
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Coprocessor-based Introspection Framework
via Intel Management Engine

Lei Zhou, Fengwei Zhang*, Jidong Xiao, Kevin Leach, Westley Weimer, Xuhua Ding, Guojun Wang

Abstract—During the past decade, virtualization-based (e.g., virtual machine introspection) and hardware-assisted approaches (e.g.,
x86 SMM and ARM TrustZone) have been used to defend against low-level malware such as rootkits. However, these approaches
either require a large Trusted Computing Base (TCB) or they must share CPU time with the operating system, disrupting normal
execution. In this paper, we propose an introspection framework called NIGHTHAWK that transparently checks system integrity and
monitor the runtime state of target system. NIGHTHAWK leverages the Intel Management Engine (IME), a co-processor that runs in
isolation from the main CPU. By using the IME, our approach has a minimal TCB and incurs negligible overhead on the host system on
a suite of indicative benchmarks. We use NIGHTHAWK to introspect the system software and firmware of a host system at runtime. The
experimental results show that NIGHTHAWK can detect real-world attacks against the OS, hypervisors, and System Management Mode
while mitigating several classes of evasive attacks. Additionally, NIGHTHAWK can monitor the runtime state of host system against the
suspicious applications running in target machine.

Index Terms—Intel ME, System Management Mode, Introspection, Integrity, Transparency.

F

1 INTRODUCTION

S Ecurity vulnerabilities [1] that enable unauthorized ac-
cess to computer systems are discovered and reported

on a regular basis. Upon gaining access, attackers frequently
install various low-level malware or rootkits [2] on the
system to retain control and hide malicious activities. While
many solutions target different specific threats, the key
ideas are similar: the defensive technique or analysis gains
an advantage over the attacker by executing in a more
privileged context. More specifically, to detect low-level
malware, virtualization-based defensive approaches [3], [4]
and hardware-assisted defensive approaches [5], [6], [7]
have been proposed. However, both approaches come with
inherent limitations.
Limitations in virtualization. Virtualization-based ap-
proaches require an additional software layer (i.e., the hy-
pervisor) to be introduced into the system, resulting in two
problems. First, virtualization can incur significant perfor-
mance overhead. While CPU vendors and hypervisor de-
velopers have worked to improve the performance of CPU
and memory virtualization, the cost of I/O virtualization re-
mains high [8]. Second, and more importantly, mainstream
hypervisors generally have a large trusted computing base
(TCB). Hypervisors such as Xen or KVM contain many
thousands of lines of code in addition to the millions of lines
present in the control domain. Thus, while virtualization
has facilitated significant defensive advances in monitoring
the integrity of a target operating system, attackers in such
systems can target the hypervisor itself. By exploiting vul-

• L. Zhou and F. Zhang are with Department of Computer Science and En-
gineering, and Research Institute of Trustworthy Autonomous Systems,
Southern University of Science and Technology, Shenzhen 518055, China.
J. Xiao is with Boise State University, USA.
K. Leach and W. Weimer are with University of Michigan, USA.
X. Ding is with Singapore Management University, Singapore.
G. Wang is with Guangzhou University, China.

* The corresponding author; Email: zhangfw@sustech.edu.cn

nerabilities in the large TCB of the hypervisor, attackers can
escape the virtualized environment and wreak havoc on the
underlying system.
Limitations in hardware. Hardware-assisted approaches
are not burdened by large TCBs. However, to provide a
trustworthy execution environment, hardware-assisted ap-
proaches typically require either (1) an external monitoring
device or (2) specialized CPU support for examining state
such as Intel System Management Mode (SMM). The former,
seen in Copilot [6], Vigilare [5], and LO-PHI [9], typically
use a co-processor (on a PCI card or an SoC) that runs
outside of the main CPU. Such a requirement increases costs
and precludes large-scale deployment. The latter, seen in
HyperSentry [10], HyperCheck [11] runs code in SMM and
monitors the target host system. While it does not require
any external devices, code running in SMM can disrupt the
flow of execution in the system. Running code in SMM
requires the CPU to perform an expensive context switch
from the OS environment to SMM. This switch suspends the
OS execution until the SMM code completes, that is benefit
for static analyzing the current host running state. But
this suspension of execution results in abnormalities (e.g.,
lost clock cycles) that are detectable from the OS context.
Attackers can measure and exploit such abnormalities so as
to escape detection or hide malicious activities.

To address these limitations in current approaches, we
present NIGHTHAWK, a framework leveraging the Intel
Management Engine (IME). While the IME is intended as
an advanced system management feature (e.g., for remote
system administration of power and state), in this work, we
use the IME to construct a system introspection framework
capable of efficiently (1) checking the integrity of kernel
and hypervisor structures and system firmware, and (2)
monitoring the system state by quickly analyzing critical
target memory data. To the best of our knowledge, this
is the first paper to consider using the IME for system

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

introspection. Our proposed framework offers the following
advantages in comparison to previous work:
• No extra hardware required. The IME has been in-

tegrated into most current commercially-available Intel
chipsets, which ensures that our proposed framework can
be deployed without external peripheral support.

• High privilege. As a co-processor running independently
from the main CPU, the IME has a high privilege level in
a computer system1. The IME has unrestricted access to
the host system’s resources, making it suitable for ana-
lyzing the integrity of the underlying operating system,
hypervisor, or firmware.

• Small TCB. The IME runs a small independent Minix 3
OS distribution. As Minix 3 uses a microkernel architec-
ture, it contains only thousands of lines of kernel code (cf.
millions of lines of code in modern hybrid architecture
systems like Linux or Windows). The reduced size of code
results in a decreased trusted code base.

• Low overhead. Since the IME runs in an isolated co-
processor, executing code in the IME does not disrupt
the normally-executing tasks on the main CPU and does
not compete for resources with the underlying OS. Thus,
code executing in the IME incurs very little overhead on
the target system2.

• Transparency. In addition to low overhead, the isolation
of the IME means that the host OS is not aware of code
executing in the IME. This allows transparent analysis of
the host system from the IME.
We apply our prototype to several indicative experi-

ments entailing critical code integrity checking and host
state monitoring. This paper is an extended version of our
published conference work 3. The existing work focuses
on host integrity checking and experimental results show
that NIGHTHAWK can detect real-world rootkits, includ-
ing kernel-level rootkits and SMM rootkits. Following that
work, we design a new system state monitoring mechanism.
We analyze the target system to extract the representative
features in a running OS, including runtime processes, phys-
ical memory usage, and information in procfs. We evaluated
the added system monitoring modules, the additional re-
sults show that we can effectively introspect the host’s state
information without interrupting its execution environment.
Our main contributions are:
• We present NIGHTHAWK, a novel introspection frame-

work that transparently checks the integrity of the host
system and monitors the host state at runtime. We lever-
age the IME, an extant co-processor that runs alongside
the main CPU, enabling a minimal TCB and detection of
low-level system software attacks while incurring negli-
gible overhead.

• We demonstrate a prototype of NIGHTHAWK that can
detect real-world attacks against operating system ker-
nels, Xen and KVM hypervisors, and System Manage-
ment RAM. In addition, NIGHTHAWK can monitor target
system state with forensics analyzing critical data in target

1. Expanding on Intel’s privilege rings, userspace applications are
said to have ring 3 privilege, while the kernel has ring 0 privilege. The
IME is said to have ring -3 privilege [12], [13].

2. Cache contention and bus bandwidth limits may incur overhead.
3. NIGHTHAWK [14] has been published in ESORICS 2019.

OS. Furthermore, NIGHTHAWK is robust against page
table manipulation attacks and transient attacks.

• NIGHTHAWK causes low latency to introspect the critical
data structures. Our results show that NIGHTHAWK takes
0.502 seconds to verify the integrity of the system call
table (4 KB) of the host operating system. This low latency
results in a small system overhead on the host.

2 BACKGROUND

Intel Management Engine: The Intel Management Engine
is a subsystem which includes a separate microprocessor,
its own memory, and an isolated operating system [15].
The IME has been integrated into Intel x86 motherboards
since 2008 and was frequently used for remote system
administration. Once the system is powered on, the IME
runs in isolation, and its execution is not influenced by the
host system on the same physical machine. To contact with
isolated IME from host system, Intel designed the Host Em-
bedded Controller Interface (HECI, also called Management
Engine Interface) to secure exchange data between host
memory and IME. Note that some other chipsets integrated
co-processors, like the Intel Innovation Engine (IE) [16], also
have the similar features, but are designed for special plat-
forms (e.g., Data Center Servers) rather than for ordinary
computers. Thus, in this paper, we build our introspection
framework based on the IME rather than the Intel IE.
System Management Mode: System Management Mode
(SMM) is a highly privileged execution mode included in
all current x86 devices since the 386. It is used to han-
dle system-wide functions such as power management or
vendor-specific system control. SMM is used by the sys-
tem firmware, but not by applications or normal system
software. The code and data used in SMM are stored in a
hardware-protected memory region named SMRAM. Under
normal operation, SMRAM is inaccessible from outside of
SMM unless configured otherwise (i.e., if SMRAM is un-
locked). SMM code is executed by the CPU upon receiving
a system management interrupt (SMI), causing the CPU
to switch modes to SMM (e.g., from protected mode). The
hardware automatically saves the CPU state, including con-
trol registers like CR3, in a dedicated region in SMRAM.
After executing SMM code, the CPU state is restored and it
resumes execution as normal. We use SMM in tandem with
the IME to transparently gather accurate data from a system,
even when it is compromised.

3 THREAT MODEL AND ASSUMPTIONS

In this work, we assume the operating system, the hyper-
visor, and even SMM are not trusted. In contrast, due to
its isolation and small TCB, we favor deploying security-
critical software in the IME. We use this environment to
run our code and introspect activities occurring in the
operating system, the hypervisor, and SMM. Additionally,
we assume an attacker does not have physical access to
the machine. We assume that we start with a trustworthy
firmware image (i.e., BIOS) so that we can reliably insert
our IME introspection code. We assume the booting process
of the Intel TXT [17] is trusted. We assume SMM could
be compromised via a software vulnerability at runtime.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Introspection
Client

Memory
Forensics

Introspection
Server

NIC Driver

Integrity
Checking

Host State
Monitoring

µDMA Driver /
HECI Driver

Physical
Memory

Application

OS Kernel

Hypervisor

SMM

Agent

Request/Response

IME OS-level

IME Application-level

DMA/

HECI

m
a
p

Remote Machine
IME Target Host

Target Machine

Fig. 1: High level overview of the NIGHTHAWK. The user operates a Remote Machine to interact with the Target Machine.
We place custom IME code on the Target Machine, consisting of an Introspection server, Integrity Checking and Host State
Monitoring Modules. When the user invokes an introspection command, the server dispatches the corresponding service
module, which in turn creates a communication channel with the Target Host’s physical memory using either µDMA or
HECI. We place custom SMM “Agent” code on the Target Host. The SMM Agent is capable of basic introspection to recover
critical data structures, which can be transmitted to the IME using the same µDMA/HECI channel. The Introspection Server
can transmit the resulting data back to the Remote Machine for analysis or forensics.

However, attacks against SMM due to architectural bugs
like cache poisoning [18] are out of scope because such
attacks can be mitigated with official patch [19]. We assume
the hardware can be trusted to function normally (e.g.,
hardware trojans are out of scope).

4 SYSTEM OVERVIEW

Figure 1 illustrates the architecture of NIGHTHAWK, where
the Remote Machine and IME run in an trusted environ-
ment, and the Target Host runs in an untrusted environ-
ment. With the IME, NIGHTHAWK transparently accesses
the physical memory from the Target Host, and aims to
reach two goals: First, we aim to transparently monitor the
integrity of target system’s memory (i.e., code and data)
belonging to the application, kernel, any hypervisor present,
and SMRAM. When an integrity violation is detected, our
IME code asserts that an attack has occurred. Second, we
aim to reconstruct the state of the runtime Target system.
This can be effectively used to analyze the state of processes,
resource usage (e.g., memory, cache, imports, interrupts) of
runtime applications. With the Remote Sever, NIGHTHAWK
can remotely introspect and implement more powerful
memory forensics module for application-level checking.
We describe further details of each component below.
Target Machine: The Target Machine represents the poten-
tially vulnerable system we want to analyze and protect. The
Target Machine contains both the IME and an underlying
Target Host (e.g., operating system or hypervisor). We use
the IME as the key component in NIGHTHAWK to trans-
parently introspect the Target Machine’s physical memory.
An Introspection Client, which is deployed on the Remote
Machine, allows the user to send introspection commands
to the Target Machine’s IME. An Introspection Server on the
Target Machine’s IME then processes these commands. The
Introspection Server invokes an analysis module on behalf
of the Remote Machine.

In this paper, we implemented two types of modules:
integrity checking and state monitoring. The former focuses
on verifying the objects of the kernel, hypervisor, and SMM;
each object corresponds to a particular class of attack that
may occur against the Target Machine. The latter is designed

to monitor the behavior of the runtime system, from which
abnormal state can be detected by analyzing the physical
memory data.

When the Introspection Server processes a command
from the Client, we initialize the corresponding module
and acquire the Target Host’s memory. We use µDMA to
access the host’s memory. By design, µDMA only under-
stands physical addresses, so we bridge the semantic gap
to understand the Host’s high-level abstractions (i.e., virtual
memory addresses). We perform some initial reconnaissance
on the Target Host’s memory—we collect virtual memory
addresses of some critical kernel/hypervisor data structures
to derive a mapping to physical addresses. In SMM, we first
build a SMRAM static configuration map for comparison
at runtime. This map allows us to retrieve virtual memory
addresses from the physical memory regions we acquire via
µDMA. Next, we create a communication channel between
the Target Machine’s physical memory space and the IME’s
external memory space by using µDMA and HECI. This
channel enables transferring critical data structures (e.g., the
system call table, a hypervisor’s kernel text, and saved ar-
chitectural state) to the IME. Afterwards, each checking and
monitoring module is able to locate relevant data structures
in the IME’s external memory space and perform further
introspection.
Remote Machine: The Remote Machine serves as a way for
a user to remotely access the Target Machine and assess
its integrity transparently. More specifically, the Remote
Machine implements a simple Introspection Client that al-
lows access to the Target Machine’s IME remotely. Users
can issue commands using the Introspection Client, and
receive results from the Target Machine’s IME. We imple-
ment several commands that are usable by the Introspection
Client, including fetching segments of kernel memory for
verification. We also implement a Memory Forensics Helper
for dumping memory images to the Remote Machine for
offline analysis. Due to the resource-constrained nature of
the IME processor, it is more efficient to dump memory
from the Target Machine and use the Remote Machine to
perform more computationally-expensive analyses. Users
can develop more complex memory forensic analysis helper
based on their needs.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Remote Machine

User Command

Verify Result

Memory Forensics

Target Machine

Management Engine

Application

Kernel

Hypervisor

SMRAM

DRAM

ME RAM

Target Host

Message
Parsing

Target Host
Fetching

Data Trans-
mission

Comparison/
Reconstruction

1 ©
In
je
ct

cu
st
o
m

M
E

co
d
e.

3© Command

2© Memory Reconnaissance.

4© Trigger.

5© µDMA

6©a dump
6©b analyze

7© Report

8©a Response

8©b mem dump

Fig. 2: High-level overview of the implementation. Following the numbered arrows, we (1) inject custom code into the IME
on the Target Machine, and (2) acquire physical addresses of critical data structures. Next, the user (3) issues commands
to the Introspection Server, which (4) triggers the corresponding command. (5) the IME uses µDMA and a modified HECI
channel to fetch the target data from the Target Host and SMM memory. Depending on the command, the resulting
memory is either (6a) dumped to the Remote Machine or (6b) analyzed locally for integrity checking or state monitoring.
If applicable, . (7) the memory Comparison/Reconstruction handler produced the report of data analysis, and finally (8)
transmitted back to the Remote Machine.

Both the Introspection Client and the Memory Forensics
Helper work in tandem to communicate with the IME
on the Target Machine. Rather than developing a custom
communication protocol, we rely on the existing IME remote
management protocol [20], which is a RESTful HTTPS pro-
tocol for remote management tasks. We reverse-engineered
the protocol to augment it with custom commands used by
our introspection code.
Summary: To summarize, we seek to check the integrity of
target host using the IME, and further introspect the target
runtime system. We use custom IME code to implement in-
tegrity checking for the Target Machine’s kernel, hypervisor,
and SMM code and data. Based on trusted code and data,
we further implement host state monitoring for the Target
Host’s runtime system state. A user can interact with an
Introspection Client to perform various introspection tasks.
Because the IME enables transparent and low-overhead
access to the Target Machine’s physical memory, we can
detect the presence of advanced attacks by leveraging a
combination of integrity checks and introspection.

5 IMPLEMENTATION

We implemented a prototype of NIGHTHAWK based on the
Intel x86 architecture. Figure 2 describes implementation de-
tails pertinent to our prototype. We embedded custom IME
firmware on the Target Machine to transparently acquire
the Target Host memory with low overhead. Loosely, there
are two main parts of the implementation: (1) preparing
the Target Machine with custom IME firmware, and (2)
interacting with the Target Machine’s IME at runtime.

5.1 Preparing the Target Machine
The Intel Management Engine is a system developed by
Intel whose functions require significant engineering ef-
fort to expand. With several previous IME related research
works [12], [13], we adopt the memory-remapping approach
taken by Tereshkin and Wojtczuk [13]: essentially, the ex-
ternal IME RAM is made accessible by the Target Host by

IME External
Memory

Available
Memory

System DRAM

Boot Sector

Modify registers:
TOUUD,

REMAP BASE,

REMAP LIMIT

1

remap memory

(mmap2)
2

write custom code

to memory

3

Entry
func cmd identity()
func dma fetch()
...
func data transmit()

restore configuration

registers

4

Lock resisters with

Intel TXT

5

Reboot with

Nighthawk

6

TOUUD default

Remap IME
space to
accessible address

Fig. 3: Custom IME code injection and reusing blocked. First,
we configure system registers (TOUUD, top of upper usable
memory, REMAP_BASE, and REMAP_LIMIT in step 1) to map
the IME external memory to a userspace-accessible region
of memory (step 2). We write custom instructions to that
region (step 3), then restore the configuration registers (step
4). Last, we lock the registers at booting stage (step 5), and
reboot the system with NIGHTHAWK (step 6).

configuring several system registers that influence mem-
ory mapping. The workflow is shown in left parts of the
Figure 3. In practice, developers can work with vendors
to deploy custom IME code that does not require such a
workaround. SMM can be protected in a similar way.

Since we directly get the runtime IME memory data but
not source code, we first reverse engineer the IME code—
our prototype uses ARCompact [21]). Next, we can trigger
remote commands to run related threads in the Target
Machine’s IME.

We can then acquire low-level runtime information (e.g.,
memory dumps) of running programs, which we can ana-
lyze (e.g., by seaching for branch instructions) to find ad-
dresses of suitable functions and positions for introspection.
Finally, we insert introspection code while maintaining the
original functionality (e.g., with trampolines).

However, with kernel-level access, it is possible to
reuse those memory control registers to remap and sub-
sequently alter the IME-reserved memory region and SM-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

RAM. This could potentially allow attackers to compromise
NIGHTHAWK. To close the injection vector after we insert
the introspection code into the IME and SMRAM, we imple-
ment a lock mechanism on those memory control register by
leveraging Intel TXT [17], shown in the right side of Figure 3.
1) We pre-install Trusted Boot [22] (TBoot), a booting mod-

ule based on Intel TXT Technology to perform a mea-
sured and verified launch of an OS kernel/VMM. We can
configure TBoot to lock the memory control registers.

2) We configure the bootloader to use TBoot to boot the
Linux kernel, then restart the Target Machine from the
Remote Server with an IME-based remote reboot com-
mand.
After rebooting, the custom IME and SMM code remains

intact because booting into TXT mode prevents the memory
control registers from being modified.

5.2 Modules Designed in IME

In this subsection, we describe the design and implementa-
tion details of modules that we use as part of our prototype
built on the Intel Management Engine.

IME is a tiny system in x86 chipsets with an indepen-
dent CPU, memory, and other computing resources [23].
Function modules in NIGHTHAWK are the extension of
the original IME system. Through reverse engineering the
runtime IME memory data (as discussed in Section 5.1),
we locate each IME kernel function (e.g., memcpy, memset),
network communication drivers (e.g., TCP/UDP packet
processing functions) and other specific system modules.
In the IME system, each device can be initialized directly
by configuring auxiliary registers. Similarly, we can locate
some key auxiliary registers in the IME core through some
reverse engineering work (e.g., The physical address 0x5010
to 0x5013 for DMA channel registers, 0x6011] to 0x6016 for
timer registers). We configure the related auxiliary register
to implement driver-like functions, which are used as a
foundation for NIGHTHAWK’s capabilities.

Since the IME processor cannot address the host memory
directly, two extended transfer engines — Direct Memory
Access (DMA) and Host Embedded Controller Interface
(HECI) — are used for data transmission between the IME
memory and the Target Host memory. The DMA engine
moves bulky data blocks between the IME memory and
the Target Host memory. In our prototype environment, the
IME adopts a tightly-coupled DMA engine called µDMA
to achieve low latency and cycle-efficient DMA transfers.
By configuring DMA-related registers (e.g., setting bits 2–4
of register [5010] with 010) to fetch physical memory data
from the Target Host to the IME memory space, we construct
an effective DMA channel between the two. Furthermore,
to securely access the Target Host’s registers, we configure
a HECI-like channel in SMM. Similar to the HECI driver,
we configure related registers like H CRS in SMM to
implement byte-level data transferring.

In addition to the data transfer engine, modules for
data encryption/decryption and analysis are designed as
normal IME applications like AMT [15]. Such modules are
inserted by hooking existing IME functions, like memcpy
or net package send. The insertion operations change one
instruction in the original function, and are resumed after

the added module is executed to keep correct IME state.
Since the IME system has limited resources (e.g., less than
3MB memory available for data processing), we add small
functions and leverage existing functions to implement host
introspection. For a complex introspection task, we divide
them into pieces and migrate most of the work to the remote
machine.

5.3 Target Host Reconnaissance
We describe challenges associated with: (1) verifying the
integrity of its memory dumps about kernel, hypervisor,
and SMM code and data; and (2) reconstructing the key
data structures in host system. In addition, we consider the
solutions we chose, and how these solutions mitigate certain
attacks.
Static Kernel Integrity Checking. In a normal OS and
hypervisor, the kernel code and data are in static memory
segments, initialized during system boot. Typically, kernel
code and several key data structures such as the system
call table and the interrupt descriptor table do not change
during runtime. However, attackers might modify these
structures, violating the kernel’s integrity. In general, its
physical address can be found in the system symbol table
(System.map) with a fixed offset change4. System.map is
a map from kernel symbols to virtual addresses. To monitor
kernel integrity, we similarly obtain that symbol’s address
from the system symbol table. We use this approach to find
physical addresses of several critical structures, including
the system call table, the interrupt descriptor table, the
kernel code and data segments, and (when applicable) hy-
pervisor modules.
SMM Integrity Checking. Unlike the kernel or the hyper-
visor, accessing SMM memory is less straightforward. SMM
code is stored in and executes from the System Manage-
ment RAM (SMRAM), which is an isolated address space.
This isolation feature can be locked or unlocked through
configuring special registers in the BIOS to protect access
after booting. If SMRAM is unlocked, we can measure the
integrity directly via the µDMA channel. However, even if
SMRAM is locked, we implement a secure communication
channel between the IME and SMM. Since HECI is an
unique interface designed to communicate between the IME
and Target Host, we reuse the related HECI registers to
create a channel between the IME and SMM. Atop this
channel, we add code to check the integrity of both SMM-
related code and register values. We can communicate this
information from SMM over the HECI channel, at which
point we can verify results within the IME. This approach
enables transparent and rapid evaluation of SMM code and
data even when the target machine is compromised.
Kernel Data Reconstruction To introspect the state of the
target system, NIGHTHAWK searches for critical system
runtime information, similar to Virtual Machine Introspec-
tion [24]. Those information data is stored in instances of
specific kernel objects, containing the state of processes, in-
formation of CPU interrupts, and statistical data from procfs,
among other data. Since NIGHTHAWK must extract useful

4. While this offset can be system-dependent, in most Linux setups,
kernel virtual addresses are 0xc0000000 bytes from the corresponding
physical address.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

data from raw binary data, it generally relies on kernel
data reconstruction to bridge the semantic gap. Kernel data
reconstruction proceeds in two phases. First, we identify
the symbols of each data structure and its storing address
on physical memory. Second, we traverse all items in data
structures to acquire valid data.

In the first phase, NIGHTHAWK relies on knowledge of
the Target System’s kernel version, compilation parameters,
etc. With the same kernel source code and compiling con-
ditions, NIGHTHAWK builds an analysis environment for
the Target Host, then analyzes the source code to get the
root address of data structure instances (and related point-
ers). For example, in Linux, each process has an associated
task struct object, and of whose instances are organized
in a doubly- and circularly-linked list. The root element
of this linked list is represented by the instance init task,
which we can find in the kernel symbol table. In some
cases, the instances may be organized with different data
structures (e.g., proc dir entry allocated with a Red-Black
tree), which we support as needed.

In the second phase, with the root address and layout
of data structure instances, NIGHTHAWK traverses each
item linearly or following the data structure’s pointers.
Generally, the traversal starts at the symbol address, but
for some special cases, the symbol address indirectly re-
lates to the data structure. For example, the data structure
pglist data does not have the root address from the symbol
table, but its sub-field node mem map corresponds to the
kernel symbol mem map. The redirection is executed at
the function alloc node mem map, which is a fixed offset
from the first address of the pglist data structures. Thus,
NIGHTHAWK needs to analyze the path of data redirec-
tion before traversal. After searching each data structure
instance, NIGHTHAWK fetches the effective data stored in
fields of structures. NIGHTHAWK monitors the system data
to introspect the state of the target system.
Mitigating Attacks. NIGHTHAWK is co-processor based ap-
proach that suffers from the address translation redirection
attack (ATRA) [25] and transient attacks [5], [11]. However,
NIGHTHAWK is able to detect these attacks. For ATRA
attacks, first, we store a clean copy of kernel page table
by accessing the symbol swapper_pg_dir at the kernel
initialization stage. Second, we obtain the CR3 register value
using SMM (SMRAM is protected by SMM integrity check-
ing). Thus, the binding between the virtual and physical
memory addresses can be verified in the IME subsystem.
For transient attacks, NIGHTHAWK works in an indepen-
dently environment with little introspection overhead. Com-
pared to the SMM-based monitoring approaches like Hyper-
Check [11] and HyperSentry [10], the introspection interval
of NIGHTHAWK becomes much harder to be gleaned by at-
tackers. Moreover, the code in the IME can run continuously
without halting the Target Host, and thus attackers cannot
predict when a memory page will be checked.

5.4 Measuring Integrity via Custom IME

Next, we discuss the introspection workflow in
NIGHTHAWK. As the IME is intended for remote
administration, it contains basic networking code. We
reverse-engineered our IME firmware to find these

networking functions that could be reused by our injected
IME code. The injected code is composed with a list of
introspected object structures and checking functions.
Essentially, we modified the IME code to perform
introspection activities in response to requests sent
from the Introspection Client on the Remote Machine. The
workflow consists of four steps, shown in Figure 4.
1) When the target machine receives a network command,

it is received by the Remote Machine in the recv_cmd()
function. Then, msg_parse() determines which in-
tegrity checking operation it needs to perform.

2) Next, we fetch the specified target data. We use a µDMA
channel between the Target Host and the IME to fetch
the specified data from memory. If the target data is
from locked SMRAM, data_fetch() creates the HECI
channel between the IME and SMM.

3) After fetching, NIGHTHAWK first compares the hash
value of the fetched memory with the original version
established during boot in the IME system. During
a reconstruction command, NIGHTHAWK analyzes the
binary data and extracts the valid messages from the
corresponding data structure.

4) After analysis, data_transmit() transfers the results
to the Remote Machine to continue analysis.

Next, we discuss key aspects of the introspection workflow.
µDMA based Memory Fetching. NIGHTHAWK uses the
µDMA engine to access the Target Host’s physical memory
from the IME. Our prototype’s chipset [26] supports config-
uration of four µDMA channels (i.e., we can have four mem-
ory requests in-flight simultaneously). We use a number of
auxiliary registers to control the size, direction, and other
properties of the µDMA request. First, we write certain
structures (e.g., the source and destination addresses) to
auxiliary registers so as to engage the µDMA engine to
automatically retrieve portions of the Target Host’s physical
memory. Then, the µDMA engine automatically stores the
requested memory content in an IME-designated location.
Once the function has acquired the specified amount of
data, the µDMA request stops. Note that, in a special case
like ATRA attacks, we get the CR3 value first by leveraging
SMM, and then fetch the corresponding memory page.
Checking Runtime SMRAM. For unlocked SMRAM, we
directly access the memory through µDMA and check the
integrity in the IME. For locked SMRAM, NIGHTHAWK in-
trospects the SMRAM through the cooperative HECI chan-
nel. In the IME, we add a static SMRAM configuration dur-
ing the initialization stage, which includes the SMM code
and the original value for each SMM register (e.g., SMBASE
– 0xa0000). In SMM, we add two main functions: First, we
use the SDBM hash algorithm [27] to calculate the integrity
of SMRAM code, and we check the values of SMM-related
registers at runtime. This helps us defend against attacks
that attempt to change the SMM configuration or otherwise
alter SMRAM. Second, we establish a communication chan-
nel between the IME and SMM by configuring a number
of HECI Host registers: H_CBRW (Host Circular Buffer Read
Window), H_IG (Host Interrupt Generate), and H_CSR (Host
Control Status). In particular, writing to H_IG generates
an interrupt to the IME. This HECI-based communication
channel can pass data from SMM to the IME to check SMM
code and data.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

CMD structure
Command Feature

F Object
C Offset
T Size
... ...

header parse()

get cmd()

Transmission

HTTP digest
command
size
payload offset
...

mem copy()

payload replace()

Runtime workflow
in Nighthawk

recv cmd()

msg parse()

data fetch()

data analyze()

data transmit()

µDMA Structure

src data

dst addr

dma size

dma ctl reg

dma state reg

...

start DMA()

finish DMA()

DataProcess

Original signature

Newly-fetched data

key data structures

hash verify()

signature match()

data reconstruct()

HECI structure

write buf

request type

read buf

...
event listen()

data analysis()

st blink, sp
...
filter()
match()
report()
...
mov r1 r18
mov r2 r13
jl 0x14E4F8C

mov r1 r18
mov r2 r13

0x1182000

0x14E4F84

Introspection

in the IME

jl 0x1182000

Hooked

function entry

DRAM

Target Host
memory

SMRAM

µDMA channel

HECI
channel

Fig. 4: The introspection workflow in the IME. We reverse-engineered the locations of several network-related functions in
the existing IME code on our Target Machine. We added code to include custom commands to support our main goal of
checking the integrity of the Target Host.

5.5 Monitoring Host State via Custom IME

After we verify the integrity of kernel on both OS and
Hypervisor, we can further monitor the critical information
on the Target System, including process information, physi-
cal memory usage, CPU interrupts, and Procfs information,
which directly reflects the runtime state of the Target Sys-
tem [28], [29], [30], [31]. This serves as an effective basis for
runtime monitoring of the Target Host.

Process monitoring is a key function for host introspec-
tion. In the user-space level, the processes running in the
Target System are the main interface for users’ services.
However, malicious software or rootkits [2], [32] residing
in the Target System will occupy computing resources. Ad-
ditionally, they hide themselves by manipulating the kernel
objects. To detect such malicious processes, we develop a
cross-view comparison approach. Since the kernel object
of each process is represented by a task struct, and root
data located in init task, we traverse the doubly-linked list
of tasks, then reconstruct a pid table of new processes. In
addition, because Procfs can manage kernel modules, we
can reconstruct another pid table with the data structure
proc dir entry and root instance proc root, similar to the
ps command. Comparing these two tables, we can track the
trace of process hiding rootkits or other malicious software.
In addition, through continually monitoring processes, we
can detect the behaviors of runtime process for study.

Physical memory page usage can explain how busy the
CPU is as well as memory overhead. When processes run
in a system, we calculate the memory overhead of the
specific application based on runtime state. On one hand, we
can estimate the memory requirement of process through
source code analysis or emulation [24]. On the other hand,
by continually monitoring physical page usages, we obtain
an effective memory usage view, which can be used to
detect the malicious behavior of memory operations like
“malicious memory occupied or overflow” [33]. To monitor
the physical memory page usage, we first address the global
value mem map from the IME side–the first address of
an array of pglist data structures. Through analyzing the
value in the flag field in data structure instance, we read
out the current state of the page. After collecting entire page

items, and comparison with a previous state, we can deduce
the memory usage of the current process.

Monitoring the record of CPU interrupts will show the
number of interrupts per IRQ (Interrupt ReQuest). This can
also reflect the behaviors of the processes. For instance,
we detect the network interrupts with accessing the root
address of irq desc tree and data structure irq data, which
can be used to find networking statistics. For a comparison,
we can configure the performance monitoring register and
detect interrupts from the SMM side. With the cross view
of interrupts on network device, we can introspect such
network service in the target system.

Procfs is a virtual file system designed in Linux kernel,
which provides a crucial interface for users to access system
core information (e.g., users set kernel variables or retrieve
kernel information at the runtime system). Unlike typical
durable filesystems, Procfs is an in-memory interface to var-
ious system statistics and runtime information. In addition,
Procfs is a common target for various viruses and rootkits
(e.g., Dynamic Kernel Object Manipulation (DKOM) [34]
attacks modify the data transferring function executing once
accessing the /proc/iomem data). Fortunately, reconstruct-
ing iomem data from resources data structure will directly
get the raw data which cannot be hided by attacks. Similarly,
monitoring on other /proc nodes like /ioports, slabinfo
can also provide effective introspection for the Target OS.

5.6 Remote Machine
We discuss how the Introspection Client interacts with the
Target Host. There are two main functions implemented on
the remote machine: information collection and transparent
introspection of Target Host. The remote machine initiates a
request over the network to begin introspecting the Target
Host. Once the Target Host is initialized, a communication
channel is established to collect memory address informa-
tion, including symbol names, addresses, and sizes from
the target machine. The collected information is transmitted
to the Remote Machine for later use. After this initiation,
the introspection session can begin. The Remote Machine
interacts with the Target Machine in three scenarios:
• First, system administrators set the IME username and

password for secure login. The remote machine supplies

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8
TABLE 1: Communication commands in NIGHTHAWK, each
consisting of an operation and corresponding object. Any
Command can be combined with any Object.

Command Description Object Description

F
Fetch the physical
memory from Target
Host to the IME.

SCT The information about
System Call Table.

C
Compare the Target
Host memory in the
IME system.

LK The information about
Linux Kernel.

T
Transmit the introspection
results from the
IME to Remote Machine.

HYP The information about
Hypervisor.

D
Dump the Target Host
memory from the IME
to Remote Machine.

SMM The information about
SMRAM.

R Reconstruct the special
data in host system. PT The running processes

in target system

credentials for user authentication to create a secure
channel with target machine.

• Second, remote machine sends the introspection com-
mand following the developed small custom protocol,
shown in Table 1. Moreover, the communication is en-
crypted via a session key established at runtime.

• Third, the Remote Machine receives responses to com-
mands from the Target Machine. There are two types
of response: integrity verification and forensic analyses.
Integrity verification is processed in the IME system,
thus the response would be a Boolean result indicating
whether the integrity was violated. Data reconstruction
is also processed in the IME system because memory
fetching follow the definite data structure and physi-
cal address layout. For the large memory dump, the
memory forensic analyses are offloaded to the Remote
Machine.

6 EVALUATION

Our experimental environment consists of two physi-
cal machines: the Target Machine, with a 3.0 GHz In-
tel E8400 CPU, ICH9D0 I/O Controller Hub, and 2GB
RAM. An Intel e1000e Gigabit network card is integrated
in the Intel DQ35JO motherboard. The BIOS version is
JOQ3510J.86A.0933. For kernel integrity testing, the Target
Machine runs Ubuntu with Linux kernel versions 2.6.x to
4.x. For hypervisor integrity testing, both Xen 4.4 and KVM
2.0 are used. The Remote Machine runs Microsoft Win-
dows 10 with WireShark [35] installed for network packet
monitoring. In this section, we evaluate NIGHTHAWK from
two aspects: effectiveness (i.e., does our system detect the
presence of real-world threats?) and efficiency (i.e., does our
system incur a low overhead?).

6.1 Effectiveness

6.1.1 Effectiveness of Lower Layer Introspection
We measure effectiveness by introspecting the Linux kernel,
hypervisor, and SMM, as well as detecting ATRA and tran-
sient attacks.
Kernel Integrity Verification. We consider 5 real-world ker-
nel rootkits, shown in Table 2, which fall into two categories:
• System call table modification. Rootkits with kernel-level

privilege can write to this table by manipulating the

TABLE 2: The effectiveness of NIGHTHAWK introspection.
Type Attacked Object Attacks [2], [32], [36] Detected

OS kernel

system call table
kernel text
kernel data
IDT table
page directory entry
page table entry

benign
pusezk
Diamorphine
kbeast
amark
adore-ng
manual modification

7
X
X
X
X
X
X

Hypervisor

kvm.ko
kvm intel.ko
Xen kernel text
stext etext

hypercall page
IDT table
page directory entry
page table entry

benign
pusezk
Diamorphine
kbeast
amark
adore-ng
manual modification

7
X
X
X
X
X
X

SMM SMRAM
benign
SMM reloaded
manual modification

7
X
X

control register CR0. 4 of our 5 rootkits belong to this
category: Pusezk, Diamorphine, amark, and Kbeast [2].

• Function pointer modification. For this category, we
choose adore-ng [32]. adore-ng hooks the virtual file sys-
tem interface to subvert normal detection. For example,
to hide a malicious process, it redirects the iterate pointer
in a kernel data structure proc_root_operations so
that the malicious process will not be displayed in the
/proc file system.
In addition to these real-world kernel rootkits, we also

manually and randomly modify kernel memory pages in
the kernel text and data segments.
Hypervisor Integrity Verification. In addition to installing
our 5 rootkits in a Xen system, we also emulate hypervisor
attacks in two ways. First, we modify the IDT, hypercall, and
exception tables in a Xen system to represent a compromised
Xen hypervisor. Second, we manually modify bytes in sys-
tem memory of a KVM guest. In particular, we identify base
addresses of KVM modules (kvm.ko and kvm-intel.ko),
then randomly modify 5 bytes in in these regions. These
two approaches allow us to simulate an attacker that com-
promises the integrity of a Xen or KVM hypervisor.
SMM Integrity Verification. To demonstrate SMM integrity
verification, we employ existing SMM attacks (e.g., the
SMM Reload program [36]) to maliciously modify the SMI
handler. We statically identify the RSM instruction that ends
the SMI handler, and insert malicious instructions (e.g., mov
$x, %addr) to simulate an attack that can modify arbitrary
memory addresses. To detect these attacks, we verify mem-
ory pages in SMRAM (see Section 5.3 for details on acquir-
ing this memory). We then compare their runtime states
with their clean states, and we consider any discrepancy
as an integrity violation. We can thus detect the existing and
simulated SMM attacks described above.

6.1.2 Effectiveness of Host State Monitoring
We measure effectiveness of host state monitoring. Through
physical memory analysis, we can reconstruct the process
task struct, physical memory page management, and Procfs
structure, which effectively introspect the runtime state of
each application running in the host. The additional exper-
iment focuses on implementing kernel object monitoring
applications, including the following three tasks: process
listing, physical memory page usage, and system related
functions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0

50000

100000

150000

200000

250000

300000

P
ag

e
N

u
m

b
er

base 10M bech 100M bech 1G bech 400M app 240M app

Fig. 5: Physical memory page usages monitoring under
different runtime stages.

First, we create a process status view by traversing
all tasks running in the Target Host using the init task
symbol5. We fetch each task struct from memory through
one DMA access. For comparison, we then build a new
process view by printing the /proc file system nodes within
the Target Host. The process state in those two views should
be consistent if the system running in a normal state. In this
experiment, we preset the processes running in the Target
Host, and execute Diamorphine [2], a rootkit designed to
hide itself from kernel-based anti-virus detection tools. We
search the processes with our approach. The cross-view
result shows that we can identify the rootkit from our con-
structed task struct, but that cannot be found in /proc nodes.
Other attacks may hide itself from task struct but exploit in
/proc node, or hide from both approaches. However, those
rootkits still leave the trace in physical memory and can be
found by NIGHTHAWK (e.g., we can check the run list of
the scheduler for detection [37]).

Second, we develop a physical memory page monitoring
module to check the state of physical memory pages (i.e.,
page update, active, dirty, etc.). Then, we can traverse all
physical pages through this single node structure. In Linux,
there is a initial data contig page data used by Page array.
Each item in Page array represents a 4K size physical
page. By accessing these items, we get the state of the
corresponding pages. With this page traversal, we get the
dynamic physical memory utilization from host. Different
processes running in the Target System will cause different
changes to page usage. For example, we use the memtester
memory benchmark tool [38] to simulate memory utilization
patterns. Figure 5 shows the physical memory page state
under different situations. The “base” means a basic sys-
tem without any other software, “10M–1G bech” represents
running the 10M to 1G memory benchmark test, the left
instance “400M, 240M app” represents the manual designed
process which required such size of memory space. The
result shows that the changing page number for each page
states follow the size of memory requirement. Note that, for
an extreme case like the 1G benchmark memory test, the
number of dirty page or active page is less than prediction.
This is because the benchmark test is repeated on the same
page. In a real situation, we also need to consider the specific
memory operating in the workflow of process.

Third, we analyzed the binary code from physical mem-
ory dump to reconstruct the Procfs information. We se-
lected part of functions in Procfs node, including /iomem,
/ioports, /slabinfo, and /interrupts, which can re-

5. On our system, the address 0xc1938a00 contains the symbol
init task; each task struct object is 0xD8C bytes

Fig. 6: Result about proc nodes reconstruction from
NIGHTHAWK side.

veal the memory allocations, ports, memory switching, and
CPU interruption events on the Target Host. As mentioned
at section 5, most of Procfs nodes have their own data
structure. By traversing these structures, we can fetch a com-
plete view of /proc information. We experimented above
functions by reconstruct the key data. Figure 6 lists parts of
the result of memory forensics by NIGHTHAWK. With this
function, we can monitor system state.

6.1.3 Effectiveness of Other Special Attack Introspection
ATRA Detection. We keep a clean copy of the kernel page
table at system initialization stage through searching the
swapper pg dir symbol. We use the CR3 value (acquired rely-
ing on SMM) to search for the corresponding physical page
directory entry and page table entry via physical memory.
In addition, we test the experiment when Page Global Di-
rectory and CR3 changed under Kernel Page Table Isolation
(KPTI) mechanism and IDT based attack [25]. Finally, we
compare the search data to determine if a change has been
made. Our comparison results show that NIGHTHAWK can
detect the trace of ATRA.
Transient Attack Detection. To detect transient attacks, we
continuously scan kernel pages in the IME system. We
install a rootkit based on toorkit [38], the rootkit is able to
timing change the pointer address of the system call table
which leads to attacker-controller system calls. The rootkit
emulates a transient attack by quickly invoking insmod
and rmmod in the Linux OS. We also modify the code to
parameterize the attack time (i.e., the time elapsed between
insmod and rmmod). We sweep the attack time from 3ms
to 700ms, and run each configuration 20 times. Our results
show that NIGHTHAWK can detect transient attacks if the
attacking time is more than 700ms. However, if the attacking
time is less than 400ms, the detection rate decreases linearly
because NIGHTHAWK requires a certain amount of execu-
tion time, more details in previous work [14].

6.2 Efficiency
The efficiency of NIGHTHAWK is mainly determined by the
time cost of three logical operations: (1) data fetching, (2)
IME-inner checking, and (3) data transmission. We measure
the time consumed by each operation. For data fetching, we
also measure its memory overhead, so that we can ascertain
that NIGHTHAWK does not have noticeable impact on the
target system.

6.2.1 DMA Fetching Overhead
We first measure the DMA data fetching operation. Regard-
less of whether introspection is performed on the IME or
on the remote machine, each Target Host memory segment
must first be fetched into the IME space via µDMA. When

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

2
2

7
8

2349.6

2956.7

2978.7

2249.4

2
3

3
6

2
9

4
8

.9

2961.4

2251.5

234
3.5

2925.7

2970.4

226
5.7

2
3

4
7

.9

2946.9

2
9

6
7

.6

2
2

7
9

.5

2
3

5
6

.2

2967.2

2
9

7
7

.4

0

500

1000

1500

2000

2500

3000

3500

COPY SCALE ADD TRIAD

M
EM

O
R

Y
R

A
TE

 (m
b

/S
)

Start Process List Phy Page Usages Procfs End

Fig. 7: Memory throughput degradation due
to introspection.

the size of DMA-transmitted memory is smaller than 64KB,
the time consumed is approximately 0.26s. This is due to the
DMA channel using 16 lines to access the DRAM in parallel,
allowing 216 bytes of data each time. When the size is larger
than 64KB, the time consumed is linear to the amount of
DMA operations. To improve the DMA effectiveness, we
enable 4 µDMA channels to parallelly fetch at most 256KB
target physical memory one time. More details about µDMA
performance are in previous work [14].

Since the DMA operations from the IME and the Target
Host share the same RAM, concurrent RAM accesses are
inevitable in our system. During DMA transfer, the CPU
is idle and has no control of the memory buses. We use
the STREAM benchmark [39] to measure the performance
degradation imposed on the target machine. We run each
host system functions (processes list, physical page usage
and Procfs-similar) in IME to keep the host memory ac-
cessing. Figure 7 shows there are minimum differences in
memory bandwidth with and without NIGHTHAWK host
system introspection : most of the time, the performance
degradation is less than 0.3%, and even in the worst case
(i.e., in the Add function test), the degradation is only 0.98%.

6.2.2 IME-inner Checking Overhead
The second operation we measure is integrity checking and
key data reconstruction. First, for the lower-layer memory
segment in question, we compute a hash value, and com-
pare it with a pre-computed value supplied by the Remote
Machine representing the clean state. Therefore, the time
cost depends on the hash algorithm we choose. Recall for
simplicity we chose to implement SDBM hashing [27]. Our
test result shows that, to compute a hash value for a 4KB
memory page, the algorithm takes 7.3ms. To verify the page
table address, we simply compare each entry item in the
table by value. We only check the kernel page table, and at
most 257 4KB-size pages we need to compare—however, in
practice about 10 pages suffice. Thus, compared to the fetch-
ing stage, the overhead for comparison is much lower—less
than 2ms each time. Second, for data reconstruction, the
main overhead made at stage of iterative searching physical
memory by multiple DMA accesses. The time spent on
checking stages is to read the fixed offset in the memory
dump, which takes less than 1ms each time.

6.2.3 Transmission Overhead
The third operation we measure is data transmission. In
general, we send an introspection command from the re-
mote machine and receive the verification result. We use one
small message to pass the data (< 1KB), taking 228 ms on

average. When considering a memory dump (i.e., > 64KB)
to the Remote Machine, we divide the data into multiple
packets and transmit them into multiple messages. We find
that transmitting 64KB data takes 4.9s and that this duration
grows linearly with the transmit size.

6.2.4 Efficiency Evaluation Summary
Overall, a typical introspection cycle contains the above
three logical operations. Table 3 summarizes the time spent
in each operation and in total. For instance, the system
call table or the SMRAM (unlocked6), the introspection
takes less than 1.5 seconds to acquire the integrity status.
For application level monitoring (e.g., searching the iomem
data), we incur more time overhead due to multiple phys-
ical memory traversals totaling about 20s. Fortunately, this
performance can be substantially improved since the IME
chip was updated in new x86 chipsets.

6.2.5 Performance of the IME Core
We run experiments to investigate the computational capa-
bilities of the IME. In particular, we develop a CPU speed
testing benchmark, which we inject into the memcpy func-
tion in the IME. That is, this benchmark executes every time
memcpy is invoked. The testing program is a nested-loop
(inner loop: n, outer loop: m) function with 15 instructions
in the inner loop such that n × m = 106. We read the
time stamp counter at the beginning and the end of the
benchmark — denoted as T1 and T2, and thus approximate
the average speed of the IME CPU using the formula
v ≈ 15×106×(n×m)

(T2−T1)
. We sweep n = 100, 200, ..., 10000 and

m = 100, 200, 1000; the experimental result shows that the
IME CPU executes approximately 15 million instructions
each second. Compared to the target system’s main CPU
(which can execute billions of instructions per second), the
IME CPU has a significantly lower performance. However,
in latest system, Intel has switched ARC chip to using their
own x86 Quark microcontroller. The new CPU speed can
reach at 412 DMIPS (generally 412 million instructions each
second), this should be much more higher than our testbed
and it keeps as a further work.

7 RELATED WORK

Trusted Execution Environment. Trusted execution envi-
ronments (TEEs) are intended to provide a safe haven for
programs to execute sensitive tasks. Typically, software-
based approaches leverage virtualization. Terra [40] runs
applications with diverse security requirements in different
virtual machines managed by a trusted Virtual Machine
Monitor so that compromised applications do not inter-
fere with others. Some hypervisor-based introspection ap-
proaches like SecVisor [41] can also provide a small TCB,
but still incurs significant overhead, whereas NIGHTHAWK
does not. In contrast, hardware-based approaches rely on
different hardware features. such as external hardware-
based peripherals [5], ARM TrustZone [42], Intel SMM [43],
Intel SGX [44], [45], and AMD memory encryption technol-
ogy [46]. ZERO-KERNEl [47] designed secure GPU based

6. Even when SMRAM is locked, using our HECI-based communica-
tion channel, we incur roughly 17ms to perform end-to-end integrity
checking.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11
TABLE 3: The performance of the complete introspection about NIGHTHAWK.

Object Size
(KB)

Data Fetching
Time (s)

Comparison
Time (s)

Data Transmission
Time (s)

Total
Time (s)

System call table 4 0.26±0.010 0.007±0.001 0.224±0.030 0.50±0.030
kvm intel.ko 336 1.31±0.130 0.601±0.010 0.231±0.030 2.14±0.150
PDE 4 0.52±0.010 0.007±0.001 0.230±0.030 0.76±0.040
SMRAM(unlocked) 128 0.39±0.150 0.320±0.005 0.228±0.030 0.94±0.200
iomem data 2.80 20.6±0.80 0.571±0.080 0.231±0.030 21.4±0.90

mechanism to defense against the kernel privileged attacker
with minor overhead. vTZ [48] is the representative work
to use ARM TrustZone to virtualize TEE for multi-guest
OS protection. HyperCheck [11] employs Intel SMM to
build a TEE and monitor hypervisor integrity. Chevalier
et al. [49] proposed using a co-processor to monitor SMM
code behavior, but it requires modifying the SMM code
for instrumentation which is implemented with QEMU and
simulation. In this paper, we build our TEE using the IME,
and use it to monitor the host system.
Works on Intel ME. By design [23], the IME has full access
to the system’s memory, peripheral devices, and networks.
Because of this high privilege, the IME has attracted atten-
tion from security researchers [50], [51], [52]. For example, to
analyze the code in the IME, Sklyarov [50] proposed an SPI-
based approach to fetch the IME firmware from the storage
flash chip. In other work, Sklyarov [51] presented a static
analysis approach in which he was able to distinguish the
different functions in the IME via matching the signature
of each code module. In addition, security vulnerabilities in
the IME were also discovered [12], [13]. Tereshkin et al. [13]
proposed a memory remapping approach which enables the
host CPU to access the IME memory. Ermolov et al. [12]
revealed multiple buffer overflow vulnerabilities in the IME,
which allows local users to perform a privilege-escalation
attack and run arbitrary code. Due to the powerful but
uncontrolled function in IME, some researchers [53], [54],
[55] tried to disable the IME or confine its ability to interact
with the host system, yet do not cause any disruption to
the normal operation in the host system. In this paper, we
demonstrate that defenders can leverage IME to introspect
the host system.

8 DISCUSSION

Security issues: In our prototype, we implement
NIGHTHAWK via code injection into the IME. It is possible
to be compromised by new attacks despite mitigating the
interface for code injection. The security arms race will
persist, however the IME has a reasonably small TCB.
NIGHTHAWK is able to defense the SMM attacks which
intend to access the locked SMRAM by reconfiguring the
SMM related registers. However, if the SMM code can be
manipulated directly by attackers, SMM based functions
like CR3 reading operation may not be trusted but we can
defense it by integrating the work [49].
DMA access: The introspection workflow in NIGHTHAWK
leverages µDMA to fetch host memory. If the µDMA chan-
nel from the IME is blocked (e.g., by I/OMMU [56]), it
will prevent NIGHTHAWK from reading the Target Host
memory. Fortunately, I/OMMU can be configured to allow
this access in the BIOS. Moreover, NIGHTHAWK is able to
check the I/OMMU configuration similar to IOCheck [57].
Note that the IME accessing reserved 16MB memory at the

top of DRAM does not go through the Intel VT-d remapping
(i.e., I/OMMU implementation of Intel) [26], thus, I/OMMU
cannot block IME from accessing its inner memory.
Performance: The performance of NIGHTHAWK heavily de-
pends on the hardware design of the IME. In this paper, our
testbed’s IME suffered from low performance (Section 6.2)
mainly due to a slow ME processor speed. However, this
situation can be improved with a powerful chipset [12]. In
addition, we reverse engineered our testbed’s IME to inject
code. This approach may not have resulted in the best per-
formance (i.e., there may have been a higher-performance
method of customizing IME code).

9 CONCLUSIONS

In this paper, we presented NIGHTHAWK, a transparent
introspection framework for verifying the memory integrity
of a Target Machine and monitoring the state of runtime
host system. It leverages Intel ME, an existing co-processor
running aside with the main CPU with ring -3 privilege,
so that our approach has a minimal TCB, is capable to
detect low-level system software attacks, and introduces
minimal overhead. To demonstrate the effectiveness of our
system, we implemented a prototype of NIGHTHAWK with
two physical machines. The experimental results show that:
1) NIGHTHAWK is able to detect real-world attacks against
OS kernels, Xen- and KVM-based hypervisors, and System
Management RAM. 2) NIGHTHAWK is able to monitor the
state of runtime host system including executed processes,
physical memory usage, critical information from Proc
file system. The experimental results show NIGHTHAWK
verifies the integrity of target host system with a low
performance overhead, and effectively monitor the state of
runtime host system in transparency.
Acknowledgments. This work is partly supported by the
National Natural Science Foundation of China, Grant No.
62002151.

REFERENCES

[1] National Institute of Standards, NIST, “National Vulnerability
Database,” http://nvd.nist.gov, 2018.

[2] Github, “RootKits List,” https://github.com/d30sa1/RootKits-
List-Download, 2018.

[3] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Pro-
ceedings of the 14th ACM conference on Computer and Communications
Security (CCS), 2007.

[4] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“VMM-based hidden process detection and identification using
Lycosid,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments (VEE), 2008.

[5] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:
toward snoop-based kernel integrity monitor,” in Proceedings of
the 2012 ACM conference on Computer and Communications Security
(CCS), 2012.

http://nvd.nist.gov
https://github.com/d30sa1/RootKits-List-Download
https://github.com/d30sa1/RootKits-List-Download

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[6] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-a
Coprocessor-based Kernel Runtime Integrity Monitor,” in USENIX
Security Symposium, 2004.

[7] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using
hardware features for increased debugging transparency,” in 2015
IEEE Symposium on Security and Privacy(SP), 2015.

[8] M. Malka, N. Amit, M. Ben-Yehuda, and D. Tsafrir, “rIOMMU:
Efficient IOMMU for I/O devices that employ ring buffers,” in
ACM SIGPLAN Notices, 2015.

[9] C. Spensky, H. Hu, and K. Leach, “LO-PHI: Low-Observable
Physical Host Instrumentation for Malware Analysis.” in NDSS,
2016.

[10] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.
Skalsky, “HyperSentry: enabling stealthy in-context measurement
of hypervisor integrity,” in Proceedings of the 17th ACM conference
on Computer and Communications Security (CCS), 2010.

[11] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A
hardware-assistedintegrity monitor,” IEEE Transactions on Depend-
able and Secure Computing, vol. 11, no. 4, pp. 332–344, 2013.

[12] M. Ermolov and M. Goryachy, “How to Hack a Turned-Off Com-
puter, or Running Unsigned Code in Intel Management Engine,”
Black Hat Europe, 2017.

[13] A. Tereshkin and R. Wojtczuk, “Introducing ring-3 rootkits,” Black
Hat USA, 2009.

[14] L. Zhou, J. Xiao, K. Leach, W. Weimer, F. Zhang, and G. Wang,
“Nighthawk: Transparent system introspection from ring-3,” in
European Symposium on Research in Computer Security. Springer,
2019, pp. 217–238.

[15] H. I. Gael, “Intel AMT and the Intel ME,” https://.intel.com/en-
us/blogs/2011/12/14/intelr-amt-and-the-intelr-me, 2009.

[16] Intel, “Innovation Engine,” https://en.wikichip.org/wiki/intel/
innovation engine, 2015.

[17] Intel Corporation, “Intel trusted execution technology (intel
txt): Software development guide,” https://www.intel.com/
content/dam/www/public/us/en/documents/guides/intel-
txt-software-development-guide.pdf, 2017.

[18] R. Wojtczuk and J. Rutkowska, “Attacking SMM memory via Intel
CPU cache poisoning,” Invisible Things Lab, 2009.

[19] J. Yao, “Smm protection in edk ii,” https://uefi.org/sites/default/
files/resources/Jiewen%20Yao%20-%20SMM%20Protection%
20in%20%20EDKII Intel.pdf, 2017.

[20] Open Source Project, “Meshcommander,” http://
www.meshcommander.com, 2019.

[21] Synopsys, “embARC,” https://embarc.org/embarc osp/doc/
build/html/arc/arc.html, 2019.

[22] The Fedora Project, “TBoot,” https://sourceforge.net/projects/
tboot, 2018.

[23] X. Ruan, Platform Embedded Security Technology Revealed: Safeguard-
ing the Future of Computing with Intel Embedded Security and Man-
agement Engine. Apress, 2014.

[24] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in 2014 IEEE
symposium on security and privacy. IEEE, 2014, pp. 605–620.

[25] D. Jang, H. Lee, M. Kim, D. Kim et al., “Atra: Address translation
redirection attack against hardware-based external monitors,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014.

[26] Intel Corporation, “Intel 3 Series Express Chipset Family,” https:
//www.intel.com/Assets/PDF/datasheet/316966.pdf, 2007.

[27] A. Partow, “General Purpose Hash Function Algorithms,” http:
//www.partow.net/programming/hashfunctions, 2018.

[28] Y. Cheng, X. Fu, X. Du, B. Luo, and M. Guizani, “A lightweight
live memory forensic approach based on hardware virtualization,”
Information Sciences, vol. 379, pp. 23–41, 2017.

[29] L. Cui, Z. Hao, L. Li, and X. Yun, “Snapfiner: A page-aware snap-
shot system for virtual machines,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 11, pp. 2613–2626, 2018.

[30] X. Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “Os-level side
channels without procfs: Exploring cross-app information leakage
on ios,” in Proceedings of the Symposium on Network and Distributed
System Security, 2018.

[31] F. Pagani and D. Balzarotti, “Back to the whiteboard: a principled
approach for the assessment and design of memory forensic tech-
niques,” in Proceedings of the 28th conference on USENIX Security
Symposium, 2019, pp. 1751–1768.

[32] “Adore-ng,” https://github.com/trimpsyw/adore-ng/, 2018.

[33] G. Pék, Z. Lázár, Z. Várnagy, M. Félegyházi, and L. Buttyán,
“Membrane: a posteriori detection of malicious code loading by
memory paging analysis,” in European Symposium on Research in
Computer Security. Springer, 2016, pp. 199–216.

[34] J. Stuettgen, “On the viability of memory forensics in compro-
mised environments,” 2015.

[35] G. Combs, “Wireshark,” https://www.wireshark.org, 2019.
[36] L. Duflot, O. Levillain, B. Morin, and O. Grumelard, “Getting into

the SMRAM: SMM Reloaded,” CanSecWest, 2009.
[37] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A Depend-

able Introspection Framework via System Management Mode,” in
Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’13), 2013.

[38] Github, “ToorKit,” https://github.com/deb0ch/toorkit, 2015.
[39] J. D. McCalpin, “Stream,” http://www.cs.virginia.edu/stream/

ref.html, 2018.
[40] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,

“Terra: A virtual machine-based platform for trusted computing,”
in ACM SIGOPS Operating Systems Review, 2003.

[41] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commod-
ity OSes,” in Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP), 2007.

[42] ARM Ltd., “ARM Security Technology - Building a Secure System
using TrustZone Technology,” http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C trustzone security whitepaper.pdf, 2009.

[43] Intel, “64 and IA-32 Architectures Software Devel-
oper’s Manual,” http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-manuals.html, 2018.
[Online]. Available: http://www.intel.com/content/www/us/
en/processors/architectures-software-developer-manuals.html

[44] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade, and J. del
Cuvillo, “Using Innovative Instructions to Create Trustworthy
Software Solutions,” in Proceedings of the 2nd Workshop on Hardware
and Architectural Support for Security and Privacy (HASP’13), 2013.

[45] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li,
Y. Zhang, T. Wei, and Z. Lin, “Towards memory safe enclave pro-
gramming with rust-sgx,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2019,
pp. 2333–2350.

[46] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,
White Paper,” http://amd-dev.wpengine.netdna-cdn.com/
wordpress/media/2013/12/AMD Memory Encryption
Whitepaper v7-Public.pdf, April 2016.

[47] O. Kwon, Y. Kim, J. Huh, and H. Yoon, “Zerokernel: Secure
context-isolated execution on commodity gpus,” IEEE Transactions
on Dependable and Secure Computing, 2019.

[48] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vtz:
Virtualizing {ARM} trustzone,” in Proceedings of the 26th conference
on USENIX Security Symposium, 2017, pp. 541–556.

[49] Chevalier, Ronny and Villatel, Maugan and Plaquin, David and
Hiet, Guillaume, “Co-processor-based Behavior Monitoring: Ap-
plication to the Detection of Attacks Against the System Manage-
ment Mode,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017.

[50] D. Sklyarov, “Intel ME: flash file system explained,” Black Hat
Europe, 2017.

[51] O. Sklyarov, Dmitry, “ME: The Way of the Static Analysis,”
TROOPERS17, 2017.

[52] P. Stewin and I. Bystrov, “Understanding DMA malware,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2012.

[53] N. Corna, “ME cleaner: Tool for partial deblobbing of In-
tel ME/TXE firmware images,” https://github.com/corna/me
cleaner, 2017.

[54] M. Ermolov and M. Goryachy, “Disabling Intel ME 11 via undoc-
umented mode,” http://blog.ptsecurity.com/2017/08/disabling-
intel-me.html, 2017.

[55] Persmule, “Neutralize ME firmware on SandyBridge and Ivy-
Bridge platforms,” https://hardenedlinux.github.io/firmware/
2016/11/17/neutralize ME firmware on sandybridge and
ivybridge.html, 2016.

[56] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier,
R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert,
“Intel Virtualization Technology for Directed I/O.” Intel technology
journal, 2006.

https://.intel.com/en-us/blogs/2011/12/14/intelr-amt-and-the-intelr-me
https://.intel.com/en-us/blogs/2011/12/14/intelr-amt-and-the-intelr-me
https://en.wikichip.org/wiki/intel/innovation_engine
https://en.wikichip.org/wiki/intel/innovation_engine
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
http://www.meshcommander.com
http://www.meshcommander.com
https://embarc.org/embarc_osp/doc/build/html/arc/arc.html
https://embarc.org/embarc_osp/doc/build/html/arc/arc.html
https://sourceforge.net/projects/tboot
https://sourceforge.net/projects/tboot
https://www.intel.com/Assets/PDF/datasheet/316966.pdf
https://www.intel.com/Assets/PDF/datasheet/316966.pdf
http://www.partow.net/programming/hashfunctions
http://www.partow.net/programming/hashfunctions
https://github.com/trimpsyw/adore-ng/
https://www.wireshark.org
https://github.com/deb0ch/toorkit
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://github.com/corna/me_cleaner
https://github.com/corna/me_cleaner
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[57] F. Zhang, H. Wang, L. Kevin, and A. Stavrou, “A framework to
secure peripherals at runtime,” in European Symposium on Research
in Computer Security, 2014.

Lei Zhou received the PhD degree in Com-
puter Science from the Central South Univer-
sity. He is a Post-doctoral Fellow in the Depart-
ment of Computer Science and Engineering at
Southern University of Science and Technology
(SUSTech). His primary research interests are
in the areas of x86 systems security, including
trustworthy execution, hardware-assisted secu-
rity, and memory forensics.

Fengwei Zhang received the PhD degree in
Computer Science from the George Mason Uni-
versity. He is an Associate Professor in the De-
partment of Computer Science and Engineering
at Southern University of Science and Technol-
ogy (SUSTech). His primary research interests
are in the areas of systems security, with a fo-
cus on trustworthy execution, hardware-assisted
security, debugging transparency, transportation
security, and plausible deniability encryption.

Jidong Xiao received the PhD degree in Com-
puter Science from the College of William and
Mary. He is an Assistant Professor in the De-
partment of Computer Science at Boise State
University. His research interests are mainly in
cyber security, with a particular emphasis on op-
erating system security and virtualization/cloud
security. He also has approximately 6 years in-
dustry experience, including various roles at In-
tel, Symantec, Nokia, and Juniper.

Kevin Leach received the PhD in Computer
Engineering at the University of Virginia. He is
a Senior Research Fellow in the Computer Sci-
ence and Engineering Division at the University
of Michigan—Ann Arbor. His work is in systems
security, specifically the debugging transparency
problem, though occasionally work on conver-
sational artificial intelligence, program analysis,
medical informatics, and big data applications.

Westley Weimer received the PhD in Computer
Science from the University of California, Berke-
ley. He is a Professor in the Computer Science
and Engineering Division at the University of
Michigan—Ann Arbor. His main research inter-
ests relate to consciousness, time, and advanc-
ing software quality by using both static and dy-
namic programming language approaches. He
is also particularly concerned with automatic or
minimally-guided techniques that can scale and
be applied easily to large, existing programs.

Xuhua Ding received the PhD in Computer Sci-
ence from the University of Southern Califor-
nia. He is an Associate Professor in the School
of Information Systems at Singapore Manage-
ment University. His research interests are in
Network and system security, Applied cryptog-
raphy,Trustworthy systems for data protection,
to design the trustworthy systems in commodity
x86 and ARM platforms to counter kernel space
attacks.

Guojun Wang received the PhD in Computer
Science from the Central South University. He is
a Professor in the School of Computer Science
and Cyber Engineering at Guangzhou Univer-
sity, China, His research interests include artifi-
cial intelligence, big data, cloud computing, Inter-
net of Things, blockchain, trustworthy/depend-
able computing, network security, privacy pre-
serving, recommendation systems, smart cities,
and medical information systems.

	Introduction
	Background
	Threat Model and Assumptions
	System Overview
	Implementation
	Preparing the Target Machine
	Modules Designed in IME
	Target Host Reconnaissance
	Measuring Integrity via Custom IME
	Monitoring Host State via Custom IME
	Remote Machine

	Evaluation
	Effectiveness
	Effectiveness of Lower Layer Introspection
	Effectiveness of Host State Monitoring
	Effectiveness of Other Special Attack Introspection

	Efficiency
	DMA Fetching Overhead
	IME-inner Checking Overhead
	Transmission Overhead
	Efficiency Evaluation Summary
	Performance of the IME Core

	Related Work
	Discussion
	Conclusions
	References
	Biographies
	Lei Zhou
	Fengwei Zhang
	Jidong Xiao
	Kevin Leach
	Westley Weimer
	Xuhua Ding
	Guojun Wang

