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Abstract—Privacy protection is one of the fundamental security
requirements for database outsourcing. A major threat is infor-
mation leakage from database access patterns generated by query
executions. The standard Private Information Retrieval (PIR)
schemes, which are widely regarded as theoretical solutions,
entail O(n) computational overhead per query for a database
with n items. Recent works in [9], [10], [19] propose to protect
access patterns by introducing a trusted component with constant
storage size. The resulting privacy assurance is as strong as
PIR. Though with O(1) online computation cost, they still have
O(n) amortized cost per query due to periodically full database
shuffles. In this paper, we design a novel scheme in the same
model with provable security, which only shuffles a portion of
the database. The amortized server computational complexity
is reduced to O(

√
n logn/k). With a secure storage storing

thousands of items, our scheme can protect the access pattern
privacy of databases of billions of entries, at a lower cost than
those using ORAM-based poly-logarithm algorithms.

I. INTRODUCTION

In database applications, a malicious database server can
derive sensitive information about user queries, simply by
observing the database access patterns, e.g. the records be-
ing retrieved or frequent accesses to “hot” records. Such a
threat is aggravated in the Database-as-a-Service (DaaS) model
whereby a data owner outsources her database to an untrusted
service provider. The concern on potential privacy exposure
becomes a hurdle to the success of DaaS and other data
oriented applications in cloud-like settings. Note that database
encryption does not entirely solve the problem, because access
patterns also include the visited addresses and the frequency
of accesses.

Private Information Retrieval (PIR) formulated in [6] is the
well-known cryptographic mechanism inhibiting information
leakage from access patterns. Modeling the database service
as a bit retrieval from a bit array in plaintext, PIR disallows a
server to infer any additional information about queries. Many
PIR schemes [5], [14], [11], [12], [2] have been proposed
with the emphasis on lowering the communication complexity
between the server and the user. Nonetheless, as pointed out
by Sion and Carbunar [17], those PIR schemes incur even
more turnaround time than transferring the entire database as
a reply to the user, because the heavy computation incurred at
the server outweighs the saved communication expense.
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The computation cost can be greatly reduced by embedding
a trusted component (e.g. a tamper-resistant device) at the
server’s end. Such PIR schemes1 were initially introduced
in [9], [10] based on the square-root algorithm proposed in
the seminal work on Oblivious RAM [8]. Compared with
the standard PIR schemes, these PIR schemes [9], [10] deal
with encrypted data records rather than bits in plaintext. The
assistance of a trusted component cuts off the turnaround time,
though the asymptotic computation complexity remains at
O(n). In this paper2,we follow this line of research and design
a novel PIR scheme, which requires O(log n) communication
cost, O(1) runtime computation cost and O(

√
n log n/k)

overall amortized computation cost per query, where k is the
trusted cache size.

A. Related Work
Many PIR constructions [5], [14], [11], [12], [2] considers

unencrypted database with the main objective being improving
the server-user communication complexity, rather than server
computation complexity. The best known results are due to
[13] with O(log2 n) communication cost. The construction
is built on the length-flexible additively homomorphic public
key encryption (LFAH) [7], without the support of trusted
hardware. Note that its computation cost remains as O(n).

A notable effort focusing on computation cost reduction
without a trusted hardware is [3], where Beimel et. al. pro-
posed a new model called PIR with Preprocessing. This model
uses k servers each storing a copy of the database. Before a
PIR execution, each server computes and stores polynomially-
many bits regarding the database. This approach reduces both
the communication and computation cost to O(n1/k+ε) for
any ε > 0. However, it requires a storage of a polynomial of
n bits, which is infeasible in practice.

Oblivious RAM [8] was initially proposed to protect a
software’s memory access pattern. It proposed two algorithms:
a shuffle-based algorithm (a.k.a square-root algorithm) and
a hierarchy-based algorithm. The former costs O(

√
n log n)

memory access for one original data access and requires
O(n+

√
n) of storage, whereas the latter has O(log3 n) access

cost and requires O(n log n) storage.
The shuffle-based algorithm inspires Smith et. al. to design

a PIR scheme [18] with O(log n) communication cost and

1Strictly speaking, they are not PIR as defined in [6] because they handle
encrypted data rather than the plaintext. Nonetheless, they offer the same
strength of privacy assurance as the standard PIR.

2The paper is a full version of [22].
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O(n log n) computation cost (i.e. server accesses) for periodi-
cal shuffles, where a trusted hardware plays the role of CPU in
ORAM and caches a constant number of data. This hardware-
based PIR scheme was further investigated in [9], [10], [19].
The main algorithmic improvement was due to [19], which
proposed an O(n) shuffle algorithm. Therefore the amortized
computation complexity is O(n/k) where the hardware store
k records.

The hierarchical algorithm also has several derivatives.
Williams and Sion [20] reduced the computation complexity
to O(log2 n) by introducing O(

√
n) storage at the client side.

The complexity was further improved to O(log n log log n)
in [21] by using an improved sort algorithm with the same
amount of client side storage. Recently, Pinkas and Reinman
propose a more efficient ORAM in [15]. It achieves O(log2 n)
complexity with O(1) client end storage. Though asymptoti-
cally superior, all these big-O complexity notations carry large
constant factors. The complexity of the original ORAM has a
coefficient larger than 6000 and the complexity of Pinkas and
Reinman’s scheme has a constant factor falling between 72 and
160. Therefore, if the database is not large (e.g. n = 220), these
hierarchy based algorithms are not necessarily more efficient
than the shuffle-based algorithms.

CAVEAT. The algorithms proposed in this paper belongs to
the square-root algorithm [8] family, i.e. based on shfufles. A
detailed comparison between our scheme and the state-of-the-
art hierarchy-based ORAM [15] is presented in Section V.
In addition, we stress that the“square root” complexity of
the shuffle-based ORAM and our results are completely in
different context. The square root solution of ORAM requires
a sheltered storage storing

√
n items, which is equivalent to

using a cache storing
√
n items at the client end in our setting.

In fact, our scheme only uses a constant size cache and when
k =
√
n our scheme has poly-logarithm complexity.

Roadmap: We define the system model and the security
notion of our scheme in Section II. A basic construction is
presented in Section III as a steppingstone to the full-fledged
scheme in Section IV. Performance of our scheme is discussed
in Section V, and Section VI concludes the paper.

II. SYNOPSIS

A. System Model

The system consists of a group of users, a database D
modeled as an array of n data items of equal length denoted
by {d1, d2, · · · dn}, and a database host denoted by H. A
trusted component3 denoted by T is embedded in H. T has
an internal cache which stores up to k data items, k � n. No
adversary can tamper T’s executions or access its private space
including the cache. T is capable of performing symmetric key
encryption/decryption and pseudo-random number generation.
All messages exchanged between users and T are through a
confidential and authentic channel.

A PIR scheme in this model is composed of two algorithms:
a shuffle algorithm and a retrieval algorithm. The former
permutes and encrypts D while the latter executes PIR queries.

3A possible implementation of the trusted component is IBM secure co-
processor PCIXCC [1] which connects to a host through a PCI bus.

The scheme runs in sessions. The database used in the s-th
session is denoted by Ds, which is a permuted and encrypted
version of D and is also stored in H’s space. Within the
session, T runs the retrieval algorithm to execute a PIR query,
which involves fetching Ds records to its cache. The session
ends when the cache is full. Then, T runs the shuffle algorithm
which empties the cache and produces Ds+1. Note that D is
never accessed by T.

a) Notations and Terminology: To highlight the differ-
ence between D and Ds, we use item to refer to any entry in
D and use record to refer to any entry in Ds. We say that i
is the index of di in D, and use address to refer to a record’s
position in Ds. A PIR query Q on item di is denoted Q = i,
and we say that i is the value of Q. A summary of all notations
and terms used in the paper is presented in Table I below.

Notations &
Terms

Description

Ds[i] ' Ds′ [j] the decryptions of Ds[i] and Ds′ [j] are the same
data item.

item di, index the i-th entry in the original database D. i is the
index of di.

record Ds[x],
address

the x-th entry in Ds. A record is the ciphertext of
an item. x is the address of Ds[x].

B[ ] the array of addresses of all black records, sorted in
ascending order.

σ : [1, n] →
[1, n]

the initial permutation used for shuffling D into D0.
Item di is encrypted and shuffled to the σ(i)-th
record in D0.

πs : [1, |B|] →
[1, |B|]

the permutation used in the s-th session. It defines
the mapping between Ds and D0. Its domain is
decided by the size of B in the s-th session.

k the maximum amount of items stored in T’s cache.

TABLE I
TABLE OF NOTATIONS AND TERMS

B. Security Model

In a nutshell, a PIR scheme prevents an adversary from
inferring information about queries from observation of query
executions. The transcript of protocol execution within a
period is referred to as access pattern. We use λK to de-
note an access pattern of length K. More formally, λK =
{(aj , Dij [aj ])}Kj=1, where aj is an address of database Dij

and Dij [aj ] is the aj-th record in Dij . When Dij can be
inferred from the context, we only use aj to represent an
access just for the sake of simplicity.

The adversary in our model is the database host H which
attempts to derive information about user queries from access
patterns. Besides observing all accesses to its memory or
hard disk, H can also adaptively initiates PIR queries of its
choices. Formally, we model the adversary as a probabilistic
polynomial time algorithm A, which takes any access pattern
as the input and outputs the value of a target query. We
allow A to access a query oracle O, through which A issues
PIR queries arbitrarily as a regular user and observes their
executions.

Since the adversary can issue queries, we differentiate two
types of queries: stained query and clean query. A query
is stained if the adversary has prior knowledge of its value.
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For example, all PIR queries due to A’s request to O are
stained ones; and an uncompromised user’s query is clean. The
notion of security is defined as below, similar to the one in
ORAM [8]. Namely, no polynomial time adversary gets non-
negligible advantage in determining Q by observing access
patterns including Q’s execution.

Definition 2.1: Let κ be a security parameter. Let ΛK
denote the domain of all access patterns of length K. A private
information retrieval scheme is computationally secure if and
only if for any PPT A, there exists a PPT Ā, such that for
any target clean query Q, ∀K ∈ N,∀λK ∈ ΛK , ∀q ∈ [1, n],

|Pr(q ← AOQ(λK))− Pr(q ← ĀOQ(1κ))| < ε(κ)

where ε(κ) is a negligible function, and q ← AOQ(λ) and
q ← ĀOQ(1κ) denote the events that A and Ā output q as
the value of Q with the assistance of O, respectively. The
probability is taken over all the internal coin tosses of the PIR
scheme, Q, and A or Ā.

C. Protocol Overview

Recall that our predecessors [10], [9], [19] run as follows.
Before a session starts, the database is encrypted and permuted
using fresh secrets generated by T. During execution, T
retrieves the requested item, say di, from the database if di
is not in the cache; otherwise, a random item is fetched to
the cache. When the cache is full, the entire database is re-
shuffled and re-encrypted for the next session. The objective
of database shuffles is to re-mix the touched database entries
with the untouched ones, so that future executions appear
independent with preceding ones. Due to the full database
shuffle, these protocols incur O(n) computation cost.

SECURITY INTUITION Our proposed scheme is rooted at
an insightful observation: the full database shuffle is not
indispensable, as long as user queries produce access patterns
with the same distribution. Note that it is unnecessary to
shuffle white records. A white record does not leak any query
information for the following two reasons. First, all records
are encrypted and therefore a white record itself does not
compromise privacy. Secondly, since it is white, there exists
no access pattern involving it. Therefore, the observation that
an encrypted record is not touched does not help the adversary
to derive any information about (existing) user queries, which
is the security goal of private information retrieval.

Based on this observation, we propose a new PIR scheme
which has a novel retrieval algorithm and a partial shuffle
algorithm. In a high level, our scheme proceeds as follows.
Initially, all database entries are labeled white. Once a record
is fetched, it is labeled black. For a query on di, T executes
a novel twin retrieval algorithm: if di is in the cache, T ran-
domly fetches a pair of records, black and white respectively;
otherwise, it retrieves the needed record and another random
record in a different color. When the cache is full, T only
shuffles and re-encrypts all black records, which is called a
partial shuffle. Intuitively, H always spots a black and white
pair being retrieved for queries in a session. Moreover, the
information collected in one session is rendered obsolete for

n=50,  
B[]=(2, 23, 47,49), 
πs(1)=1, πs(2)=4,  
πs(3)=2, πs(4)=3) 

D0 

Ds 

1 2 23 47 49 

1 2 23 47 49 

Fig. 1. An illustration of permutation among black records between D0 and
Ds

the succeeding sessions because partial shuffles remove the
correlations across sessions.

A challenge of this approach is how T securely decides
a record’s color and securely retrieves a random record in
a desired color. Note that since all accesses to the database
appear random, the black records are dispersed across the
entire database. It is practically infeasible for an embedded
trusted component to “memorize” all state information. A
straw-man solution is that T scans the database to check the
colors of all records. Nonetheless, this solution is not attractive
since its linear complexity totally nullifies our design efforts.

In the next section, we will present a basic PIR scheme
by assuming that T’s cache is big enough to accommodate
the needed auxiliary data structures. In this way, we dismiss
the aforementioned challenge for the time being and focus
on the new twin retrieval and partial shuffle algorithms and
their security. This facilitates an easier presentation of our
full scheme in Section IV where we will remove this storage
assumption and propose a solution to the mentioned challenge.

III. THE BASIC CONSTRUCTION

A. A Basic PIR Scheme

T manages a sorted array denoted by B[ ] in its cache.
B stores all black addresses in the ascending order. In every
session, a constant number of white records are fetched.
Therefore, the size of B grows with a constant amount after
each session. At the end of the (s−1)-th session, T generates
πs : [1, |B|] → [1, |B|] as the pseudorandom permutation
among black addresses for the s-th session. We remark that
πs is not defined upon the entire database. For two black
addresses x, y in B, s.t. B[i] = x,B[j] = y, πs(i) = j, it
implies that Ds[y] contains the same item as in D0[x]. We
denote this relation as D0[x] ' Ds[y]. Namely, πs specifies the
mapping between the black addresses in Ds and their original
addresses in D0. An example of B and πs is illustrated in
Figure 1.

Initialization. T chooses a pseudorandom permutation σ :
[1, n] → [1, n] and an encryption algorithm E with a random
secret key sk0. It encrypts and shuffles D into D0 by applying
σ and Esk0(). This step can also be performed by a trusted
authority which then initializes T accordingly.

Session 0. T executes k/2 queries using the retrieval algo-
rithm in [19]. For Q = i, if di is in T’s cache, T reads D0[σ[i]]
into the cache. Otherwise, T retrieves a random record. After
k/2 executions, B is populated with k/2 addresses and T
generates a secret permutation π1 : [1, k/2] → [1, k/2] and a
new secret key sk1. It shuffles the k/2 black records according
to π1 while leaving the white records intact. Since all records
to be shuffled are in the cache, T simply re-encrypts them
using Esk1() and then writes the ciphertexts out in a batch to
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generate D1. It deletes all data items in the cache. Note that
no read access to the database is needed during this shuffle.

The relations among databases can now be illustrated as
D

σ
=⇒ D0(black addresses) π1−→ D1(black addresses). With

B, πs and σ, the record in D1 storing di can be located. For the
convenience of presentation, the tuple (i, di) is always stored
together. Therefore, T can determine di’s index i without
further look-up. This applies for all subsequent sessions.

Session s ≥ 1. For a user query, T executes the twin-
retrieval algorithm shown in Algorithm 1. At the end of the
session, it executes the partial-shuffle algorithm shown in
Algorithm 2 to permute all black records whose addresses are
stored in B.

Algorithm 1 Basic Twin Retrieval Algorithm in Session s ≥
1.
INPUT: a query on di, B. OUTPUT:
di.

1: if di not in the cache then
2: j ← σ(i).
3: u← binary search(j, B);
4: if u 6= NULL then
5: di is black; set v ← B[πs(u)] and read Ds[v] and

read a random white record;
6: else
7: di is white; read a random black record and read D[j]

which stores di;
8: end if
9: else

10: read a random black record and a white record from
Ds into the cache.

11: end if
12: return di to the user.
Remark 1: binary search(j, B) is a standard binary search
function. If j is B, it returns u, such that B[u] = j; otherwise
it returns NULL.
Remark 2: T generates a random white record by repetitively
generating x ∈R [1, n] until binary search(x,B) returns
NULL.

Explanation of Algorithm 1. For a query on di , T runs the
algorithm to fetch one black record and one white record from
Ds. The decryption of the fetched record is performed within
T. If the needed item is in the cache, both records are retrieved
randomly. Otherwise, it fetches the requested record for di and
the other one in a different color.

Note that once a record becomes black, it stays in black
forever. T searches B to determine the color of the requested
record. If it is white, T directly uses its image under σ to read
the data, since it has never been shuffled. Otherwise, T uses
πs and looks up B to locate its present address in Ds. After
k/2 queries, the cache is full, where half entries are black and
half are white, meaning that they are newly retrieved. Note
that B now has (1+s)k/2 entries with k/2 newly added ones
during the s-th session.

Explanation of Algorithm 2. The partial shuffle is to re-mix
up all black records whose addresses are in B. For each partial
shuffle, a new permutation is selected so that all black records

Algorithm 2 Basic Partial Shuffle Algorithm executed by T
at the end of s-th session, s > 0

INPUT: B with (1 + s)k/2 black records. OUTPUT:
Ds+1

1: secretly generate a random permutation πs+1 : [1, |B|]→
[1, |B|], and a new key sks+1.

2: for (I = If = 1; I ≤ |B| − k; I ++) do
3: /* Increase If , until the corresponding item dt is not in

cache. Fetch dt */
4: while TRUE do
5: j ← π−1

s+1(If ); t← σ−1(B[j]);
6: if dt in the cache, If ← If + 1; else break;
7: end while
8: /* We need to translate the record addresses across

different permutations */
9: δ ← |{di|di is in cache and is white and σ(i) <

B[j]}|, v ← πs(j − δ);
10: δ ← |{di|di is in cache and is white and σ(i) <

B[v]}|, v ← v + δ;
11: fetch Ds[B[v]] as dt.
12:
13: /* Write to Ds+1 with either dt or the right one in the

cache*/
14: if I = If then
15: write Esks+1

(dt, t) into Ds+1[B[I]];
16: else
17: Insert (t, dt) into the cache.
18: j ← π−1

s+1(I); t← σ−1(B[j]).
19: Retrieve dt from the cache and write Esks+1

(dt, t) to
Ds+1[B[I]].

20: end if
21: If = If + 1;
22: end for
23: encrypt and write the remaining k records in the cache to

Ds+1 accordingly, securely eliminate πs−1. Quit the s-th
session.

are assigned to addresses randomly chosen from B. Note that
the reshuffle process also re-encrypts them so that the server is
unable to link any black record’s old address and new address.

Essentially, it is to permute those black records in Ds into
Ds+1 according to πs+1 : [1, |B|] → [1, |B|]. T fills in Ds+1

following the address sequence: B[1], B[2], . . . and so on. The
record written into Ds+1[B[i]] may be available in T’s cache;
and if not, it can be found in Ds. In the latter case, the record
can be located through an address lookup, which in a high

level view is through Ds+1

π−1
s+1

=⇒ D0
πs−→ Ds. Note that since

πs+1 and πs are defined in different domains due to the growth
of B, the algorithm has to make necessary address adjustment
as in Step 13 and 14. The adjustment is done by calculating δ
which is the number of white items in the cache making the
difference.

In order to prevent the server from knowing whether the
record to write is from the cache or fetched from Ds, T always
retrieves one record from Ds. Therefore, if the record is from
the cache, T finds the next black address (B[i′]) whose pre-
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image under πs+1 is not in the cache (as shown in the while
loop) and fetches it into the cache.

B. Security Analysis

Our analysis is to show that the PIR scheme presented above
satisfies Definition 2.1. Intuitively, we show that the adversary
gets negligible advantage by obtaining the transaction scripts
which is computationally indistinguishable from a random
string of the same length. We begin with a definition of
ideal implementation which dismisses those attacks on the
permutations and encryptions.

Definition 3.1 (Ideal Implementation): An implementation
of Algorithm 1 and 2 is said to be an ideal implementation
if all permutations σ, π1, π2, · · · are true random permutations
on their respective domains and E is information theoretically
secure. �

Let Ai be the random variable denoting the script recording
all accessed database addresses for retrieval during the i-th
session, and let Ri be the random variable denoting the script
recording all accessed database addresses for partial shuffle at
the end of the i-th session. Lemma 3.1 shows that the partial
shuffle in an ideal implementation is uniform, in the sense that
after the partial shuffle, all black records are uniformly re-
mixed. Thus, all black records appear indistinguishable to H.
Then, Lemma 3.2 proves that at any time, the access patterns
for all query executions have the identical distribution. Finally,
we prove in Theorem 3.1 that the basic PIR scheme (without
an ideal implementation) satisfies Definition 2.1.

Lemma 3.1 (Uniform Shuffle): For an ideal implementa-
tion, Algorithm 2 at the end of the s-th session performs
a uniform shuffle on all (1 + s)k/2 black records. Namely,
∀s ≥ 0, ∀i, j ∈ [1, (1 + s)k/2], ∀At, Rt, 0 ≤ t < s,

Pr(Ds+1[B[j]] ' D0[B[i]] |A0, R0, A1, · · · , As−1, Rs−1) =
2

(1 + s)k
,

(1)
where the probability is over all the random coin tosses in gen-
erating permutation σ, π1, · · · , πs−1 and in query executions.
�
PROOF. We prove the lemma by an induction on the session
number.
I. s = 0. In the end of the session 0, all k/2 black records
are in the cache and are written out to D1 directly from the
cache. Thus, no matter what π1 is in use, R0 remains the
same. Therefore, when π1 is a true random permutation, the
probability Pr(D1[B[j]] ' D0[B[i]] | A0, R0) = 2/k holds for
all 1 ≤ i, j ≤ k/2.
II. Suppose that Equation 1 holds for s = m− 1, i.e.

Pr(Dm[B[j]] ' D0[B[i]] |A0, R0, · · · , Am−1, Rm−1) = 2/mk

after the (m−1)-th session. We now consider the m-th session.
Let W denote the set of k/2 white addresses touched and
turned into black during the m-th session. We use B′ to
denote the new version of the black address array at the
end of the m-th session. To simplify the presentation, let
B′ = [b′1, b

′
2, · · · , b′(1+m)k/2], B = [b1, b2, · · · , bmk/2] and

W = [w1, w2, · · · , wk/2]. Note B′ = B ∪ W . We proceed

to prove that Equation 1 also holds for s = m, i.e.,

Pr(Dm+1[b′j ] ' D0[b′i] |A0, R0, · · · , Am, Rm) = 2/(1 +m)k,

for all i, j ∈ [1, (1 +m)k/2].
For the ease of presentation, we use Φ to denote

Pr(Dm+1[b′j ] ' D0[b′i] | A0, R0, · · · , Am, Rm). Further, we
define px and qx as px , Pr(Dm+1[b′j ] ' Dm[x] |
A0, R0, · · · , Am, Rm) and qx , Pr(Dm[x] ' D0[b′i] |
A0, R0, · · · , Am, Rm). Since πm+1 and πm are true random per-
mutations, Rm has no effect in determining whether Dm[x] '
D0[b′i]. Thus, qx = Pr(Dm[x] ' D0[b′i] | A0, R0, · · · , Am).
Since Dm+1 is generated based on Dm, we have Φ =∑
x∈B′ px · qx. We will evaluate Φ with this formula by

distinguishing Dm[x] in the cache and Dm[x] not in the cache.
Define U = {x|x ∈ B′, Dm[x] in cache} and V = B′ \ U .

Note that |U | = k and |V | = (m− 1)k/2. Thereafter,

Φ =
∑

x∈U
pxqx +

∑

x∈V
pxqx

For x ∈ U , the adversary obtains no information about
Dm[x]’s new address in Dm+1 as it is written out directly
from the cache, which is independent from the access patterns.
Therefore, for all x ∈ U , px = 2/(1 +m)k. We have

Φ =
2

(1 +m)k

∑

x∈U
qx +

∑

x∈V
pxqx (2)

In addition, since either x ∈ U or x ∈ V , we have
∑

x∈V
px = 1−

∑

x∈X
px = 1− 2/(m+ 1) = (m− 1)/(m+ 1)

We evaluate Φ using Equation 2 in two exclusive cases. I)
D0[b′i] corresponds to a white record retrieved during the m-
th session; II) D0[b′i] corresponds to a black record retrieved
during the m-th session.
Case I. D0[b′i] is white. Since D0[b′i] is white until the m-th
session, its corresponding record at Dm must be in the cache.
Therefore, for ∀x ∈ V , qx = 0, and

∑
x∈U qx = 1. Thus, we

have

Φ =
2

(1 +m)k

∑

x∈X
qx +

∑

x∈Y
pxqx =

2

(1 +m)k

Case II. D0[b′i] is black Note that there are attacks whereby
Am allows the adversary to know that for some x̄, Dm[x̄] =
D0[b′i]. We consider two subcases below.

Case II.A. The adversary knows D0[b′i] = Dm[x̄] by issuing
tainted queries. Therefore, for x ∈ V , qx = 0 since Dm[x]
must be in the cache. In addition, for x ∈ U and x 6= x̄,
qx = 0 as only x̄ is the matching one. Therefore, since qx̄ = 1,
we have

Φ = px̄qx̄ = 2/(1 +m)k

Case II.B. The adversary does not know any x̄ satisfying
D0[b′i] = Dm[x̄]. (Note that the adversary may still know
Dm[x] using a tainted query.)

If x ∈ V , Dm[x] is not involved in the m-th ses-
sion. It means that (Am, Rm) do not affect the probability
Dm[x] = D0[b′i]. Therefore, by the induction assumption, for
x ∈ V, qx = 2

mk .
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If x ∈ U , Dm[x] is involved in one of the queries executed
in the m-th session. For those x ∈ U and Dm[x] is white be-
fore the m-th session, we have qx = 0 because D0[b′i] is black.
For those x ∈ U and Dm[x] is black, because E() is informa-
tion theoretically secure, Am does not give the adversary any
advantage to determine whether Dm[x] = D0[b′i]. Therefore,
qx = Pr(Dm[B[j]] ' D0[B[i]] |A0, R0, · · · , Am−1, Rm−1). By
the induction assumption on s = m− 1, we have qx = 2/mk
if x ∈ U and x is black in Case II.B. Note that there are
exactly k/2 such black x-s Therefore, we have

Φ =
∑

x∈U,x is black

pxqx+
∑

x∈V
pxqx =

2

(1 +m)k
· 2

mk
·k
2

+
2

mk
·m− 1

m+ 1
= 2/(1+m)k

Combining all the cases above, we have proved that when
s = m, all i, j ∈ [1, (1 + m)k/2], Φ = 2/(1 + m)k. With I
and II, we conclude the proof of the lemma. �

Lemma 3.2 (Uniform Access): Let Q be the random vari-
able for a clean query. Let (X,Y ) be the two-dimensional
random variable for the black and white addresses accessed
in the twin retrieval algorithm for Q. Let A denote the access
pattern when Q is executed. Then, in an ideal implementation,
∀q1, q2 ∈ [1, n], Pr(X = x, Y = y | A, Q = q1) = Pr(X =
x, Y = y | A, Q = q2).�
PROOF. Without loss of generality, suppose that Q is executed
at the s-th session. We prove the theorem by examining the
cases when s = 0 and s ≥ 1.
I: s = 0. The theorem clearly holds as D0 is a random
permutation of D based on σ. Therefore, for each instance of
Q on D, its image Y on D0 is uniformly distributed. X is
always 0.
II: s ≥ 1. According to Algorithm 1, for a query Q, a black
record and a white record are read. Let I0 denote the set of
indexes of all items in the cache, and I1 denote the set of
indexes whose corresponding records are black records and
not presently in the cache, and I2 = [1, n] \ (I0 ∪ I1), which
is the set of indexes whose corresponding records are white.
To prove the theorem, it is sufficient to demonstrate that for
any q ∈ [1, n], Pr((X = x, Y = y) | A, Q = q) remains the
same in the following cases covering all possibilities of q.

• Case (0) q ∈ I0. Both X and Y are randomly retrieved.
So Pr((X = x, Y = y) | A, Q = q) = ( 1

|B| ,
1

n−|B| )
• Case (1) q ∈ I1. T reads the corresponding black record

and a random white record from Ds. Due to Lemma 3.1,
the corresponding record could be in any position in B
with the same probability. Therefore Pr(X = x | A, q) =

1
|B| . Y is a random retrieval, which is independent of
A. Therefore, Pr((X = x, Y = y) | A, Q = q) =
( 1
|B| ,

1
n−|B| ).

• Case (2) q ∈ I2. T reads a random black record and
the corresponding white record from Ds. The position of
the white records is determined by σ. Therefore, Pr(Y =
y | A, q) = 1

n−|B| . X is a random retrieval independent
from A. Therefore Pr((X = x, Y = y) | A, Q = q) =
( 1
|B| ,

1
n−|B| ).

By combining all the cases above, we complete the proof.
�

Note that the ideal implementation is infeasible in practice.
Given the limited resource T has, all permutations are pseudo-
random rather than true random, and E() is semantically secure
only against a PPT adversary. Therefore, we prove below
that under a practical implementation where σ, π0, π1, · · · and
E are computationally secure, our PIR scheme consisting of
Algorithm 1 and 2 is computationally secure. The proof is
based on a series of games [16] between an adversary A and
a challenger who simulates the setting with respect to our
scheme.

Theorem 3.1 (Main Theorem): The proposed PIR scheme
satisfies Definition 2.1. Namely, for a database D =
[d1, d2, · · · , dn] and any Ds using pseudo-random permuta-
tions σ, π1, · · · , πs and a semantically secure encryption E , for
any PPT adversary AO against our scheme (Algorithm 1 and
2), there exists a PPT ĀO, such that for any target clean query
Q, for any K ∈ N, for any access pattern λK , ∀q ∈ [1, n],

|Pr(q ← AOQ(λK))− Pr(q ← ĀOQ(1κ))| < ε(κ)

where ε(κ) is a negligible function. The probability is taken
over all the internal coin tosses of Algorithm 1, Algorithm 2,
Q, and A or Ā.
PROOF. In the proof, we do not differentiate access patterns
for query execution or for partial shuffle.
Game 0. Game 0 is defined as the attack game between A
and the challenger. Game 0 is conceptually equivalent to A’
attack against our scheme without an ideal implementation. In
particular, the challengers sets up the system and simulates
T using pseudo-random permutations σ, π1, π2, · · · , and a
semantically secure encryption scheme E . A queries O to run
tainted queries. A observes all access patterns for all queries.

At certain point, A asks for a challenging query denoted Q.
The challenger randomly sets Q = q, where q ∈R [1, n], and
executes the query.A observes its execution. ThenA continues
to query O and to observe the access pattern. After totally
observing a polynomial number (K) of database accesses
(λK), A halts and outputs q′ ∈ [1, n]. A wins Game 0 if
q′ = q. We define s0 to be the event that q′ = q. Note that
Pr(s0) = Pr(q ← AOQ(λK)).
Game 1. We transform Game 0 into Game 1 with the
following changes. Instead of using pseudo-random permuta-
tions σ, π1, · · · , the challenger uses true random permutations
σ′, π′1, · · · , which are on the same respective domains. All
others remain the same as in Game 0.

Let s1 be the event that q′ = q in Game 1. We claim
that |Pr(s1) − Pr(s0)| = εp, where εp is the advantage
for any PPT adversary in distinguishing between a pseudo-
random permutation and a random permutation over the same
permutation domain. This can be easily proven by using a dis-
tinguisher attacking the pseudo-random permutation generator
by interpolating between Game 0 and Game 1. To determine
whether a family of permutations are true random or not,
the distinguisher applies them in Game 0 and Game 1 and
observes A’s success probabilities in two games.
Game 2 We transform Game 1 into Game 2 with the following
changes. Instead of using a semantically secure encryption
E , the challenger uses an information theoretically secure
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encryption algorithm E ′. All others remain the same as in
Game 1.

Let s2 be the event that q′ = q in Game 2. We claim that
|Pr(s2) − Pr(s1)| = εe, where εe is the advantage of a PPT
adversary in distinguishing E and E ′, i.e. breaking the semantic
security of E . Similar to the proof in Game 1, our claim here
can be proven by constructing a distinguisher which is given
oracle accesses to either E or E ′ and interpolates between
Game 1 and Game 2.

Therefore, we have |Pr(s2) − Pr(s0)| = εp + εe. Thus,
the theorem can be proved by proving Pr(s2) = Pr(q ←
ĀOQ(1κ)), which is equivalent to prove that in an ideal im-
plementation of our proposed PIR scheme, ∀λK ,Pr(Q = q |
λK) = Pr(Q = q). By the conditional probability formula, it
is equivalent to prove that ∀λK , Pr(λK | Q = q) = Pr(λK).
Fix any session s, we prove it by an induction on K.
I: When K = 1, our target is to prove that Pr(X = x, Y =
y | Q = q) = Pr(X = x, Y = y), ∀x, y ∈ [n]. Note that
Pr(x, y) =

∑n
i=1 Pr(x, y | i)Pr(i). Consider Pr(x, y | i).

There are two cases:
• The record corresponding to i is in B. Therefore,

Pr(x) = 1
|B| , due to the initial permutation; Pr(y) =

1
n−|B| due to random access.

• The record corresponding to i is in [n]\B. Therefore,
Pr(x) = 1

|B| , due to random access; Pr(y) = 1
n−|B| due

to the initial permutation.
Thus, in both case Pr(x, y | i) = ( 1

|B| ,
1

n−|B| ) for both
cases. Obviously, Pr(x, y | i) = Pr(x, y | j) for all i, j ∈
[1, n]. Consequently, Pr(x, y) = Pr(x, y | q)∑n

i=1 Pr(i) =
Pr(x, y | q),∀q ∈ [1, n].
II: (induction assumption) For K ′ = K − 1,Pr(λK′ |
Q = q) = Pr(λK′). We then prove that Pr(λK | Q = q) =
Pr(λK). Without loss of generality, let λK = λK′ ∪ (x, y),
where (X = x, Y = y) is the K-th database read. Therefore,
to prove Pr(λK′ , (x, y) | q) = Pr(λK), it is sufficient to prove
Pr(x, y | λK′ , q) = Pr(λK′ ,x,y)

Pr(λK′ |q)
due to the conditional proba-

bility formula. By the induction assumption, it is sufficient to
prove Pr(x, y | λK′ , q) = Pr(x, y | λK′). We prove this by
considering three exclusive cases for Q = q.

1) Q = q occurs after the K-th database access;
2) Q = q is the query for the K-th database access;
3) Q = q occurs prior to the K-th database access.

We proceed to prove that the above equation holds for all three
different cases.
CASE 1: Obviously, λK′ and (x, y) are independent of Q = q.
So, Pr(x, y | λK′ , q) = Pr(x, y | λK′).
CASE 2: Note that Pr(x, y | λK′) =

∑n
q=1 Pr(x, y |

λK′ , q)Pr(q | λK′), where Q = q is the query corresponding
(x, y). Due to Lemma 3.2, Pr(x, y | λK′ , q) = Pr(x, y |
λK′ , q

′), ∀q, q′ ∈ [1, n]. Therefore, Pr(x, y | λK′) = Pr(x, y |
λK′ , q)

∑n
i=1 Pr(i | λK′). According to the induction, Pr(i |

λK′) = Pr(i), we have Pr(x, y | λK′) = (x, y | λK′ , q)
CASE 3: Let Q′ be the random variable for the query which
generates (x, y). Considering all possible values of Q′, de-
noted by q′, we have Pr(x, y|λK′ , q) =

∑n
q′=1 Pr(x, y |

λK′ , q, q
′)Pr(q′ | λK′ , q). Note that Pr(x, y | λK′ , q, q′) =

Pr(x, y | λK′ , q′) since (x, y) is determined by Q′ and λK′

according to our PIR algorithm. Therefore, Pr(x, y|λK′ , q) =∑n
q′=1 Pr(x, y | λK′ , q′)Pr(q′ | λK′ , q). Since Q′ = q′ is

independent of λK′ and Q = q, thus

Pr(x, y|λK′ , q) =

n∑

q′=1

Pr(x, y | λK′ , q′)Pr(q′ | λK′) = Pr(x, y | λK′)

Hence, for all three cases, Pr(x, y | λK′ , q) = Pr(x, y | λK′),
which proves that Pr(Q = q | λK) = Pr(Q = q). Thus, we
conclude with |Pr(s2)− Pr(s0)| = εp + εe. �

IV. A CONSTRUCTION WITHOUT STORAGE ASSUMPTION

In this section, we consider the scenario that T does not
have the capability for storing B whose size grows linearly to
the number of queries. B is therefore maintained by H. Note
that unprotected accesses to B may leak information about
the black records T looks for, and consequently compromise
query privacy. A straightforward solution is to treat B as a
database, and to run another PIR query on it. Nonetheless,
the cost of this nested PIR approach seriously counteracts our
efforts to improve the computational efficiency.

We devise two tree structures denoted by Γ and Ψ stored
in H to facilitate T’s accesses on black and white records
respectively. We also retrofit the previous twin-retrieval and
partial-shuffle algorithms such that the accesses to Γ and Ψ
are oblivious, since all accesses to Γ and Ψ appear uniformly
to H for all query executions.

A. Auxiliary Data Structures

Here we only describe the data structures and the involved
algorithms. Their construction and the security analysis are
presented in the subsequent sections.

1) Management of Black Records: H maintains two arrays:
B and B̂, recording black addresses as in Section III. The latter
array is for T to acquire session related information. When a
session starts, B and B̂ are identical. During the session, only
B is updated with every database access as in the previous
scheme, and B̂ is not updated. In the beginning of a session,
H overwrites B̂ with B which has k/2 more elements.

2) Management of Permutation: Recall that Ds is a result
of a partial shuffle under the permutation πs : [1, |B|] →
[1, |B|]. The permutation can essentially be represented by |B|
pairs of tuples (x, y), where x ∈ [1, n] is the item’s index in
D and y ∈ [1, |B|] is the corresponding record’s address in B.
T selects a cryptographic hash function H() with a secret key
v and a CPA secure symmetric key encryption scheme with a
secret key u, where the encryption and decryption functions
are denoted by Eu() and Du() respectively. We use x to denote
Eu(H(x, v)). Therefore, the permutation can be represented by
a 2-tuple list L = [(x1, y1), (x2, y2) · · · , (x|B|, y|B|)], sorted
under H(x, v) values, i.e. H(x1, v) < · · · < H(x|B|, v). Let
Γ be a complete binary search tree with |B| − 1 randomly
assigned inner node and with L being the |B| leaves such that
an inner node stores Eu(a) satisfying that a is larger than the
plaintext stored in its left child and smaller than the plaintext
of its right child. Hereafter, we refer to the plaintext stored in
L and Γ as keys as they are used for numerical comparison.
Figure 2 depicts one toy example of Γ with 4 leaves.
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CASE 3: Let Q� be the random variable for the query which generates (x, y). Considering all possible

values of Q�, denoted by q�, we have Pr(x, y|λK� , q) =
�n

q�=1 Pr(x, y | λK� , q, q�)Pr(q� | λK� , q). Note

that Pr(x, y | λK� , q, q�) = Pr(x, y | λK� , q�) since (x, y) is determined by Q� and λK� according to our

PIR algorithm. Therefore, Pr(x, y|λK� , q) =
�n

q�=1 Pr(x, y | λK� , q�)Pr(q� | λK� , q). Since Q� = q� is

independent of λK� and Q = q, thus

Pr(x, y|λK� , q) =

n�

q�=1

Pr(x, y | λK� , q�)Pr(q� | λK�) = Pr(x, y | λK�)

Hence, for all three cases, Pr(x, y | λK� , q) = Pr(x, y | λK�), which proves that Pr(Q = q | λK) =

Pr(Q = q). Thus, we conclude with |Pr(s2)− Pr(s0)| = �p + �e. �

IV. A CONSTRUCTION WITHOUT STORAGE ASSUMPTION

In this section, we consider the scenario that T does not have the capability for storing B whose

size grows linearly to the number of queries. B is therefore maintained by H. Note that accesses to B

may leak information about the record T looks for, and consequently compromises the privacy of the

whole scheme. A straightforward solution is to treat B as a database, and to run another PIR query on

it. Nonetheless, the cost of this nested PIR approach seriously counteracts our efforts to improve the

computational efficiency of the entire scheme.

We devise two tree structures denoted by Γ and Ψ stored in H to facilitate T’s accesses on black and

white records respectively. We also retrofit the previous twin-retrieval and partial-shuffle algorithms such

that the accesses to Γ and Ψ are oblivious, since all accesses to Γ and Ψ appear the same.

A. Auxiliary Data Structures

b) Management of Black Records: H maintains two arrays: B and B̂. The latter is for T to acquire

session related information. When a session starts, B and B̂ are identical. During the session, only B is

updated with every database access as in the previous scheme, and B̂ is not updated. In the beginning

of a session, H overwrites B̂ with B which has k/2 more elements.

c) Management of Permutation: Recall that Ds is a result of a partial shuffle under the permutation

πs : [1, |B|] → [1, |B|]. The permutation can essentially be represented by |B| pairs of tuples �x, y�,
x, y ∈ [1, n] where x is the item’s index in D and y is the corresponding record’s address in Ds. T

selects a deterministic symmetric key encryption scheme e(·) with a secret key u, a cryptographic hash

function H. Let x denote H(eu(x)). Let L = [(x1, y1), (x2, y2) · · · , (x|B|, y|B|)] be a sorted array such

that y1 < · · · < y|B|. Note that the y-values in L exactly form B, which explains why there is no need to

DRAFT

4#

5# 56#

Fig. 2. An illustration of Γ, where the black address
array B = [7, 11, 32, 50] and the permutation can be
represented as (7, 32), (11, 50), (32, 11), (50, 7). L =
{(Eu(H(32, v)), 11), (Eu(H(50, v)), 7), (Eu(H(7, v)), 32), (Eu(H(11, v)), 50)},
and H(32, v) < H(50, v) < H(7, v) < H(11, v). The shadows in Γ
implies that all nodes are encrypted.

We design three algorithms on Γ: random-walk, targeted-
walk(x) and secure-insert as described below.
• random-walk: Starting from the root of Γ, T fetches

a node from Γ into the cache, and secretly tosses a
random coin such that its both child nodes have the same
probability to be fetched in the next level. The process is
repeated until a leaf node is fetched.

• targeted-walk(x): Starting from the root of Γ, T fetches a
node from Γ into its cache and gets its key by decryption.
If x is less than or equal to the key, T fetches its left child;
otherwise fetches the right child. The process is repeated
until a leaf node is reached.

• secure-insert(a, b, L) where L has been sorted under H()
values: The same as the regular insertion algorithm to
a sorted list, except that all comparisons are performed
within T’s cache after decryption, and that (Eu(a), b) are
inserted into L instead of (a, b) in plaintext.

The random-walk algorithm implements fetching a random
black record, whereas the targeted-walk algorithm performs
a real binary search. Both algorithms walk from the root of
Γ downwards to a leaf node, i.e. an entry in L. These two
algorithms are used during query execution whereas secure-
insert is used in constructing L.

3) Management of White Addresses: We need to manage
those white records as well. The black addresses virtually
divide [1, n] into white segments, i.e. blocks of adjacent
white addresses. We use an array denoted by Ψ to represent
the white segments. An entry in Ψ has three fields, i.e.
Ψ[i] = 〈l,m,M〉 representing the i-th white segment which
starts from the address Ψ[i].l and contains Ψ[i].m entries
with l being the M -th white address in the database. Namely,
Ψ[i].M =

∑i−1
j=1 Ψ[j].m+1. Since Ψ does not hold any secret

information, it is managed and stored by H. Nonetheless,
similar to the security requirement of Γ, the notion of PIR
also requires that the server cannot distinguish whether T’s
access to Ψ is for a random white record or one requested by
a query. T utilizes Ψ to fetch white records in the following
two ways.
• Random-search: T generates r ∈R [1, n − |B|]. Then it

runs a binary search on Ψ for the r-th white record in Ds,
which stops at Ψ[i] satisfying Ψ[i].M ≤ r < Ψ[i+1].M .
It computes y = Ψ[i].l+ r−Ψ[i].M and fetches the y-th
record from Ds.

• Targeted-search: T runs a targeted search for given an

index x whose corresponding address is white. T runs
a binary search on Ψ for the address σ(x). The search
stops at Ψ[i] satisfying Ψ[i].l ≤ σ(x) < Ψ[i+ 1].l. Then,
T fetches the σ(x)-th record from Ds. Note that the
only purpose of this search is to prevent the adversary
from distinguishing whether a white record is randomly
selected or not.
a) Management of Cache: We need to store more infor-

mation in the cache. First, we define the term BIndex for black
records. For a black address x, its BIndex is i iff B[i] = x,
namely its rank B. The cache is organized as a table denoted
by C whose format is shown in Table II.

C BIndex Color From Ind Data
i 5 W 100 2 0x1200
· · · · · · · · · · · · · · · · · ·

TABLE II
AN EXAMPLE OF C . C[i] IS Ds[100], WHICH IS A CIPHERTEXT OF (x, dx)

WHERE x = 2, dx = 0x1200. Ds[100] IS WHITE BEFORE BEING
RETRIEVED, AND IT BECOMES THE 5-TH BLACK RECORD IN Ds .

The entries in C are sorted under their From fields. Suppose
that T fetches a record Ds[y] storing (x, dx). It inserts a new
entry C[i] into C, where the C[i].From = y, C[i].Ind = x and
C[i].Data = dx; C[i].Color is set to ‘B’ if Ds[y] was black;
otherwise C[i].Color is set to ‘W’. In our example shown in
Table II, di’s image in D0 is currently the 5-th black record
in the database.

B. The Scheme

We are now ready to present the full scheme without the
assumption of T’s storage for B. The scheme consists of
Algorithm 3 for query executions and Algorithm 4 for the
partial shuffle. In the high level, these two algorithms shares
the same logic as Algorithm 1 and 2 in Section III-A. The
differences are mainly on how to locate the black and white
records needed by protocol execution and how to construct Γ.

1) Twin Retrieval: The main challenge of the retrieval
algorithm is to obliviously and efficiently determine a queried
record’s color and to generate the proper random address.
The basic idea of Algorithm 3 is to utilize Γ to determine a
record’s color by searching for the corresponding ciphertext.
If it is black, the search process outputs its exact location;
otherwise, it outputs a random black record. To ensure that
a leaf can only be retrieved once, T stores the intervals for
those retrieved leaves into a temporary set X . For a binary
search tree, each leaf has a corresponding interval determined
by the two adjacent inner nodes in an in-order traversal. Thus,
whether a leaf is retrieved depends on whether the searching
key falls into the leaf’s interval. Note that these two inner
nodes are on the path from the root to the leaf. If the leaf is
its parent’s left/right child, the recorded ancestor is the nearest
one such that the leaf’s is is right/left offspring.

More specifically, T differentiates three scenarios. In the
first scenario (Line 2), the queried record is in the cache. In
this case, it fetches a random black and white pair. In the
second scenario (Line 8), the queried record is not in the
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cache and the expected search path has been walked priorly,
which indicates that the queried record is white. Therefore, T
performs a random walk in Γ to avoid repeating the path. In
the last case (Line 11), T performs a targeted walk to search
for ciphertext c. There are two possible outcomes: the leaf
node matches c, indicating that the desired record is black; or
the leaf does not match, indicating that the record is white.

Algorithm 3 The General Twin Retrieval Algorithm in Session
s ≥ 1, executed by T.
INPUT: a query on di, B, key u, set X , Γ whose root is α.
OUTPUT: di.

1: i′ ← σ(i);
2: if i ∈ C.Ind then
3: /* the data item is in the cache */
4: 〈x, y〉 ←random-walk; jb ← y.
5: random-search Ψ which returns jw, go to Line 17;
6: end if
7: c← H(i, u);
8: if ∃(l, r, x′, y′) ∈ X satisfying l ≤ c < r then
9: 〈x, y〉 ←random-walk; jb ← y; goto Line 15;

10: end if
11: 〈x, y〉 ←targeted-walk(c); jb ← y;
12: if Du(x) = c then
13: random-search Ψ which returns jw. /∗the queried record

is black.∗/
14: else
15: targeted-search Ψ for i′. Then jw ← i′. /∗the queried

record is white.∗/
16: end if
17: X ← X ∪ {(l, r, x, y)} where l, r are the the plaintext of

leaf (x, y)’s parent node and one of its ancestors on the
path and l < r.

18: read the Ds[jb] and Ds[jw]. After decryption, create two
new C entries for them accordingly. Note that the BIndex
is empty for the time being.

19: return di to the user.

2) Partial Shuffle: The partial shuffle algorithm shown in
Algorithm 4 is the same as Algorithm 2 with two main
differences. First, T uses C to look for a suitable black record
to shuffle out (Line 7), rather than repetitively visiting B.
Therefore, for every write to the new database, T only has
one access for B and one for the old database (Line 11).
Secondly, this algorithm has to construct L′ and Γ′. When
populating the black entries in the new database (Line 15 and
20), T secure inserts the mapping relation (x, y) into L. Note
that it is Eu′(H(x, v′)) which is inserted into sorted L′. The
concurrence of constructing L and filling the new database
does not leak information, since y-values of L are exactly the
addresses in array B.

The construction of Γ′ is also straightforward. Since Γ′

is built as a complete binary search tree with L′ being the
leaves, its topology of Γ′ is calculated when L′ is ready.
Thus, T can scan L′ and build Γ′: between two adjacent L′

nodes, randomly picks a in the domain of H() and builds an
inner node storing Eu′(a). Then, based on the computed tree

topology, T sets the pointers for its two children, which could
be inner nodes or leaf nodes.

Algorithm 4 Partial Shuffle Algorithm executed by T at the
end of s-th session, s ≥ 1

Input: C, B Output: Ds+1, Γ′ and L′

1: scan B and assign BIndex for each entry in C. Specifically, for
every 1 ≤ b ≤ |B|, if ∃x ∈ [1, k], s.t. C[x].F rom = B[b], then
set C[x].BIndex = b.

2: generate a secret random permutation πs+1 : [1, |B|]→ [1, |B|],
and a new encryption key u′ and hash key v′.

3: for (I = If = 1; I ≤ |B| − k; I ++) do
4: j ← π−1

s+1(If );
5: /* Increase If , until the corresponding item dt is not in cache.

Then, fetch dt from Ds. */
6: while TRUE do
7: if j ∈ C.BIndex, If ← If + 1; else break;
8: end while
9: /* We need to translate the record addresses across different

permutations */
10: δ ← |{x | C[x].Color = W and C[x].BIndex < j}|, v ←

πs(j − δ);
11: fetch B̂[v], and then fetch Ds[B̂[v]] as (t, dt).
12: /* Write to Ds+1 and update L′ */
13: if I = If then
14: Re-encrypt (t, dt) into Ds+1[B[I]];
15: secure-insert(H(t, v′), B[I], L′);
16: else
17: insert a 4-tuple 〈0, ’B’, B̂[v], x, dx〉 into C.
18: find l ∈ [1, k] satisfying C[l].BIndex = π−1

s+1(I).
19: Re-encrypt (C[l].Ind, C[l].Data) and insert the result to

Ds+1[B[I]].
20: secure-insert(H(C[l].Ind), v′), B[I], L′);
21: end if
22: If = If + 1
23: end for
24: write the remaining k records in the cache to Ds+1 and assign

L′ accordingly; securely discard πs, u.
25: scan L′ and construct Γ′ based on L′.

C. Security Analysis

Our security analysis below focuses on the new security
issues caused by using the auxiliary data structures. First, we
prove that the adversary’s observation on a path of targeted-
walk does not reveal any information about the query. Note
that for a binary search tree, a leaf node exactly represents one
search path. We describe the obliviousness of targeted-walk
using the following lemma.

Lemma 4.1: For any given L and Γ constructed as above,
for a search path ending at L[i] resulting from targeted-walk
on a query X , Pr(X = x1|L[i]) = Pr(X = x2|L[i]) for all
x1, x2 ∈ [1, n] and i ∈ [1, |B|].
PROOF. To prove the lemma, it is sufficient to prove Pr(X =
x1, L[i]) = Pr(X = x2, L[i]). Without loss of generality,
suppose that an in-order traverse of Γ shows to the adversary
that

Du(L[1]) < · · · < Du(ci−1) < Du(L[i]) < Du(ci) < · · · < Du(L[|B|])
Therefore, it appears to the adversary that Pr(X,L[i]) is
exactly the probability that Du(ci−1) ≤ H(X, v) < Du(ci),
which depends on the hash function H(·, v) and the decryption
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function Du(·). Under the random oracle model, H(X, v) is
uniformly distributed in H’s domain. Therefore, Pr(X,L[i])

is determined by δi = Du(ci)−Du(ci−1). Since {δi}|B|i=1 are
uniformly distributed and the adversary has no information
about {δi}|B|i=1 as every δi is only chosen once in query
execution, Pr(X = x1|L[i]) = Pr(X = x2|L[i]) = 1/|B|
for all x1, x2 ∈ [1, n]. �

Lemma 4.2: Suppose that σ is a true-random permutation
over [1, n]. For any given Ψ, for all white item dx, the
search path generated by the targeted search for dx has the
same distribution as a random search, where the probability is
computed over the coin tosses of σ and in random search.
PROOF. The proof is very straightforward. Since σ is a true
random permutation, σ(x) is a random position among all
white records. Thus, σ(x) has the same distribution as r ∈
[1, n− |B|] which is just the rank of a random white record.
Therefore, the two binary searches above result in the identical
distribution. �

The two lemmas above show that the independent ex-
ecutions of those component algorithms for auxiliary data
structures do not leak information to the adversary. Next, we
prove that Algorithm 3 and Algorithm 4 remain as oblivious
though auxiliary data structures are accessed within their
executions. In plain words, we show that an adversary does
not observe more useful information in executing Algorithm 3
and 4 than in executing Algorithm 1 and 2.

Lemma 4.3: The accesses to auxiliary data structures
B,Ψ,Γ in Algorithm 3 are oblivious.
PROOF. For all queries, only B[1] and B[(s + 1)k/2] are
accessed. In addition, the black addresses stored in B are
known to the adversary. Thus, accesses to B do not give the
adversary any advantages.

By Lemma 4.2, we have shown that for all queries, the
accesses to Ψ in executing Algorithm 3 have the identical
distribution. Furthermore, the trace of searching on Ψ does
not leak extra information to the adversary. This is because the
entire Ψ is known to the adversary. For a binary search, the
leaf determines the search path. Therefore, since the adversary
observes the access to a white address in the database, it can
generate the same trace as by T does.

The adversary also observes a retrieved black record and
a search path from either targeted-walk or random-walk.
Since the accessed black record’s address can be inferred
from the root-to-leaf walk in Γ, we only evaluate whether
a tree walk leaks more query information than the touched
black address. According to Lemma 4.1, the execution of
targeted-walk in Algorithm 3 has the identical distribution
for all queries. In addition to that, random-walk has the same
path distribution as targeted-walk since every leaf node still
has the same probability to be fetched. Therefore, neither tree
walk algorithms leaks information about the query except the
address of the black record to retrieve.

To summarize, the accesses to B,Ψ,Γ in Algorithm 3 do
not leak more query information to the adversary than in
Algorithm 1. �

Lemma 4.4: The accesses to auxiliary data structures
B, B̂, L′,Γ′ in Algorithm 4 are oblivious.
PROOF. Algorithm 4 performs a full scan of B. Since B
only contains black addresses which can be derived from
database access pattern, the full scan of B does not leak extra
information. The algorithm also reads B̂[v] in Line 11. This
does not leak extra information, since the adversary can find
B̂[v] by observing that Ds[B̂[v]] is fetched.

The construction of Γ′ (including L′) involves a comparison
between the keys stored in two nodes. Although the adversary
gets the topology of Γ′ which reveals the order of all keys, the
construction process does not leak more information than Γ′

itself. In fact, Γ′ leaks no more information to the adversary
than she has observed. The y-values in L′ are exactly the same
as those in B, which can be easily obtained by observing
the database retrievals. All other information in Γ′ are the
ciphertext of keys. Although Γ′ shows the order of all keys,
it does not expose the permutation used in the partial shuffle.
This is because all keys in Γ′’s inner nodes are randomly
picked, and all x-values in L′ are derived from H(x, v′).

To summarize, any access pattern observed by the adversary
can be caused by all possible permutations with the same
probability. Thus, the accesses to B, B̂, L′,Γ′ do not leak more
information to the adversary than in Algorithm 2. �

The lemmas have shown that accesses to auxiliary data
structures leaks no additional information than in the basic
construction. Since both the full scheme and the basic one
have the same database access patterns for the query execution
and partial shuffle, Lemma 3.1 and Lemma 3.2 still hold in
the full scheme, which leads to the following theorem as in
proving Theorem 3.1.

Theorem 4.1: For a database D = [d1, d2, · · · , dn] and
any corresponding shuffled and encrypted database Ds using
pseudo-random permutations σ, π1, · · · , πs and a semantically
secure encryption E , for any PPT adversary AO against our
scheme (Algorithm 3 and 4), there exists a PPT ĀO, such that
for any clean query Q, ∀K ∈ N, for any access pattern λK ,
∀q ∈ [1, n], |Pr(q ← AOQ(λK)) − Pr(q ← ĀOQ(1κ))| < ε(κ).
The probability is taken over all the internal coin tosses of
Algorithm 3, Algorithm 4, Q, and A or Ā.

V. PERFORMANCE

A. Complexity Analysis

Our scheme has an O(log n) communication complexity,
which is the same as that of schemes in [10], [9], [19], and
is the lower bound of communication complexity for any
PIR construction. The computational complexity describes the
amount of accesses on H, including database accesses (e.g.
read and write), auxiliary data structure accesses. Note that
k/2 queries are executed in every session. When the i-th
session starts, H holds ik/2 black records. Therefore, one
query execution of Algorithm 3 costs 2(log(ik/2) + 1) =
2(log i + log k) accesses due to the task of binary searches
on Γ and Ψ. A partial shuffle at the end of the i-th session
permutes (i + 1)k/2 black records. It requires (i + 1)k/2
accesses to scan array B, 4× (i+ 1)k/2 accesses to permute
the records, (i+ 1)k/2 ∗ log((i+ 1)k/2) accesses in average
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for constructing L′, (i + 1)k/2 accesses for constructing Γ′.
Therefore, totally tk/2 queries executed in t sessions costs∑t
i=1[k(log i + log k) + 1

2 (i + 1)k(log(i + 1) + log k + 5)]
server operations, which is approximated to:

C(t) ≈ 1

4
kt2 log t+

log k + 15

4
kt2 +

3

2
kt log t+

4 log k + 15

4
kt(3)

Therefore, the complexity of the amortized server computation
cost per query is O(t log t), which is independent of the
database size.

The advantage of our scheme decreases when t asymptot-
ically approaching n. One optimization is to reset the state
when t is large. A reset is to run a full shuffle on the
original database which costs 2n acesses using the full shuffle
algorithm in [19]. Let τ be the parameter such that the database
is reset for every τ sessions. Then, the average amount of
accesses C is

C =
C(τ) + 2n

kτ/2
≈ 1

2
τ log τ +

log k + 15

2
τ + 3 log τ +

4n

kτ

We choose an optimal τ =
√

16n
k(logn+log k+14) , which satisfies

that 1
2τ log τ + log k+15

2 τ + 3 log τ ≈ 4n/kτ , such that the
optimal average cost becomes

C∗ =

√
4n(log n+ log k + 14)

k

Thus, the complexity of the average computation cost per

query after optimization is O(
√

n(logn+log k)
k ).

A comparison of our scheme against other PIR schemes is
given in Table III. Note that all previous hardware-assisted
schemes [9], [10], [18], [19] claim O(1) computation com-
plexity since they only count the cost of database accesses.
In fact, all of them requires O(log k) operations to determine
if an item is in cache. Our scheme also has O(1) database
read/write, though we need an additional cost for a binary
search in Γ. For those PIR schemes without using caches,
the computation cost per query is at least O(n). Our scheme
substantially outperforms all other PIR schemes in terms of
average query cost by paying a slightly higher price of online
query processes.

Schemes Runtime compu-
tation cost

Amortized compu-
tation cost

Our scheme running t ses-
sions O(log t+log k) O(t log t)

Our scheme with reset for
every

√
8n

k(logn−log k+2)

sessions
O(log t+log k) O(

√
n(logn+log k)

k
)

Scheme in [19] O(1) O(n/k)

Scheme in [9], [10] O(1) O(n logn
k

)
Scheme in [18] O(1) O(n)
PIR schemes in the standard
model O(n) O(n)

TABLE III
COMPARISON OF COMPUTATION COMPLEXITY IN TERMS OF THE AMOUNT

OF SERVER ACCESSES.

B. Comparison with Hierarchy-based ORAM

We also compare our scheme with the state-of-the-art
ORAM proposed in [15] (denoted by PR-ORAM). The com-
parison is made upon several aspects including computation
complexity, the actual computation cost, the protected storage
cost and the server storage cost.
• Complexity. Clearly, the O(

√
n log n/k) complexity of

our scheme is much higher than the O(log2 n) complexity
of PR-ORAM and other hierarchy-based ORAM con-
structions.

• Actual Computation Cost. According to [15], the con-
stant factor in the big-O notation of PR-ORAM’s server
operation complexity is about 72 if two optimization
techniques are applied. (Otherwise, it is about 160 accord-
ing to their experiments.) Therefore, it takes 72 log2 n
operations per query. The average cost of our scheme with

optimization is
√

4n(logn+log k+14)
k . By conservatively

setting k = 1024, our scheme outperforms PR-ORAM’s
72 log2 n operations when n < 3 ∗ 1010 as shown in
Figure 3(a). Note that a popular trusted hardware, e.g.
IBM PCIXCC, typically has megabytes storage, which
can accommodate thousands of items. It is more suitable
than PR-ORAM for databases of up to billions of items.

1 ´ 1010 2 ´ 1010 3 ´ 1010 4 ´ 1010 5 ´ 1010 6 ´ 1010 7 ´ 1010
n

20 000

40 000

60 000

80 000

100 000

120 000

operations

Our scheme

PR-ORAM

(a) k=1024

5.0 ´ 1010 1.0 ´ 1011 1.5 ´ 1011 2.0 ´ 1011 2.5 ´ 1011
n

20 000

40 000

60 000

80 000

100 000

120 000

operations

Our scheme

PR-ORAM

(b) k=4096

Fig. 3. Comparison between our scheme and ORAM[15] with different cache
size

• Protected Storage. Both our scheme and PR-ORAM
need a protected storage whose size is independent of the
database size. In our scheme, the hardware needs a cache
to store a constant amount of data items. PR-ORAM also
needs a client end storage to store secret information.
Since it does not store data, it requires less storage than
our scheme.

• Server-side Storage. In our scheme, the server storage
grows with query executions. In maximum, it stores the
database of n items, two arrays B and B̂ of size 2

√
nk,

a tree Γ (including L) of 4
√
nk nodes, and an array Ψ

of 2
√
nk. Therefore, the maximum storage cost at the

server side is n+ 8
√
nk in maximum, in contrast to the

8n server storage in PR-ORAM.
• Architecture. Although we introduce a trusted hardware

in the server side, the algorithms proposed in this paper
can also be applied to client-server settings as ORAM-
based PIR. We remark that to solve the PIR problem, both
our scheme and ORAM require a trusted entity. In a tight-
coupling architecture considered in our scheme, a secure
hardware is the one, which supports multiple clients
and has faster database accesses. In a loose-coupling
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architecture as suggested in [21], a client/agent plays the
role of trusted party. Note that the choice of architecture
does not affect the complexity of the algorithms or the
number of server operations.

C. Experiment Results

We have implemented Algorithm 3 and 4 and measured
their computation time cost with a simulated trusted hardware.
Both algorithms are executed on a PC with a Pentium D CPU
at 3.00GHz, 1GB memory, and Ubuntu 9.10 x86 64. They
are implemented by using OpenSSL-0.9.8 library, where the
permutation πs is implemented using the generalized Feistel
construction proposed by Black and Rogaway in [4].

Our experiment is to verify our square-root performance
analysis in Section V-A. We fix the cache size as 512 items
and experiment with databases of five different sizes. For each
database, we ran 100,000 random generated queries with full-
shuffles after a fixed amount of sessions. We measured the
average query time in each experiment. The results are shown
in Table IV below, and are plotted in Figure 4. Figure 4(a)
depicts the up-and-down of the partial shuffle time, where
the drop is due to the protocol reset. Figure 4(b) depicts the
average query execution time growing almost linearly with√
n log n which confirms our analysis above.

Database size (n) 500k 1m 3m 10m 20m
Online computation (µs) 39 39 40 40 40
Overall computation (ms) 0.18 0.22 0.33 0.54 0.72

TABLE IV
QUERY EXECUTION TIME FOR DIFFERENT DATABASE SIZES n,

WITH A FIXED CACHE SIZE k=512.
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Fig. 4. Experiment results of the proposed PIR scheme

VI. CONCLUSION

We have presented a novel hardware-based scheme to
prevent database access patterns from being exposed to a
malicious server. By virtue of twin-retrieval and partial-shuffle,
our scheme avoids full-database shuffle and reduces the amor-
tized server computation complexity from O(n) to O(t log t)
where t is the number of queries, or to O(

√
n log n/k) with

an optimization using reset. Although the hierarchy-based
ORAM algorithm family [15], [20], [21] can protect access
patterns with at most O(log2) cost, they are plagued with
large constants hidden in the big-O notations. With a modest

cache k = 1024, our construction outperforms those poly-
logarithm algorithms for databases of 3 ∗ 1010 entries. In
addition, our scheme has much less server storage overhead.
We have formally proved the scheme’s security following
the notion of private information retrieval and showed our
experiment results which confirm our performance analysis.
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