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Abstract. Most commodity peripheral devices and their drivers are
geared to achieve high performance with security functions being opted
out. The absence of security measures invites attacks on the I/O data
and consequently threats those applications feeding on them, such as
biometric authentication. In this paper, we present the design and im-
plementation of DriverGuard, a hypervisor based protection mechanism
which dynamically shields I/O flows such that I/O data are not exposed
to the malicious kernel. Our design leverages a composite of crypto-
graphic and virtualization techniques to achieve fine-grained protection.
DriverGuard is lightweight as it only needs to protect around 2% of the
driver code’s execution. We have tested DriverGuard with three input
devices and two output devices. The experiments show that DriverGuard
induces negligible overhead to the applications.

1 Introduction

Device drivers are often blamed as the main cause for system failures and security
breaches, mainly due to their enormous code size and the much higher bug rate
than other kernel code [5]. Various schemes have been proposed to improve
system reliability by isolating driver errors (e.g., Nook [25] and SafeDrive [32]),
or to defend against device I/O misuses for illegal memory accesses (e.g., BitVisor
[24] and schemes in [29]). In this paper, we study the other side of the coin: how
to protect driver operations, which is motivated by attacks on sensitive I/O
data, such as password keystrokes, fingerprint templates, sensor readings and
confidential print-outs.

As compared to applications and other kernel components such as system call
functions, driver operations or I/O flows are more attractive to malware targeted
at sensitive data for the following reasons. Firstly, there exist more loopholes to
exploit due to the complexity of I/O mechanisms and the abundance of driver
bugs. For instance, IRQ number sharing allows a malicious interrupt handler
to easily access another handler’s data. Another reason is that more drivers
handle raw data generated by or for hardware. In many applications, raw data
are more favorable to attackers as compared to derived data. For instance, a
user’s fingerprint template is life-long valid whereas a secret key derived from
the fingerprint template may remain valid only for a few hours. Furthermore,



most commodity I/O devices nowadays are not encryption capable and raw data
are exposed to any code accessing them.

We aim to protect application-device data flows against the untrusted kernel
throughout the entire I/O lifecycle. In particular, we focus on those devices that
render raw data, e.g., sound cards and printers, or generate raw data for ap-
plications, e.g., seismic sensors and fingerprint scanners. We are less concerned
with disks and network adaptors, because these devices deal with derived data
from applications. Therefore, a simple solution to protect disk I/O and network
I/O is to encrypt the application data before and after I/O operations. In this
work, we present DriverGuard, a holistic and compact I/O protection system
making use of a combination of cryptographic and virtualization techniques.
We have implemented DriverGuard with slight changes on the drivers and the
hypervisor. Our experiments with several I/O devices demonstrate that Driver-
Guard imposes little overhead to the system and causes unnoticeable delays to
user applications. DriverGuard is complementary to many user space protec-
tion schemes such as BIND [23], Overshadow [4], PRECIP [26] and Terra [8]. A
composition of DriverGuard and a user-space protection scheme can protect the
whole lifecycle of data processing.

Our work is remarkably different from secure I/O [16, 24, 29] and driver code
security. Secure I/O copes with those attacks misusing the I/O mechanism (espe-
cially DMA operations) for illegal memory accesses. Driver code security tackles
software attacks, such as return-address attacks [3] and code injection attacks
[11], which gain the root privilege by attacking drivers. Although these attacks
do not necessarily target on I/O data, they are one of the threats considered in
our study.

Organization The next section discusses the related work. We present the
design of DriverGuard in Section 3, and the implementation details in Section 4.
Section 5 shows the evaluation of DriverGuard through our experiments. We
conclude the paper in Section 6.

2 Related Work

Data flow security BIND [23] binds data and code and uses cryptographic
techniques to guarantee the integrity of data. However BIND is limited to derived
data. TERRA [8] builds an application specific domain with a trusted path from
the hypervisor to an application specific kernel, then to the application. Trusted
path schemes [10, 31] focus on providing a trusted GUI to user, protecting user
inputs to the intended applications. These two schemes only address security
issues at the driver-applications interface, whereas the battlefield of DriverGuard
is the entire I/O path. Bumpy [14] proposes to protect user keyboard inputs by
building a trust environment using Flicker [13]. It requires an encryption-capable
keyboard and therefore is not applicable to generic devices.
Secure I/O Most existing results on secure I/O deal with I/O misuses where an
adversary attacks the system by exploiting the flexibility of I/O operations, es-
pecially DMA. The schemes described below serve a different purpose from ours



and are not applicable to I/O flow protection. dAnubis [16] is a system monitor-
ing and analyzing device drivers using virtual machine introspection techniques.
BitVisor [24] is a hypervisor dedicated to I/O management and supports only
one VM. It uses a parapass-through mechanism whereby most I/O operations
from the guest pass through the hypervisor with some of them being intercepted.
The interception allows the hypervisor to protect itself and to perform security
functions. DMA security receives more attention since DMA-capable devices can
access memory without involving the CPU. In [30], a software based approach
is proposed whereby the hypervisor validates all DMA descriptors before they
are issued to the device. This approach is then extended to a hardware-based
approach by utilizing I/O memory management units (IOMMUs) in [29], which
deals with the bad-address fault, the invalid-use fault and the bad-device fault.
Hypervisor-based system security Our scheme is also relevant to hypervisor-
based security systems. SecVisor [21] utilizes a small hypervisor to prevent kernel
code injection. Overshadow [4] protects device memory from untrusted software
in user space. In HyperShield [17], a thin layer hypervisor is plugged into a run-
ning OS without rebooting, so that it prevents illegal code execution. Lares [19]
is an architecture which establishes a secure environment for security tools to
actively monitor a guest domain. HookSafe [28] uses a hypervisor to prevent
kernel hooks from being hijacked. TrustVisor [12] is a tiny trusted computing
base which protects code and data integrity by leveraging hardware features.
Although these schemes take the rootkit as the adversary, they only provide a
generic protection, not geared for I/O protection. Therefore, an attack on the
I/O path might not be considered as adversarial in these schemes.

3 Design of DriverGuard

The objective of DriverGuard is to protect the confidentiality of a driver’s I/O
data from being attacked by a corrupted kernel. We remark that since I/O oper-
ations are heavily used, the low-overhead requirement is vital for the practicality
of DriverGuard.

3.1 Trust Model

The bedrock of our scheme is a trusted hypervisor beneath the guest domain.
Although there are known rootkit attacks on the hypervisor, we suppose that
secure boot-up and load-time attestation with the support of TPM [9] can ensure
the hypervisor’s security in the bootstrapping phase. The hypervisor then loads
itself into an isolated memory region with the highest privilege so as to block any
illegal accesses from a guest domain [1]. Other techniques such as HyperSafe [27]
can also be applied to ensure the hypervisor’s security. We assume the presence
of IOMMU protecting the hypervisor’s memory territory from being invaded by
DMA devices under the adversary’s control.

We do not trust the guest kernel since it is vulnerable to various attacks such
as return-oriented attacks [22, 2, 3] and code injection [11, 21]. In our attack



model, we consider the subverted guest kernel as the adversary whose goal is
to acquire I/O data transferred by a driver. The malicious kernel can read or
write any memory region and any I/O port within the guest domain, but can
not subvert the hypervisor. The driver is treated as a benign executable which
actively demands I/O protection. We consider the scenarios that I/O requests
are issued from an application well-protected in user space. Existing schemes
such as Overshadow [4] can safeguard the application data against attacks from
other applications and the guest kernel. Figure 1(a) depicts the trust model
used in this paper. Note that hardware attacks such as bus sniffing are not
investigated in this paper. Neither is the denial-of-service attack whereby the
adversary attempts to sabotage I/O flows, instead of compromising the data.
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(a) An illustration of
the trust model. The
colored boxes represent
trusted components.
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(b) A PCB accesses
the I/O data in plain-
text.
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(c) A non-PCB, e.g.,
the memcpy() func-
tion, accesses the en-
crypted I/O data.

Fig. 1. Illustrations of DriverGuard’s trust model and the concept of PCB.

Attacks The attacks from the corrupted kernel are classified into two categories.
The malicious kernel can attack the device I/O controls such that the device
receives a manipulated I/O command and reads/writes data from/to regions to
the adversary’s advantage. This type of attacks requires the kernel to tamper
with I/O control related regions such as I/O ports and DMA descriptors to inject
commands or to modify the control region locations. The other type of attacks
are directly targeted on the I/O data. The kernel can attempt to access data
regions such as I/O data ports, MMIO data buffers, DMA buffers, the driver’s
memory regions and the application’s data buffer. Alternatively, the kernel can
attack the driver’s execution flow or runtime states, such as the stack.

3.2 Design Rationale

A straightforward approach is that the hypervisor arbitrates whether a control
flow can access the I/O data. It requires the hypervisor to introspect driver op-
erations, which is difficult to implement due to the semantic gap (e.g., lack of
details of driver operations) between the hypervisor and the driver. Considering



the complexity of I/O operations, the workload on the hypervisor will signifi-
cantly downgrade the whole system performance.

Isolation is a widely used method to protect program executions. To apply
isolation on driver protection, one may propose location isolation or execution
isolation. Location isolation is to place drivers and the kernel’s I/O subsystem
a separated domain, e.g., an I/O domain and Domain 0, or the hypervisor’s
space, such that malware in the guest kernel can not attack them directly. These
approaches are efficient in terms of I/O performance. Nonetheless, the resulting
protection is weak because the TCB size is increased significantly due to the
drivers and the I/O subsystem.

In execution isolation, the drivers still reside in the untrusted guest kernel
while their executions are in a secure environment established by the hypervisor,
similar to TrustVisor [12] and Overshadow [4]. The generic execution isolation
is not applicable for driver protection, because I/O operations are featured with
frequent hardware interrupts and intensive driver-kernel interactions. Note that
if the I/O subsystem is also enclosed in execution isolation, it suffers from the
same drawback as in the location isolation approach.

We adopt the idea of execution isolation, however, at a micro-level. It is
well-known that most of the driver code is for housekeeping purposes, such as
error handling, resource allocation and cleaning up [7], with only a small portion
dealing with I/O data transferring. We further observe that among the code for
data transferring, only a few code blocks, e.g., an encoding function, need to
process the I/O data while the majority of them just move the data from one
memory location to another without necessarily knowing the content. Based
on these observations, we design DriverGuard as a fine-grained I/O protection
mechanism which distinguishes those security-sensitive driver code from the rest.
The hypervisor only needs to protect the executions of security-sensitive code
blocks (around 1% of the driver code according to our experiments) because
of the aforementioned driver code characteristics. The fine-grained protection
is coupled with a hypervisor-based access control mechanism. Different from
hypervisor introspection, access control does not impose comprehensive logics
on the hypervisor. Hence, the overall cost of DriverGuard is remarkably low. Its
performance is on par with the location isolation solution, however, the security
strength is much stronger.

3.3 Overview

By and large, DriverGuard is constructed using three lightweight protection
techniques as the building blocks: cryptography, access control and runtime pro-
tection. We use cryptographic techniques to protect all I/O data without inter-
fering with most of the driver and the kernel executions. For regions holding data
which cannot be protected by encryption, we resort to the hypervisor to enforce
access control. These plaintext data can only be accessed by a few designated
driver code blocks, whose executions are safeguarded by our runtime protection
mechanism. We refer to these code blocks as privileged code blocks (PCBs) in the
rest of the paper. By protecting the execution of PCBs, we successfully ensure



the whole I/O data security with minimal overhead since PCBs only constitute
a tiny fraction of the driver code.

Privileged Code Block We consider three types of PCBs in a driver. One type of
PCBs is the driver code blocks which make computation on the I/O data, e.g., an
encoding function. We call them computation-PCBs. The second type of PCBs
is the driver code blocks which issue I/O commands and parameters to a device.
We call them command-PCBs. This type of code is security sensitive because
their executions determine the locations of plaintext I/O data. The third type
of PCBs is the driver code blocks which initialize the driver’s cryptographic key.
Each driver generates its own key in the driver initialization step, such as in
module init. We call them key-PCBs.

The critical property of PCBs is that they must access critical information
in plaintext. It is desirable for a PCB’s size to be small without making any
function call to non-PCBs, because non-PCBs are unprotected and may com-
promise security. When a driver is loaded, the hypervisor is notified with the
locations of the driver PCBs and sets them as read-only in order to protect the
code integrity. A PCB is delimited by two hypercalls to request for and relin-
quish runtime protection. The runtime protection of a PCB means that when
the PCB is scheduled off from the CPU, the hypervisor seals its context and
cordons off all accesses to the data and states until it resumes its CPU control.

A high level view of DriverGuard’s protection mechanism is as follows. A
driver initially generates a secret encryption key in its key-PCB. The I/O data
remains encrypted by this key whenever the guest domain’s virtual CPU is not
controlled by the driver’s PCB. Within a computation-PCB, it may perform en-
cryption, decryption or encoding functions on the data. If a computation-PCB’s
decrypts the data, it either re-encrypts it or requests the hypervisor’s protection
when it ends. For I/O controls, the hypervisor ensures that the device’s I/O ports
or MMIO regions can only be accessed by the driver’s command-PCBs. With the
assistance of the hypervisor, the command-PCB checks whether the I/O buffer
address in use is legitimate before issuing the command to the hardware. Fig-
ures 1(b) and 1(c) illustrate the difference between a PCB’s and a non-PCB’s
I/O data accesses. Next, we explain the design of three building blocks and leave
the discussion of their integration in Section 4, since it involves the details of
I/O operations.

3.4 Access Control Over Critical Regions

Since we do not rely on encryption-capable devices, encryption is not applicable
for data accessed by the hardware. To cordon off illicit accesses to those data,
we utilize the hypervisor’s access control mechanism. In general, there are two
types of regions for access control: the data regions and the control regions. The
former holds the raw data generated for or by the hardware while the latter
holds the I/O parameters for the hardware. According to their address spaces,
these regions are classified into memory regions and I/O ports, for which we



apply different access control methods by leveraging the hardware features and
the virtualization techniques available in the platform.

To intercept accesses to a protected memory region, DriverGuard sets the
attribute bits in the corresponding page table entries (PTEs), while to intercept
accesses to an I/O port, it clears the corresponding IOPL bits and sets up the
I/O bitmap. We use checkpoints1 in the rest of the paper to refer to both the
IOPL bits and the PTEs marked by the hypervisor for the purpose of access
interception. Although the aforementioned protection techniques are used in
many existing schemes, e.g., [4, 19], we are confronted with two new problems.
First, given a memory buffer address, the hypervisor must make sure that the
kernel can not bypass the checkpoint to access the region, which is challenging for
memory regions allocated by the kernel. Secondly, the hypervisor must ensure
that the sensitive I/O data is indeed placed in the region with a checkpoint.
The first problem demands a careful page table walk checking while the second
demands the I/O control integrity checking. We will present our solutions to
both problems in the next section.

3.5 Cryptographic Components

We introduce to the guest kernel a symmetric-key encryption function and a
decryption function, both of which can be called by any code. However, any write
access to these function’s code is denied by the hypervisor. We also add a key
generation function to the driver as a PCB. The security of the I/O data relies on
the secrecy of the driver’s key, rather than the secrecy of the decryption function,
which complies with the famous Kerckhoffs principle. The driver’s secret key is
securely generated based on a secret random seed supplied by the hypervisor.
The secret key is securely stored in a kernel space buffer priorly appointed by the
driver and can only be accessed by the driver’s PCBs escorted by the hypervisor.
This prevents any unauthorized code from decrypting the driver’s data, even
though the decryption function can be called arbitrarily.

3.6 PCB Execution Escorting

The third building block in DriverGuard is the runtime protection mechanism
that prevents a PCB’s execution from deviating its expected behavior. The pro-
tection is requested at the PCB’s entry and is relinquished at the exit via hy-
percalls. The hypervisor agrees to admit a control flow into the escorting only
when the request is issued from the driver’s PCB, and agrees to discharge a flow
from escorting only when the request is issued from the PCB presently under
escorting.

The PCB under the escorting is granted to access the critical data such as the
driver’s secret key and the I/O data, or to issue I/O commands. In our design,
the hypervisor lifts the checkpoints on those regions accessed by the PCB, and

1 Our definition of checkpoint has no relation with the checkpoint for rollback in dis-
tributed systems.



restores them at the exit of escorting. Therefore, no duplicated exceptions or
page faults will be raised despite that the PCB may access the same region
multiple times within an escorted execution. An escorted PCB can be scheduled
off from the CPU for various reasons. In that case, the hypervisor intercepts this
event and restores all checkpoints. Meanwhile, it also securely saves the driver’s
runtime stack and sets up a breakpoint for the PCB’s upcoming CPU occupation.
As a result, other code’s accesses to the protected regions are denied. Figure 2
depicts a scenario of escorting. There are two methods for a PCB to restore the
protection on the data. A computation-PCB encrypts the data before it exits
from protection whereas a command-PCB requests the hypervisor to block all
accesses on the region. In the end, a hypercall is invoked by a PCB to relinquish
escorting.
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Fig. 2. An illustration of runtime protection, where 0x1234 is an exemplary memory
address with a PTE checkpoint.

4 Implementation

We build DriverGuard on top of the Xen hypervisor to protect the drivers run-
ning in a Linux guest domain. We systematically examine every step in I/O oper-
ations, from the device discovery to the application’s (or device’s) data fetching.
In order to adaptively protect the driver operations, the hypervisor needs to
store certain context information about the driver. We start with driver context
initialization since it is performed by the hypervisor during the guest domain
bootstrapping.

4.1 Driver Context Initialization

The context information of drivers is securely stored in three types of tables in
the hypervisor space. A device table specifies the management relation between
a driver and a device by paring their identifiers. For every protected driver, the
hypervisor maintains a PCB table and a region table. The former stores the
entry and exit addresses of all PCBs of the driver while the latter specifies the
memory regions and the I/O ports to protect. There are five types of regions
in the region table: 1) the application buffer; 2) the memory buffer allocated by
the driver for data processes; 3) the I/O data buffer such as DMA buffers; 4)
the control regions, including the I/O ports or MMIO regions for device control,



DMA descriptor queues, the transfer descriptor queues; and 5) the buffer holding
the driver’s secret key.

Device Table Initialization When a guest kernel image is uncompressed,
the hypervisor inserts a hook function to the kernel to inform the hypervisor
about the device-driver association via a hypercall. The hypervisor then ini-
tializes the device table accordingly. The hypervisor also sets the checkpoints
for the kernel structure maintaining the device-driver association. Whenever a
driver takes the ownership of a device, the hypervisor intercepts the event and
updates the device table properly.

PCB Table Initialization The hypervisor also scans the driver code to
obtain the locations of PCBs. It records the addresses of escorting-entry hyper-
calls and the addresses for escorting-relinquish hypercalls, and puts these pairs
into the PCB table. The driver’s initial code are considered as intact and the
scanned PCBs are therefore legitimate.

Region Table Initialization The control regions used by a driver can
either be the default ones chosen by the manufacturer/the kernel or set by the
driver. In the first case, the hypervisor updates them when the driver is loaded as
in the device discovery step. In the latter case, the driver informs the hypervisor
via a hypercall about the protected regions or I/O ports.

4.2 Checkpoint Deployment

Given a memory region or an I/O port, the hypervisor sets up the corresponding
checkpoint to intercept and examine risky accesses. The detailed deployment
method is dependent on the virtualization environment. Due to the length limit,
we focus on deployment for paravirtualization domains and do not elaborate the
techniques in a hardware virtualization domain (HVM).

Memory Region Checkpoint For a memory page P , the hypervisor walks through
the page tables according to CR3 register to locate the PTE pointing to P . The
hypervisor can set the attribute bits on the PTE to specify different access
rights. To set a page “read-only”, the PAGE RW bit is cleared; and to set a
page “non-access”, the PAGE PRESENT bit is cleared.

Because all protected regions are in kernel space, PTE updates are propa-
gated into the kernel portion of all other page tables in order to maintain consis-
tency. Note that in the paravirtualization setting, only the hypervisor updates
page tables. Therefore, those checkpoints will not be removed by the guest ker-
nel. The hypervisor also checks page tables to remove double mappings pointing
to protected memory regions using the method in HyperSafe [27].

I/O Port Checkpoint I/O ports do not belong to the memory address space.
During the launch of a paravirtualization domain, the hypervisor clears the IOPL
bits of EFLAGS of the guest’s virtual CPU. Namely, it sets the I/O privilege level
to 0, such that the hardware always checks the I/O bitmap for PIO instructions
because the guest kernel runs in Ring 1. Then, the hypervisor sets the bits
corresponding to the protected I/O ports such that a PIO instruction will cause
a general protection exception.



4.3 PCB Execution Escorting

PCB Admission A driver’s PCB starts with the hypercall which takes as the
parameter the buffer address it requests to access. To admit a PCB, the hyper-
visor checks whether the hypercall is issued from the instruction whose address
is registered in the PCB table. If not, the hypervisor rejects the request.

For an admitted PCB, the hypervisor has two tasks. One is to set a local
breakpoint at function switch to, which is the kernel function for a CPU
context switch. The other task is for stack protection. The hypervisor allocates
a dummy stack for the PCB. Therefore, an admitted PCB has two runtime
stacks. A genuine stack is used for the PCB’s execution while the dummy stack
is used for untrusted code sharing the same execution flow due to interrupts.
Figure 3 below describes the details of the PCB admission algorithm, where
InEscorting is a flag bit indicating the current execution state.

Admission Algorithm:

1) Fetch the EIP value stored at the top of the current guest kernel stack, which is the
return address of the hypercall.
2) If EIP does not match any entry in the PCB table, return error.
3) If the address of requested buffer is legitimate, then

a) set InEscorting to 1;
b) set a breakpoint at the entry of switch to function.
c) If the guest’s kernel stack segment is not a dummy stack, then

(i) allocate a dummy stack at the reserved space.
(ii) save the machine addresses of the dummy stack and the present stack as

(MA′ss,MAss). Return 0.
d) else, switch to the corresponding genuine stack. Return 0.

6) Return -1 as an error message for admission failure.

Fig. 3. Algorithm for PCB admission

Escorting Once a PCB is admitted by the hypervisor, its execution is escorted
and the checkpoints for the buffers it accesses are temporarily lifted. The essence
of escorting is that the hypervisor intercedes whenever the PCB is scheduled
off from the CPU, which takes place in two scenarios. One is that the PCB
relinquishes the CPU and the other is due to hardware interrupts. Both cases
open the door to attacks. We design a mechanism to intercept the CPU context
switch and to use dummy stacks for untrusted control flows. The interception is
via the interrupt handler and the exception handler as explained below.
Interrupt To switch to a dummy stack, the hypervisor only replaces the content
of the PTE for the present stack with the machine page number of the dummy
stack allocated during admission. This change is transparent to any guest pro-
cess, since the address in ESP register remains the same. Hence, the guest kernel



is not able to access the true stack while the subsequent execution can use the
dummy stack without being affected. The algorithm for stack switching and
checkpoint restore is shown in Figure 4.

Interrupt Handler Algorithm:

(1) If InEscorting = 0, return.
(2) Restore the checkpoints that are removed during escorting.
(3) Switch to the dummy stack, by setting the PTE for the guest’s stack base to point
to MA′ss.
(4) Set InEscorting = 0. Remove the breakpoint at switch to function.
(5) Set a local breakpoint at the instruction pointed by EIP. Save the address pair in
EIP and ESP.
(6) Return and pass the control to the default interrupt handler.

Fig. 4. Interrupt handler algorithm for stack switching and checkpoint restore.

Debug Exception All breakpoints used by the hypervisor are local break-
points. Therefore, they are triggered only for the present process. There are two
types of local breakpoints used in DriverGuard. One is for the CPU context
switch interception. For this breakpoint, the hypervisor exits from escorting and
restores checkpoints, in a similar fashion to the interrupt handling.

The other type of breakpoints is to intercept the event of PCB resuming. For
this type of breakpoint, the hypervisor enters into escorting only when both EIP
and ESP values match the previously saved EIP and ESP pair. The hypervisor
can distinguish these two types of debug exceptions easily by checking whether
it is in escorting mode. The algorithm details are shown in Figure 5.

PCB Exit To exit from the hypervisor escorting, the PCB issues another hy-
percall. The hypervisor checks if InEscorting is set. If not, it returns an error
message; otherwise, it clears InEscorting flag. The PCB should also issue a hy-
percall to protect its data if the data are left in plaintext. The hypervisor sets no
more breakpoints and will handle future interrupts and exceptions in the normal
way.

4.4 Region Access Control

A risky access to a memory region with a checkpoint causes a page fault and an
access to an I/O port with a checkpoint throws out a general protection excep-
tion. Therefore, we modify the hypervisor’s page fault routine do page fault

and the general protection exception handler do general protection. In the
former, the hypervisor gets the address of the trapped instruction from EIP reg-
ister and the address being checked from CR2 register, while in the exception
handler, the I/O port number is enclosed in the instruction.



Debug-handler Algorithm: Breakpoint address stored in EIP, the stack address
stored in ESP

/* Exit from Escorting */
(1) If InEscorting = 1 and EIP points to the entry of switch to, then

(a) execute step (2,3,4) of the IRQ-handler algorithm.
(c) Fetch task struct->thread ->ip, which is the address of the next instruction

for resuming the present flow. Denote it by EIPr. Save (EIPr,ESP) tuple.
(d) set a local breakpoint on EIPr and return 0.

/* Enter into Escorting */
(2) If there exists a saved (EIP′,ESP′) pair, s.t. ESP′ = ESP and EIP′ = EIP, then

(a) remove the breakpoint at EIP ;
(b) Restore to the genuine stack by replacing the stack PTE with MAss.
(c) set a local breakpoint at the entry of switch to function,
(d) Set InEscorting = 1, and return 0.

(3) Return -1 as an error message.

Fig. 5. Exception handler for escorting.

If the access is granted by the hypervisor, the event will not be forwarded
to the guest kernel. In that case, The legitimate flow continues to execute the
intercepted instruction without being re-scheduled as the guest kernel does not
observe this exception. For unauthorized accesses, the page fault or exception is
passed to the guest kernel. DriverGuard is compatible with memory mapping for
page sharing because the checkpoints are deployed at the PTEs. A buffer mapped
to two addresses has two PTE checkpoints. In the following, we elaborate the
details of region access control according to all types of regions except the control
region.

Application Buffer The application data buffer is the starting or ending
point of an I/O flow. We use the system call interception applied in [18] to get
the buffer address. The technique used in [18] is to replace the first byte of the
system call handler with instruction HLT, which causes a protection exception
and passes the control to the hypervisor.

I/O Buffer The addresses of I/O buffers are obtained within an escorted
command-PCB. Since the I/O buffer contains the data to/from the device, they
are not protected by encryption. The hypervisor blocks all accesses not from
an escorted PCB. For an input buffer containing the data from the device, the
driver always encrypts the data before moving them to other locations, whereas
for an output buffer the driver must decrypt the data after copying them to the
output buffer.

Driver Buffer Driver buffers are for the driver to temporarily hold data for
processing. When the data in those buffers are encrypted, the hypervisor does
not set up checkpoints for them. Only when the escorted PCB is temporarily
scheduled off from the CPU, the hypervisor sets up the checkpoints against all



accesses as the data are in plaintext. In this case, the PCB notifies the hypervisor
about the buffer address.

Key Buffer The key buffer holds the secret key used by the driver. The
hypervisor allows the key to be read only from the instructions from the encryp-
tion/decryption functions (i.e. key-PCBs) and is currently in escorting mode.
Thus, other code can not access the secret key.

4.5 Device Control Protection

The hypervisor denies all write accesses to the region not from an escorted PCB,
and maintains the consistency between the I/O buffer address specified in an
I/O command and the buffer addresses requested by the device driver. This is
because the kernel may manipulate the I/O command such that the device uses
an unprotected I/O buffer for transferring. To defeat such attacks, the driver’s
command-PCB informs the hypervisor the locations of the I/O buffers in use,
such as the DMA buffer and the DMA descriptor queue. The hypervisor inserts
them in the region table and sets up the checkpoints accordingly. Therefore, it
ensures that the I/O buffer in use is always protected.

5 Evaluation

We have implemented DriverGuard and run experiments on five char devices to
evaluate the security and performance. We tested three input devices (a USB
keyboard, a web camera and a fingerprint reader) and two output devices (a
sound card and a printer). In principle, DriverGuard is applicable to network and
disk I/O as well. Nonetheless, as argued earlier, this type of I/O can be protected
using application level data encryption. Therefore, we do not experiment with
them. To demonstrate the effectiveness of DriverGuard, we ran it against three
kernel-level keyloggers [6, 15, 20]. None of the keyloggers is able to steal the
keystroke information.

5.1 Usage of PCB

In our experiments, we manually identify all PCBs on the source code of device
drivers and the drivers in the kernel’s I/O subsystems, e.g., a host controller
driver. It is straightforward to identify command-PCBs and key-PCBs, because
key-PCBs are introduced by DriverGuard while command-PCBs are the code
accessing port I/O, MMIO or structures used by devices (e.g., frame list of
UHCI). Identifying computation-PCB requires the semantic knowledge of the
code. We trace the I/O data to spot code segments computing on the I/O data.
Note that code segments for copying or moving data are not PCBs.

Table 1 lists all the involved drivers used in our experiments and the number
of PCBs in each of them. We found that a driver typically has only around ten
PCBs and each PCB has approximately 15 lines of code without making function
calls (except the encryption and decryption functions). The total PCB code only



account for 1v3% of the driver code. The tiny size of PCB and its simple logic
allow for high security assurance, as compared to protecting the execution of
thousands of lines of driver code.

Driver Size (LOC) # of PCBs Avg. PCB
Size (LOC)

Device

keyboard driver 4964 11 17 keyboard

HID∗ 12771 13 10 keyboard

UVC driver 7838 7 11 camera

EHCI∗ 10011 6 15 camera

HDA-Intel 47825 8 6 sound card

Sound-core∗ 18722 5 4 sound card

devio 1628 7 12 printer, fingerprint reader

UHCI∗ 7600 5 14 printer, fingerprint reader

Table 1. The number of PCBs and the average size for each driver used in our ex-
periments. The drivers labeled with stars are those within the kernel’s I/O subsystem.
The PCB size includes the hypercalls and the calls to the encryption and decryption
functions.

5.2 Performance Evaluation

We experiment DriverGuard on a PC with Intel(R) Core(TM)2 Duo CPU E7200
@2.53GHz, 2GB main memory, running Xen 4.0.0 and a PV guest domain with
Linux kernel 2.6.31.13. DriverGuard adds only 1727 SLOC to the Xen hypervisor.
Our performance evaluation includes a cost measurement of DriverGuard’s com-
ponent functions and a set of application tests with five devices. We remark that
the I/O characteristic is favorable to our scheme as data generation/rendering
devices are usually much slower than the CPU. Therefore, DriverGuard does not
affect the driver performance since the device speed is the performance bottle-
neck.

We choose 128-bit RC4 as the encryption cipher in our implementation, be-
cause RC4’s compact code is easier to protect and does not significantly ex-
pand the PCB size. We instrument the DriverGuard code to measure the CPU
cycles consumed by its main components including the escort hypercalls, the
interrupt handler do IRQ, the debug handler do debug, the page fault handler
do page fault and the general protection exception handler do general protection.
Note that the encryption cost comprises the overhead of loading the secret key
which incurs one page fault and the hypervisor’s checkpoint removal. The results
are shown in Table 2.

For each device we have experimented with, we measure the overhead and
evaluate whether DriverGuard causes significant delay to the driver operation
and the applications. Table 3 shows all the measured results.



Components do IRQ do debug do page fault do general protection Encryption
1KB

CPU cycles 844 739 961 1813 23355

Table 2. Cost of DriverGuard components

keyboard
code transfer

camera
waiting

fingerprint
collection

1 page
print

sound card
open

without DriverGuard 0.053ms 33.24ms 2.61s 15.74s 7.8µs

with DriverGuard 0.138ms 33.38ms 2.63s 16.19s 12.3µs

percentage 160.40% 0.42% 0.77% 2.86% 57.7%

Table 3. Performance overhead of protected keyboard, camera, fingerprint, printer
and sound card I/O

Keyboard In our experiment, we measure the time cost of the interrupt
handler which moves the data from the keyboard to the tty buffer. Although the
protected keyboard I/O is more than 2 times slower than the unprotected one,
it does not affect the application because it is still negligible as compared to the
speed of human keystrokes.

Camera The web camera in our experiment is managed by the default Linux
UVC driver. When the camera is opened by an application, it continuously col-
lects video data and sends them to the application. The UVC driver’s interrupt
handler moves and decodes the data stream from the camera into a video frame,
which resides in the driver’s buffer mapped to the user space. The user applica-
tion can directly use the frame data like normal user-space data.We measure the
time overhead of the application’s waiting time for getting new data, which is a
key factor to the quality of the generated video stream. Although the interrupt
handler in protection is much slower due to the encryption of four pages data,
the drivers spends much more time in waiting for the camera’s data generation.
Thus, the cost of the interrupt handler does not cause the overall performance
degradation. We have also tested video chatting using Empathy 2.30.2, which is
a graphic instant messenger. We do not perceive delays in the experiments.

Fingerprint-Reader Our fingerprint reader is the Upek Touchchip fin-
gerprint sensor. In our evaluation experiment, we choose Fingerprint GUI 2 as
the application which uses the default Linux driver devio to communicate with
the fingerprint reader. When the fingerprint reader is active, the driver’s inter-
rupt handler continuously loads the collected fingerprint data into its buffers,
which are then fetched by Fingerprint GUI by calling the ioctl function. In our
experiments, we measure the whole I/O session of fingerprint collection.

Printer The printer in our experiments is HP Officejet 7210 and the device
driver in use is devio. The print-process opens the printer and issues ioctl to
send data to the printer. After sending out the data, it waits for a signal sent

2 http://www.n-view.net/Appliance/fingerprint/index.php



back by the printer to close the printer. In our experiments, we measure the
turnaround time between the printer open and the printer close. Note that the
relative overhead drops if more pages are printed out.

Sound Card The sound card in our test is Intel Corporation 82801I (ICH9
Family) HD Audio and the driver in use is HDA Intel. We run the application
Totem which plays MP3 files. Totem places its sound data into a user space
buffer, which is mapped into the DMA buffer specified by the driver. When the
music is playing, Totem directly sends data into mapped DMA region in user
space, and issues ioctl to synchronize and update information. The hardware
fetches the data from the DMA buffer directly without the driver’s involvement.
Hence, DriverGuard is only involved in protecting the control region so that the
kernel can not change the location of the DMA buffer in use. There is no cost for
DriverGuard during music playing, though the cost in opening the sound card
is high.

6 Conclusion

We have proposed DriverGuard which is a hypervisor-based system protecting
I/O flows between devices and applications, especially for devices generating data
or rendering data. DriverGuard protects I/O device control, I/O data transfer
and a driver’s data processing, against attacks from an untrusted guest kernel.
It is featured with fine granularity protection with strong security assurance and
low overhead. It only introduces 1727 SLOC to the hypervisor and a few lines to
the driver code. DriverGuard can work jointly with user-space data protection
schemes to safeguard the entire data lifecycle.

The main drawback of our scheme is the need for manually discover PCBs
from a driver, a process which requires the domain knowledge of the I/O data
flow. In our future work, we will investigate techniques to automate PCB dis-
covery. We will also consider extending our work to the multi-core platform.
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