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Most commodity peripheral devices and their drivers are geared to achieve high performance with security functions being
opted out. The absence of strong security measures invites attacks on the I/O data and consequently posts threats to those ser-
vices feeding on them, such as fingerprint-based biometric authentication. In this paper, we present a generic solution called
DriverGuard which dynamically protects the secrecy of I/O flows such that the I/O data are not exposed to the malicious
kernel. Our design leverages a composite of cryptographic and virtualization techniques to achieve fine-grained protection
without using any extra devices and modifications on user applications. We implement the DriverGuard prototype on Xen by
adding around 1.7K SLOC. DriverGuard is lightweight as it only needs to protect around 2% of the driver code’s execution.
We measure the performance and evaluate the security of DriverGuard with three input devices (keyboard, fingerprint reader
and camera) and three output devices (printer, graphic card and sound card). The experiment results show that DriverGuard
induces negligible overhead to the applications.
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1. INTRODUCTION
Device drivers are often blamed as the main cause for system failures and security breaches, mainly
due to their enormous code size and the much higher bug rate than other kernel code [Chou et al.
2001]. Various schemes have been proposed to improve system reliability by isolating driver errors
(e.g., Nook [Swift et al. 2003] and SafeDrive [Zhou et al. 2006]), or to defend against device I/O
misuses for illegal memory accesses (e.g., BitVisor [Shinagawa et al. 2009] and the schemes in
[Willmann et al. 2008]). In this paper, we study the other side of the coin: how to protect the I/O
data, which is motivated by attacks on sensitive I/O data, such as password keystrokes, fingerprint
templates, sensor readings and confidential print-outs.

As compared to applications and other kernel components such as system call functions, driver
operations or I/O flows are more attractive to malwares targeted at sensitive data for the following
reasons. Firstly, there exist more loopholes to exploit due to the complexity of I/O mechanisms and
the abundance of driver bugs. For instance, IRQ number sharing allows a malicious interrupt handler
to easily access another handler’s data. Secondly, most drivers handle raw data generated by or for
hardware. In many applications, raw data are more favorable to attackers as compared to derived
data. For instance, a user’s fingerprint template is life-long valid whereas a secret key derived from
the fingerprint template may remain valid only for a few hours. Furthermore, most commodity I/O
devices nowadays are not encryption capable and raw data are exposed to any code accessing them.

We aim to protect data flows between applications and devices against an untrusted kernel
throughout the entire I/O lifecycle. In particular, we focus on those devices that render raw data,
e.g., sound cards and printers, or generate raw data for applications, e.g., seismic sensors and fin-
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gerprint scanners. We are less concerned with disks and network adaptors, because these devices
deal with derived data from applications. Therefore, a straightforward solution to protect the disk
I/O and the network I/O is to encrypt the data before and after I/O operations.

In this work, we present DriverGuard, a holistic and compact I/O protection system making use
of a combination of cryptographic and virtualization techniques. We implement DriverGuard with
slight changes on the device drivers and the Xen hypervisor. Our experiments with several I/O de-
vices demonstrate that DriverGuard imposes little overhead to the system and causes unnoticeable
delays to user applications. DriverGuard is complementary to many user space protection schemes
such as Overshadow [Chen et al. 2008], and SP3 [Yang and Shin 2008]. A composition of Driver-
Guard and a user-space protection scheme can protect the whole lifecycle of data processing.

Our work is also remarkably different from secure I/O [Shinagawa et al. 2009] and driver code
security [Seshadri et al. 2007]. Secure I/O copes with those attacks misusing the I/O mechanism
(especially DMA operations) for illegal memory accesses. Driver code security tackles software
attacks, such as return-address attacks [Checkoway et al. 2010] and code injection attacks [Lineberry
2009], which gain the root privilege by subverting drivers. Although these attacks do not necessarily
target at the I/O data, they are one of the threats considered in our study. Our work is similar to the
trusted path proposed by Zhou et al. [Zhou et al. 2012]. Their trusted path aims to assure the secrecy
and authenticity of data transfers through a trusted path from the new inserted user-level driver to
the device, while our work focuses on the protection of the secrecy of the I/O data through a trusted
path built upon the legacy drivers.

ORGANIZATION The next section describes some background knowledge. Then, we define the
problem as well as the threat model, security requirements and main challenges in Section 3, and
explain the design rationale in Section 4. We describe the design overview, privileged code block
and design details of DriverGuard in Section 5, 6 and 7, respectively. Section 8 discusses the au-
tomatical PCB identification and the full path I/O protection, and Section 9 shows the evaluation
of DriverGuard through experiments and performance measurements. Finally, we give the related
work in Section 10 and conclude the paper in Section 11.

2. BACKGROUND
In this section, we introduce the related background knowledge (i.e., device configuration and I/O
mechanisms) on x86 platforms to facilitate the understanding of our design.

2.1. Device Configuration Register Access
The physical addresses and the I/O ports of all devices are decided by the device configura-
tion registers. All these configuration registers are located in the northbridge chipset [Fleming
2008]. There are two possible methods to access them. One is through I/O ports. The I/O port
CONFIG ADDRESS (i.e., 0xCF8) is used to select a dedicated device whose configuration
space is updated through the I/O port CONFIG DATA (i.e., 0xCFC). The other method is
through MMIO. Typically there is a continuous 256MB memory region reserved by the system
for all devices. Any access to this region will trigger the chipset to propagate the configuration
throughout the whole system. In order to avoid the configuration space conflicts (e.g., MMIO map-
ping attack) between different devices, the privileged code (e.g., the hypervisor) is able to verify the
update requests by setting access control on the above I/O ports and the reserved memory mapped
region.

2.2. I/O Mechanism
The I/O subsystem is a well-known thorny component of the kernel, due to the complexity and the
heterogeneity of hardware and drivers. We only offer a high level view on the typical I/O mechanism
in a Linux platform without drilling down to the details.

When a system boots up, the kernel scans all attached devices and creates an array of device
structures, each of which contains the physical address of a device and a driver pointer among
other important information. If the device supports port-mapped I/O, the CPU can issue commands

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.



DriverGuard: Virtualization Based Fine-Grained Protection On I/O Flows A:3

to the device through its I/O ports, which is in an address space separated from the linear address
space. If the device supports memory-mapped I/O, its physical registers are mapped into one or more
reserved physical regions. A loaded driver first registers to a device by setting the driver pointer of
the corresponding device structure to itself. The driver explicitly requests the kernel to allocate I/O
ports or memory-mapped regions in the virtual space. The driver installs a handler on an interrupt
identified by an IRQ number, which can be shared with other device handlers1. In that case, there
exists a handler queue for this interrupt. This completes the initialization phase and the drivers are
ready to offer I/O services.

In the following, we use a user (Alice) login procedure to illustrate a typical I/O process (see fig-
ure 1). When Alice attempts to login to a web service with her private credentials, such as password,
face picture or fingerprint data, the browser issues a system call to retrieve the raw data inputs from
the corresponding device. There is a device driver responding to the system call. The device driver
allocates one or more data buffers 2 and choose one of them to get the raw data from the device. The
data transferring between a device and the system is through the device interface. The device inter-
face can be MMIO or PIO or DMA. For instance, the keyboard driver handles the data transferring
via DMA for a USB-keyboard and PIO for a PS/2-keyboard respectively. After receiving the raw
data from the device, the device driver may translate the data into another buffer with a pre-defined
format or just simply move the data from one buffer to another, until the data is forwarded to the
browser data buffer. Getting needed data, the browser may do certain computations, and sends the
derived data to the remote server via the network channel.

User Space

Kernel Space

•••

Driver

Device

•••

•••

Application

Server

Internet

Data Buffer Device InterfaceData Flow

Fig. 1. A typical I/O flow.

3. PROBLEM DEFINITION
In this section we state our goals together with the threat model, and present the possible attacks
and the main challenges we are facing.

3.1. Our Goals
There are several approaches [Chen et al. 2008; Yang and Shin 2008] proposed to protect the data
in the user space. Therefore, in this paper we focus on the I/O flow protection in the kernel space.
Specifically, we attempt to propose an approach to defend against attacks that get the value of the I/O
data from device interfaces and kernel-space buffers. More specifically, we focus on the protection
of the raw I/O data that is generated from or send to devices. Disk I/O and network I/O are not in
the scope of our study, because neither disks nor network adaptors produce or render raw data. In
fact, data stored in disks or transmitted across networks are actually generated by user applications.
Therefore, they can be protected using user-level encryption techniques (e.g., using SSL to protect
the network data). Note that the devices mentioned in the paper are hardware/physical devices rather
than virtual devices.

1For certain buses, such as PCI, it is mandatory to share the IRQ number among devices connecting to the bus.
2For keyboard, usually there is only one data buffer. For camera, normally there are several data buffers.
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The second goal is to propose a generic solution to protect all kinds of I/O flows on different
machines and different devices. We attempt to make our system to be compatible with commodity
operating systems and legacy applications.

3.2. Threat Model and Assumptions
In our threat model, we consider the malicious software residing in the guest as the adversary. The
malware may compromise the kernel through attacks like ROP [Shacham 2007; Buchanan et al.
2008; Checkoway et al. 2010] and code injection [Lineberry 2009]. As a result, the adversary can
take full control of the guest, e.g., launching arbitrary code and issuing any DMA requests.

We assume that malware can not subvert the hypervisor. This assumption is reasonable since
the TPM-based secure boot scheme can guarantee the load time integrity of the hypervisor, and
the virtualization technology can prevent malicious software and illicit DMA accesses driven by
the guest OSes in runtime. In addition, some proposed hypervisor-protection schemes [Wang and
Jiang 2010; Wang et al. 2010; Azab et al. 2010; Rafal et al. 2008a] can be applied to ensure the
hypervisor’s security.

We trust the end user, and assume that the adversary can not physically control the system. We
assume that the hardware devices always behave according to their specifications. We also assume
the system firmware is trusted as in [Intel 2008; Kun et al. 2012; Technologies 2006; Vasudevan
et al. 2012]. The modern BIOS has a built-in hardware lock mechanism to set itself as read-only
and only accepts signed updates, so that the OS cannot tamper with it. Due to the complexity of the
x86 platform (e.g., optional ROM), this assumption may not always be true. Nonetheless, it is still
possible to validate the system firmware by the proposed attestation approach [Li et al. 2011] or by
a trusted system integrator. Furthermore, for the computers in an organization, the security-savvy
system administrator can simplify the system boot settings, such as disabling unnecessary option
ROMs.

In this work, we only focus on uniprocessor platforms. Attacks from multi-core or multi-
processor are out of scope of our discussion. Note that it is not our interest in this paper to study
how to check the trustworthiness of a device driver. We assume that a trusted authority 3 signs every
device driver to be installed. The hypervisor can validate the integrity of device drivers by verifying
the signatures. Neither the denial-of-service attacks nor the side channel attacks (e.g., [Song et al.
2001]) are in the scope of our work.

Although the security and functionality of DriverGuard are independent of user space protection,
the benefits are maximized if DriverGuard joins schemes such as Overshadow [Chen et al. 2008]
and SP3 [Yang and Shin 2008] to safeguard the entire I/O data life cycle covering both kernel and
user spaces. We will discuss this issue in Section 8.2.

3.3. Possible Attacks
According to the characteristics of driver operations, we spell out attacks targeting at the I/O data.
From the above typical I/O flow, we can find out many possible attack targets to get the value of
the I/O data. We summarize all attack targets into three categories: device I/O interface, the kernel
space data buffer, and the user-space data buffer.

— Attacks on device I/O interfaces. The device I/O interfaces include PIO, MMIO and DMA de-
scriptors. For PIO and MMIO, a rootkit may launch the I/O-port or MMIO mapping attack [Zhou
et al. 2012] to intercept or manipulate the device I/O, or directly access the interface to get the I/O
data. It may also attempt to modify the DMA descriptor to induce the device sending or fetching
the I/O data to or from the memory regions controlled by the rootkit.

— Attacks on kernel space data regions. This type of regions include all driver allocated memory
regions. A rootkit can keep probing and reading the target I/O data, or be triggered by some special

3To avoid increasing the TCB size, we suppose that the platform administrator signs every driver to be installed in the
platform. The hypervisor is pre-configured with the administrator’s public key.
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event (e.g., external interrupt) to access the I/O data directly from these regions. It is hard for the
kernel to defend against such attacks because the rootkit has the same privilege as the kernel.
Another attack is that the rootkit calls the driver’s legitimate routine to access the data.

— Attacks on user space data regions. The user space regions are wildly open for a kernel rootkit.
Once the I/O data is in the user space, the rootkit is able to bypass kernel- and user-level pro-
tections to directly access it. Such attacks can be defended by serval user-space protection ap-
proaches [Chen et al. 2008; Yang and Shin 2008].

3.4. Security Requirements
Given that the locations of the I/O data can be categorized into two types: device interface (including
PIO, MMIO and DMA) and main memory, we summarize all required security properties of the I/O
flow protection on each of them.

For the data in the device interface, we require that malicious code can not access or manipulate
the data. The security properties are stated as:

— SP0: The physical addresses and I/O ports of all device interfaces can not be updated once they
are fixed by the BIOS during the system boots up.

— SP1: Any access on the data or to update data transfer parameters through the device interface
should be intercepted and verified.

— SP2: Only accesses from trusted code blocks are granted.

For the data in the main memory, we require that only the trusted code blocks are able to read
the protected I/O data, and the executions of the trusted code blocks are protected. The security
properties are summarized as follows:

— SP3: If the I/O data in a memory buffer is readable (plain text), access control must be enforced
and only granted the trusted code blocks can access it.

— SP4: If the I/O data in a memory buffer is unreadable (cipher text), any code blocks are able to
access it without triggering any verification mechanism.

— SP5: If a trusted code block is interrupted to give up CPU during its execution, its execution
context must be saved and restored when it occupies CPU again.

3.5. Challenges
We now discuss the challenges in designing a system that provides the guarantee of confidential-
ity of the I/O data over the lifetime of the system. The first challenge is the complexity of the
I/O sub-system. Different devices have different interfaces to communicate with the system. For
instance, cameras use USB interface while the PS/2 keyboard is attached to the system with the
PS/2 interface. Furthermore, for the same device with the same version, different platforms (e.g.,
Linux or Microsoft Windows) have different driver implementations. The diversity and complexity
dramatically increase the difficulties to build a generic solution to protect all I/O flows.

The second challenge is the complex and intensive interactions between drivers and the kernel.
Most driver functions are dependent on the kernel exported functionalities. For instance, the driver
memory allocation and deallocation are heavily dependent on the kernel memory management com-
ponent. The heavy dependence and intensive interactions make it extremely hard to distinguish if
an access on the protected I/O data is driven by the benign driver or by the compromised kernel.

The third challenge comes from the power of attackers. Once attackers compromise the kernel,
they are able to gain the kernel (highest) privilege, which allows attackers’ code to freely access
any memory regions and I/O ports. On the other hand, it is hard for the buggy monolithic kernel to
completely defend against software attacks due to the large size and numerous attack surfaces.

4. DESIGN RATIONALE
A straightforward approach is that the hypervisor arbitrates whether a control flow can access the
I/O data. It requires the hypervisor to introspect driver operations, which is difficult to implement
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due to the semantic gap (e.g., lack of details of driver operations) between the hypervisor and the
driver. Considering the complexity of I/O operations, the workload on the hypervisor will inevitably
expand its code size, and may significantly downgrade the whole system performance.

Isolation is a widely used method to protect program executions. To apply isolation on I/O data
protection, one may propose location isolation or execution isolation. Location isolation is to place
device drivers and the kernel’s I/O subsystem into a separated domain, e.g., a driver domain or
Dom0 in Xen, or the hypervisor’s space, e.g., VMware, so that malware in the guest kernel can not
attack them directly. These approaches are efficient in terms of I/O performance. Nonetheless, the
resulting protection is weak because the TCB size is increased significantly due to the drivers and
the I/O subsystem.

In the execution isolation, the device drivers still reside in the untrusted guest kernel while their
executions are escorted in a secure environment established by the hypervisor, similar to TrustVisor
[McCune et al. 2010] and Overshadow [Chen et al. 2008]. The generic execution isolation is not
applicable for I/O data protection, because I/O operations are featured with frequent hardware in-
terrupts and intensive driver-kernel interactions. Note that if the I/O subsystem is also enclosed in
the execution isolation, it suffers from the same drawback as in the location isolation approach.

We adopt the idea of execution isolation, however, at a micro-level. It is well-known that most
of the driver code is for housekeeping purposes, such as error handling, resource allocation and
cleaning up [Ganapathy et al. 2008], with only a small portion dealing with I/O data transferring. We
further observe that among the code for data transferring, only a few code blocks, e.g., an encoding
function, need to process the I/O data, while the majority of them just move the data from one
memory location to another without necessarily knowing the content. Based on these observations,
we design DriverGuard as a fine-grained I/O protection mechanism, which enforces access control
on the device interfaces and encrypts the I/O data once it is moved into memory. To let the device
driver work properly, DriverGuard distinguishes those security-sensitive driver code (around 1% of
the driver code according to our experiments) from the rest. Only these identified code blocks are
granted to access device interface, and access decrypted I/O data. Other code blocks is only able to
access encrypted I/O data. In the meantime, DriverGuard protects the execution of security-sensitive
code block to prevent malicious code from accessing the I/O data. Different from the hypervisor
introspection technology, those access controls do not impose comprehensive semantic logics on
DriverGuard. Hence, its performance is on par with the location isolation solution, however, the
security strength is much stronger.

5. DESIGN OVERVIEW
By and large, DriverGuard is constructed using three lightweight protection techniques as the build-
ing blocks: cryptography, access control and runtime protection. We use cryptographic techniques
to protect all I/O data without interfering with most of the driver and the kernel executions. For
regions holding data which cannot be protected by encryption, we resort to DriverGuard to enforce
access control. The plaintext data can only be accessed by a few designated driver code blocks,
which are trusted and whose executions are safeguarded by our runtime protection mechanism. We
refer to these code blocks as privileged code blocks (PCBs) in the rest of the paper. By protecting
the execution of PCBs, we successfully ensure the whole I/O data security with minimal overhead
since PCBs only constitute a tiny fraction of the driver code.

5.1. Protection Mechanism Overview
A high level view of DriverGuard’s protection mechanism is as follows. Once the hypervisor boots
up, it fixes all physical addresses and I/O ports of all device interfaces by setting read-only on the
configuration space registers, and rejects any update requests from the guest OS [Zhou et al. 2012]
(achieve SP0). All device interfaces related to protected I/O flow are enforced access control by the
hypervisor, so that any access from the guest must be trapped into the hypervisor (achieve SP1).
If the access is from a PCB (i.e., command-PCB or computation-PCB), the hypervisor grants the
access, otherwise rejects it (achieve SP2). Receiving the I/O data from device interface, a PCB
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may attempt to read the content of data to do some computations, such as encoding or decoding
operations. Before the PCB is off the CPU, the PCB is designed to either require the hypervisor
set access control back on the data if it is readable4 (achieve SP3) or encrypt the data into cipher
text with the key (achieve SP4, and see more in Section 5.4), which is generated by the key-
PCB and only accessible by PCBs. Non-PCBs are free to move the ciphertext to anywhere without
any constrains from the hypervisor. Figure 2(a) and Figure 2(b) illustrate the difference between a
PCB’s and a non-PCB’s I/O data accesses. Since the PCBs never actively give up the CPU until
its execution flow ends, the off-CPU event must be triggered by external interrupts or exceptions.
Based on this observation, the hypervisor enables interception mechanisms on all interrupts and
exceptions during the PCB execution. If the interception mechanism is triggered, the hypervisor
restores protection on the I/O data. Furthermore, the hypervisor also protects the PCB execution
context to avoid indirect data leakage (achieve SP5).
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(a) A PCB, e.g., en-
code function, accesses
the I/O data in plaintext.
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the memcpy function, ac-
cesses the encrypted I/O
data.

Fig. 2. The concept of privileged code block (PCB).

In Section 3.2, we assume that every driver is signed by a trusted entity such as the platform’s
administrator. To ensure the initial integrity of the PCBs in a driver, we further assume that they have
been explicitly labeled in the driver code before being signed and installed. Therefore, the signature
on the driver code also ensures the integrity of PCBs. (We will discuss PCB identification methods
in Section 6.1.) Next, we explain the design details of three building blocks and leave the discussion
of their integration in Section 7, since it involves the details of I/O operations.

5.2. Access Control Over Critical Regions
Since we do not rely on encryption-capable devices, encryption is not applicable for data used by
the hardware. To cordon off illicit accesses to the data, we utilize the hypervisor’s access control
mechanism. In general, the data regions are classified into memory regions and I/O ports, for which
we apply different access control methods by leveraging the hardware features and the virtualization
techniques available in the platform.

To intercept accesses to a protected memory region, DriverGuard sets the attribute bits in the
corresponding Page Table Entries (PTEs), clears the corresponding IOPL bits, and sets up the I/O
bitmap to intercept accesses to an I/O port. Note that the protected memory addresses are machine
addresses not guest physical addresses (or named pseudo physical addresses). We use checkpoints5

in the rest of the paper to refer to both the IOPL bits and the PTEs marked by the hypervisor for
the purpose of access interception. Although the aforementioned protection techniques are used in
many existing schemes, e.g., [Chen et al. 2008; Payne et al. 2008], we are confronted with two
new problems. First, given a memory buffer, the hypervisor must make sure that the kernel can not

4The PCB is able to get enough semantic information to know if the I/O data is readable or not.
5Our definition of checkpoint has no relation with the checkpoint for rollback in distributed systems.
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bypass the checkpoint to access the region, which is challenging for memory regions allocated by
the kernel. Secondly, the hypervisor must ensure that the sensitive I/O data is indeed placed in the
region with a checkpoint. The first problem demands a careful page table walk checking while the
second demands the I/O control integrity checking.

5.3. Cryptographic Components
We introduce to the device driver a symmetric-key encryption function and a decryption function,
both of which can be called by any code. However, any write access to the function code is denied
by the hypervisor. We also add a key generation function to the driver as a PCB. The security of the
I/O data relies on the secrecy of the driver’s key, rather than the secrecy of the decryption function,
which complies with the famous Kerckhoff’s principle. The driver’s secret key is securely generated
based on a secret random seed supplied by the hypervisor. The secret key is securely stored in a
kernel space buffer priorly appointed by the driver and can only be accessed by the driver’s PCBs.
This prevents any unauthorized code from decrypting the driver’s data, even though the decryption
function can be called arbitrarily.

5.4. PCB Execution Escorting
The third building block in DriverGuard is the runtime protection mechanism that prevents a PCB’s
execution from deviating its expected behaviors. The protection is requested at the PCB’s entry and
is relinquished at the exit via hypercalls. The hypervisor agrees to admit a control flow into the
escorting only when the request is issued from the driver’s PCB, and agrees to discharge a flow
from escorting only when the request is issued from the PCB presently under escorting. The PCB is
registered to DriverGuard during the kernel boot up process (details in Section 7).

0x1234

flow routine

checkpoint 
lifted

0x1234 0x1234

checkpoint 
restored

checkpoint 
lifted

off CPU on CPU

Fig. 3. An illustration of runtime protection, where 0x1234 is an exemplary memory address with a PTE checkpoint.

The PCB under the escorting is granted by the hypervisor to access the critical data such as
the driver’s secret key and the I/O data, or to issue I/O commands. In our design, the hypervisor
temporarily restores the access on those regions for the PCB, and withdraws the access right at the
exit of escorting. Therefore, no duplicated exceptions or page faults will be raised despite that the
PCB may access the same region multiple times within one escorted execution. An escorted PCB
can be scheduled off from the CPU for various reasons. In that case, the hypervisor intercepts these
events and restores all checkpoints. Meanwhile, it also securely saves the driver’s runtime stack and
sets up a breakpoint for the PCB’s upcoming CPU occupation. As a result, other code’s accesses to
the protected regions are denied. Figure 3 depicts a scenario of escorting.

6. PRIVILEGED CODE BLOCK
We consider three types of PCBs in a driver. One is computation-PCBs which refers to the
driver code blocks making computation on the I/O data, e.g., an encoding function. The second
is command-PCBs which refers to the driver code blocks issuing data transfer parameters to the
device. This type of code is security sensitive because their executions determine the locations of
plaintext I/O data. The third is key-PCBs which refers to the driver code blocks initializing the
driver’s encryption key. Each driver generates its own key in the driver initialization step, such as in
module init.

There are several properties of PCB summarized as follows: 1) It is self-contained in the sense
that there is no extra function calls to kernel functions; 2) It does not contain indirect call or indirect
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jump (e.g., no call using function pointer), meaning that the control flow is static; and 3) It does
not have any dynamic data dependence except for the parameters. These properties call for driver
developers’ prudence in driver coding such that the driver code is friendly to PCB identification.

6.1. Identifying PCB
Given that the key-PCB is added by the DriverGuard scheme, we only illustrate how to identify the

other two types of PCB from the driver code. Following the I/O data flow, the sophisticated driver
developers are able to identify all functions that operate on the I/O data, and thereby label all PCB
candidates in these functions. If some PCB candidates are not naturally satisfy the above listed PCB
properties, there are some guidelines for the driver developers to modify them into PCBs.

Obviously, it is easy to achieve the second property by carefully programming. To achieve the
first property, the developer can replace external function calls with its own code if they are simple
(like inline functions). If they are hard to be replaced, the developer may either move these function
calls out of the PCB candidate if they do not effect the behavior of the driver, or divide the PCB
candidate into two PCBs with the function call as the separator. In order to achieve the third property,
the developer could assign the dynamic dependence data to the static or global data variables. To
facilitate the protection on these variables, developers are able to put them in a particular region
(e.g., a pre-reserved page) with compiling flags. Note that the labeled driver can be distributed after
the PCB-labeling work is done.

6.2. PCB Format
A PCB is always capsulated by a pair of hypercalls for escorting. The entry hypercall is a start escort
hypercall that requires DriverGuard to start to protect the execution of the PCB, and the exit hyper-
call is a end escort hypercall that informs DriverGuard to end the PCB execution protection. There
are two possible formats for a PCB. One format of the PCB is ended with encryption on the protec-
tion data. Such PCBs are usually in the intermediate parts of a driver, where the driver does some
process operations on the I/O data whose output is ready for the later stage. The other is ended
with protection requirement which is to request DriverGuard to block all accesses on the protected
regions. Such PCBs usually directly work with device (e.g., updating I/O buffer for DMA trans-
ferring) or user-level applications (e.g., copying data into user space). We illustrate their different
formats in Figure 4.
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Fig. 4. The two types of PCB format. (a) A PCB ending with encryption. Thus, the hypervisor does not need to enforce
access control on the data; (b) A PCB ending with protection requirement. Therefore, the hypervisor must enforce access
control on the data to restrict the access.

We assume that the PCB interface is trusted and well-designed/implemented, without malicious
intention to leak I/O data to outside. In fact, it is true in almost all cases especially for the ones in
the driver interfaces since they are usually well defined in the specification.

7. DESIGN DETAILS
We build DriverGuard on top of the Xen hypervisor to protect the drivers running in a Linux guest
domain. We systematically examine every step in I/O operations, from the device discovery to the
application’s (or device’s) data fetching. In order to adaptively protect the driver operations, the
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hypervisor needs to store certain context information about the driver. We start with driver context
initialization since it is performed by the hypervisor during the guest domain bootstrapping.

7.1. Driver Context Initialization
The context information of drivers are securely stored in three types of tables in the hypervisor
space. A device table specifies the management relation between a driver and a device by paring
their identifiers. For every protected driver, the hypervisor maintains a PCB table and a region table.
The former stores the entry and exit addresses of all PCBs of the driver while the latter specifies the
memory regions and the I/O ports to protect. There are five types of regions in the region table: 1)
the application buffer; 2) the memory buffer allocated by the driver for data processes; 3) the I/O
data buffer such as DMA buffers ; 4) the device interface, including the I/O ports or MMIO regions
and DMA descriptor queues; and 5) the buffer holding the driver’s secret key. Figure 5 depicts their
locations in the system.

!"#$%"&
'((& )&*&

+&

,-".&-(/%"& 0".1"2&-(/%"&

!.$#".& 3&4&

Fig. 5. An illustration of five types of regions with same numbering in the description.

Device Table Initialization When a guest kernel image is uncompressed, the hypervisor inserts
a hook function to the kernel to inform the hypervisor about the device-driver association via a
hypercall. The hypervisor then initializes the device table accordingly. The hypervisor also sets the
checkpoints for the kernel structure maintaining the device-driver association. Whenever a driver
takes the ownership of a device, the hypervisor intercepts the event and updates the device table
properly.

PCB Table Initialization We assume that all PCBs in a driver have been manually identified
and delimited by a pair of hypercalls, i.e., an escorting-entry hypercall and an escorting-relinquish
hypercall. The hypervisor scans the driver code to record the addresses of escorting-entry hyper-
calls and of the respective escorting-relinquish hypercalls. It puts these pairs into the PCB table. In
Section 8.1, we will discuss how to automatically identify PCBs.

Region Table Initialization The regions used by a driver can either be the default ones chosen
by the manufacturer/the kernel or set by the driver. In the first case, the hypervisor updates them
when the driver is loaded as in the device discovery step. In the latter case, the driver informs the
hypervisor via a hypercall about the protected regions or I/O ports.

Driver Key Initialization Each driver has a dedicated key-PCB to initialize its own encryption
key. In the key-PCB, key initialization algorithm first issues a hypercall to get a random seed from
hypervisor, and then saves the generated key into its key buffer. The key generation process is only
run once, and escorted by hypervisor (see escorting details in section 7.3.2).

7.2. Checkpoint Deployment
Given a memory region or an I/O port, the hypervisor sets up the corresponding checkpoint to
intercept and verify potentially malicious accesses. The detailed deployment method is dependent
on the virtualization environment.

7.2.1. Memory Region Checkpoint. For a memory pageA, the hypervisor walks through the page
tables through the CR3 register to locate the corresponding PTE pointing to it. The hypervisor
sets the attribute bits on the PTE to specify different access rights. To set a page read-only, the
PAGE RW bit is cleared; and to set a page non-access, the PAGE PRESENT bit is cleared. Note

that all protected regions are in kernel space and all processes share one kernel space mapping. In the
paravirtualization setting, only the hypervisor is able to update page tables. In the hardware-assisted
virtualization setting, a Shadow Page Table (SPT) or Extended/Nested Page Table (EPT/NPT) is
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used to translate virtual addresses into machine addresses, and the SPT/EPT/NPT is only updated by
the hypervisor. Although the mechanism of the SPT is a little bit different from the one of EPT/NPT,
i.e., the SPT requires the hypervisor to control over the guest page table while the EPT/NPT do not
need, the page-access-checking mechanisms are essentially the same, since the final access right to
a page is determinate by the page table, i.e., SPT/EPT/NPT, handled by the hypervisor. Therefore,
those checkpoints can not be removed by the malicious kernel. Note that in the hardware-assisted
virtualization environment, the hypervisor enforces access on the machine address, not the pseudo
physical address or virtual address.

Given that the granularity of the memory protection is in the page-level, we should carefully deal
with the I/O data buffers that are not page-aligned or mixed with other data in a single page. There
are two options to solve the problem. One is to request I/O buffer at the length of pages. In fact,
to accelerate the performance, many device drivers have such allocation feature. For example, the
USB camera driver allocates a large memory pool in page level for data caching. The other option
is to let the hypervisor emulate the operations that access other data. In DriverGuard, we choose
the second option to avoid changes on driver code. Although emulation incurs performance loss,
the likelihood of its occurrence is low. This is because the checkpoints are only deployed on device
interfaces used immediately after or before I/O, and other data are protected by encryption.

Legitimacy of Memory Region When the hypervisor attempts to set up a checkpoint, it checks
whether the machine memory page can be reached by another unauthorized PTE. In other words,
the kernel is not allowed to bypass the checkpoint to visit a machine memory page. Therefore, the
hypervisor must ensure that there exists no unchecked virtual-to-machine address translation for
memory pages with checkpoints.

We leverage the hypervisor’s memory management mechanism to tackle this issue. The Xen
hypervisor maintains a page info structure for every machine memory page. The count info
field in this structure records the number of usages of a machine memory pages. For a page allocated
to a guest, its count info is actually 2, because the hypervisor itself is holding it6. Therefore, on
setting up a PTE checkpoint, the hypervisor checks if the corresponding counter is 2. In addition, we
modify the hypervisor’s do mmu update and do update va mapping to prevent the kernel
from crafting a trapdoor path for existing checkpoints. These functions are used by the guest kernel
to update page tables. In this way, for any page table update, the hypervisor checks whether the
requested update increases the usage counter of any machine memory page with a checkpoint.

In the hardware-assisted virtualization environment, the hypervisor does not set two PTEs point-
ing to the same machine address. To enforce this property, the SPT/EPT/NPT update algorithm can
be extended to verify it. Note that the legacy hypervisors, such as Xen, do not export any interface
for the guest to manage the SPT/EPT/NPT.

7.2.2. I/O Port Checkpoint. I/O ports is separated from the memory address space, and the ac-
cesses to such I/O ports need a set of special instructions, e.g., inb and outb. A successful access
must go through the IOPL checking and I/O bitmap checking. Any access will be blocked once its
priority is lower than the priority specified in the IOPL. Even if the access pass the IOPL checking,
it is still blocked if the corresponding bit is set in the I/O bitmap. To prevent the malicious guest
kernel from accessing the protected I/O ports, the hypervisor clears the IOPL bits of EFLAGS of the
guest’s CPU. Namely, it sets the I/O privilege level to 0, such that the hardware always checks the
I/O bitmap for PIO instructions because the paravirtualized kernel runs in Ring 1. Then, the hyper-
visor sets the bits corresponding to the protected I/O ports such that a PIO instruction will cause a
general protection exception.

It is relatively easier to set up I/O checkpoint in hardware-assisted virtualization. More specifi-
cally, the hardware-assisted virtualization technique supports that the hypervisor itself can intercept
all instructions that access a particular I/O port through a dedicated I/O bitmap in the hypervisor

6Before a machine memory page is allocated to a guest OS, the hypervisor holds it first and sets the PGC allocated bit.
Therefore, the page’s count info is already 1 before being allocated to the guest.
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space. Therefore, the hypervisor simply activates the I/O bitmap mechanism by setting the 25th bit
of the processor-based VM-Execution control vector and then sets the bits in the bitmap correspond-
ing to all protected I/O ports.

7.3. PCB Execution Escorting
7.3.1. PCB Admission. A driver’s PCB starts with the hypercall which takes as the parameter the

buffer address it requests to access. To admit a PCB, the hypervisor checks whether the hypercall
is issued from the instruction whose address is registered in the PCB table. If not, the hypervisor
rejects the request.

For an admitted PCB, the hypervisor protects its stack as follows. The hypervisor allocates a
dummy stack for the PCB. Therefore, an admitted PCB has two runtime stacks. A genuine stack is
used for the PCB’s execution while the dummy stack is used for untrusted code sharing the same
execution flow due to interrupts. The usage of dummy stacks will be explained in the next subsec-
tion. Figure 6 below describes the details of the PCB admission algorithm, where InEscorting is a
flag bit indicating the current execution state.

Admission Algorithm:

1) Fetch the EIP value stored at the top of the current guest kernel stack, which is the return address of the hypercall.
2) If EIP does not match any entry in the PCB table, return error.
3) If the address of requested buffer is legitimate, then

a) set InEscorting to 1;
b) If the guest’s kernel stack segment is not a dummy stack, then

(i) allocate a dummy stack at the reserved space.
(ii) save the machine addresses of the dummy stack and the present stack as (MA′ss,MAss). Return 0.

c) else, switch to the corresponding genuine stack. Return 0.
6) Return -1 as an error message for admission failure.

Fig. 6. Algorithm for PCB admission.

7.3.2. Escorting. Once a PCB is admitted by the hypervisor, its execution is escorted and the
checkpoints for the buffers are temporarily lifted. The essence of escorting is that the hypervisor
intercedes whenever the PCB is scheduled off from the CPU, which occurs due to the hardware
interrupts. This situation opens the door to the kernel attacks, because the kernel may occupy the
CPU and could access the PCB’s runtime stack and data. To defend against such attacks, the hyper-
visor should be able to enforce access control on the data and stack before the potentially malicious
kernel occupy the CPU. In the virtualization environment, the hypervisor is able to configure the
system to give priority to itself to occupy the CPU. Specifically, all hardware interrupts are sent to
the hypervisor prior to sending to the guest domain. Therefore, the hypervisor is able to 1) restore
the checkpoints and 2) replace the runtime stack with the dummy stack allocated in PCB admission.
The hypervisor also sets a breakpoint to intercept the events that the PCB is re-scheduled to the
CPU.

We explain below how the hypervisor handles an interrupt through interrupt handler do IRQ
and a debug exception through the debug exception handler do debug in addition to its normal
process.
Interrupt To switch to a dummy stack, the hypervisor only replaces the content of the PTE for the
present stack with the machine page number of the dummy stack allocated during admission. This
change is transparent to any guest process, since the address in the ESP register remains the same.
Hence, the guest kernel is not able to access the true stack while the subsequent execution can use
the dummy stack without being affected. The algorithm for stack switching and checkpoint restore
is shown in Figure 7.
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IRQ-handler Algorithm:

(1) If InEscorting = 0, return.
(2) Restore the checkpoints that are removed during escorting.
(3) Switch to the dummy stack, by setting the PTE for the guest’s stack base to point to MA′ss.
(4) Set InEscorting = 0.
(5) Set a local breakpoint at the instruction pointed by EIP . Save the address pair in EIP and ESP .
(6) Return and pass the control to the default interrupt handler.

Fig. 7. Interrupt handler for escorting. When there is an interrupt interrupting the execution of the execution of a PCB, the
interrupt handler restores the protection on the escorted data, and saves the context of current escorting PCB.

Debug Exception When a debug exception occurs, the hypervisor’s do debug function is called
before the event is forwarded to the guest kernel. All breakpoints used by the hypervisor are local
breakpoints. Therefore, they are triggered only for the present process. There are two types of local
breakpoints used in DriverGuard.

Setting a breakpoint at the EIP is to intercept the event of PCB resuming. For this type of
breakpoint, the hypervisor enters into escorting only when both EIP and ESP values match the
previously saved pair. The details are shown in the following algorithm in Figure 8.

Debug-handler Algorithm: Breakpoint address stored in EIP, the stack address stored in ESP

/* Enter into Escorting */
(1) If there exists a saved (EIP′,ESP′) pair, s.t. ESP′ = ESP and EIP′ = EIP, then

(a) remove the breakpoint at EIP;
(b) Restore to the genuine stack by replacing the stack PTE with MAss.
(c) Set InEscorting = 1, and return 0.

(2) Return -1 as an error message.

Fig. 8. Exception handler for escorting. When a previous interrupted PCB resumes, the exception handler restores the PCB
execution context.

7.3.3. PCB Exit. To exit from the hypervisor escorting, the PCB issues another hypercall. The
hypervisor checks if InEscorting is set. If not, it returns an error message; otherwise, it clears
InEscorting flag. The PCB should also issue a hypercall to protect its data if the data are left in
plaintext. The hypervisor sets no more breakpoints and processes interrupts and exceptions in the
normal way.

7.4. Data Region Access Control
A potentially malicious access to a memory region with a checkpoint causes a page fault and an
access to an I/O port with a checkpoint throws out a general protection exception. Therefore, we
modify the hypervisor’s page fault routine do page fault and the general protection exception
handler do general protection. In the former, the hypervisor gets the address of the trapped
instruction from EIP and the address being checked from CR2, while in the latter, the I/O port
number is enclosed in the instruction.

If the access is granted by the hypervisor, the event will not be forwarded to the guest kernel.
In that case, The legitimate flow continues to execute the intercepted instruction without being re-
scheduled due to the page fault as the guest kernel does not observe this exception. For unauthorized
accesses, the page fault or exception is passed to the guest kernel. DriverGuard is compatible with
memory mapping for page sharing because the checkpoints are deployed at the PTEs. A buffer
mapped to two addresses has two PTE checkpoints. In the following, we elaborate the details of
region access control according to all types of regions except the control region.
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I/O Buffer The addresses of I/O buffers are obtained within an escorted command-PCB. Since
the I/O buffer contains the data to/from the device, they are not protected by encryption. The hyper-
visor blocks all accesses not from an escorted PCB. For an input buffer containing the data from the
device, the driver always encrypts the data before moving them to other locations, whereas for an
output buffer the driver must decrypt the data after copying them to the output buffer.

Driver Buffer Driver buffers temporarily hold data for processing. When the data in those buffers
are encrypted, the hypervisor does not set up checkpoints for them. Only when the escorted PCB is
temporarily scheduled off from the CPU, the hypervisor sets up the checkpoints against all accesses
as the data are in plaintext. In this case, the PCB notifies the hypervisor about the buffer address.

Key Buffer The key buffer holds the secret encryption key used by the driver. The hypervisor
allows the key to be read only from the instructions from the encryption/decryption functions and is
currently in escorting mode. Thus, a non-PCB can not access the encryption key.

7.5. Device Control Protection
As explained in Section 7.1, the control region’s addresses can be obtained in the initialization phase
for certain devices. The hypervisor denies all write accesses to the region not from an escorted PCB.
Furthermore, it is also crucial to maintain the consistency between the I/O buffer address specified
in an I/O command which is sent to the control region and the buffer addresses requested by the
device driver. This is because the kernel may manipulate the I/O command such that the device uses
an unprotected I/O buffer for transferring. To defend against such attacks, the driver’s command-
PCB informs the hypervisor the locations of the I/O buffers in use, such as the DMA buffer and the
DMA descriptor queue. The hypervisor inserts them in the region table and sets up the checkpoints
accordingly. Therefore, it ensures that the I/O buffer in use is always protected.

7.6. Device Configuration Space Restriction
In order to defend against I/O-port and MMIO mapping attacks, DriverGuard restricts the updates
on the physical addresses and I/O ports of device interfaces. According to the descriptions in Section
2.1, DriverGuard sets checkpoints on the I/O ports 0xCF8 and 0xCFC, or the reserved memory
region. The details of the checkpoint refers to Section 7.2. Any update (write) operations will be re-
jected. This restriction does not lower the runtime performance of the system since the configuration
operation is normally done once at the bootup phase of the system.

7.7. User-Space Device Driver Support
When a device is managed by a user-space driver, the I/O data is directly transferred between a
user space buffer and the device interface without any intermediary kernel space buffers. According
to our threat model in Section 3.2, the user space memory regions are well protected by schemes
like Overshadow. However, those schemes are not sufficient for I/O protection because they do
not protect the device interface. Thus, we need to instrument the driver code with hypercalls to
fix the protection gap. The inserted hypercalls update the information of the device interface to
DriverGuard and request it to enforce access control on the device interface. Recall that all the user
space driver code is protected. Thus, we do not need to identify PCBs for user-space drivers.

8. DISCUSSIONS
In this section, we discuss the automatic PCB identification process, and the whole life cycle of
protection on the I/O flows with the cooperations of DriverGuard and other user space approaches.

8.1. Automatically Identifying PCB
Ideally, a fully automated PCB identification algorithm can discover PCBs in a device driver with
no false positives and no misses. False positives lead to unneeded overhead while misses result in
loopholes for the adversary to attack. However, it remains as an open problem how to design such
a PCB identification algorithm for a driver’s source code or binary code. In this paper, we make
analysis of the challenges and propose a best-effort solution.
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Recall that we defined three types of PCBs in Section 6. We only need to discover computation-
PCBs and command-PCBs, as the key-PCBs are new function inserted to the driver. Labeling
command-PCBs is straightforward, since they are featured with special instructions (e.g., inb and
outb) involving the device interface (e.g., I/O ports) or special memory region (e.g., MMIO). Many
existing techniques can be used to identify the related statements, e.g., interprocedural points-to
analysis technique [Heintze and Tardieu 2001] and the slicing techniques [Sridharan et al. 2007;
Weiser 1979; Mock et al. 2002]. For instance, in the slicing techniques, we select the device inter-
face (e.g., the I/O ports) as the seed, and the slicing tool can find out all statements that directly
access the seed.

The computation-PCBs are the code blocks computing on the I/O data (e.g., mapping the scan
code into key code in the keyboard driver). Identifying the computation-PCBs is a challenging task
since it involves code and data semantics. To the best of our knowledge, existing code analysis
techniques (e.g., forward and backward slicing, and thin slicing) are not sufficiently intelligent to
distinguish code semantics. Another challenge is the abundant usage of function pointers in drivers,
which makes it infeasible to determine execution flows through a static code analysis. This issue is
aggravated by the fact that most drivers are essentially a collection of disjointed functions, instead of
a single executable. The executions of driver functions are usually integrated with kernel execution.
It is therefore difficult to map out all possible execution flow given existing code analysis techniques.

We propose a semi-automatic method for computation-PCB identification, with automated tools
for coarse-grained scope defining on a large scale of code and human efforts for fine-grained refine-
ment on small scale code fragments. Given a driver’s source code which is a set of functions, the
basic idea is to firstly pick up functions related to I/O data, then identify PCBs within each chosen
function. In a nutshell, the procedure is divided into three steps: 1) to select functions which poten-
tially contain PCBs; 2) to identify PCB statements in each function selected in previous step; and 3)
to form all PCB blocks from the statements discovered in Step 2.

Step 1: Function Candidate Selection. Drivers are highly structured code to conform to hardware
interface specifications, such as providing file operation interfaces like open, read and close.
According to hardware specifications, I/O flows must originate at those designated interfaces. There-
fore, those interface functions which do not process I/O data, as well as functions solely called by
them, are excluded from our search scope. For instance, the interface function poll corresponding to
the select system call usually does not access the I/O data, while allows a program to monitor and
wait until one or more of driver/device states become ready for some class of I/O operations. The
interface functions like read and write usually handle I/O data for the requests of the applications.
For ease of presentation, we use F to denote the set of interface functions with I/O flows.

We then map out the execution flows (and therefore I/O data flows) starting from functions in
F , so that all dependent functions are examined. For this purpose, we first manually identify the
I/O data used in F , because the exact locations of I/O data in those functions are implementation
specific, e.g., in the function parameters or predetermined buffers. Then, we use the I/O data as the
seed to perform dynamic taint analysis [Newsome and Song 2005; Kemerlis et al. 2012] to iden-
tify functions involved in I/O flow7. Since the dynamic taint analysis does not guarantee covering
all execution paths, manual efforts are needed to check missed functions. Lastly, we extend F to
enclose all functions picked up either manually or by the tool. For each function in F , we identify
computation-PCB in the next step.

Step 2: PCB Statement Identification. In each selected function, we attempt to identify from the
function body the PCB-candidate statements where I/O data are involved. Using the I/O data in
Step 1 as the seed, we apply the slicing tools [Sridharan et al. 2007; Mock et al. 2002] to label
all seed-related statements in the function body. Note that the resulting statement set contains non-
PCB statements for two reasons. Firstly, according to [Santelices et al. 2012], slicing techniques

7Although the method for dynamic taint analysis is applicable to drivers in principle, we have not found any existing tool
suitable for this task.
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may introduce false positive in statement discovering. Secondly, it is likely that some statements
correctly identified by the slicing tools are not for I/O data computation, since the slicing technique
does not take code semantics into consideration. For instance, statements that copy I/O data between
memory buffers do not satisfy the definition of computation-PCB. We suggest to manually examine
the slicing results to filter out non-PCB statements.

Step 3: PCB Formation. The last step is to organize the PCB statements in Step 2 into PCBs and
instrument them with hypercalls. If each PCB statement is treated as a PCB block, its performance
toll will significantly rise up. For each function in F , our algorithm scans the statements identified in
Step 2 with several rounds of iterations. In the first iteration, adjacent PCB statements are grouped
into one PCB block. In the second iteration, the algorithm attempts to merge separated PCBs in
order to reduce the total number of PCBs. If two PCBs are in the same basic block (i.e. a straight-
line sequence of code with one entry point and one exit) and the number of non-PCB statements
between the PCBs are less than a predetermined parameter κ, then these two PCBs are merged
together with the non-PCB statement in between into a new PCB. Note that κ is used to tune the
balance between the size of PCB and the number of PCBs. This iteration continues until no new
PCB is generated. In the end, two hypercalls are inserted for each formed PCB as described in
Section 6.

It is better for the driver developers to do the PCB identification since 1) they know best, and 2)
it may increase the market share due to the extra security services. In addition, the identification
process is only done once, and the results can be delivered anywhere. For a particular system, the
hypervisor does not need to maintain a universal list (including all PCBs), while it manages the PCB
list only for the drivers loaded in the system. Maintaining the PCB list that are never used will lead
to unnecessary cost and may increase the TCB size, especially for the hypervisor.

8.2. Full I/O Path Protection
As illustrated in Figure 5, a full I/O path in general consists of the user-space buffers allocated
by the application, the kernel-space buffers allocated by the driver and/or kernel, and the I/O in-
terface buffer such as a DMA buffer. DriverGuard ensures the security of the latter two while a
user-space protection scheme (e.g., Overshadow [Chen et al. 2008], SP3 [Yang and Shin 2008] or
SecureME [Chhabra et al. 2011]) secures the first type of buffers. To have a seamless integration,
the key issue is to ensure that the kernel segment of the I/O path correctly joins the intended appli-
cation’s user space segment, as a device is shared among multiple applications.

This issue has twofold implications. One is that the location of the user space buffer allocated
by the target application must be securely passed to the driver, such that the driver can deliver
(fetch) I/O data to (from) the right place. The other is that the data during the user-kernel space
transition must be securely handled. When the I/O data is transferred between the application’s
buffer and a kernel buffer, it should be ensured that no security gap exists during the transition.
In other words, both buffers should be protected either by encryption or hypervisor-based access
control while allowing data flow between them.

We propose below a design integrating DriverGuard with Overshadow as illustrated in Figure 9.
Note that Overshadow makes use of a cloaked shim which is introduced as a trusted component in
user space. The shim code in Overshadow plays the role of protecting data exchange between the
application and the kernel using system calls. We propose to add a new function named as shimguard
in the cloaked shim. Shimguard in the cloaked shim handles inbound and outbound data before and
after system calls and correctly locates the application buffer for I/O data.

Before an application issues a system call to activate an I/O operation, the shimguard is involved
by the cloaked shim. The shimguard first updates the identity of the application, the identity of the
buffer and the identity of the target driver to the hypervisor. The identity of the application is the
unique address space identifier (ASID) maintained by the hypervisor as proposed in Overshadow.
If current ASID is the trusted application, the hypervisor accepts the hypercall, otherwise it will
reject the hypercall. The identity of the buffer is its memory region represented in machine address.
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Fig. 9. The shimguard helps Overshadow and DriverGuard to protect the whole life cycle of the I/O data. Note that the I/O
data denoted as D in the shaded regions are encrypted either by driver PCBs or by shimguard.

The start and end virtual addresses of the buffer are provided by the shimguard using the hypercall,
and the corresponding machine addresses are collected by the hypervisor. Note that the virtual
addresses alone can not used as the identity of the buffer since they may represent a different buffer
in another virtual pace. The identity of the device driver can be got by using the name of the device
provided through the hypercall since the device and driver mapping relationship is maintained by
the hypervisor. The hypervisor generates a unique AES encryption key for the received 3-tuple of
identities. Both the 3-tuple and the corresponding key are inserted into a table in the hypervisor
space. For clarity purpose, we use shim-key to denote the AES key save in couple with the 3-tuple
identifiers.

We use a read operation as an example to illustrate how to protect the I/O path starting from the
device interface to the application buffer. The protection over the kernel space segment is the same
as described in previous sections. When the PCB of the driver moves the I/O data into a user space
buffer denoted as Addr, it requests the shim-key for Addr from the hypervisor. The hypervisor
releases the shim-key on the condition that there exists an entry in the previous table containing
both the requesting driver’s identity and the machine address of Addr. If successful, the driver PCB
encrypts the I/O data and transfer the cipher text to Addr. When the cloaked shim is trigger to
fetch the data from Addr, the shimguard function requests the shim-key from the hypervisor. The
hypervisor releases it on the condition that there exists an entry in the previous table containing
both the requesting application’s ASID and the machine address of Addr. If successful, the shim
deciphers the encrypted I/O data and passes it to the application.

The operations for outbound data flow is similar to the description above. Note that the shim-key
in different from the the encryption key used by the driver described in previous sections. The shim-
key is application specific and is the same as that used in Overshadow, whereas the driver has its
own encryption key.

9. EVALUATION
We implement DriverGuard and run experiments on six peripheral devices to evaluate its security
and performance. The devices are a USB keyboard, a web camera, a fingerprint reader, a sound card,
a printer and a graphic card.

9.1. Security Analysis
9.1.1. Driver Security. As we know drivers are usually buggy. Attackers are able to compromise

the driver through these vulnerabilities to hijack the control flow or data flow of the driver to attempt
to get the I/O data. Fortunately, attackers can not get the I/O data as long as the integrity of driver’s
PCBs are kept under the protection of the DriverGuard. Even if attackers completely control other
parts of the driver, they are only able to access encrypted I/O data or are directly rejected since
all these accesses are not from PCBs. Smart attackers may attempt to call a PCB to get I/O data.
However, this attempt would fail because 1) the control flow of the PCB is static, and 2) I/O data
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is either encrypted or set protection by the hypervisor according to the design of the PCB (Section
5.4) when the control flow is out of PCB . The confidentiality of the I/O data is dependent on the
trustworthiness of PCBs, not other parts of the driver or kernel. Therefore, attackers can not get any
benefits from buggy device drivers.

9.1.2. ROP Attack. The Return-Oriented Programming (ROP) attack is a very powerful attack
since it does not need to inject malicious code but drives legitimate code to do malicious behaviors.
However, the ROP attack can not get the protected I/O data in our system due to the design of
the PCB and the DriverGuard protection. More specifically, in our design, the executions of PCBs
are protected by the hypervisor and the control flows of PCBs are static. Therefore, attackers can
not hijack any PCB control flows. Furthermore, only the execution flows that start from recorded
start escort hypercalls are able to access decrypted I/O data. Any other execution flows that have
no escorting request or with unrecorded requests are rejected.

9.1.3. DMA Attack. Our scheme relies on IOMMU to defend against DMA-based attacks,
whereby a rootkit instructs a DMA device to read/write a memory region. IOMMU can defend
against this type of attacks if the checkpoints are set on I/O page tables as well. If IOMMU is not
available, an alternative approach is to intercept DMA request with shadow DMA descriptor men-
tioned in BitVisor [Shinagawa et al. 2009]. Nonetheless due to its high runtime cost, the shadow
DMA descriptor is more amiable to slow devices with infrequent usage, e.g. a fingerprint reader.

9.1.4. Interrupt Spoofing Attack. The interrupt spoofing attack are proposed in [Zhou et al. 2012],
which attempts to induce the device driver operating on incomplete or inconsistent data by pro-
cessing spoofed interrupts. Obviously, the interrupt spoofing attack may lead to the device driver’s
misbehavior. However, it can not help attackers to access the I/O data, since it is only readable for
trusted PCBs.

9.1.5. Side Channel Attacks. Side channel attacks (e.g., [White et al. 2011; Song et al. 2001]) can
be used by the adversary to infer secret data. Since the adversary in our model refers to malwares
residing in the guest OS, the hardware-based side-channels such as power consumption are not
feasible for the adversary. The adversary can launch other attacks by observing the timing difference
between two I/O events (e.g., keystrokes) or the contents in a CPU cache, which is weak than the
adversary considered in chip-card security. In addition, existing side channel attacks mainly target
cryptographic data, such as a decryption key or a password. It is unknown whether generic I/O data
is subject to these attacks as well.

Our current design does not take side-channel attacks into consideration. To counter these attacks,
DriverGuard should deploy a special AES implementation resisting side-channel attacks. The hy-
pervisor should clean up the CPU caches whenever a PCB is scheduled off from the CPU. It can
also generate random I/O events to defeat timing analysis. The main challenge is how to deal with
side-channel attacks without increasing the hypervisor’s complexity and incurring more overhead.

9.1.6. Attacks on Multi-core Platform. On a multi-core platform, it is possible that while a PCB
runs in one core accessing the I/O data, the subverted guest kernel on another core can also access
them using the same page table used by the PCB. This attack can be countered using hardware-
assisted virtualization supporting EPT or NPT.

The hypervisor prepares a dedicated EPTs for PCBs so that they have access permissions to
those protected checkpoints. The non-PCB code such as the untrusted guest kernel use the normal
EPT/NPT, in which the checkpoint regions are set as inaccessible. Whenever a PCB starts to occupy
a CPU core, the hypervisor installs the dedicated EPTs (e.g., triggered by the start escort hypercall)
for the corresponding core. When it gives up the CPU core, the normal EPTs are restored (e.g.,
triggered by the end escort hypercall). Since instructions on other cores do not have the dedicated
EPTs, they cannot access the protected region when the PCB is in execution. Note that the EPTs are
solely managed by the hypervisor. The guest kernel does not the privilege to manipulate the EPTs.
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9.2. Security Evaluation
To validate the design of DriverGuard, we evaluate its effectiveness in several experiments.

9.2.1. Known Attacks. To the best of our knowledge, the only publicly known kernel-level attacks
on I/O devices are keyloggers. We have downloaded and tested three kernel-level keyloggers and
none of them can successfully acquire the keystrokes. The first keylogger8 directly reads the key-
board I/O ports 0x0060 and 0x0064 using a fake interrupt handler. It fails because the fake interrupt
handler does not belong to the authorized keyboard driver PCBs. Thus, it cannot access the I/O port
or get the decryption key. The second keylogger9 modifies the keyboard driver’s data structure and
installs a malicious function handler. Since the malicious function handler is not admitted by the hy-
pervisor as a PCB, it can only access encrypted keystrokes without being allowed to use the secret
key. The third keylogger10 modifies the system call table to replace read function with a malicious
one. The malicious read function first calls the original read, and then steals data from the user
space buffer that is passed as parameter. This rootkit fails because the read function only copies the
encrypted keystroke. After the driver places the ciphertext in the application buffer and opens it for
the application, the hypervisor denies all kernel level accesses.

9.2.2. Synthetic Experiments. We introduce three synthetic attacks to read protected I/O data, and
the results show that the DriverGuard successfully prevents all of them. More specifically, in the first
experiment, we attempt to modify one byte in the protected MMIO region. DriverGuard catches the
write operation through a page-fault exception. DriverGuard rejects the operation once it verifies
the caught operation is not from an identified PCB. In the second experiment, we try to read the
protected I/O data in a driver buffer, where the data is encrypted. We are only able to get the cipher
text since the newly introduced code is not able to get the encryption key to decrypt it. In the third
attack, we introduce a piece of code to call a PCB to get the protected I/O data. The attack fails as
the data is encrypted when the execution flow is out of the PCB.

9.3. Usage of PCB
In our experiments, we manually identify all PCBs on the source code of device drivers and the
drivers in the kernel’s I/O subsystems, e.g., a host controller driver. It is straightforward to identify
command-PCBs and key-PCBs, because key-PCBs are introduced by DriverGuard while command-
PCBs are the code accessing port I/O, MMIO or structures used by devices (e.g., frame list of
UHCI). Identifying computation-PCB requires the semantic knowledge of the code. We trace the
I/O data to spot code segments computing on the I/O data. Note that code segments for copying or
moving data are not PCBs.

Table I lists all the involved drivers (except for the graphic driver since it uses user-level driver)
used in our experiments and the number of PCBs in each of them. We find that a driver typically has
only around ten PCBs and each PCB has approximately 15 lines of code without making function
calls (except the encryption and decryption functions). The total PCB code only account for 1v3%
of the driver code. The tiny size of PCB and its simple logic allow for high security assurance, as
compared to protecting the execution of thousands of lines of driver code.

9.4. Performance Evaluation
We experiment with DriverGaurd on a PC with Intel(R) Core(TM)2 Duo CPU E7200 @2.53GHz,
4GB main memory, running Xen 4.0.0 and a PV guest domain with Linux kernel 2.6.31.13. Driver-
Guard adds around 1.7K SLOC to the Xen hypervisor. Our performance evaluation includes a cost
measurement of DriverGuard’s component functions and a set of application tests with six devices.
We remark that the I/O characteristic is favorable to our scheme as peripheral devices are usually

8http://www.phrack.org/issues.html?issue=59&id=14
9http://goo.gl/DpOBc
10http://packetstormsecurity.org/files/view/25677/kernel.keylogger.txt
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Table I. Privilege Code Blocks

Driver Size (LOC) # of PCBs Avg. PCB Size (LOC) Device
keyboard driver 4964 11 17 keyboard
HID∗ 12771 13 10 keyboard
UVC driver 7838 7 11 camera
EHCI∗ 10011 6 15 camera
HDA-Intel 47825 8 6 sound card
Sound-core∗ 18722 5 4 sound card
devio 1628 7 12 printer, fingerprint reader
UHCI∗ 7600 5 14 printer, fingerprint reader

The number of PCBs and the average size for each driver used in our experiments. The drivers labeled
with stars are those within the kernel’s I/O subsystem. The PCB size includes the hypercalls and the calls
to the encryption and decryption functions.

much slower than the CPU. Therefore, DriverGuard does not affect the driver performance since the
device speed is the performance bottleneck.

We choose 128-bit RC4 as the encryption cipher in our implementation rather than AES encryp-
tion, because RC4’s compact code is easier to protect and does not significantly expand the PCB
size,

9.4.1. Component Cost Evaluation. We instrument the DriverGuard code to measure the CPU
cycles consumed by its main components including the escort hypercalls, the interrupt handler
do IRQ, the debug handler do debug, the page fault handler do page fault and the general
protection exception handler do general protection The results are shown in Table II. Note

Table II. Component Performance Results

Components do IRQ do debug do page fault do general protection Encryption 1KB
CPU cycles 844 739 961 1813 23355

The extra cost of the DriverGuard components.

that the encryption cost within a PCB comprises the overhead of the secret key access which incurs
one page fault and the hypervisor’s checkpoint removal.

We also test the time cost induced by DriverGuard to data movements in the guest domain, in-
cluding I/O port data and memory buffer transferring. The cost is due to the interceptions triggered
by the checkpoints. We choose two commonly used functions: inb and memcpy. inb reads one byte
from a serial port while we run memcpy to copy 12K bytes from one buffer to another. Both the port
and the memory buffer are protected by DriverGuard checkpoints and the functions are allowed to
access. The test results are shown in Table III.

Table III. Data Access Results

memcpy inb
without DriverGuard (in CPU cycles) 1884 2738
with DriverGuard (in CPU cycles) 3026 2939
overhead (%) 1142 (60.62%) 201 (7.3%)

The time cost induced on the guest domain data access.

As shown in Table III, the overhead for protecting memory data flow is rather high (about 60%).
Therefore, a severe performance drop will be seen in I/O flows involving frequent memory data
movement. In fact, most device drivers are optimized to reduce the number of memory copying.
A widely used practice is for the driver to maintain a large cache buffer and memory copying is
invoked only when the cache is full.
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9.4.2. Driver Performance Measurement. We test three input devices (keyboard, camera and fin-
gerprint reader) and three output devices (printer, sound card, and the graphic card). For each device,
we evaluate the performance overhead and latency for the device drivers and user applications.
Keyboard When a user presses a key on the keyboard, an interrupt is generated by the hardware.
The interrupt handler of the HID driver is invoked to get the key code and to send it into a tty buffer
through the keyboard driver. Following that, an event is raised to trigger sys read, which has been
sleeping on the event. When being waked up, sys read transfers the key value from the keyboard
driver’s buffer to a user space memory address. In our experiment, we measure the time cost of the
interrupt handler which moves the data from the keyboard to the tty buffer. The results are shown
in Table IV. Although the protected keyboard I/O is slower than the unprotected one, it does not
affect the application because the overhead (i.e., 0.085ms) is still negligible as compared the speed
of human keystrokes.

Table IV. Input Device Results

Without DriverGuard With DriverGuard Overhead (%)
Keyboard key code transfer 0.053ms 0.138ms 0.085ms (160.40%)

Camera Interrupt Handler 0.023ms 0.259ms 0.236ms (1026.09%)
Waiting Time 33.24ms 33.38ms 0.14ms (0.42%)

Fingerprint-Reader fingerprint collection 2.61s 2.63s 0.02s(0.77%)

The overhead of the protection on the keyboard, camera and fingerprint-reader I/O.

Camera The web camera in our experiment is managed by the default Linux UVC driver. When
the camera is opened by an application, it continuously collects video data and sends them to the
application. The UVC driver’s interrupt handler moves and decodes the captured data from the
camera into a video frame, which resides in the driver’s buffer mapped to the user space. The user
application can directly use the frame data like normal user-space data without any kernel-to-user-
space data movement.

We run a command line program called capture-example11 which reads the camera data contin-
uously. We measure the time overhead of the UVC interrupt handler and the application’s waiting
time for getting new data, which is a key factor to the quality of the generated video stream. The
results are shown in Table IV.

The interrupt handler’s cost grows 10 times when under the protection of DriverGuard. The main
overhead is due to the encryption on the camera data, which are 4 pages long. Nonetheless, the
drivers spends much more time in waiting for the camera’s data generation. Thus the cost of the
interrupt handler does not cause the overall performance degradation. We test video chatting us-
ing Empathy 2.30.2, which is an graphic instant messenger. The experiment results do not show
noticeable delays to the human users.
Fingerprint-Reader Our fingerprint reader is the Upek Touchchip fingerprint sensor. In our eval-
uation experiment, we choose Fingerprint GUI 12 as the application which uses the default Linux
driver devio to communicate with the fingerprint reader. When the fingerprint reader is active, the
driver’s interrupt handler continuously loads the collected fingerprint data into its buffers, which are
then fetched by Fingerprint GUI by calling the ioctl function. In our experiments, we measure the
whole I/O session of fingerprint collection. The results are shown in Table IV.
Printer The printer in our experiments is HP Officejet 7210 and the device driver in use is devio.
We use OpenOffice to print documents via a print-process running in the background. The print
process opens the printer and issues ioctl to send data to the printer. After sending out the data, the
print-process waits for a signal sent back by the printer to close the printer. In our experiments, we

11It can be downloaded from http://v4l2spec.bytesex.org/spec/capture-example.html.
12http://www.n-view.net/Appliance/fingerprint/index.php
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measure the turnaround time between the printer open and the printer close. The results are shown
in Table V.

Table V. Output Device Results

Without DriverGuard With DriverGuard Overhead (%)

Printer

1 page 15.74s 16.19s 0.45s (2.86%)
2 pages 27.36s 27.73s 0.37s (1.35%)
4 pages 56.65s 58.15s 1.50s (2.65%)
8 pages 120.75s 122.40s 1.65s (1.37%)

Sound Card sound card open 7.8µs 12.3µs 4.5µs (57.7%)

Graphic Card 10subs 45.6 µs 45.8 µs 0.2 µs (0.44%)
100subs 55.5 µs 55.5 µs ≈ 0

The overhead of the protection on the printer, sound card and graphic card I/O.

Sound Card The sound card in our test is Intel Corporation 82801I (ICH9 Family) HD Audio and
the driver in use is HDA Intel. We run the application Totem which plays MP3 files. Totem places its
sound data into a user space buffer, which is mapped into the DMA buffer specified by the driver.
When the music is in playing, Totem directly sends data into mapped DMA region in user space, and
issues ioctl to synchronize and update information. The hardware fetches the data from the DMA
buffer directly without the driver’s involvement. Hence, DriverGuard is only involved in protecting
the control region so that the kernel can not change the location of the DMA buffer in use.

Specifically, DriverGuard sets the sound card MMIO, the status and control region read-only
after the probing stage. It rejects any update on the DMA descriptor base address. DriverGuard also
denies any access to the DMA buffer from the kernel. Therefore, there is no cost for DriverGuard
during music playing, though the cost in opening the sound card is high, which is shown in Table V.
Graphic Card We test DriverGuard with the graphic card. Since Xen 4.0.0 in our testing platform
does not support Direct Rendering Manager (DRM), we have to run a guest Linux without DRM
where the X Window sever directly manages all display outputs. The X Window server runs in the
user space and does not use any kernel-level drivers. In a nutshell, it simply copies the display data
to a designated memory buffer reserved by BIOS for the graphic card.

According to the design, we implement a loadable kernel module as the Trusted Loadable Mod-
ule, which collects the reserved physical region, the user-space mapping region and the page table
base address of the X Window server during the system booting. To defend the kernel’s data stealing,
DriverGuard grants the X Window server to access these protected regions and denies all accesses
from the kernel or other user processes.

We test the display performance with x11perf, which is a graphic card performance measurement
tool. We run the command x11perf -repeat 100 -reps 10 -subs 10 100 -circulate to measure the
graphic card performance with and without DriverGuard protection. The results in Table V show
the performance overhead is rather small. The reason is that when the X Window server accesses
the protection region, there is only one page fault exception which is for the first access. After lifting
the checkpoints, further access will not trigger any exception until it is switched off.

10. RELATED WORK
We first present and compare relevant trusted path schemes, and then we describe the user space
protection approaches that are complementary with our work to protect the whole lifecycle of the I/O
data. Finally we describe the hypervisor security to illustrate the rationale of choosing the hypervisor
as the root of trust.

10.1. Trusted Path
We attempt to categorize these relevant trusted path schemes according to the differences of their
root of trust.
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10.1.1. Virtualization-based Trusted Path. The trusted path [Zhou et al. 2012] proposed by Zhou
et al. aims to assure the secrecy and authenticity of I/O data transferred between a periphery device
and an application. To build an exclusive trusted path between the device and the expected applica-
tion, the hypervisor fixes the device configuration space which is achieved using Virtual Machine
Control Structure/Block, Nested/Extended Page tables and IOMMU to prevent unauthorized soft-
ware and DMA access, and interrupt delivery path which is achieved using Interrupt Remapping
features and LAPIC x2APIC mode to make sure that the interrupt is delivered to expected handler.
The expected applications are extended to support user-level drivers, which directly issue command
to devices through the built trusted path. Obviously, it suffers compatibility issues since applica-
tions are numerous and any new application will need to be modified to satisfy the trusted path
requirements. In comparison, DriverGuard requires modifications on driver code only. Moreover,
DriverGuard does not need to defend against interrupt spoofing attack since it focuses on the se-
crecy of the I/O data between devices and applications, and only authorized PCB is able to access
the decrypted I/O data. Even if the unauthorized codes are involved by unintended interrupt, they
still can not access the protected I/O data.

The virtualization-based trusted path schemes are closely related to our work. BitVisor [Shina-
gawa et al. 2009] is a dedicated hypervisor to I/O management. It uses a parapass-through mecha-
nism whereby access operations on the monitored devices are intercepted and the operations on the
other devices pass through without any checking. The interception allows the hypervisor to protect
itself and to perform security functions on the device I/O. However this approach does not pro-
tect the I/O data in the kernel space. BitVisor does not claim that they protect the MMIO mapping
attacks.

Hypervisors with privileged root domains (e.g., the Dom0 in Xen) are able to assign different
device drivers to separate virtual machines (e.g., driver domains in Xen) and securely associate
them with application virtual machines (e.g., guest domains in Xen) [Colp et al. 2011; Borders and
Prakash 2007; Barham et al. 2003; Saroiu and Wolman 2010; Willmann et al. 2008]. These hyper-
visors isolate the device resources (i.e., I/O ports and the memory address-space, including MMIO
regions) belonging to a device driver domain from other domains. Note that all these schemes do not
consider the MMIO mapping attacks. Moreover, their TCBs enclose the whole operating system,
which dramatically increases their trusted code bases.

10.1.2. Hardware-based Trusted Path. The Zone Trusted Information Channel (ZTIC) [Lab
2008] is a dedicated hardware, which provides a trusted path for users to confirm online transac-
tions. The ZTIC-based trusted path completely bypasses the legacy channel in the users’ computers.
Bumpy [McCune et al. 2009] system proposes to protect user keyboard inputs by building a trust
environment. It requires an encryption-capable keyboard and therefore is not applicable to generic
devices.

The special-device-based schemes usually combine with cryptographic technology to protect the
secrets in user and kernel space, such as Bumpy, which usually requires many mediations on the
system. Such medications not only consiquently affect the compatibility of the scheme, but also
often significantly reduce the usability, and even make the scheme impractical sometimes.

The UTP system [Filyanov et al. 2011] proposes an isolated kernel module to temporally manage
user-centric I/O devices (e.g., keyboard and display) and enables a remote server to verify that a
transaction summary is confirmed by a local keyboard input. BIND [Shi et al. 2005] binds data
and code and uses cryptographic techniques to guarantee the integrity of data. However BIND is
limited to derived data and can not help on the confidentiality of the I/O data. Both of them require a
hardware supported secure execution environment (e.g., secure kernel based on the AMD’s Secure
Execution Mode chip), which often occurs high latency and significant performance overhead.

10.1.3. OS-based Trusted Path. Langweg et al. [Langweg 2004] propose a COTS-based scheme
to solve the confidentiality, integrity and authenticity of input and the output data13. Authors focus

13The confidentiality of the input data is not done.
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on the windows platform, where the Windows message mechanism is able be exploited by a ma-
licious program to access the input and output messages (data) which are originally intended for
other applications. By leveraging the advantages of the the DirextX, authors build a secure user
interface to directly fetch input data and access the display hardware in exclusive mode. Trusted
paths for browsers [Ye et al. 2005] focus on providing a trusted GUI to user, protecting user inputs
to the intended browser. These two schemes only address security issues at the driver-applications
interface, whereas the battlefield of DriverGuard is the entire I/O path. BitE [McCune et al. 2006]
is an approach for preventing user-space malicious applications from accessing sensitive user input
via a dedicated trusted path between input devices and the target application, and providing visual
verification feedback to the user to prove that the input is really caught by the expected application.

All of them suffers from a large TCB since they are built atop large operating systems, and some
of them even contains the Window Manager [McCune et al. 2006].

10.2. User-Space Protection
Terra [Garfinkel et al. 2003] protects the user applications by isolating them into separated secure
domains, where the malicious applications and OSes are forbidden to access the secure domains.
However TERRA systems occurs large computing base since it includes the whole secure domain
into TCB. OverShadow [Chen et al. 2008] and SP3 [Yang and Shin 2008] aim to protect the whole
application execution against malicious application and OSes. However, both of them focus on the
protection of the user space applications, instead of kernel space device drivers. Note that both of
them can cooperate with DriverGuard to protect the whole life cycle of I/O data.

Flicker [McCune et al. 2008] system built on the TPM-based Dynamic Root Of Trust (DROT)
technology can build an isolation environment to protect code and data. Due to the limitation of the
TPM, the latency of the Flicker system is quite high. To minimize the latency, TrustVisor [McCune
et al. 2010] scheme are proposed. By leveraging virtualization technology, TrustVisor virtualizes the
physical TPM into Virtual TPM (VTPMs) and migrate them into hypervisor space. Note that both
of them focus on the protection of a small piece of code and data. The increasing of the protection
scope, such as protecting the whole application or device drivers, may lead both schemes to failure.
In a word, both of them are not suitable for the I/O flow protection.

Lacuna [Dunn et al. 2012] aims to execute applications within private session and erase all execu-
tion traces once the session is over by leveraging the ephemeral channel. Specifically, the ephemeral
channel connects the VM (applications inside) to hardware or software proxies to ensure that the
sensitive data in the host OS is encrypted and only the endpoints can access the (plain text) data
from private sessions.

10.3. Hypervisor Security
Comparing with legacy monolithic Operating Systems, the hypervisor is more secure since its size is
relatively small and the exported attack surfaces for guest domains are considerably less. Although
there have been several attacks discovered to compromise some versions of hypervisors [The Blue
Pill ; CVE-2008-0923 2008; King et al. 2006; Rafal et al. 2008b], the security of the hypervisor
can be enhanced through some existing mechanisms. The TPM-based authenticated boot can ver-
ify the integrity of the hypervisor when being launched, and the hardware-assisted virtualization
technology, i.e., Intel VT-x and AMD V, is able to significantly reduces the code size of the hyper-
visor, thereby the attack surface is reduced. Furthermore, there are some sophisticated framework
systems [Wang and Jiang 2010; Wang et al. 2010; Azab et al. 2010; Rafal et al. 2008a] proposed
to enhance the security of the hypervisor. HyperGuard [Rafal et al. 2008a], HyperCheck [Wang
et al. 2010] and HyperSentry [Azab et al. 2010] are three System Management Mode (SMM)-based
frameworks to measure and verify the integrity of hypervisors. The code for the SMM mode are
protected by hardware chipset. HyperSafe [Wang and Jiang 2010] is a lightweight approach that
protects existing bare-metal hypervisors with a unique self-protection capability to provide lifetime
control flow integrity. In order to eliminate the programming bugs in the hypervisor, the rigorous
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formal verification mechanism [Heitmeyer et al. 2006] is able to be used to prove the correctness of
the hypervisor.

11. CONCLUSION
We have proposed DriverGuard which is a hypervisor-based system protecting I/O flows between
devices and applications, especially for devices generating data or rendering data. DriverGuard pro-
tects I/O device control, I/O data transfer and a driver’s data processing, against attacks from the
untrusted guest kernel. It is featured with fine granularity protection, strong security assurance and
low overhead. It only adds around 1.7K SLOC to the Xen hypervisor and a few lines to the driver
code. DriverGuard can work jointly with user-space data protection schemes to safeguard the entire
data lifecycle.
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