software-based
attestation for embedded devices. In IEEE Symposium on Security and Privacy,
pages 272–, 2004.

[29] D. Shen, Z. Zhang, X. Ding, Z. Li, and R. Deng. H-binder: A hardened binder
framework on android systems. In Proceedings of SecureComm, 2016.

[30] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. Trustice: Hardware-assisted
isolated computing environments on mobile devices. In Ieee/ifip International
Conference on Dependable Systems and Networks, pages 367–378, 2015.

[31] Trusted Computing Group. TPM main specification. Main Specification Version
1.2 rev. 85, Feb. 2005.

[32] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta. Design,
implementation and verification of an extensible and modular hypervisor frame-
work. In Proceedings of the 34th IEEE Symposium on Security and Privacy (S&P),
2014.

[33] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building Verifiable Trusted
Path on Commodity x86 Computers. In Proceedings of the 33rd IEEE Symposium
on Security and Privacy, S&P, May 2012.

	Abstract
	1 Introduction
	2 Synopsis
	2.1 System Model & Problem Definition
	2.2 Portrait of The Adversary
	2.3 Overview of Presence Attestation

	3 Sight-based Residence Checking
	3.1 Basic Protocol
	3.2 Extension: Iterative Checking

	4 Security and Usability
	4.1 Scene-Based Residence Checking
	4.2 Location-Based Residence Checking
	4.3 Other Analog Attacks

	5 Implementation
	5.1 DRTM and Trust Anchor
	5.2 Sight-based Residence Checking Schemes
	5.3 Location-based Residence Checking
	5.4 Scene-based Residence Checking

	6 Evaluation
	6.1 Performance
	6.2 Security of Sight-based Protocols

	7 Related Work
	8 Conclusions
	References

