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Abstract—Out-of-VM introspection is an imperative part of
security analysis. The legacy methods either modify the system,
introducing enormous overhead, or rely heavily on hardware
features, which are neither available nor practical in most cloud
environments. In this paper, we propose a novel analysis method,
named as Catcher, that utilizes CPU cache to perform out-of-
VM introspection. Catcher does not make any modifications to
the target program and its running environment, nor demands
special hardware support. Implemented upon Linux KVM, it na-
tively introspects the target’s virtual memory. More importantly,
it uses the cache-based side channel to infer the target control
flow. To deal with the inherent limitations of the side channel, we
propose several heuristics to improve the accuracy and stability of
Catcher. Our experiments against various malware armored with
packing techniques show that Catcher can recover the control
flow in real time with around 67% to 97% accuracy scores.
Catcher incurs a negligible overhead to the system and can be
launched at anytime to monitor an ongoing attack inside a virtual
machine.

Index Terms—Out-of-VM Introspection,
Analysis, Non-intrusiveness, Transparency

Cache, Malware

I. INTRODUCTION

Control flow tracing is one of the fundamental goals of
dynamic malware analysis as it reveals malicious behaviors
some of which are hardly available with static analysis. Typical
ways to capture the control flow are either software instrumen-
tation or the use of hardware facility. Code instrumentation
places hooks to the target program and records control transfer
destinations, especially system calls and function calls. Inser-
tion of foreign instructions inevitably alters the target’s virtual
address space. Hardware facility for performance profiling and
debugging purposes, e.g., Intel’s Performance Monitor Unit
(PMU), Processor Tracing, and ARM’s TreadMill, has the
capability of logging control transfers without modifying the
target. Nonetheless, since this type of facility is often disabled
in a production or end-user system, its activation strongly
indicates the presence of malware analysis. To turn on the
needed facility, the OS hosting the malware needs to explicitly
set it up and handle events (if any) triggered by the facility in
use. Moreover, certain facility also has noticeable performance
slowdown. For instance, BTS is reported to introduce 6.1%
overhead [34].

Malware nowadays infiltrates defense mechanisms by de-
vising advanced evasion techniques. It might check debugger
or other system artifacts to infer whether it is under analysis.
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Introspection for malware with anti-analysis abilities requires
more transparency. Most analysis methods, working with a
debugger or dynamic binary instrumentation, can be detected
by the malware. We characterize existing methods as environ-
mental intrusive approaches, because environmental changes
(e.g., address space alternation, hardware setting changes,
and performance slowdown) would not exist if the malware
execution were not under analysis. Clearly, environmental
intrusiveness is undesirable for malware analysis since it im-
pairs transparency. Advanced malware may detect the presence
of analysis, especially after it obtains the kernel privilege.
Unlike x86 virtualization, those changes are strong evidence
of analysis and malware will prohibit its malevolent behaviors.

In addition, the necessity of environmental variation hinders
smooth and “silent” deployment of those analysis tools in
scenarios wherein there is no prior setup or users cannot
securely login to the concerned system. Although there are
ways to impose the change on the system (e.g., by trapping
it to the hypervisor [10]), they often contaminate the attack
scene and may even cause malware execution to terminate.

Out-of-VM introspection [7], [9], [23], [31], [37], [39]
examines a target virtual machine’s virtual or physical memory
and is especially known for its non-intrusiveness to the target
as compared to in-VM introspection. However, the introspec-
tion scheme is limited to read the target memory and is not
capable of capturing control flows in the VM. In this paper, we
propose a novel out-of-VM introspection technique (termed as
Catcher) to trace malicious execution without environmental
variability.

II. SYNOPSIS

A. System & Adversary Models

We consider a multicore platform with CPU and MMU
virtualization extensions. It is managed by Linux KVM. To
specify different systems in this paper, the virtual machine
hosting the OS with target malware to analyze is defined as the
target VM. We assume hardware security and cache latency
cannot be manipulated by OS or malware. We also assume
the host OS (i.e., the hypervisor) managing the target VM
is trusted. The malware in study may contain anti-analysis
techniques that check if it is under monitoring.

We focus on how to trace malware execution in a non-
intrusive and transparent fashion. Applications of the tracing



data are not of our interest. Reverse engineering techniques
are used as a building block in our scheme. Their accuracy is
also out of our study scope.

B. Idea Sketch

The design of Catcher is based on the fact that cache states
are closely related to control flow. Different execution paths
result in different cache states. Figure 1 depicts two possible
execution traces of a process with dashed and solid arrows.
Recently executed code blocks will show “hit” while non-
executed code blocks will show “miss” when we test their
cache states. The two cache states A and B are tightly bound
with their execution paths. Hence, if the states of the cache
can be obtained, the control flow of the program can probably
be inferred.
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Fig. 1. The dashed arrows show one possible transfer while solid arrows
show another. By probing all the cache state, two execution paths lead to
two different cache states. Cache in gray means “hit” in cache probing while
cache in white means “miss”

The basic idea of our method is to obtain cache states from
time to time so that executions can be inferred. However, even
if we keep observing cache states of all memory repeatedly,
all we can get is a heat map of code execution. There is so
much information to deal with that the analyzer could hardly
stay synchronized with the target process.

In our core scheme, instead of scanning cache states of the
whole memory, we only perform cache probing on branches
of identified code blocks. For instance, in Figure 1, assuming
that cache state of gadget 0 is identified as hif, we need to
identify gadget I and gadget 2. If the cache probing shows
a hit at gadget 1 and miss at gadget 2, then gadget I is
recently executed while gadget 2 is not. Algorithm 1 presents
the pseudo code of the core scheme.

III. DESIGN OF CATCHER

Catcher is designed to analyze malware in a non-intrusive
way. Other than pausing or relaunching the malware, Catcher
dynamically fetches malware’s codes, analyzes code distri-
bution, and then introspects execution without disturbing the
target process. By probing the cache status of basic blocks
constantly, it detects if these basic blocks are executed. The
states of cache (whether it hits or misses) are closely associated

Algorithm 1 Core scheme of Catcher
1: get a starting code block gg

2: while go! = end do

3: g1, g2 < different branches from gg
4: 51 <~ PROBECACHELINESTATE(g1)
5: So <~ PROBECACHELINESTATE(g2)
6: if s; == hit && s9 == miss then

7. go < g1

8: add go to execution path P

9: else if s; == miss&& so == hit then
10: go < 92

11: add go to execution path

12: else

13: get another starting code block gg
14: end if

15: end while

16: return P

with control flow, and thus this provides a non-intrusive way
to monitor target malware.

A. Cache Access

Monitoring the target process from across VMs non-
intrusively through CPU cache is hard. In most cases, the
analyzer cannot obtain cache states directly across VMs.
CPU cache-based side-channel attacks [2], [18], [32] utilize
system features to access cache lines with an accordant or
conflicting relationship. Various schemes in the literature [13]-
[16] make use of page de-duplication and huge page to reveal
the mapping of memory cache in victim processes. Other
attacks [11], [12], [21], [38] require specific shared libraries.
These leveraged features are not necessarily available in most
environments, and thus they cannot be used to perform cross-
VMs introspection. Besides, in CPU cache-based side-channel
attacks, these methods tend to monitor cache line state of a
small piece of memory, which is not practical in massive cache
states management.

Nearly all processors nowadays use a ‘“virtually indexed
physically tagged” cache index policy in their last-level cache.
The location of the cache line for the memory is decided by
both its virtual address and physical address. Legacy out-of-
VM introspection could hardly acquire the target process’s
cache state because of software-based MMU emulation. The
isolation of memory space makes it difficult for analyzers to
directly obtain the physical address, and thus cannot read its
memory state. Methods utilized in side-channel attacks to leak
memory mapping are limited by the scenarios.

If an analyzer needs to have the same virtual address and
physical address as the target, it can probe a cache line by
reading the virtual address directly. The time of the memory
read indicates whether it’s in cache or not. In other words, we
expect the introspection analyzer to have the ability to read
memory at native speed.

Immersive Execution Environment (ImEE) [39] proposes a
prototype that introspects guest address space at native speed.
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Fig. 2. By switching CR3, the agent can read from both the local and the
target’s memory space. It shares the same VA and PA with the target if the
agent is loaded with its CR3

Typically an out-of-VM analysis program synchronizes the
CR3 with the target VM so that its MMU can use target’s VA-
to-GPA mappings directly. Inspired by ImEE, Catcher provides
a smart way for the analysis program to share the same virtual
address and physical address. As is illustrated in Figure 2,
Catcher launches an agent that switches its CR3 to the one
from the target. Agent’s mappings are ensured to be consistent
with the target. It provides a method for the agent to share the
same virtual address and physical address as the target, and
thus it can read the target’s cache state directly across VMs. In
this period the analyzer do nothing but cache probing. After the
agent switches back to its own CR3, the analyzer can still be
executed in its memory address space under its local mapping.

B. Heuristics

The fundamental base of Catcher is CPU cache, which
is intensely limited by environmental factors. Although the
hypothesis seems to be valid, the result of the analyzer is not
practical enough. The false-positive rate is high due to the
design of microarchitecture in CPUs. Much of the instability
in the implementation stems from the situations listed below.

1) Synchronization Issue: Different from traditional dy-
namic analysis tools like binary instrumentation, Catcher does
not let the target trigger anything to assist tracing. In the ideal
case, the analyzer and target processes are executed at the
same speed. The analyzer can probe on code blocks that have
just been executed. However, the high speed of modern CPU
clock speed makes it hard to keep both analyzer and target
running at the same speed. The instruction pointer of the target
might have been far ahead of the analyzer already. Long time
intervals between cache line usage and probing might lead to
an eviction. The time gap between the target and analyzer will
be greater as time goes on if there is no synchronization.

To minimize the gap, Catcher sets a code interval in probing.
The velocity contrast mostly results from switching memory
space between the analyzer and the agents. The analyzer
sends requests to inform its agents so that they probe specific
memory regions. This takes extra time, making the execution
lagging behind. So the first heuristics is to introduce a code

gap into the analyzer. Instead of probing code blocks one by
one, we leave out some of the blocks to reduce the impact
of switching CR3. After the analyzer identifies one recently
executed code block, it tries to probe on the cache lines that
should be executed in a fixed time instead of the next code
blocks. There might be a few code blocks between the one
we choose and the identified block. By this means, we lower
the rate of switching to reduce the impact of being out of
synchronization.
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Fig. 3. Communication between the analyzer and the agent over probes

Figure 3 illustrates the communication between analyzer,
agent, and target. An agent will set the interface lock on after
it receives a VMI request from the analyzer, then loads CR3 of
target and access memory. The results are stored in registers
to make sure they are available after CR3 is switched back.
The analyzer needs to wait until the lock is off and then read
the result from the agent. Agents are designed to access the
target’s memory at native speed. The communication includes
two CR3 loads and memory access, so it might take some time,
which is the key to define the execution time gap between two
probes.

To evaluate the CPU cycles between two probes, we add
rdtsc instructions in our analyzer and record CPU cycles
every time the analyzer sends VMI request. It takes around
2500 CPU cycles between two probes so the interval is
set as 2500 cycles. Intel 64 and IA-32 Architectures Opti-
mization Reference Manual [4] documents the latency and
throughput of different instructions. Under the guidance of
[8], we estimate the execution time of every code block so
that we pick a basic block around 2500 cycles away from the
previous one. In other words, when the analyzer finishes its
first probe, it prefers a basic block about 2500 CPU cycles
away from the first probing. This heuristic makes the analyzer
and target process run at approximately equal speed, mitigating
the synchronization problem.

2) Branch Prediction and Speculative Execution Issue: A
program may contain a branch that depends on a result from
a prior slow instruction. Rather than wait for the result, CPU
can predict the branch and speculatively execute instructions.
To maintain the correctness of the process, CPU tracks the



speculatively executed instruction and their results in a reorder
buffer (ROB). If the prior result comes and the speculative ex-
ecution is valid, CPUs can retire these speculatively executed
instructions in ROB. However, if the guess is wrong, CPUs
have to discard the incorrect instructions in ROB and run from
the correct codes.

Although the instructions are discarded from ROB and the
result of the code executed is roll-backed, the influence has
already been made in CPU cache. Spectre and Meltdown vul-
nerabilities [19], [22] reveal the fact that even the correctness
of the program is guaranteed, the cache state has already
changed by speculative execution. Misprediction leads to a
situation that both branches are loaded in cache. Catcher will
be confused and cannot infer what the real execution trace
looks like.

To mitigate this problem, we propose the heuristic that
the analyzer prefers addresses near the end of basic blocks.
Addresses far away from the branch instruction might be
not polluted by speculative execution. Because of the limits
on reorder buffer, speculative execution will not keep going
perpetually. Once the reorder buffer is full of out-of-order
instructions to be executed, CPUs stop speculative execution.
If we choose an address far enough, the code at this address
hasn’t been speculatively executed, and thus it will no longer
be affected by branch prediction and speculative execution.

Unfortunately, the size of ROB is not documented. To evalu-
ate the capacity of ROB, we designed a method under the idea
of [33]. We first set two memory reads to uncached memories.
Between these two mov instructions, we add various filler
instructions. If ROB is big enough for all these instructions,
two memory reads can be executed in parallel. So if we
measure the access time of these two memory reads, both
latency is low. However, if we fill in so many filler instructions
that the ROB is full, the second memory read needs to wait
for the CPU to issue instructions in ROB. This will cause the
latency of two memory reads to be different. So if we increase
the number of filler instructions gradually until memory access
latency at the second memory read changes, we can define the
capacity of the ROB.
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Fig. 4. Measure the size of ROB. The decline of cache hit percentage means
number of filter instructions is over ROB’s capacity.

We test an i5 3470 of Ivy bridge, and Figure 4 shows its
ROB can hold approximately 225 nop instructions before the
latency of the second memory read declines. We also find

out the upper bound of instructions in ROB seems to vary
among different instructions. More complicated instructions
like add and idiv of r32, which take 10 and 88 u-ops,
have lower upper bounds. In worst cases, ROB can only hold
3 instructions like idiv with operands r64.

The upper bound of the ROB suggests that before CPU
realizes its misprediction and rolls back, speculative execution
won’t cover the code near the end of the basic blocks. Even
if the size of the basic blocks is small enough to fit in ROB,
it will not always have a bad influence on our analysis. As
a matter of fact, branch predictors in modern CPUs are so
accurate that in most circumstances they always choose the
right branch. A 2-bit dynamic predictor was used in [24] where
the misprediction rate is less than 10%. High accuracy of
branch prediction mitigates the problem caused by speculative
execution.

3) Shared Library Issue: Both Windows and Linux are
introduced with shared library techniques to save disk and
memory storage. .dll files in Windows and .so files in Linux are
dynamically linked library files, which can be shared through
several processes. Other than static linking, dynamic linking no
longer copies codes of libraries into its executables. Instead,
these libraries are linked at run time. They are loaded only
once, and different programs are able to use the same copy in
memory.

Cache states can be confusing because they can be affected
by different processes through shared libraries. Both the target
process and other irrelevant processes are executing the same
library. In our heuristics, once the control flow turns into
a shared library, we stop tracing. We are not interested in
the functions of shared libraries. When the destination of a
control flow transfer is a shared library, the analyzer will not
trace it anymore. Instead, it handles it as if it loses its trace
routine. Resetting strategies will be illustrated in the following
sections.

To skip the shared libraries, the analyzer learns the mapping
of libraries. By checking Linux’s /proc file system, we are able
to know the addresses of different .so files. /proc/pid/maps
shows a detailed distribution of libraries used by the process.
Tools in Windows, like Process Explorer and ListDLLs, are
also available. Process Explorer shows information of DLL
recently opened or loaded. ListDLLs reports the DLLs loaded
into processes. Other tools like Tasklist depends and dllshow
provide information on DLL usage as well.

4) Noise Issue: Noise is always an essential problem of
works [30], [35] based on CPU cache. Cache is originally
designed for CPU to access data from memory quickly, and
it shouldn’t be used as a side-channel. CPU cache states can
be affected by the environment like CPU loads. To evaluate
the impact of system noise caused by CPU loads, we run
a test on cache. We start with a list of memory addresses
mapping to different cache lines. By reading them one by
one, we make sure each one of them should be in cache
theoretically. Under different CPU loads with stress -m,
we read them again and evaluate the access time with rdtsc
instructions. If its access time is short, this memory should



be in cache, meaning it has not been evicted yet. Otherwise,
this cache line is already affected by system loads. Then we
measure the influence on memories out of cache. Similarly,
we use CLFLUSH instructions to make sure all these memory
addresses are out of cache. Then we read them and evaluate the
access time to find out how many addresses are now in CPU
cache. We deploy our experiment on Ubuntu 12.04 with Linux
kernel 3.2.79. We tested cache activities under quiet system,
stress -m 2 and stress -m 4. The percentages of
addresses affected by system loads are presented in Table 1.
It draws a conclusion that system loads have a strong impact
on cache states, introducing extra noise on cache probing. The
system load has less effect on these memories out of cache.

TABLE I
PERCENTAGES OF MEMORY CACHE AFFECTED BY SYSTEM LOAD

silet -m 2 -m 4

19.1
12.9

% of affected memory (cached): 1.5 7.1
% of affected memory (uncached): 0.1 6.8

To minimize the adverse impacts of noise and make the
analysis robust against high system load, we launch a vote in
cache probing. When agents try to estimate if one basic block
has been executed, they check it multiple times. Inside a basic
block, we choose 3 different instructions whose address does
not share the same cache line instead of one. if more than 2
probes out of 3 show a cache hit, agents are willing to take
this basic block as executed. It is possible to run more cache
probes inside a basic block. However, too frequent probes
will slow down agents, deteriorating synchronization issue.
Multiple probes can improve the accuracy of the analysis.
Assuming the probability of one cache line influenced by noise
is p, with a voting policy of best out of three probes, the
probability can be reduced to 3p? — 2p®.

5) Lost Trace Handling: CPU cache is unstable so that
it is common for the analyzers to lose trace. It may find hits
in all branches, indicating all branches have been executed;
or no hit at all, indicating no branch has been executed. In
this case, we define a continuing strategy to follow when the
analyzer has no idea about the target’s execution. Choosing
a reasonable continuing strategy contributes to high precision
and code coverage.

The most basic yet most general strategy is picking an
address to restart randomly. Once the analyzers are uncertain
of the control flow, it scans all the addresses in the address
pool. If a randomly-picked address is out of cache, the analyzer
tries to re-pick another address after flushing the first address
out of cache. Noticing probes can also include instructions
into cache, it is necessary to always flush it after probing
so that this won’t affect the subsequent analysis. However,
a random picking strategy is a game of chance. The more
complicated the target is, the slimmer the chances of finding
a valid address are. In extreme cases, the address pool can be
so large that the analyzer can never find an address in cache
since cache hit status is always changing. Spending too much

time on choosing an address magnifies the time gap between
the analyzer’s and target’s execution mentioned before.

Catcher implements a continuing strategy under the guid-
ance of stack. When a function has been called, it pushes
its parameters and return address into the stack. As stack is
a last in first out data structure, there is a high likelihood
that the function at the top of the stack will be executed
in the following moment. The continuing strategy aims at
return addresses recorded in stack, and keep probing them
until one of the return addresses finally goes through a cache
hit, indicating this function has returned. The analyzer can
restart tracing at this recently returned address.

To trace the stack, Catcher maintains snapshots of the
stack pages with a specific monitoring process. A process is
designed to monitor the memory regions of the stack by its
own agents. By comparing snapshots, it defines the top of the
stack. If the memory area of the lowest address is modified,
these changed parts are deemed to be function frames that
were recently pushed into the stack.

This heuristic requires the analyzer to be aware of the ad-
dress of the stack. However, Catcher agents are not supposed to
access registers. Stack-related registers like ESP and EBP are
not available to the agent, leaving the analyzers unknown of
the address of the stack. We need to perform a stack revealing
at the prologue phase. Stack is actually a memory area of
different stack frames. Every frame is loaded with parameters
and return addresses. By finding memory pages with several
return addresses, we can find where the stack is. So when
the analyzer dumps all the code and goes through reverse
engineering, it marks all the addresses of CALL instructions.
In this way, all the return addresses are known because they
are the same as addresses of instructions next to the CALL
instructions. Although modern compilers are likely to use
JMP instructions to replace CALL instructions, the left CALLs
are still enough to expose the stack. [6] shows in coreutils
compiled by gcc at —02, only about /0% of the function calls
are in the form of JMPs. Once the monitoring process knows
where the stack is, it can keeps eye on it persistently. Whenever
the analyzer lost trace of the target program, this monitoring
process recommends an address that should be executed in no
time.

Strategy based on the stack is not always efficacious. The
heuristic described above is essentially a method that relies
on an address of one instruction believed to be executed soon.
This instruction will be executed as soon as the previous
function returns. However if this function’s life cycle is so long
that it does not return in a short time, the analyzer then keeps
probing cache states of the instructions and never advances.
This is possible because in cases like main function or nested
function calls, their stack frames stay in stack for a long time.
If the monitored process delivers an address of this kind, the
analyzer might stop tracing. To solve this problem, we take
a hybrid strategy. When the analyzer is not able to trace the
target with stack strategy for a long time (/00 probes by agents
in our prototype), it will turn to a random strategy and pick
an available address to continue tracing.



IV. IMPLEMENTATION

A. System Overview
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Figure 5 shows the high-level architectural view of Catcher.
The analyzer launches agents to send introspection requests.
These agents will continuously give access to memory in the
target process’s memory space by switching CR3 to the one
from the target. While the analyzer is working, the target
malware is executed at the same time. The onsite tracing has
almost no influence on the execution of the target process, and
thus the target cannot sense the existence of the analyzer.

When agents switch their CR3 into the same one with the
target process, they are capable of access the memory space
of the target VM natively. The Last-level cache is shared
across CPU packages, so agents can read memory and test
CPU cache status by timing the access directly. With target
and agents sharing the same VA to PA, if the accessing time
of the memory is less than the threshold (in our case, 150
CPU cycles), it is more likely this memory has recently been
read or executed. If it is out of the threshold, we assume this
memory is not recently used. By probing different memory
blocks’ CPU cache states, we can reveal the target’s execution
dynamically.

We implemented our prototype on a desktop with an Intel
Core 15-3470 3.2 GHz processor and 8GB DRAM. This CPU
is equipped with 4 cores and 6MB shared level 3 cache. We
run it on a Linux of kernel 3.2.79 with KVM. We created three
different types of agents to access the target’s memory space
and support the analyzer. We can launch multiple analyzers.
We designed two analyzers to cooperate with each other, which
are consist of around 3100 SLOC.

B. Agents

An agent is one small piece of code executed between
the analyzer and the target. Like a trampoline, it attaches
its window to either the analyzer or the target process by
switching CR3. It contains a small memory frame to receive
requests from an analyzer. When an agent is loaded with the
CR3 from the analyzer, it shares the same memory address

space with the analyzer, and thus the analyzer is capable of
writing its requests to the memory frame. The agent then
switches its CR3 to the one from the target. According to
the requests agent receives from the analyzer, it will read
memories of the specific virtual address and measure memory
access time to define cache states. The result is also stored in
the small memory frame so that after the agent switches back
its CR3, the analyzers can get its responses to their requests.

We design three types of agents to perform memory re-
vealing, cache probing, and data monitoring. Algorithm 2
illustrates part of the core logic in the code from a memory
revealing agent. Firstly it keeps checking the lock. Once it is
unlocked, the agent knows the analyzer has sent its requests.
It resolves these requests and loads the address and the size of
the memory region that the analyzer wants it to deal with next
from the consensual frame. Then agent switches to the target’s
memory space by changing its CR3 and read the data. After
copying it into the shared frame agent switches back CR3 and
free the lock. Now our analyzer is able to read the result of
their requests from the shared frame.

Algorithm 2 The sketch of pseudo code of a memory revealing

agent
1: while TRUE do
2: repeat
3 check the lock;
4 until lock == false
5 /* in local memory space*/
6: read size n and address addr from the shared frame;
7 load n and addr in agent’s registers;
8
9: /* switch to target’s memory space*/
10 load target’s CR3;
11: read requested data from target’s memory space ;
12 load it into registers;
13:
14: /* switch to local memory space*/
15: load local CR3;
16: write data from the register into local memory space;
17: lock + true;

18: end while

Cache probing agent is similar to the memory revealing
cache except cache probing agent will utilize rdt sc instruc-
tion to measure the time of reading the target memory. The
result it returns is whether the virtual address the analyzer
requires is in cache or not. Data monitoring agent only returns
when the data in the required memory area changes. The
revealing agent is used to dump the executable memory of
the target. It is vital in the prologue stage because all the
analysis starts from here. The probing agent is the core part
of the analysis. We use it to infer execution status and conclude
the control flow of the target. Monitoring agent, however, is
mostly used in stack-based heuristic. We suggest a monitoring
agent keep an eye on the stack area of the target so that we



can continue from a function return even when Catcher loses
tracing.

C. Analyzers

Analyzers are processes that schedule agents to detect exe-
cution states of the target process. In Catcher we launch two
types of analyzers at once. They perform different functions
and help researchers analyze targets’ execution. Typically we
have a main trace analyzer and stack support analyzer.

1) Main Tracing Analyzer: The main tracing analyzer is
the principal part that takes most of the analysis work in
Catcher. It is the only part that keeps working all the way
through the whole analysis procedure. The main trace analyzer
needs input from the analyzer, indicating the CR3 of the target
process. Then it will initiate a memory revealing agent to
read the code distribution of the target process. After reverse
engineer the memory area with the support of IDA Pro, the
main tracing analyzer concludes a tree of virtual addresses,
whose nodes refer to basic blocks of the target process and
children refer to the next possible nodes to be executed. Details
are introduced in the next section.

The main tracing analyzer also takes responsibility for
dynamic tracing. That is, along with the execution of the target
process, this analyzer keeps inspecting the running states of
the target process. All this work is carried out silently. The
analyzer monitors in onsite mode, which means it has almost
no influence on the target, nor can it be detected by the target.
The main tracing analyzer launches cache probing agents. It
sends requests containing the addresses to probe on to the
agent and waits for its response. The agent checks the cache
states of these addresses. Usually the agent can find one of the
cache states is shown as a hit, then it returns to the analyzer.
The main tracing analyzer chooses addresses in the child nodes
of the hit nodes and sends another request asking its cache
probing agent to probe on them.

2) Stack Support Analyzer: Sometimes the cache probing
agent may find none of the addresses is in cache, or more than
one address is found in cache. In this case, the main tracing
analyzer asks for stack support analyzer’s help. Typically stack
support analyzer synchronizes it with a recently called function
so that the main tracing analyzer can go back to work again.

Stack support analyzer aims at monitoring the change in the
area of the target’s stack. Since Catcher is not able to check
values in registers (RSP for example), we can not locate the
malware’s user stack directly. However, stack is basically a
segment of data related to function calls. Every stack frame
always contains a return address and we can therefore locate
its user stack by finding memories containing a list of return
addresses. When scanning the whole memory space, we find
the address of CALL instructions, then the addresses of their
next instruction are possible return addresses. Next we locate a
memory space involving these return addresses, namely where
the stack is.

Stack support analyzer has two parts. One is keeping an
eye on stack changes. It launches an agent assigned to back
up the stack. Once the stack changes, the analyzer realizes

a new function has been called and a new stack frame has
been pushed into the stack. As a matter of fact, this agent is
insensitive to function returns because the popping act does
not write anything in stack. The change in RSP is invisible
to agent and the memory doesn’t change. So when a function
pops, agent can hardly notice it. However, we can still monitor
the stack. The surveillance is based on the general knowledge
that the function at the top of the stack will be returned in a
short time. Eventually, the stack support analyzer picks these
functions and recommends them to the main tracing analyzer
when it loses trace of the target.

The stack support analyzer may fail if the process keeps
calling functions and never returns (nested function calls).
In this situation, the agent will keep backing up the stack.
The cache state in this return address will never be hit. This
problem can be settled because even though the stack keeps
growing, the number of functions is limited. The code at
the return address will eventually be executed, leaving the
tracing work back to normal. Besides, the main tracing an-
alyzer changes its continuing strategy when the stack support
analyzer is not able to support tracing. It turns to a random
continuing strategy.

The other part of the stack support analyzer is synchronizing
with the main tracing analyzer. For most of the time, the stack
support analyzer works individually. It focuses on the change
of the user stack. When the main tracing analyzer asks for
support, it recommends the most possible return address to it.
The synchronization is by inter-process communication. The
stack support analyzer shares a small chunk of memory with
the main tracing analyzer. Through this shared memory, the
tracing analyzer shows its request for suggestion on continuing
address, and then the stack support analyzer responds with its
answer.

D. Analysis Workflow

To analyze a target process from scratch, we follow a
workflow demonstrated in Figure 6. Catcher works in three
phases: prologue phase, trace phase, and epilogue phase.

1) Prologue Phase: In the prologue phase, the first thing
is to locate the target. CR3 is the bridge between the virtual
address and physical address. Catcher locates its target process
through CR3. We can get target process’s CR3 by its pid. By
searching task_struck, Catcher locates the target’s process
descriptor. From its mm_struct, we get mm->pgd. Then
virt_to_phys () function uncovers the actual value of
CR3 of the target process.

Then the analyzer launches a memory revealing agent to
read the code distribution. It fetches the code segment from
the target’s memory space. Agents are designed to be able
to read memory blocks of different sizes. Although reading
a small number of bytes at a time reduces the complexity of
the agent code, it adds switching cost because the analyzer
has to send requests more frequently. We choose 512 as the
number of bytes for an agent to read at a time. It balances the
performance and complexity of the agent.
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After dumping out the code segment, the analyzer disas-
sembles it preliminarily. Work about reverse engineering in
Catcher is out of scope so it will not be discussed in detail.
IDA Pro helps to reverse engineering and draw the connecting
of different code blocks. This method dynamically gets the
target’s code from memory instead of ELF or EXE file.

In order to organize the probing addresses of all basic
blocks, we evaluate the approximate execution time of every
block. By looking up instruction latencies [8], the analyzer
adds up all the instruction latencies in every basic block. It
marks the next basic blocks to probe on by fulfilling the time
gap. That is, when one basic block is designed to be probed,
the analyzer tries to advance its possible control flow until the
step is over the threshold (2500 cycles). Although the analyzer
may miss some of the basic blocks, the lost code blocks can be
inferred later in the trace phase manually if both their previous
block and next block are identified in cache. We choose the
virtual address near the end of the basic block as the probing
address of the code block.

2) Trace phase: In this phase, one analyzer monitors cache
states of the address pool marked in the prologue phase
continuously while another one keeps eye on the stack. In
no case will analyzers interrupt the execution of the target
process. With the target process being executed, the analyzer
starts probing cache states from an executed virtual address.
This address can be manually selected, as long as the code is in
cache. Then the analyzer will try to check which child virtual
address of this block is also in cache, finding out how the
actual execution trace is. By this means, the analyzer reveals
the executed code blocks one by one.

It is common that sometimes analyzer may find a situation
that all the child virtual address available is not in cache.
The reason has been explained in the previous section. In
this case, the stack monitoring analyzer, which is tracking

function calls, suggests a possible virtual address to restart
from. These two analyzers exchange information through inter-
process communication.

3) Epilogue phase: The outputs from the previous phase
are a list of virtual addresses that Cather captures. To turn these
virtual addresses into a control flow transfer trace, we need to
combine this address list with the basic block relationship from
the prologue phase. We highlight the blocks whose address
contains any of the virtual addresses from the list. Then we
extend it by adding basic blocks that can be inferred. However,
not all pruned basic blocks are able to be recovered. We will
mark these blocks as uncertain blocks, meaning one of them
should have been executed, but we are not sure which one it
is. In CFG generation, code blocks are turned into nodes and
all the transfers are turned into edges to connect nodes.

V. EVALUATION

In this section, we evaluate Catcher’s usability, effective-
ness, and performance overhead. We perform our experiments
on a DELL OPTIPLEX 7010 desktop custom with an Intel
Core i5-3470 3.2GHz processor and 8GB DRAM. This CPU
is equipped with 6MB of L3 cache. ASLR is turned off for the
sake of convenience. ASLR has no impact on the tracing since
the code is dynamically fetched. Turning it off only simplifies
the process of evaluation.

A. Usability

Although Catcher is designed on Linux KVM, the target
OS can be either Windows or Linux. To get CR3 value in
Windows, we check a kernel structure called the EPROCESS.
Inside EPROCESS there is a member called DirectoryTable-
Base. We set the DirectoryTableBase[0] as the value
of CR3 of the target process.

Malware like keyloggers and rootkits tries to hide. Analyz-
ers and AV scanners are not able to find the process because



it hides its process directory in /proc of the file system. It
also manipulates kernel queue data structures by deleting itself
from task_struct. Although pointers (xprev_task and
xnext_task) are removed, the process is still in memory.
Catcher can catch it with a given CR3. We test Catcher on 4
keyloggers that can work secretively.

Some malicious programs detect whether
are under analysis based on the system
[1]. Time-based detection utilizes API  functions
[26] (e.g., QueryPerformanceCounter () and
GetTickCount ()) or rdtsc instruction to get the
time experienced by certain events, in order to infer whether
there is a debugger. Some malware can even use external
resources to assist timing (NTP for example). Once noticing
the time of some specific events surpasses the threshold, they
take a different path of execution and act benignly. Catcher is
born with a great advantage in this situation because it does
not intervene in the execution of the target process. Running
in onsite mode, it has such an extremely subtle impact on
the time of the events that malware cannot speculate whether
there is a debugger. We test Catcher against three malware
known to use timing-based detection to expose the presence

of a debugger: HIV [17], Ratos [25] and Mydoom [20].

Malicious programs often use packers to deform their own
code, thereby changing the shape and feature of their exe-
cutable binaries. A different appearance helps to evade the
detection of signature-based anti-virus scanners. Unpacking
has no adverse impact on Catcher because the agent shares
the same memory mapping with the target. Different from the
legacy methods, EPT update in the target is also visible to
the analyzer in Catcher, so the analysis is performed on the
unpacked memory. We test four programs packed by packers:
UPX, Upack, Armadillo, and Themida.

they
artifacts

B. Effectiveness

To demonstrate how effective this analysis method base
on CPU caches, we measure its accuracy performance. The
notations in use are listed in Table II below.

TABLE 11
NOTATIONS AND DEFINITIONS

P target process in memory to analyze

e execution of P

O(e) the oracle we constructed

C(e) the execution trace caught by Catcher

TP true positive number, i.e., the number of code blocks b €
O(e) such that b € C(e).

FN false negative number, i.e., the number of code blocks b €
O(e) such that b ¢ C(e). This means it is actually executed
while is not captured by Catcher.

FP false positive number, i.e., the number of code blocks b €

C(e) such that b ¢ Of(e). This means Catcher falsely
captured a code block that has not been executed.

We also define three notations for precision: p, recall r and

f-score as follows:

p = TP/(TP+FP) (1)
r = TP/(TP+FN) 2)
f-score = 2p-r/(p+7) 3

1) Ground Truth: To evaluate the accuracy of Catcher, we
need to construct an oracle of the actual execution path, that
is, the ground truth. We need to record the addresses of all the
code blocks executed. We use dynamic binary instrumentation
to record the execution path. An Intel Pin tool is designed to
monitor the execution at instruction level. It records the source
address and destination address of all the control flow transfer
instructions.

Using Intel Pin to instrument a program can be both
intrusive and reboot-needed, which is against our assumption.
The instruction level dynamic binary instrumentation also
introduces massive overhead if it suspends the process for
every instruction.

There are two hardware features widely available on com-
modity processors that can be used to help us obtain the
ground truth. Last Branch Recording (LBR) is a mechanism
that tracks branches. Previous work [3], [28], [29] shows
that using LBR to record source and destination of filtered
instructions incurs almost zero-overhead. LBR can record up
to 16 from-to records in Model-Specific Registers (MSRs),
according to our CPU model. That is, we can find 16 pairs
of source and destination addresses of branch instructions
at one time. Nevertheless, when it comes up with a 17th
branch instruction, one of the 16 records will be wiped out.
We log them before the 17th branch instruction is executed.
[36] proposes an idea that utilizes Performance Monitoring
Unit (PMU) to co-operate with LBR. PMU can be configured
to set the events it needs to monitor. It contains a counter
named Performance Monitoring Counters (PMC). Whenever
the configured event occurs, the PMC in the PMU will increase
automatically. PMU will trigger an interrupt when the PMC
overflows.

TABLE III
BIT FIELD FOR FILTERING DIFFERENT TYPES OF BRANCH INSTRUCTIONS

Bit Field Bit Offset  Description
CPL_EQ 0 0 branches in ring 0
CPL_NEQ O 1 branches in ring 3
Jcc 2 conditional branches
NEAR_REL_CALL 3 near relative calls
NEAR_IND_CALL 4 near indirect calls
NEAR_RET 5 near returns
NEAR_IND_JMP 6 near indirect jumps ex-
cept near indirect calls
and near returns
NEAR_REL_JMP 7 relative jumps except
near relative calls
FAR_BRANCH 8 far branches

According to Intel developer’s manual, we configure
IA32_DEBUG_MSR and IA32_PERF_GLOBAL_CTRL to
enable Last Branch Recording and Performance Monitoring



TABLE IV
PRECISIONS, RECALLS AND F-SCORES FOR TARGET PROGRAMS

Type Target p r f — score
Spyrix 0.81 0.38 0.52
Keylogger Blackbox Express 0.99 0.03 0.05
kidlogger 0.72  0.77 0.74
Revealer keylogger  0.69  0.43 0.53
MyDoom 0.72 043 0.54
Virus Ratos 094 0.29 0.44
HIV 0.75 0.27 0.40
Armadillo 0.84 0.62 0.71
Packer Themida 098 0.09 0.17
WinUpack 0.68 0.53 0.59
UPX 0.88  0.39 0.54

Unit. A ground truth needs to capture all types of control-
flow transfers. We set up a sub-event mask for the types of
instructions that we need. Table III lists the flags that we set
in MSR_LBR_SELECT so that all these control-flow transfers
can been captured. When PMU triggers an interrupt, a handler
is designed in kernel that outputs the source and destination
addresses into a log file. It shows the ground truth of the basic
block sequence, that is, the execution trace.

Although LBR can decide to monitor user-mode program
or kernel-mode program through two flags of CPL_EQ_0
and CPL_NEQ_ 0, it cannot distinguish the branch instructions
both generated by the processes in user-mode. Branch instruc-
tions in different user-mode processes will all be captured by
LBR and then recorded. To solve this, we modify the Linux
kernel so that it can mark the Process Control Block (PCB)
of the target process. When the target is scheduled in, LBR
is turned on and the PMC is reset. It is turned off when the
target process is scheduled out. All the address pairs in the
log file are generated by the target process.

2) Coverage: To measure the percentage of codes covered
in the analysis, we calculate the precision (p) and recall (7). r
represents the completeness of Catcher’s result. In other words,
r defines the ratio of how many executed blocks are captured.
p represents the correctness of the result. That is, how many
blocks in Catcher’s output are actually executed.

According to the exhaustive result in Table IV, Catcher
provides an analysis result not as accurate as legacy methods,
yet it is still usable. Compared with the methodology that
needs to modify or reboot the system, Catcher is completely
non-intrusive. This is important in face of malicious processes
with anti-analysis capabilities. When the program or system
cannot be restarted, our non-intrusive method can provide a
practical result. The average value of 7 is 0.385 (0.457 if
remove the abnormally low malware) while p is 0.817. The
reason for a low r is that Catcher misses parts of executed
code blocks because of no pausing. Unlike intrusive analysis
methods, e.g., dynamic binary instrumentation, the lack of
event trigger of Catcher makes it impossible for Catcher to
find all the executed blocks. In addition, some code blocks
are sacrificed to reduce the impact of the synchronization
problem, which will lead to a drop in recall r. The reduction
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of recall is actually a kind of compromise to perform analysis
in harsh environments. The result also shows precision p
is satisfying. A practical precision indicates the feasibility
of using cache to analyze program execution. By adopting
the heuristics introduced in section III, Catcher mitigates the
adverse effect of cache instability. Compared with the ground
truth, the inferences on more than 80% of basic blocks is
correct.

3) Smilarity: Merely using precision and recall to measure
the accuracy of the generated control flow is not complete
because it does not take execution order into consideration.
For instance, a process is executed as block a, block b then
block c. However the analyzer comes to a sequence as block c,
block b and then block a. In this extreme case, we can present
a perfect precision, recall, and f-score, while the control flow
obtained is actually wrong.

To avoid this situation, we use similarity in NLP to define
the difference between the obtained trace and ground truth. We
treat the complete sequence as one sentence and every block
in it as a word. We first calculate the Levenshtein distance (as
known as edit distance) between O(e) and C(e), and then get
the Levenshtein ratio to define the similarity.

For a random trace that picks a random branch in every
fork, it will come to a similarity much lower than 0.1 if there
are millions of blocks within the execution. In this case, if
the tracer does not correctly guess the destination basic block
of a control transfer, its subsequent guesses are wrong as well
because the branching instructions under analysis are different
from the actual execution, so the subsequent branches are
wrong. It is not the same as guessing a sequence of binary
bits at a fixed juncture of execution. The result in Table V
shows Catcher’s output is actually close to the real execution.

TABLE V
SIMILARITY MEASURES

Target Similarity
Spyrix 0.51
Blackbox Express 0.25
kidlogger 0.74
Revealer keylogger 0.53
MyDoom 0.54
Ratos 0.44
HIV 0.49
Armadillo 0.70
Themida 0.16
WinUpack 0.61
UPX 0.53

C. Evaluate Heuristics

To evaluate the contributions of each of the five heuristics
described in Section III-B, we run experiments to measure
the accuracy of Catcher without applying one of them at a
time. According to the results in Figure 7, on average all
the heuristics improve the precision, except Heuristic 5 (Lost
Trace Handling). Heuristic 1 and 3 might cause a slight drop
in recall. All of them effectively lead to a better f-score.
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Heuristic 5 is meant to re-synchronize Catcher and the target
execution by leveraging the stack. It is more beneficial to recall
enhancement, meaning that more executed code blocks can be
traced by Catcher. The average recall in Figure 7 shows that,
although Heuristic 5 causes 0.4% drop in precision, the recall
is increased nearly by 20.7%.

D. Performance

TABLE VI
TIME COST OF DIFFERENT OPERATIONS

Operation Time (us)
CR3 fetching 39

agent switching 6.9/0.7
memory reading 1.7

block probing 0.8

1) Overhead: Table VI lists the tasks performed by the
analyzers and the agents in three phrases of Catcher. In the
prologue phrase, the analyzer fetches target’s CR3 by pid.
It takes around 3.9 pus on average. Reading 512 bytes of
memory costs around 5500 CPU cycles. The key to agent
switching is modifying the CR3 of them. When launching
the agent for the first time and switching it to the target’s
memory address space, we need to use the obtained CR3 to
load the corresponding EPT. This takes more than 2,2000 CPU
cycles (6.9 ps in our experiment). We do not need to reload
EPT every time in trace phrase. An agent switching without
reloading EPT cost less than 0.7 us. One probing on a basic
block costs 0.8 ps.

2) System: We measure the slowdown caused by Catcher
on SPEC2006 benchmarks [5]. We compare the performance
overheads with the baseline. The baseline refers to SPEC
CPU2006 benchmarks with no Catcher running. The nor-
malized performance cost on average is 2.89% as shown in
Figure 8.

We also measure its influence on memory and cache by
Cachebench [27]. It incorporates benchmarks for different
cache operations like cache read, cache write, and cache
read/write/modify. It also tests on memset () and memcpy ()
from the C library. Figure 9 shows the performance of cache
drops about 8.16% when Catcher is introspecting a process.
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VI. DISCUSSIONS
A. Multithreading

Multithreading enables a process to create several threads
that work in the same memory space. Shared memory address
space and non-sequential execution cause inconsistencies in
cache states. In other words, even with the same code and
same input, the cache states obtained vary from time to time,
so they cannot be utilized to infer the control flow.

Luckily, there is no real multithreading in Linux. Linux
kernel creates Light Weight Process or LWPs to simulate
threads. A process containing multiple LWPs is known as a
multi-threaded process. Each thread is actually an independent
LWP. It has its own process identifier, and can be scheduled by
the kernel like a normal process. To locate a thread, we get its
LWP through PS -Lf pid. Catcher can switch to the CR3
related to this LWP so that this thread can be analyzed.

VII. CONCLUSION

To summarize, we propose a novel out-of-VM introspection
technique called Catcher to trace a target process from scratch.
It utilizes CPU cache to reveal execution situations of the
target without interrupting its execution. Due to its non-
intrusiveness and transparency, it introduces no side-effects
into the system and thus can be applied to anti-analysis
malware. According to our experiment, although it is not as
accurate as other intrusive analysis tools, Catcher still provides
a practical result. Its passive monitoring mode makes overhead
negligible. Introducing no environmental variability, Catcher
gains an advantage in analyzing malware with anti-debugging
techniques.
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