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Abstract—Code instrumentation and hardware based event
trapping are two primary approaches used in dynamic malware
analysis systems. In this paper, we propose a new approach
called Execution Flow Instrumentation (EFI) where the analyzer
execution flow is interleaved with the target flow in user- and
kernel-mode, at junctures flexibly chosen by the analyzer at
runtime. We also propose OASIS as the system infrastructure
to realize EFI with virtues of the current two approaches,
however without their drawbacks. Despite being securely and
transparently isolated from the target, the analyzer introspects
and controls it in the same native way as instrumentation code.
We have implemented a prototype of OASIS and rigorously
evaluated it with various experiments including performance
and anti-analysis benchmark tests. We have also conducted two
EFI case studies. The first is a cross-space control flow tracer
and the second includes two EFI tools working in tandem with
Google Syzkaller. One tool makes a dynamic postmortem analysis
according to a kernel crash report; and the other explores
the behavior of a malicious kernel space device driver which
evades Syzkaller logging. The studies show that EFI analyzers are
well-suited for fine-grained on-demand dynamic analysis upon a
malicious thread in user or kernel mode. It is easy to develop
agile EFI tools as they are user-space programs.

I. INTRODUCTION

Code instrumentation is used in a myriad of software analy-
sis applications [1], [2], [3], [4]. Its hallmark is to integrate the
analysis code and the target code into one binary either before
or in the midst of execution. The analysis code executes in the
same virtual memory and CPU context as the target, a feature
we denote as native-access in this paper. Hence, it seamlessly
introspects and controls the target by directly accessing the
latter’s registers and referencing its memory objects with their
virtual addresses.

However, recent research [5], [6], [7], [8], [9], [10] has
shown that code instrumentation is inadequate to tackle mali-
cious executions, since the analysis can be detected, evaded,
and even tampered with. The culprit is exactly code-level
integration. Sharing the entire address space and the execution
flow becomes an attack surface. Although several mitigation
techniques [8], [10] are proposed to improve instrumentation
transparency and security, they do not tackle the problem at
its root and cannot cope with kernel analysis at all. The ap-
proach of using the instrumentation code to protect itself faces
the cyclic-dependence challenge and results in a complexly-
engineered bulky program with a heavy performance toll.

In addition to the security and transparency issues, code
instrumentation may result in intelligence distortion due to
target address space alternation and binary rewriting.

The hardware based event-trapping approach [11], [12],
[13], [14] is immune to the aforementioned issues. Often
assisted by special hardware facility such as Intel’s Perfor-
mance Monitoring Units (PMU) and ARM debug facility, the
approach induces hardware events during target execution. The
event is trapped to a more privileged and isolated environment,
e.g., the x86 VMX root mode [11], [12], the System Manage-
ment Mode (SMM) [13] and the ARM Secure World [14].
As these environments are not accessible to the kernel, this
approach is often applied for secure and transparent kernel
analysis. However, the security strength is attained at the price
of native-access. An analysis agent cannot natively read, write,
or execute in the target virtual memory as it runs in the
isolated environments with an independent address space and
a different CPU setting. To bridge the gap is not as simple
as it appears. Besides undesired side effects on code size and
performance, it needs to deal with various kernel attacks such
as translation redirection attacks [15], transient attacks [16],
[17] and race condition attacks [18], [19]. Hence, the strength
and weakness of the event-trapping approach are the opposite
of code instrumentation.

In this paper, we propose a new dynamic analysis ap-
proach named as Execution Flow Instrumentation (EFI).
The concept is for a user-space program (denoted as the ana-
lyzer) to instrument the execution flow of a malicious thread
across user and kernel spaces. Essentially, the target’s and
the analyzer’s instruction streams are interlaced at junctures
chosen by the latter. By fusing their execution flows instead
of the static code, EFI shares the virtues of two existing
approaches without their drawbacks. We propose and design
a virtualization based system infrastructure named as OASIS
to realize EFI. OASIS empowers the analyzer not only to
make native read/write/execute accesses to the target with
transparency and isolation, but also to proactively control the
target execution for monitoring and tracing purposes. The
flow transitions between the target and the analyzer do not
precipitate CPU privilege/mode changes. These advantages are
attributed to a pivotal design feature: the target’s address space
is shared with the analyzer, but not vice versa. In comparison,
the target and the analyzer share no address space in event-
trapping systems [11], [12], [13], [14] and share the space



entirely and mutually in code-instrumentation systems [1], [2].

We have built the OASIS prototype on an x86-64 platform
as well as three EFI analyzers in two case studies. In the
first case study, an EFI analyzer traces full-space control
flow transfers including asynchronous executions such as page
fault handling. The second case study involves two analyzers
working with Google Syzkaller [20]. One makes postmortem
analysis of a kernel crash report and the other explores a
malicious kernel driver with fuzzed inputs. Despite analyzing
the kernel, both analyzers are developed and launched as user
space programs, with the capability to control and introspect
the target. The case studies show that EFI applications are
handy and agile and well-suited to fine-grained and on-demand
analysis on (malicious) kernel threads. We have also rigorously
evaluated OASIS performance and security with benchmarks
and experiments. OASIS and EFI applications remain trans-
parent and effective against targets armed with anti-analysis
techniques including packing.

CAVEAT. We acknowledge that detection of virtualization
remains possible. Nevertheless, the features of hardware as-
sisted virtualization are so appealing that commodity operating
systems, e.g., Microsoft Windows 10 have started to adopt
them. Hence, the presence of virtualization and a hypervisor
alone is not decisive enough for future malware to inhibit its
malevolent behaviors.

Organization. Next, we briefly review related work. We then
present an overview of OASIS and EFI in §III, and explain the
details of analyzer execution and target execution in §IV and
§V, respectively. EFI techniques are elaborated in §VI followed
by its security and transparency analysis in §VII. We present
two case studies in §VIII and report experimental results on
performance and security evaluation in §IX. Finally, we discuss
potential extensions and conclude the paper in §X.

II. RELATED WORK

Code instrumentation (including binary rewriting/transla-
tion in a general sense) has been widely used in malware
analysis. Static binary instrumentation is applied to collect
malware’s runtime information regarding system calls, API
calls [21] or even control flow. Dynamic binary instrumentation
(DBI) modifies the target during its execution. Intel Pin [22],
Valgrind [23] and Dyninst [24] are well-known versatile DBI
frameworks. TaintCheck [25] uses Valgrind to make dynamic
taint analysis. Instead of using just-in-time compilation and
emulators, LiteInst [3] proposes to use instruction punning to
insert probes into running code. More details can be found in
DBI surveys [26], [10]. However, recent results [5], [6], [7],
[8], [9], [10] show that sophisticated malware may detect DBI
existence and therefore inhibits the malicious behaviors. This
limitation is one of the motivations of our work.

Our work is closely related to kernel analysis. It is more
challenging than user space program analysis since the kernel
is the system software managing the platform. DBI has been
applied to kernel analysis as well. PinOS [2] extends Pin [22]
to instrument the Linux kernel. Cobra [1] uses DBI to analyze
obfuscated code in both user- and kernel-mode. The other
approach to kernel analysis is to leverage hardware features
to trap the kernel execution into a more privileged system
software. One of the hardware features is CPU and MMU

virtualization. Gateway [27] uses a hypervisor to monitor how
a driver invokes kernel API. Ether [11] is the first hypervisor-
based framework for kernel analysis with the emphasis on
transparency. SPIDER [12] achieves stealthy instruction-level
tracing by using an instruction probe (i.e., INT3) to trap to the
hypervisor. Intel SMM is used in MALT [13] to attain stronger
transparency than virtualization offers. Ninja [14] holistically
explores a set of ARM features including TrustZone, PMU and
Embedded Trace Macrocell (ETM), for cross-space debugging
and analysis. The side-effect of the trapping approach is that
the analyzer cannot natively access the target, which is also
one motivation of our work.

Another related area is virtual machine introspection, es-
pecially out-of-VM introspection such as process out-grafting
[28], Virtuso [29], VM space-traveling [30], Hybrid-bridge
[31], and ImEE [19]. With out-of-VM introspection tech-
niques, a monitor program inspects the target VM mem-
ory from the outside. As compared to in-VM introspection
schemes (e.g., SIM [32]) relying on a trusted module in the
target kernel, out-of-VM introspection is more secure and
easier to deploy. Among them, ImEE is the closest to our
work. It tackles the semantic-gap problem [18] by using the
target paging structures outside of the guest to attain mapping
consistency. It allows a carefully crafted agent with dozens
of instructions to natively read the target virtual memory.
Nonetheless, the agent does not have its own address space
and cannot control the target. Hence, ImEE can only be
used as a memory introspection engine, instead of a tool for
comprehensive dynamic analysis.

III. SYNOPSIS

A. System & Adversary Models

We consider a commodity x86-64 multicore platform with
CPU and MMU virtualization. The platform is managed by a
host OS (e.g., Linux KVM) running on cores in the VMX
root mode. In the rest of the paper, we also refer to the
host OS as “the hypervisor” when the functionality in use
is related to virtualization. The target is a running thread in
the hardware-assisted virtual machine denoted as the guest.
We suppose that the analyzer is compiled into a position
independent executable, i.e., no absolute addresses in its code
or static data. We trust the hardware, the firmware and the host
OS. The adversary resides in the guest, possibly in the kernel.
We consider attacks attempting to compromise the analyzer
and/or detect its presence. Side-channel and denial-of-service
attacks are out of scope. It is orthogonal to our study to cope
with memory corruption attacks [33] exploiting vulnerabilities
in the analyzer’s implementation.

B. High-level Problems

To realize execution flow instrumentation, we need to
tackle three high-level problems. The first and foremost is how
for the analyzer to natively and securely control the target
and introspect its virtual address space. Code instrumentation
introspects and controls the target natively, but not securely.
Although ImEE [19] proposed a method for an agent to
introspect the target natively and securely, the agent cannot
control the target, e.g., to change the target control flow. The
event-trapping approach can securely control the target, but
cannot make native introspection.



The second problem is how to securely and efficiently in-
terleave the analyzer instruction flow with the target flow in an
on-demand fashion. As discussed in §I, it is not secure to mix
up their instructions in one address space. The event-trapping
approach requires a hardware event to trigger the switches.
Besides its heavy performance toll due to the events, this
approach lacks of agility as the control strategy is constrained
by the hardware support.

The third problem is how for the analyzer to receive its host
OS services including system calls and I/O operations. The
significance of solving the problem is that the analyzer can be
developed as a regular user space program, which simplifies its
implementation and deployment. Schemes in [11], [12], [13]
inevitably require programming in a more privileged space
than the kernel (e.g., in the hypervisor). The agent in ImEE
[19] cannot issue system calls and does not have its own
address space.

Our solution involves low-level details of address trans-
lation with virtualization in x86-64 platforms. The technical
background can be found in Appendix A.

C. Overview of OASIS

GuestOnsite Environ.

Host 
OS

TargetOASIS-Lib

Analyzer (Target)

Trampoline Manager

OASIS

App

Fig. 1. An architectural view of OASIS based analysis with an untrusted guest
including its kernel. The yellow boxes highlight OASIS software composition.

We propose OASIS as the infrastructure for EFI. Its archi-
tecture (in Figure 1) consists of three software components: the
Manager, the Trampoline and OASIS-Lib. The Manager sets
up and manages the onsite environment which is the system
environment exclusively for EFI. The environment consists of
one vCPU, two suites of EPTs (denoted as A-EPT and T-
EPT), and four paging structure pages (denote as O-PML4,
O-PDPT, O-PD and O-PT). The analyzer (including OASIS-
Lib) and the target are the only software running in the
onsite environment, with all their physical pages in the host
and the guest, respectively. As a regular application in the
host, the analyzer is loaded into the environment immediately
after process creation, while the target thread in the guest is
captured and migrated to it. The analyzer instruments the target
execution flow inside the onsite environment.

• When the analyzer runs, the onsite environment uses A-
EPT and O-PML4 to construct the analyzer/target paging
hierarchy that merges the target space with the analyzer.
The Trampoline handles the analyzer’s interactions with
the host OS so that the analyzer’s system calls and
events (e.g., page faults) are served properly. (Details in
Section IV)

• When the target thread runs, the onsite environment uses
T-EPT, O-PML4, O-PDPT, O-PD and O-PT to construct
the target/lib paging hierarchy that merges the target
space with OASIS-Lib. All the target’s memory accesses
are still upon its physical pages in the guest. (Details in
Section V)

As a library to the analyzer, OASIS-Lib consists of one code
page and several data pages to facilitate 1) control transfers
between the target and the analyzer; and 2) event handling in
the onsite environment. OASIS’s high-level approaches to the
three aforementioned problems are sketched below.

Native Target Access With Isolation. The analyzer/target
hierarchy synthesizes the analyzer’s paging structures in the
host with the target’s in the guest. It defines a hybrid virtual
address space so that the analyzer instructions natively access
both component spaces with ensured mapping consistency. The
target/lib hierarchy appears the same to the target as in the
guest although it encloses secret mappings for OASIS-Lib. It
does not have any mapping to the analyzer space, effectively
blocking target accesses to the analyzer. The analyzer shares
the onsite CPU with the target so that it can control the latter’s
execution.

Instruction Flow Interleaving. Instruction flow interleaving
is realized by switching between the two hybrid paging hier-
archies. No interrupt or exception is triggered. The switches
are carried out by two short instruction segments in OASIS-
Lib. The one switching from the target to the analyzer is the
exit-gate, and the other is the entry-gate. A combination of
virtualization, software and randomization techniques are used
to achieve their functionality, security and transparency.

Transparent OS Services. The analyzer/target paging hier-
archy paves the way for transparent OS services as the host
kernel’s view of the analyzer’s address space remains valid
and unchanged. Since the onsite core is in the non-root mode,
system calls and events during the analyzer execution are
trapped to OASIS which hands them over to the host OS as if
they originate in the analyzer running as a host application.

D. Overview of OASIS Based EFI

The high level workflow of dynamic analysis using EFI is
illustrated in Figure 2. To start the analysis, OASIS exports the
target thread from its core in the guest to the onsite core. The
analyzer’s EFI session consists of multiple rounds of target-
analyzer execution flow interleaving at junctures chosen by
the analyzer. If needed, the analyzer restores the target back
to the guest to continue its execution. The cycle repeats until
the analyzer completes the entire analysis task.

onsite 
core
target 
core

analyzer

target Manager target

target analyzer analyzer

export

onsite execution instrumentation 

restore

exit
entry

Fig. 2. The high-level workflow of EFI analysis. It consists of cyclic switches
between the target and the analyzer within the onsite environment.

The analyzer uses probes to specify the instrumentation
junctures. When the target execution flow reaches a probe,
it transfers the control to the exit-gate which further jumps
to the analyzer code. After the analyzer completes execution
of the instrumentation logic, it jumps to the entry-gate which
further returns the control back to the target. Although the
use of probes changes the target code running in the onsite
environment, it neither alters the target address space nor
affects other guest threads sharing the target code. OASIS
ensures probe transparency and security. Figure 3(a) depicts
the i-th round interleaving in an EFI session which has the



same effect as code instrumentation in Figure 3(b), but with
stronger security and transparency.

probe iexit-gate

entry-gate

Onsite Environment

TargetAnalyzer

code instrumented target

target code

target code

instrumentation code

(a) Interleaving execution flows
w/o CPU privilege or mode changes

probe iexit-gate

entry-gate

Onsite Environment

TargetAnalyzer

code instrumented target

target code

target code

instrumentation code

(b) Equivalent effect achieved by
using code instrumentation

Fig. 3. Illustration of execution flow instrumentation via probes and gates.

IV. ANALYZER EXECUTION IN ONSITE ENVIRONMENT

A. The Analyzer/Target Hierarchy

Loaded to the onsite environment for the analyzer execu-
tion, the analyzer/target hierarchy maps the analyzer’s and the
target’s virtual addresses, so that the analyzer natively accesses
both spaces. We first explain below the split of 48-bit VA
and 48-bit GPA spaces before describing how to construct
the hierarchy. Note that 48-bit space consists of 512 512-GB
bands.

1) Virtual Addresses: The host OS is modified to allocate
the analyzer’s all VA regions in one 512-GB band with a 512-
GB aligned base in the lower half of the 48-bit space. As
a result, the analyzer’s paging hierarchy has only one PDPT
page. When the analyzer is loaded to the onsite environment
with the analyzer/target hierarchy, OASIS chooses one 512-GB
band unoccupied by the target kernel as its new VA region. (In
Section VII we explain how to cope with situations where no
free 512-GB band is available.) The analyzer VA in the host
and its counterpart in the hybrid space differ in the leading 9
bits only. Since the analyzer never runs in the host, its new VA
regions are transparent to the host. OASIS-Lib is also loaded in
the 512-GB band in the target/lib hierarchy. Moreover, OASIS
reserves the first page and the last page of the chosen band for
no mapping. These two pages serve as the “air gap” between
the analyzer and the target to counter an attack described in
Section VII.

2) Guest Physical Addresses (GPAs): When the analyzer
runs in the onsite environment, the analyzer/target paging
hierarchy translates VAs to GPAs which are further translated
to host physical addresses (HPAs) by A-EPT. It is also vital
to separate the analyzer and the target’s GPA ranges in A-
EPT. The guest’s GPA domain is denoted as [0, T ] where T is
determined according to the guest configuration. Suppose that
PAmax is the maximum physical address of the platform, the
analyzer GPAs are assigned between T and PAmax so that
they do not overlap with the guest.

3) Details of Address Mappings: The idea of constructing
the analyzer/target hierarchy is to fuse their spaces by linking
their PDPT pages into one PML4 page. The CR3 of the onsite
core is loaded with a random GPA (denoted by α) in (T, 248).
All entries on the target’s PML4 page in the guest are copied
to O-PML4. Suppose that the λ-th 512-GB band is unused
by the target kernel and is chosen for the analyzer. OASIS
populates the λ-th entry in O-PML4 with another random GPA
(denoted by β) in (T, 248) and clears its supervisor bit. A-EPT
is configured to map four types of GPAs as below.

• GPA α is mapped to the HPA of O-PML4 so that O-PML4
is the root of the analyzer/target hierarchy.

• For all GPAs used in the guest, their GPA-to-HPA map-
pings are the same as in the guest and all execution per-
missions are removed. These mappings graft the target’s
paging hierarchy to the analyzer/target hierarchy since its
PML4 page and O-PML4 have the same entries except the
λ-th one. They also ensure the target VAs are eventually
mapped to the same HPA as in the guest.

• GPA β is mapped to the HPA of the analyzer’s PDPT
page in the host so that the paging hierarchy managed
by the host OS for the analyzer (except the PML4 page)
is grafted to the analyzer/target hierarchy. Note that the
analyzer’s hierarchy has only one PDPT page.

• For all HPAs appearing in the analyzer’s PDPT, PDs, and
PTs, their GPAs are set equal to themselves. Namely,
A-EPT uses the identity map for all of them. Since the
analyzer GPAs are required to be larger than T , the host
OS is customized to satisfy it.

O-PML4

target 
pages

β

target PML4

analyzer 
pages

target PDPTsanalyzer PML4

λ
analyzer 
PDPT

in host in guestonsite env.

CR3CR3CR3

Fig. 4. The analyzer/target hierarchy is rooted at O-PML4 whose λ-th entry
grafts the analyzer’s hierarchy in the host and other entries graft the target’s
hierarchy in the guest. The boxes with patterns indicate randomized values.

The resulting hierarchy is visualized in Figure 4. All target
VAs are mapped to the corresponding physical pages in the
same way (except permissions) as in the guest. Hence, the
analyzer instructions can natively access the target virtual
memory. All analyzer VAs are also mapped to the correspond-
ing physical pages as in the host, since the MMU travels the
same PDPT page and subsequent structures as in the host.

Runtime Update. The guest kernel’s updates on the target’s
paging hierarchy (except its PML4) automatically take the
same effect in the onsite environment. To ensure consistency
between the target’s PML4 and O-PML4, OASIS sets the
former as read-only in the guest EPT. The guest kernel’s
PML4 modification (which is rare in 64-bit platforms) is
then intercepted and cloned to O-PML4. An update on the
analyzer’s mappings by the host OS also takes an immediate
effect, except when a new physical page is allocated. For
instance, a page is allocated for the analyzer heap expansion or
a new paging structure page is added to the paging hierarchy.
These situations require A-EPT to create new mappings. As
described shortly, it is dealt with after the host OS completes
its system call or exception service for the analyzer.

B. Analyzer Execution

The analyzer’s system calls and events are still handled
by the host OS. OASIS installs new IDT, GDT, TSS and a
stub exception handler for the analyzer execution. Although
the analyzer runs in Ring 3 initially, it may enter Ring 0 by
either inheriting the target’s privilege or calling the special
call gate in the GDT. Figure 5 depicts how events during



analyzer execution are handled by the host OS with the details
elaborated below.

dummy 
signal 
handler

Analyzer

Host OS

1
2

3

4 AnalyzerRing 3

Ring 0 OASIS 
Trampoline

CPU in root mode CPU in non-root mode

Stub
syscall

exception

Fig. 5. Event handling workflow for the analyzer’s execution. The white circle
denotes the entry of the kernel event handler while the dark circle denotes the
user space entry for the kernel to return. The dash line refers to the kernel
handler execution.

1) Analyzer-to-Host Switch: The analyzer system calls and
exceptions trigger a VM-exit to the Trampoline (Step 1)
in different ways. A system call triggers an EPT violation
since the handler located by the hardware is not executable
under A-EPT. An exception (e.g., a page fault) is trapped
to the stub which saves the context and issues a hypercall.
In both scenarios, the Trampoline prepares the context for
the host kernel handler according to the vCPU state in the
Virtual Machine Control Structure (VMCS) and the context
saved by the stub. It also prepares the host kernel stack and
loads relevant registers, according to the hardware behavior in
handling exception.

Next, the Trampoline invokes the corresponding host OS
handler in a “returning-boomerang” fashion, in the sense that it
regains the control after the service is completed. Specifically,
it sets a local hardware breakpoint at the kernel’s return to the
analyzer, and then jumps to the entry of the kernel handler
(Step 2). Unless the analyzer thread is aborted or killed, the
host kernel is expected to return to user-mode. The breakpoint
hijacks the control flow right after iret or sysret so that
the Trampoline regains the control (Step 3). From the kernel
perspective, the thread has been returned to user-mode. Hence,
the hijacking does not cause inconsistency in kernel states.

Signal delivery to the analyzer requires a special treatment
since the kernel calls the analyzer’s own signal handler if any.
Since the host kernel is oblivious to the analyzer execution in
the onsite environment, it cannot invoke the analyzer handler.
To preserve the semantic of signals, a dummy user-space
signal handler is registered to the host OS on behalf of the
analyzer. When invoked by the OS, the dummy handler saves
the parameters (if any) and sets a flag to indicate its invocation.
The analyzer’s handler is then invoked after it resumes in the
onsite environment.

2) Host-to-Analyzer Switch: When the Trampoline regains
the control, it removes the breakpoint and calls the Manager
to make proper preparation for the onsite environment reentry.
If the host OS allocates new physical pages to the analyzer’s
paging hierarchy or the analyzer’s space, the Manager updates
A-EPT to create the corresponding GPA-to-HPA mappings.
For a system call return, the Manager updates the saved
vCPU’s RIP, RAX, RFLAGS according to the host handler’s
returned context RCX, RAX, and R11 respectively. For the
system call arch_prctl, the Manager updates the vCPU’s
FS base accordingly. In the end, the Trampoline switches the
CPU to the VMX non-root mode using the saved VMCS so
that the analyzer resumes (Step 4). Note that the procedure to

launch the analyzer in the onsite environment for the first time
is similar to the one above. The main difference is that the
starting instruction in loading is the entry of the host’s loader.

3) VA Adjustment: Since the analyzer’s 512-GB band in
the onsite environment is different from the one in the host,
VA related data exchanged between the analyzer and the host
OS handler must be adjusted accordingly. During VM-exit
due to system calls, interrupts and exceptions, the Trampoline
updates all VAs passed to the host OS, e.g., addresses in system
call parameters held by registers and the faulting instruction
address in CR2. When re-entering the onsite environment, it
updates VAs returned to the analyzer, such as the new program
break from a brk system call.

V. TARGET EXECUTION IN ONSITE ENVIRONMENT

The target thread is exported from the guest to the onsite
environment. We describe below its underlying target/lib hier-
archy, consistent execution, and control transfers between the
target and the analyzer.

A. Address Mapping For Target Execution

The target/lib hierarchy merges the target address space and
OASIS-Lib’s. The approach is the same as in the analyzer-
target hierarchy, except that OASIS-Lib’s hierarchy is built
by OASIS using O-PDPT, O-PD and O-PT. It uses the same
CR3 and O-PML4 as in the analyzer/target hierarchy. T-EPT
clones all GPA-to-HPA mappings in the guest including their
permissions so that all target VAs and GPAs are translated
in exactly the same way as in the guest. T-EPT maps GPA
β to O-PDPT’s HPA. One randomly chosen O-PDPT entry
is populated with a random GPA mapped to O-PD by T-EPT.
Similarly, one random O-PD entry is filled with a random GPA
mapped to O-PT. Six consecutive O-PT entries are randomly
chosen and assigned with random GPAs mapped to OASIS-Lib
HPAs. As a result, OASIS-Lib is in a random region within
the analyzer’s 512 GB band. Figure 6 visualizes the target/lib
hierarchy. Note that no analyzer page is mapped under T-EPT.

OASIS-Lib 
pages

O-PML4

target 
pages

β

target PML4 target PDPTs

λ

in guestonsite env.

CR3CR3

O-PDPTO-PDO-PT

Fig. 6. The target/lib hierarchy rooted at O-PML4 using GPA-to-HPA
mappings in T-EPT. The boxes with patterns have random GPAs.

When the guest EPT is updated by the host OS, OASIS
synchronizes it with T-EPT and A-EPT so that both of them
have the same GPA-to-HPA mappings as used in the guest.

B. Execution Consistency

The target/lib hierarchy ensures consistent memory refer-
ences to the target memory in the guest. We explain how to
handle the CPU context as well as interrupts and exceptions.



Exportation & Restoration. The target thread is captured
during VM-exit in the guest so that its entire CPU context
is saved to the main memory. The context includes general-
purpose registers, control registers and model specific registers
(MSRs). To export it to the onsite environment, OASIS con-
figures the VMCS of the onsite core according to the saved
target core context, except that CR3, CR4, IDTR, GDTR and
TR are the same as in analyzer execution.

The trapped target core is held by OASIS until the target
thread is restored so as to mimic the target’s CPU occupancy
in the guest and to facilitate subsequent restoration and I/O
operations. Upon the analyzer’s request to restore the target,
OASIS updates the target core VMCS structure with the onsite
core’s (including RIP) so that the target continues its execution
in the guest from its onsite environment context.

I/O Operations. In the onsite environment, the target directly
accesses the guest’s memory-mapped I/O regions and DMA
buffers via their VAs. However, port I/O operations and inter-
rupt delivery do not use virtual addresses and hence require
special treatments. The design is dependent on the underlying
I/O mechanism provided by the host OS to the guest.

In Linux KVM, I/O requests are trapped to the hypervisor
which dispatches it to QEMU to execute. When the hardware
completes the task, the external interrupt is delivered to QEMU
which notifies the hypervisor to inject the interrupt into vCPU
during VM-entry. In OASIS, the idea is to use the Manager
as the proxy to make I/O operations on behalf the target.
The target’s I/O operation in the onsite core is trapped to the
Trampoline and forwarded to the Manager holding the target
core (shown in Figure 2). The Manager executes the operation
so that it appears to the host OS as a request from the target
core. As a result, the host OS passes it to the QEMU process
supporting the guest VM. After I/O completion, the target
core’s VM re-entry is intercepted by the Manager which then
notifies the Trampoline in the onsite core to resume the target
execution and inject the external interrupt if any. Thus, I/O
operations in the onsite environment appear the same to the
target as in the guest.

System Data Structure Relocation. To support analysis on
the target’s exception and interrupt handling, OASIS relocates
the target’s IDT, GDT, and TSS to OASIS-Lib. If needed,
the analyzer can customize these relocated data structures
to monitor and control asynchronous events in the exported
target execution. For instance, an analyzer monitoring the
target’s page fault handling hooks the target’s INT#14 hander
to capture the event.

To protect transparency, OASIS prevents the target from ac-
cessing the relevant registers of the onsite core by configuring
the VMCS structure. Any software access to them is trapped
to the analyzer which returns the original content. The target
thread can still read these tables at their original VAs, because
they remain in the guest with no modifications. Updates to the
tables in the guest are intercepted so that OASIS clones the
changes to the relocated counterparts.

CAVEAT. The design above is only for target execution in the
onsite core. It has no effect on and is transparent to threads
running in the guest.

C. Cross-Flow Control Transfer

The control flow of the target can be transferred to and from
the analyzer through the exit-gate and the entry-gate, which
is the embodiment of EFI. The cross-flow control transfers
are realized by switching between T-EPT and A-EPT, which
essentially switches between the target/lib and analyzer/target
paging hierarchies. We use the vmfunc instruction1 to switch
the EPTs. The instruction following vmfunc is fetched from
the new hierarchy.

The exit-gate switches from the target/lib hierarchy to the
analyzer/target hierarchy while the entry-gate switches in the
opposite direction. The two gates are in the OASIS-Lib code
page which is mapped as writable under A-EPT in order for
the analyzer to flexibly customize the entry-gate. An OASIS-
Lib data page is used to save registers and to facilitate control
transferring to destinations more than two GB away from the
gates.

1. movq %rax, $rax_bak ;save rax
2. movq %rcx,  $rcx_bak ;save rcx
3. movq $0x0, %rax ; EPT switch
4. movq $0x9, %rcx ; 9 for A-EPT
5. vmfunc ; switch to analyzer/target
6. jmpq *off_ana(%rip) ;to analyzer

(a) Exit-gate

1. movq $0x0, %rax ; EPT switch
2. movq $0x0, %rcx ; 0 for T-EPT
3. vmfunc ; switch to target/lib
4. lea 0x6(%rip), %rax ; rax points to line 7
5. lea (%rax, %rcx, 4), %rax ;adjust rax
6. jmpq *%rax ; jmp to Line7 if rcx=0;
7. movq $rax_bak, %rax ; restore rax
8. movq $rcx_bak, %rcx ;restore rcx
9. nop ; nop slide (22 nops)

....
31.jmpq *off_tar(%rip) ; to target addr

(b) Entry-gate

Fig. 7. Assembly code of the exit-gate that passes the control to the analyzer
and the entry-gate that returns the control to the target.

Exit-gate. Figure 7(a) presents the assembly code of the exit-
gate which runs in the target flow to pass the control to the
analyzer flow. It first saves the target’s current RAX and RCX
to the pre-defined locations in the OASIS-Lib data page as the
two registers are needed to load vmfunc parameters. It then
issues vmfunc with parameters instructing the hardware to
switch to A-EPT. Finally, it jumps to the analyzer’s handler
whose address is stored in a data page mapped read-only
in T-EPT and read-writable in A-TEPT. Note that the jump
instruction is fetched and executed from the analyzer/target
hierarchy under A-EPT. The OASIS-Lib code page is mapped
as executable in both A-EPT and T-EPT. To minimize the code
size, the exit-gate does not save the target’s CPU context except
two registers used by itself. The analyzer inherits the target
CPU context and retrieves the target’s RAX and RCX from the
data page.

Entry-gate. Figure 7(b) presents the assembly code of the
entry-gate which runs in the analyzer flow to pass the control
to the target. It issues vmfunc with parameters instructing the
hardware to switch to T-EPT. Right after the switch, Line 4
to 6 check whether RCX is indeed 0 indicating a switch to
T-ETP. If so, it jumps to Line 7 to restore RAX and RCX;
otherwise it jumps to Line 31. The code is crafted in this way
to do the checking without affecting EFLAGS. The destination

1According to Intel specification, when RAX is 0, vmfunc loads the EPT
priorly prepared the hypervisor according to an index value stored in RCX.
No VM-exit is incurred during the EPT switch.



of the final jump is specified by the analyzer by placing the
destination in a read-only page under T-EPT. Note that it
is the analyzer’s responsibility to prepare the desirable CPU
context (including the transfer destination) for the target to
resume its execution. The instructions following vmfunc are
(supposedly) fetched from the target/lib hierarchy. A slide of
22 nop instructions is placed before the final jmp instruction.
The slide is long enough to accommodate two instructions for
make-up execution due to the probe (as explained in §VI-B).

In short, the cross-flow control transfers do not incur
any CPU privilege or mode changes. As shown in Figure 8,
OASIS-Lib is mapped in both hierarchies wherein the analyzer
and the target use the same VAs for IDT, GDT and TSS, but
different sets of physical pages. The analyzer does not need to
adjust the corresponding registers in a cross-flow switch.

Code

Data1
IDT
GDT
TSS

rw
rw

r
r
r

Data2
Data1
IDT
GDT
TSS

rw
r

r
r
r

I G T
I G T

C D1

analyzer
data

OASIS-Lib virtual pages in 
target/lib hierarchy 

OASIS-Lib’s virtual pages in 
analyzer/target hierarchy

physical pages

rw

A-EPT T-EPT
D2

Code x
Data2

x

Fig. 8. OASIS-Lib is mapped in the same VA region in both hierarchies.
The shadowed physical pages are for analyzer execution only. The analyzer
accesses the target’s IDT, GDT and TSS from its own data section. D1 is used
in the exit-gate to save registers while D2 is used in both gates to load the
final jump destinations.

VI. EXECUTION FLOW INSTRUMENTATION

We have described how the analyzer and the target run in
the onsite environment and the mechanism to interleave the
flows. In this section, we explain how the analyzer flexibly
and securely specifies the junctures for interleaving. The basic
idea is to use probes [3], [10] to replace target instructions at
the desirable virtual addresses. When the target flow reaches
a probe, it is directed to the exit-gate. The analyzer can install
and remove the probes at any time during target execution.

A. Page Substitution for Probe Installation

Probe installation inevitably changes the target code,
though not the virtual address space. To support secure
and transparent probe installation, OASIS offers the page-
substitution and page-reinstatement hypercalls for the analyzer
to substitute a target physical page with a new physical page
from the host memory.

Guest EPT
...
mov ...
call ...

PF0PF1 T-EPT
RWXX...

jmp
call ...

Target VA0

GPA0

probed page in host original code page in guest

Analyzer VA1

GPA1
A-EPT

RW

Fig. 9. EPT redirection on T-EPT for probe installation and uninstallation.

The mechanism is illustrated in Figure 9. Suppose that
target code page VA0 is mapped to physical page frame PF0 in
the guest via GPA0, and that the analyzer has a data page VA1

mapped to physical page frame PF1 in the host. To install
a probe in VA0, the analyzer copies it to VA1, inserts the

probe to code in VA1, and then issues the page-substitution
hypercall. In response, OASIS modifies T-EPT to map GPA0

to PF1 with execution-only permission to prevent the target
from reading/writing it. As a result, when the target control
flow reaches VA0, it fetches instructions from PF1 instead of
PF0. The analyzer running under A-EPT can read/write the
probed page PF1 via VA1. When the probe in VA0 is no longer
needed, the analyzer uses the page-reinstatement hypercall so
that GPA0 is mapped back to PF0.

Permission Conflict Resolving. For the sake of transparency,
we follow the approach in SPIDER [12] to redirect the target’s
read and write to VA0 back to PF0. The basic idea is to load
the onsite core’s data TLB with EPT mappings to PF0 (with
read-only permission) and to load the instruction TLB with
EPT mappings to PF1 (with execution-only permissions). The
target’s write to VA0 is single-stepped so that a modification on
PF0 is also cloned to PF1. The key difference between OASIS
and SPIDER [12] is that the data TLB loading is through
OASIS-Lib instead of the target’s own instructions. Therefore,
there is no need to single-step reading instructions in OASIS.

Mapping Modification. The exported target may change its
VA-to-GPA mappings. It is likely that VA0 is re-mapped to
GPA∗

0 for a malicious purpose or out of benign reasons such
as page swapping. Although the change does not affect the
target execution in the onsite environment, it invalidates the
probe in VA0 unless GPA∗

0 is also properly mapped to in T-
EPT. To resolve the issue, OASIS traps such a modification
by configuring T-EPT to write-protect the paging structure
pages translating VA0. If the trapped modification maps VA0

to GPA∗
0, it updates T-EPT to map GPA∗

0 to PF1.

It is possible that another kernel thread in the guest updates
VA0’s mapping in parallel. Such an update is not subject to
T-EPT restrictions and therefore is not trapped. However, since
it runs in a different core from the target core, it is expected to
notify the target thread to invalidate the TLB at the (supposed)
target core so as to avoid mapping inconsistence. The cross-
core notification is captured by the OASIS Manager which
then updates T-EPT accordingly.

B. EFI Probes

An EFI probe kickstarts the transition from the target flow
to the analyzer via the exit-gate. Depending on whether it is
removed after being triggered or not, a probe can be used
for tracing or as a breakpoint. We propose two EFI probes:
INT3-probe and JMP-probe. The INT3-probe, as used in [3],
[12], is a one-byte instruction (opcode 0xCC) and can be used
for tracing or as a breakpoint. When the probe triggers the
INT#3, the exception handler jumps to the exit-gate. (Recall
that the target’s IDT and GDT are relocated to OASIS-Lib and
modified to install new handlers provided by the analyzer.)

The JMP-probe jumps to the exit-gate without triggering
any hardware event. The main challenge stems from the
addressing modes in x86-64. In the address space mapped
by the target/lib hierarchy, the distance between the exit-gate
and the probed page can be more than 2GB, which is beyond
the maximum range of any addressing mode without using
a general register. However, involving a register in the probe
mandates saving its content to the target memory, which is
intrusive and undermines transparency.



Our approach is to jump to the exit-gate via a call gate
whose selector can be easily formed using bytes in pages
near to the probe. In specific, the analyzer initially populates
all unused entries in the target GDT with call gates whose
Descriptor Privilege Levels are 3 and destinations are the exit-
gate. The JMP-probe is a far jump instruction to one of the
installed call gate, in the form of:

REX.W ljmp *offset(%rip)

where the sum of RIP and offset addresses a call gate
selector in the memory. When installing the JMP-probe, the
analyzer composes the probe instruction on-the-fly by deter-
mining the value of offset so that (1) the instruction operand
is a far pointer pointing to the desired selector; and (2) the
referenced memory page is read-only so that the selector is
not modified after probe installation.

The main steps for composing the probe are as follows. The
analyzer randomly picks 16 bits from one target code page
with the only restriction that the 3rd least significant bit be
‘0’, which implies a GDT segment selector instead of a LDT
selector. It then checks whether bits 3 to 15 match any call
gate entry. Since most of the 8K GDT entries are the call gates,
the chance of succeeding is significantly high2. If it fails, the
analyzer picks and checks another 16 bits. Once the qualified
16 bits are found, the analyzer calculates offset according
to its virtual address. Note that a selector can be used for
any JMP-probe installation within ±2 GB range. Hence, the
analyzer does not have to search a new one for each probe
installation. Since the JMP-probe is multiple bytes long, it
cannot be used as a breakpoint due to unintended transfers
and attacks on transparency.

Makeup Execution: A well-known thorny issue about
probes is the make-up execution of the affected target instruc-
tion(s) after handling the probe. Two solutions are used in the
literature. One is to emulate those instructions in a separate
space and the other is to single-step them after restoration and
then replace them with the probe again [12]. Obviously, both
solutions are cumbersome and incur significant CPU time.

It is comparatively easier and faster to resolve the issue
in OASIS because, benefiting from native-access to the target,
the analyzer does not need to emulate the target execution or
single-step it. For the JMP-probe, the analyzer writes back the
replaced target instruction(s) and resumes the target execution
from the probed VA. For a transfer instruction affected by
the INT3-probe, the analyzer uses the entry-gate to transfer
the control to the due destination. Stack operations are also
made accordingly if it is a call instruction. For a non-transfer
instruction affected by the INT3-probe, the analyzer copies it
to the entry-gate’s NOP-slide and rewrites it according to the
new VA. If the memory operand in the original instruction
is referenced using RIP-relative addressing, it is revised to
use register-indirect addressing mode followed by another
instruction to restore the register used in addressing. The total
length of the two make-up instructions is up to 22 bytes. Note
that the transformation is necessary since the distance between
the entry-gate and the probe is probably larger than 2GB which
is the maximum value represented by the 32-bit signed offset.

2Since most Linux kernel uses less than 8 entries in the GDT, the success
probability of one checking is 1− 8

8×210
≈ 0.999.

C. EFI Using Probes

All probes can be installed and uninstalled at anytime by
the analyzer. By choosing the timing strategy, the analyzer can
make different types of EFI with a fine-grained and adaptive
control over the target execution in user and kernel modes.

1) EFI With Tracing: To trace the target, the JMP-probe
is installed and then removed (after being executed) along a
sequence of virtual addresses in the target instruction flow. A
requirement for successful tracing is no transfer instruction be-
tween two adjacent probed VAs. Hence, the tracing granularity
can be single-step, instruction slices and basic blocks.

The probed sites can be decided during preprocessing (e.g.,
for data flow tracing) or at runtime (e.g., for control flow
tracing). When the target flow reaches the probe, the control is
switched to the analyzer through the JMP-probe and the exit-
gate. After executing its analysis function, the analyzer restores
the bytes replaced by the probe, fetches (or determines) the
next site and installs the probe there. It then updates the entry-
gate so that the target resumes execution from the probed VA
at present with original instructions. For cross-block tracing,
the JMP-probe is installed at the transfer instruction of a block.
When the analyzer gains the control, it determines the transfer
destination of the instruction and passes the control to it via
the entry-gate. Note that it inherits the target CPU context and
also has native accesses to the virtual memory.

2) EFI With Breakpoints: The INT3-probe is installed at
a set of virtual addresses in the target code. Whenever the
target control flow reaches a probe, the analyzer gains control
via the INT#3 handler and the exit-gate. The analyzer uses
the aforementioned technique to make up for the affected
instruction execution.

Specifically, the analyzer configures the target’s relocated
GDT, IDT and TSS to provide a new exception stack and
a new handler. When an INT#3 exception is asserted, the
hardware saves the context to the new exception stack, instead
of any stack page from the target. The new handler determines
whether the event is due to a probe. If true, it jumps to the
exit-gate. Otherwise, it prepares the target’s kernel or exception
stack according to the guest system setting, and then jumps to
the target’s own INT#3 handler.

3) Interrupt & Exception EFI: The target instruction
stream may encounter interrupts or exceptions such as page
faults. The analyzer can intercept these events and examine
how they are handled. We take the page fault exception
(INT#14) as an example as it is often used by the kernel to
manage virtual address spaces. The analyzer installs a new
INT#14 handler to the relocated target IDT. When a page fault
occurs, the hardware passes the control to the new handler
which deploys the INT3-probe and/or the JMP-probe on the
target handler before its execution.

VII. EFI SECURITY AND TRANSPARENCY ASSESSMENT

EFI security means that the adversary cannot tamper with
the analyzer and OASIS code, data and control flow, while
EFI transparency means that the adversary cannot detect any
analysis-related artifact. We first assess them against the kernel
adversary running in the guest. No artifacts of OASIS or
the analyzer are exposed to the guest and no modification



is made on the guest software or hardware settings. As in
other virtual machines, all memory accesses from the guest are
restricted to the mapped physical pages. Hence, no direct attack
from the guest compromises security and transparency. The
adversary may use the page tables in the guest to manipulate
the analyzer’s access to the target. This attack is equivalent
to feeding poisonous data to the analyzer, an indispensable
risk for all dynamic analysis systems. Note that side-channel
attacks against transparency are possible.

Next, we assess security and transparency against the
exported target thread. The onsite core’s IDTR, GDTR and
control registers are set as inaccessible to the target. A read
access to them is returned with the original content while a
write access only updates the saved copy. With T-EPT, the
target does not have mappings to physical pages owned by the
analyzer or OASIS, except OASIS-Lib. The library consists of
one code page (execution-only), four read-only data pages and
one writable data page. In addition, four paging structure pages
are used in the target/lib hierarchy although no VA is mapped
to them. Note that access permissions on OASIS-Lib pages are
all set in T-EPT. Below is a detailed analysis regarding OASIS-
Lib which shares the VA space with the running target.

A. Security Against the Exported Target

Supposing that the VAs and GPAs used by OASIS-Lib are
exposed, we consider attacks modifying OASIS-Lib data or
executing its code. The only writable page in OASIS-Lib is
used for the exit-gate to save RAX and RCX. Hence, an illicit
modification only implies faked data passed to the analyzer.
The only executable code in OASIS-Lib is the exit-gate, the
entry-gate, and a handler hook. Unless A-EPT is loaded, any
malicious execution only affects the target itself instead of the
analyzer or OASIS. Although the target can maliciously load
A-EPT to the onsite core, it cannot change the entry to the
analyzer. Note that no target page is executable under A-EPT.

According to OASIS configuration, the target must run
vmfunc with RCX=9 and RAX=0 to load A-EPT. It may
use vmfunc in its own code. Thus, the instruction next to
vmfunc must be in the target page, because the analyzer space
is sandwiched by the air gap described in §IV. Since no target
page is executable under A-EPT, this instruction triggers an
EPT violation. Alternatively, the target may misuse vmfunc
in the exit-gate and the entry-gate by jumping to it. For both
gates, the target cannot change the final transfer destination
which is chosen by the analyzer and stored in a page the target
has no write permission. Since the jump instruction in the exit-
gate is next to vmfunc, it is ineffective to misuse the exit-gate.

Different from the exit-gate, the entry-gate may contain two
target instructions for make-up execution under T-EPT. Hence,
it is crafted to prevent them from being executed when the gate
is misused to load A-EPT. Specifically, the three instructions
following vmfunc detect whether RCX=0. The first two lea
instructions prepare the destination of the jump instruction in
Line 6 (in Figure 7(b)), in such a way that the control flow
jumps to Line 7 if RCX=0; or to the final jump instruction in
Line 31 if RCX=9. (RCX cannot be other numbers as there is
no corresponding EPT.) Hence, when the entry-gate is misused
to load A-EPT, the NOP-slide or the make-up instructions are
skipped. The final jump triggers an EPT violation because its

destination chosen by the analyzer is not executable under A-
EPT. In short, in the event that OASIS-Lib’s transparency is
broken, the target can only feed the analyzer with faked RAX
and RCX.

B. Transparency Against the Exported Target

When the target runs, all OASIS related artifacts (e.g.,
the GDT, IDT, CR3, and probed pages) are protected against
the target accesses by virtualization configuration, except that
OASIS-Lib is hidden by randomization. The target may guess
OASIS-Lib VA/GPA and then verifies it through read or
allocation.

Guess and Read. In the target/lib hierarchy, OASIS-Lib
occupies 6 continuous pages with a random base in the
analyzer’s 512-GB band. Supposing that the band is known,
the average probability of a successful guess of one OASIS-
Lib page is 6×212

239 ≈ 2−24. The target can also map its own VA
to a guessed OASIS-Lib GPA and accesses that VA. OASIS-
Lib has 10 GPAs randomly chosen from (T, 248), including
those for its four paging structure pages. Hence, supposing
that the guest is configured with 8 GB main memory, the
success probability is merely 6+4

(248−233)/212 ≈ 2−31. In short,
the success probability of direct accesses is significantly low.
A wrong guess leads to an EPT violation and OASIS crashes
the target since it is the supposed consequence in the guest.

Guess and Allocate. The exported target may allocate VA
regions to create a contention with the analyzer and OASIS-
Lib. Since the target has the full access to its entire paging
structure pages (including its PML4 page), the allocation
always succeeds. The conflict is caught when OASIS syn-
chronizes O-PML4 with the target’s modified PML4 in the
guest. The VA contention can also appear during initialization
wherein all PML4 entries are occupied by the target. Note that
it is infeasible to relocate the analyzer at runtime.

Our solution is for the analyzer/target and target/lib hierar-
chies to use different PML4 pages by mapping CR3 differently
in A-EPT and T-EPT, without aborting the present EFI session.
The analyzer/target hierarchy uses a new PML4 page with the
same content as before, and the analyzer remains in its 512-GB
band. When the analyzer needs to access a target VA (say ν)
in the same 512-GB band, OASIS links one priorly reserved
entry in the analyzer’s PDPT to the target’s PD page translating
ν. As a result, it can access ν via a relocated VA. The target-
lib hierarchy still maps both the target and OASIS-Lib so that
VAs in the 512-GB band are mapped in the same way as the
target, except those six pages in OASIS-Lib. The hierarchy is
constructed in the similar way as in §IV except that O-PML4,
O-PDPT, O-PD and O-PT have entries cloned from their guest
counterparts (which are monitored by OASIS), except the
path translating OASIS-Lib. Since memory allocation does not
expose OASIS, the target still needs to guess an address and
read. The chance of choosing OASIS-Lib pages remains at
2−24. However, since a failed guess does not trigger an EPT
violation, the target may keep guessing. Hence, in average it
needs 223 guesses to detect OASIS-Lib. To further strengthen
OASIS transparency, the analyzer with a long-lasting session
can periodically request to relocate OASIS-Lib to another
random location inside the 512-GB band, which is realized
by the host OS and OASIS in the same way as OASIS-Lib



loading. After relocation, the analyzer re-installs all existing
probes in the target if any.

VIII. CASE STUDIES

We have implemented OASIS on a PC with an Intel Core
i5-4590 3.3 GHz processor (supporting VT-x) and 16 GB
DRAM. The host OS is Linux kernel 3.13.0 with KVM for 64
bit x64 SMP. The guest runs the same Linux version with 4
GB memory. OASIS consists of 4148 SLOC with the majority
in the host kernel. We develop three analyzers in two case
studies. (See Appendix B for more implementation details.)
All use Dyninst [24] APIs (with slight modification for loading
memory-resident binaries) to disassemble the target binary
code before analysis or on-the-fly to extract instruction level
semantics.

A. Case Study I: Full-space Control Flow Tracing

The first case is a full-space EFI control flow tracer using
the JMP-probe. It is tested against three Linux shell commands
(ls, pwd, and kill) and SuperPI [34] which computes 16K
digits of π. While SuperPI mainly runs in user-space with a
huge number of small-sized basic blocks, the Linux commands
have more kernel mode execution. For each target, the tracing
starts at the very first user-space instruction, i.e., the entry of
the default loader, and stops at the issuance of exit so that
the target process is released and exits in the guest. The tracer
successfully traces not only the synchronous execution of these
targets, but also asynchronous executions due to events like
page faults and I/O interrupt handling. For system calls, the
tracer places the probe to the first block of the corresponding
handler so as to tracing the system call handler execution.
Asynchronous events are captured due to the relocated IDT.
The installed handler notifies the tracer to place the probe to
the target’s own interrupt handler. The experiments results are
reported in Table I below.

Target
Program

# of
syscalls

# of
PFs

# of code
pages

# of
transfers

# of cross
page transfer

SuperPI 68 138 283 1,674,155 302,609
ls 38 60 275 114,430 21,437
pwd 33 57 237 95,498 17,341
kill 33 55 253 94,078 17,147

TABLE I. CONTROL FLOW TRACING REPORT.

The OASIS based EFI tracer has its pros and cons as
compared to hardware-aided full-space tracers such as MALT
[13] using PMU and Ninja [14] using ARM ETM. We report
the target slowdown in Table II, where “preprocessing” means
offline target disassembling. The EFI tracer outperforms MALT
since it triggers no hardware events. Although ARM ETM
does not incur overhead for tracing, it only outputs the VAs.
Unlike MALT and OASIS, Ninja cannot control the target, e.g.,
to suspend the target before data fetching. The EFI tracer is
better at introspection and control due to its native-access and
CPU mode sharing with the target. Since the hardware facility
typically reports the virtual address of the monitored event
only, a hardware-aided tracer running in a higher privileged
environment must bridge the gap to retrieve data from the
target. A more noticeable advantage of our tracer is its tracing
flexibility. Since the probe can be installed anywhere in the
target, it can trace an arbitrary slice of instructions within a
basic block. In contrast, a hardware-aided tracer is restricted to

the types of events and instructions supported by the facility. It
cannot be customized by the analyst to meet different demands.
For instance, a data flow tracing can only be achieved with
single-stepping if using MALT. The limitation of the EFI tracer
is that all transfer instructions must be checked to avoid losing
the control while the hardware-aided tracer can support coarser
granularity, e.g., at the function level. We remark that the
EFI tracer is better at semantic-driven tracing (e.g., data flow
and memory operations) which demands deep analysis and
fine-grained control, while the hardware-aided tracer is more
suitable for semantic-neutral tracing for behavior monitoring
or profiling.

SuperPI ls pwd kill
MALT [13] 192 595 134 n/a
Ninja [14] 1 n/a n/a n/a
OASIS w/o preprocessing 195 99 82 72
OASIS w/ preprocessing 183 77 62 54

TABLE II. TIMES OF SLOWDOWN ON TEST CASES

B. Case Study II: Kernel Analysis With Fuzzing and EFI

Existing kernel fuzzing tools [35], [36], [37], [20] rely
on kernel code instrumentation to collect runtime intelligence.
For instance, Google Syzkaller [20] uses the kernel address
sanitizer (KASAN) [38] to validate and report memory ac-
cesses and uses ftrace to log kernel function calls. This
approach has two limitations. Firstly, it is not adaptive enough
to meet different analysis demands because the concerned code
regions and behaviors vary from case to case. Secondly, it
is inapplicable to those dynamically loaded kernel modules
that cannot be (easily) instrumented, e.g., a proprietary driver
built for a production OS and a malicious module armored
with anti-instrument techniques. In this case study, we use two
examples to show how EFI complements code instrumentation
in Syzkaller kernel fuzzing. The general approach (as shown in
Figure 10) is to export the Syz-executor to the onsite environ-
ment where the EFI analyzer makes on-demand analysis and
gleans runtime data inaccessible to the instrumentation code.

Test VMOnsite Env.

Host OS

Syz-
executor

OASIS-Lib

EFI-Tool & 
Syz-executor

OASIS

Syz-
Manager

Syz-
fuzzer

kernel

export
input

Fig. 10. An EFI analyzer works in tandem with Syzkaller (the gray boxes).

1) Dynamic Postmortem Analysis: In our fuzzing test, one
reported reproducible crash is caused by a page fault when
KASAN validates the address 0xffff880869a0affc which is
accessed by the kernel function ata_bmdma_fill_sg().3
The instruction under validation is to update the flaglen
member in ata_bmdma_prd[pi-1]. To understand the
build-up of the page fault, we develop an EFI analyzer to
collect runtime data from the reproduced execution with the
strategy formed by a static analysis.

To choose the EFI instrumentation junctures, we make
a backward slicing upon the instruction under validation.
We then determine what to introspect at each juncture by
checking the source code correlating to the sliced instructions.

3The function is in the default ACSI device driver in the kernel.



The objects to collect mainly include the input parameter to
ata_bmdma_fill_sg(), the variable pi, objects deter-
mining the control flow, and memory data used to calculate the
address under checking. After the Syz-executor is exported to
the onsite environment, the analyzer uses the INT3-probe to
monitor every ata_bmdma_fill_sg() invocation. When
the invocation matches the one in the report, the analyzer
removes the INT3-probe and traces the control flow using the
JMP-probe until the page fault occurs. For blocks containing
the sliced instructions, it runs a sub-block tracing on those
slices. At each EFI juncture, it references and fetches the
needed objects with their VAs, which means that all pointers
in the kernel objects can be dereferenced directly.

Upon experiment completion, the analyzer reports the
trace comprising 152 basic blocks including blocks from
KCOV and KASAN. The control flow shows that the code
incrementing pi within ata_bmdma_fill_sg() is never
executed. Since pi is initialized with 0, the access to
ata_bmdma_prd[pi-1] becomes an array underflow with
index −1. The data collected from the last three sliced instruc-
tions shows that 0xffffffff is used to derive 0xffff880869a0affc
as the address for ata_bmdma_prd[pi-1].flaglen.
The address matches with the crash report that its validation
causes KASAN to read a nonexistent metadata object, which
triggers the page fault the kernel cannot handle. A further
analysis of the collected data objects shows that pi is not
incremented because none of the objects nested in the function
input (provided by the fuzzer) is well-formed.

2) Exploration of Untrusted Driver: Our second analyzer
runs with Syzkaller to uncover hidden behaviors of an un-
instrumented kernel-space driver without relying on its source
code. KCOV, KASAN and ftrace cannot report its behavior
due to absence of instrumentation. Moreover, it conceals its
kernel function invocations against ftrace by adding 5-byte
offset to the call destinations so that ftrace instrumentation
in the callee’s prologue is skipped. Specifically, the target is
a malicious driver with stealthy behaviors built on a rootkit
in Github 4. When the third parameter of the driver’s ioctl
handler ends with 0xFF, the handler escalates the privilege and
removes the current task from the task list.

In the experiment, Syzkaller generates the fuzzing inputs
to the driver’s ioctl while the EFI analyzer extracts the
runtime information. Since the driver is randomly loaded
due to ASLR used in kernel bootup, the analyzer locates
the handler via a series of introspections, starting from the
current task_struct object in the PERCPU data structure
to files_struct, fdtable, and so on until reaching
the unlocked_ioctl object containing the driver’s ioctl
handler address. For each exported Syz-executor, the analyzer
installs an INT-3 probe at the entrance of the driver’s ioctl
handler. When the probe is triggered, the analyzer removes
it and installs one INT3-probe at the return address. It then
starts the control flow tracing within the driver’s code. If a
control transfer to the kernel is encountered, it stops tracing
and installs another INT3-probe on the instruction which the
handler is expected to resume, so that it can continue to trace
the driver. The analysis ends when the driver ioctl returns
to its kernel caller.

4https://github.com/croemheld/lkm-rootkit

In the end, the analyzer successfully captures the fuzzed
system call parameters triggering the hidden path. It is reported
that the handler’s hidden path executes 65 basic blocks and 7
of calls to kernel functions including prepare_cred() and
commit_creds().

Summary. The two experiments showcase EFI’s agility in
controlling and introspecting a kernel thread. EFI analyzers
are well-suited for on-demand and fine-grained analysis as the
analyst can flexibly determine the strategy to deploy the two
types of probes. It is not difficult to develop them as they are
user-space programs and can benefit from existing libraries.

IX. EXPERIMENTS

A. OASIS Performance

To understand the hardware characteristics, we measure the
CPU time taken by relevant hardware events and instructions
in our platform excluding software processing. The results
are reported in Table III which shows that VM-exit incurs
much higher overhead than other events. Table IV reports the
time costs of five popular system calls issued in the onsite
environment and in the host. In average, the overhead is around
2.21 µs per system call, largely due to one round VM exit/entry
and one debug exception.

INT3 vmfunc iret VM Exit + Enter
340 147 367 916

TABLE III. CPU CYCLES FOR RELEVANT EVENTS AND INSTRUCTIONS

open read (4KB) write (4KB) brk getpid
From host 1.41 0.79 1.14 0.84 0.39
From onsite env. 3.55 2.97 3.50 3.04 2.56
Overhead 2.14 2.18 2.36 2.20 2.17

TABLE IV. OVERHEAD IN ANALYZER’S POPULAR SYSCALLS (IN µs)

The EFI overhead is characterized by the average time
for a round-trip control flow transition between the target and
the analyzer. Since the INT3-probe and the JMP-probe work
differently, we evaluate them separately. Following the method
in SPIDER [12], we first measure the time difference between
the target execution without EFI and its execution with a null
EFI tracer (i.e., no payload function), and then divide it by
the number of round-trips made during tracing. The result is
in Table V including the data reported in the literature for the
hypervisor-based approach [12] and the SMM-based approach
[13]. The dominant overhead of using the JMP-probe includes
vmfunc, restoring the target instruction and probe relocation
(391 cycles), as well as the analyzer’s CPU context saving and
restoration (90 cycles). Our technique is 3.8 times as fast as
those in SPIDER [12]. The overhead SPIDER is attributed to
the hassle of single-stepping the restored instruction while the
overhead in MALT [13] is entirely due to the hardware.

Transition JMP-probe INT3 Trap to Hyp [12] Trap to SMM [13]
Cost 836 3,217 28,128

TABLE V. ROUND-TRIP TRANSITION OVERHEAD USING JMP-PROBE
(IN CPU CYCLES).

The transition overhead for the INT3-probe comprises the
INT#3 exception, vmfunc, and the make-up execution of the
affected instruction. The exception overhead varies with the
probe’s CPU privilege, while the make-up overhead varies with



the types of the overwritten instructions since different meth-
ods are used for make-up execution. Table VI below reports
our experiment results. Note that the largest overhead (i.e., a
probe on a user-space non-transfer RIP-relative instruction) is
still less than 50% of the cost in SPIDER. The main reason
is that, benefiting from the native-access feature of EFI, the
make-up execution does not require single-stepping.

Type of Overwritten Instruction
Transfer Non-transfer RIP-relative Others

From Ring 3 1100 1286 1280
From Ring 0 669 935 934

TABLE VI. ROUND-TRIP TRANSITION OVERHEADS USING
INT3-PROBE (IN CPU CYCLES).

B. Benchmark Testing

We evaluate the impact of EFI upon the guest kernel,
by running the LMbench tools [39] in the guest with and
without OASIS based EFI. When the benchmark tools are
running in the guest, a randomly chosen guest kernel thread is
captured and exported to the onsite environment for analysis.
We conduct two experiments with different analyzers. One
is a null analyzer which releases the thread without any
analysis and the other traces one basic block execution before
releasing it. The first experiment measures the performance
impact due to target thread exportation and restoration while
the second assesses the overall effect due to analysis. Although
the analyzer does not consume hardware resources of the guest,
the slowdown of the captured thread may affect other threads
due to synchronization or resource sharing.
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Fig. 11. Normalized LMbench results (in % of the native benchmark results).

The normalized results on all system aspects of LMbench
in two experiments are shown in Figure 11. Due to paper length
limit, we omit the detailed report of each category. Except File
System Latency showing significant performance slowdown
(4% and 10% in two experiments), other four benchmarks
only report up to 3% drop. A deeper investigation on the
File System Latency data reveals that it is largely due to page
fault handling whose performance drops 12.7% and 28.6% in
two experiments, respectively. One plausible reason is frequent
guest EPT updates during file creation, deletion and page fault
handling. Every guest EPT update has to be cloned to A-EPT
and T-EPT.

C. Transparency Experiments

By and large, there exist three attack strategies to detect
and evade dynamic analysis. The first is to discover environ-
ment related evidences such as existence of an emulator; the
second is to discover software state related artifacts such as
unexpected code and data modifications [9]. The third is to
obstruct analysis by code and data obfuscation, usually via
packing/unpacking [40]. A sophisticated malware may use a
combination of them.

1) System Environment Detection: Existing techniques
include anti-emulation, anti-sandbox, anti-VM and anti-
debugging, targeting different dynamic analysis systems. Since
OASIS does not rely on emulation or sandbox, anti-emulation
and anti-sandbox attacks are irrelevant. OASIS is dependent
on memory virtualization and its implementation is upon
Linux KVM. Hence, anti-VM attacks can detect the KVM
setting. However, we argue that with the wider adoption of
virtualization in personal computers and the trend of cloud
computing, the anti-VM threat is waning because the mere
presence of a virtual machine becomes a less strong indicator
of dynamic analysis than the past years.

We run experiments against anti-debugging attacks. We
test OASIS against Pangu [41], an off-the-shelf program im-
plementing popular anti-debugging techniques used by Linux
malware [42], [43]. We analyze it using both EFI tracing and
EFI breakpoints. The results are in Table VII.

Technique Brief description Result
envvar Checks for GDB specific environment through getenv() PASS
ptrace Checks whether the program is ptraced or not through

ptrace system call
PASS

sigtrap Checks whether the program receives a SIGTRAP
signal

PASS

parent Checks the program’s parent name through /proc/getp-
pid()/status and /proc/getppid()/cmdline

PASS

rdtsc Checks whether the time taken of a loop exceeds a
pre-specified bound

NO

TABLE VII. ANTI-DEBUGGING TECHNIQUES.

The first four attacks cannot detect any artifacts of the EFI
analyzer. The Sigtrap attack checks whether malware receives
its own SIGTRAP signal which is delivered to the GDB if
it is under debugging. OASIS allows the target in the onsite
environment to deliver and receive signals in the same way
as in the guest. Hence, the attack cannot detect OASIS. The
rdtsc attack is essentially a side-channel attack. We leave it
as future work to adjust timers and counters of the platform. In
general, it remains as an open problem to systematically nullify
all side-channel attacks. As noted in MALT [13], an ultimate
solution may require fine-grained instruction level semantics.

2) Software State Detection: This strategy is mainly used
by malware to detect code instrumentation. The most straight-
forward way is to compute a fingerprint of the code in the
virtual address space and compare the outcome with the ex-
pected value. We test OASIS against a self-checksum program
in Github5 which calculates a hash digest of its executable and
read-only data memory. We run it under GDB with and without
a breakpoint at its main function. Both checksums are different
from the original one calculated in the native execution. In
contrast, it still reports the original result when undergoing
EFI analysis using the INT3-probes.

Kirsch et. al. [9] propose thirteen methods to detect DBI
tools including Pin [22], DynamoRIO [44] and Valgrind [23].
We test OASIS against their methods integrated in jitmenot
[45]. Our EFI tracing and breakpoint tools pass all the detec-
tion methods listed in Table VIII.

The methods are grouped to three categories [9]. The first
seven techniques check code cache/instrumentation artifacts.
They cannot break OASIS transparency, because OASIS does

5https://github.com/Barro/self-checksum



Technique Brief description Result
enter Checks whether enter instruction is legal and can be

executed
PASS

fsbase Checks if fsbase value is the same using rdfsbase
and prctl

PASS

nx Tries to execute code on a non-executable page PASS
ripfxsave Executes fxsave instruction and chekcs the saved rip

value
PASS

ripsiginfo Causes an int3 and checks the saved rip value in fpregs PASS
ripsyscall Checks whether rip value is saved in rcx after a syscall PASS
smc Check whether the framework detects self-modifying

code
PASS

jitbr Detect time overhead when a conditional branch is jitted PASS
jitlib Detects JIT compiler overhead when a library is loaded PASS
envvar Checks for Pin specific environment variables on stack PASS
pageperm Checks for pages with rwx permissions PASS
vmleave Checks for known code patterns(VMLeave) PASS
mapname Checks mapped files’s name for known values (pinbin,

vgpreload)
PASS

TABLE VIII. REPRESENTATIVE ANTI-INSTRUMENT TECHNIQUES.

not change the target code. When probes are used, OASIS
ensures that the target’s view to its code remains unchanged.
The next two techniques (i.e., jitbr and jitlib) detect
execution time changes due to JIT compilation. Although EFI
tools indeed incur longer delays, they are not detected by the
attacks because they are much shorter than JIT compilation.
The last four techniques are in the category of runtime envi-
ronment artifacts. Although OASIS relocates the target’s IDT,
GDT and TSS, they are transparent to the target.

3) Packer: According to Cozzi et. al. [40], the most popular
packer used by Linux malware is UPX [46] which is a Type-
I packer [47]. Unpacking is essentially malware’s dynamic
modification in its own virtual address space. It has no adverse
impact on OASIS. The paging hierarchies in the onsite-
environment are designed to be consistent with the one in
the guest. EPT updates in the guest are also cloned to the
onsite-environment. The unpacking process may read or write
the virtual page with probes or change its mapping to another
physical page. We have explained how OASIS protects probes
in these two scenarios in §VI-A, namely, by leveraging d-TLB
and i-TLB to cope with read/write accesses and by monitoring
GPA update to cope with mapping changes.

No. of basic blks No. of syscalls No. of #PFs No. of self-writes
311,994 38 51 388

TABLE IX. EFI-TRACING FOR UPX PACKED UNAME.

To check whether EFI tools can deal with packers, we
apply UPX on a Linux shell command program uname
which displays the system identification information. We test
EFI breakpoint and tracing on the packed uname. In both
experiments, the packed program runs successfully and the
analyzer also achieves the intended analysis goal. In the
breakpoint experiment, we place the INT3-probe at address
0x4016ab where the struct utsname is stored on the current
stack top after being updated by the kernel. For EFI-tracing,
the analyzer obtains all basic block transfers, including the
unpacking procedure. The tracing results are in Table IX.
Since our current OASIS implementation is for Linux guests,
we are unable to test it against packers on Windows which
have more complex packing schemes, e.g., more rounds of
unpacking. Nonetheless, we foresee that Windows packers
cannot compromise transparency either. Their system-level
building blocks are the same as UPX, i.e., page permission

changing and code modification, despite of using a more
complex application-level logic.

X. DISCUSSIONS AND CONCLUSION

Paralleled Analysis. OASIS can be extended to launch a
multicore onsite environment for two or more analyzer threads.
One potential application is to run two analyzers upon the same
target with one for monitoring and the other for operation. The
monitoring thread persistently occupies one core to monitor
events in the target execution. When needed, it sends an IPI
to preempt the target execution so that the operation thread
makes due analysis. Another application is to run two analyzer
threads with two target threads. The two analyzer threads can
coordinate with each other to tune the timing of execution in
order to trigger a racing condition vulnerability in the target
threads.

Target Control Without Probes. Hardware facilities such as
PMU can be applied in OASIS to control the target execution.
Since OASIS allows the analyzer to replace the target’s system
level structures including IDT, interrupts triggered by PMU
and debug registers can be directly handled by the analyzer.
To ensure transparency, the exported target thread should be
prevented from accessing PMU or debug registers. OASIS
can use virtualization techniques to configure the onsite core’s
VMCS so that any access to those relevant registers are trapped
to the hypervisor or delivered to the analyzer as a virtual
exception. The probe-based EFI tames the target execution
in order to acquire fine-grained software semantics, while the
trapping-based EFI is more suitable for event-centric analysis.
The two EFI approaches only differ in target control, i.e., how
the interleaving juncture is chosen and triggered.

ARM Platform. OASIS can be exported to ARM plat-
forms with modest changes since the guest table walking also
requires GPA-to-HPA translation under ARM virtualization.
Hence, the analyzer/target hierarchy and the target/lib hier-
archy can be constructed on an ARM processor. The key
difference is that the ARM architecture does not have a Ring
3 instruction equivalent to Intel’s vmfunc which allows the
analyzer to switch the underlying GPA-to-HPA translation ta-
ble. Hence, interleaving the target and the analyzer instruction
flows mandates privilege level switches. Nevertheless, due to
different virtualization strategies, the switch in ARM is much
faster (about 300 CPU cycles in our experiments) than VM-
exit and VM-entry in x86-64 platforms.

Conclusion. To summarize, we introduce the notion of EFI
and the infrastructure OASIS to support it. OASIS based EFI
combines the advantages of hardware based event-trapping
(i.e., strong security and non-intrusiveness) and code instru-
mentation (i.e., native-access) without their disadvantages. The
foundation of OASIS is to securely fuse the target’s paging hi-
erarchy with the analyzer’s by using virtualization techniques.
Both the EFI analyzer and the target run in the onsite environ-
ment launched by OASIS. The analyzer uses software probes
to choose the junctures to instrument the target execution flow.
Our case studies demonstrate that it is not difficult to master
EFI to develop nimble tools analyzing a target thread running
across user and kernel modes. We have also rigorously con-
ducted experiments to evaluate OASIS security, transparency
and performance. The source of code of OASIS and EFI tools
is available at https://github.com/OnsiteAnalysis/OASIS.
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APPENDIX A
BACKGROUND ON ADDRESS TRANSLATION AND

VIRTUALIZATION

A. Address Translation without MMU Virtualization

Software on an x64 platform typically uses 48-bit virtual
addresses (VAs) which cover 256 Terabytes in total [48]. The
kernel occupies the higher half of the address space and leaves
the other half for user space. The paging hierarchy on 64-bit
platforms consists of four levels of paging structures. The top
level is the Page Map Level 4 (PML4) table whose base ad-
dress is stored in the CR3 register. The other three levels are the
Page-Directory-Pointer-Tables (PDPTs), the Page-Directories
(PDs), and the Page-Tables (PTs). Each page of these paging
structures contains 512 entries indexed by 9 bits in a VA. An
entry of a PML4, PDT or PD page stores the physical address
(PA) of the next level paging structure page, while a PT entry
points to the physical page mapped to the VA.

As shown in Figure 12, a 48-bit virtual address is divided
into four 9-bit indexes and one 12-bit in-page offset. The four
indexes are used to select the entries in PML4, PDPT, PD and
PT, respectively. Since the design of OASIS uses the first 9-bit
index frequently, we name it as the PML4 prefix of a virtual
address for ease of presentation.

047 11

20

12

212930

3839

PML4 prefix

offset000010010

indexes for PDPT, PDT, PT

01001 011100110

Fig. 12. Illustration of a 48-bit virtual address on a 64-bit platform. Its PML4
prefix is “00001010”.

To translate a virtual address X , the MMU uses CR3 to
locate the physical location of the PML4 table in use. X’s
PML4 prefix is then used to locate PML4 entry that stores the
physical address of the corresponding PDPT table. Similarly,
X’s indexes for PDPT, PD and PT are used one after another
to finally locate the physical page mapped to X .

B. Address Translation with MMU Virtualization

When the platform enables MMU virtualization, the kernel
in the virtual machine (a.k.a. the guest) still manages the four
levels of paging structures as well as CR3. The MMU still
looks up the entry at each level of the paging hierarchy using
the four 9-bits indexes, respectively. The main difference is
that all addresses in CR3 and the four-level paging structures
are guest physical addresses (GPAs), instead of host physical
addresses (HPAs). To access the next level paging structure
page with its GPA, the MMU traverses the Extended Page
Tables (EPT) to locate the corresponding HPA. Hence, to
translate a virtual address, the MMU must consult the EPTs
for four times in order to locate and read the PML4, PDPT,
PD, and PT pages, and for the fifth time to get the physical

PML4

CR3

PDPT PTPD

EPT
EPT EPT EPT EPT

Fig. 13. The EPTs are consulted for four times when the MMU visits four
levels of paging structures and one more time for locating the final physical
page.

page frame number. We illustrate the involvement of the EPT
in address translation with Figure 13.

Hence, the EPTs play a pivotal role of choosing the next
level paging structure page to use. Without modifying the
PML4 entry, a change in the EPT mapping can redirect the
MMU to a different PDPT page.

APPENDIX B
CASE STUDY IMPLEMENTATION REPORT

To support EFI analyzer implementation, we develop OA-
SIS APIs listed in Table X. Most of the functions are to
instruct OASIS to facilitate the EFI session. find_n_entry
and find_n_exit are entirely the analyzer’s logic as they
resolve target instructions by calling Dyninst APIs. Our tools
uses these two functions to locate the probe site, especially for
tracing. All three analyzers are quite short and tidy. Table XI
reports their source code sizes.

OASIS API name Description
onsite register int3 handler register a breakpoint handler on OASIS
onsite register trace handler register a tracing handler on OASIS
onsite register pf handler register a #PF handler on OASIS
onsite wait for request inform OASIS that the analyzer is ready to analyze
onsite t run start/resume the target execution
onsite end analysis restore the target back to guest
onsite install int3 probe install an INT3-probe at the given address
onsite install trace probe install a JMP-probe at the given address
onsite rm int3 probe remove the INT3-probe at the given address
onsite rm trace probe remove the JMP-probe at the given address
find n exit With the given address, it returns the address of

next control transfer instruction, i.e., the exit point
of the current basic block.

find n entry With the given address, it returns the destination if
the address points to a control transfer instruction,
or the address itself if it points to a non-control
transfer instruction.

TABLE X. OASIS APIS AND THEIR DESCRIPTIONS.

Analyzer # of Lines of C Code
postmortem analyzer 228
untrusted driver analyzer 160
full-space control flow tracer 124

TABLE XI. SOURCE CODE SIZE OF ANALYZERS.

In the following, we report more implementation details
of the postmortem analyzer. Table XII lists the virtual address
space layout of the postmortem analyzer. OASIS API functions
and the analyzer are compiled and linked as one position-
independent-executable binary. The analyzer code, static data,
and its heap occupy around 500 KB. The shared libraries dom-
inate the address space consumption, mainly due to Dyninst
libraries.

The kernel function under analysis is
ata_bmdma_fill_sg() which is defined at line 2615 of
kernel source file libata-sff.c.The postmortem analyzer mainly



VMA Region Start Address Size
Analyzer code & data 0x7ff000000000 68K
Analyzer heap 0x7ff000211000 496K
Analyzer stack 0x7ff07ffdf000 132K
System shared libraries 0x7ff010000000 40,820K
System loader ld 0x7ff020000000 144K

TABLE XII. VIRTUAL MEMORY LAYOUT OF THE POSTMORTEM
ANALYZER.

comprises three functions: a main() function, a breakpoint
handler ana_int3_handler() and a tracing handler
ana_trace_handler(). We provide below an abridged
version of these functions’ source code. All log related code
is not shown. The objective is to shed light on the structure
of the analyzer and how it controls and introspect the target
thread.

Main. In the main function, the analyzer registers its handlers
to OASIS and waits for OASIS to export the target to the onsite
environment. When the target context is ready, it installs the
INT3-probe at 0xffffffff9b5a2420, which is the address of the
target function and kicks of the EFI session by yielding the
CPU to the target. It only re-gains the control when the INT3-
probe is triggered.

1 i n t main ( void )
2 {
3 / / r e g i s t e r INT3 and t r a c e h a n d l e r s
4 o n s i t e r e g i s t e r h a n d l e r s ( ) ;
5 . . . .
6
7 / / i n f o r m OASIS t h a t i t i s ready t o a n a l y z e ;
8 i n t r e t = o n s i t e w a i t f o r r e q u e s t ( ) ;
9 i f ( r e t ) {

10 / / i n s t a l l INT3−probe
11 o n s i t e i n s t a l l i n t 3 p r o b e (0 x f f f f f f f f 9 b 5 a 2 4 2 0 )

;
12 o n s i t e t r u n ( ) ; / / s t a r t t o run t h e t a r g e t ;
13 }
14 re turn 0 ;
15 }

Breakpoint handler. When the INT3-probe is fired, the
exit-gate passes the control to this handler. The analyzer first
remove the probe as it is not used any more. Since the target
function body is not executed yet, the handler first retrieves
the addresses of local variables and then introspects the input
objects by directly dereferencing the qc pointer which is the
function input parameter. All objects are dumped into a local
file in the host OS by calling fprintf (Line 22). As shown
in the for loop, the analyzer traverses a kernel object list
and dumps their members in the same way as in the target
kernel. The analyzer then installs a JMP-probe at the VA in
probAddr which is determined at runtime according to the
basic block and the instruction slices chosen by an offline
preprocessing.

1 void a n a i n t 3 h a n d l e r ( void )
2 {
3 . . .
4 / / i f i t i s t h e t a r g e t f u n c t i o n i n v o k e d
5 i f ( t a r g e t c t x−>r i p == BP1 ) {
6
7 / / remove t h e INT3−probe
8 o n s i t e r m i n t 3 p r o b e ( BP1 ) ;
9

10 / / t a r g e t i n t r o s p e c t i o n
11 qc = t a r g e t c t x−>r d i ;

12 ap = qc−>ap ;
13 prd = ap−>bmdma prd ;
14 . . .
15
16 / / t r a v e r s e and dump k e r n e l o b j e c t l i s t
17 sg = qc−>sg ;
18 f o r ( i = 0 ; i < qc−>n elem ; i ++)
19 {
20 s g l e n = sg−>l e n g t h ;
21 sg dma addr = sg−>dma address ;
22 f p r i n t f ( fp , ‘ ‘ sg a t : %p , , . . . ” , . . . ) ;
23 sg ++;
24 }
25
26 /∗ f i n d n e x t b l o c k e x i t ∗ /
27 b l k E x i t = o n s i t e f i n d n e x i t ( BP1 ) ;
28
29 / / a s s i g n probAddr : b l k E x i t o r s l i c e
30 . . .
31
32 / / i n s t a l l JMP−probe
33 o n s i t e i n s t a l l t r a c e p r o b e ( probAddr ) ;
34
35 }
36 o n s i t e t r u n ( ) ; / / resume t a r g e t ;
37 r e t u r n ;
38 }

Tracing handler. When the tracing handler is triggered by the
JMP-probe, it first checks the current probe site to determine
the analysis actions. As shown in the switch, it makes the
different introspections if the probe site is in the instruction
slice. It then determines the next probe site by installing a
new probe and resumes the target.

1 void a n a t r a c e h a n d l e r ( void )
2 {
3 / / remove JMP−probe
4 o n s i t e r m t r a c e p r o b e ( probAddr ) ;
5 . . . . .
6
7 sw i t ch ( s l i c e i d x )
8 {
9 case 0 : / / a f t e r l i n e 2622

10 a d d r l e n = t a r g e t c t x−>rbp−0x2c ;
11 a d d r s g = t a r g e t c t x−>rbp−0x38 ;
12 addr qc = t a r g e t c t x−>rbp−0x40 ;
13 prd = t a r g e t c t x−>r15 ;
14 p i = t a r g e t c t x−>r14 ;
15 break ;
16 case 1 : / / a f t e r l i n e 2632
17 / / a c q u i r e f r e s h sg p o i n t e r from s t a c k
18 sg = ∗ a d d r s g ;
19 s g l e n = sg−>l e n g t h ;
20 sg dma addr = sg−>dma address ;
21 . . . .
22 break ;
23 case 2 : / / a f t e r l i n e 2638
24 l e n = ∗ a d d r l e n ;
25 . . .
26 break ;
27 case 3 : / / a f t e r l i n e 2641
28 / / read p i from R14 r e g i s t e r
29 p i = t a r g e t c t x−>r14 ;
30 p r d a d d r = prd [ p i ] . add r ;
31 p r d f l a g s l e n = prd [ p i ] . f l a g s l e n ;
32 . . .
33 break ;
34 . . .
35 d e f a u l t :
36 break ;
37 }
38
39 / / f i n d n e x t b l o c k e n t r y and e x i t



40 b l k E n t r y = o n s i t e f i n d n e n t r y ( probAddr ) ;
41 b l k E x i t = o n s i t e f i n d n e x i t ( b l k E n t r y ) ;
42
43 / / a s s i g n probAddr : b l k E x i t or s l i c e
44 . . .
45
46 / / i n s t a l l JMP−probe
47 o n s i t e i n s t a l l t r a c e p r o b e ( probAddr ) ;
48 . . .
49 o n s i t e t r u n ( ) ; / / resume t a r g e t ;
50 re turn ;
51 }
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