
A Hybrid Method to Detect Deflation Fraud in
Cost-Per-Action Online Advertising

Xuhua Ding

Singapore Management University
Email: xhding@smu.edu.sg

Abstract. Web advertisers prefer the cost-per-action (CPA) advertise-
ment model whereby an advertiser pays a web publisher according to the
actual amount of transactions, rather than the volume of advertisement
clicks. The main obstacle for a wide deployment of this model is the defla-
tion fraud. Namely, a dishonest advertiser under-reports the transaction
count in order to discharge less. In this paper, we present a mechanism
to detect such a fraud using a hybrid of cryptography and probability
tools. With the assistance from a small number of users, the publisher
can detect deflation fraud with a success probability growing exponen-
tially with the fraud amount, and can estimate the amount of frauds.
Our scheme is amiable to both the advertiser and the users because the
existing transaction model remains unchanged. It is also efficient and
scalable as the incurred communication, computation and storage costs
are independent of the number of transactions.

1 Introduction

Cost-per-action (CPA) is gathering its popularity among online advertisers due
to its cost-effectiveness. Different from the cost-per-click model where an ad-
vertiser pays the web publisher for every user click, the payment in the CPA
model is based on the amount of predefined user action, e.g. downloading, sale
or sign-up. Nonetheless, such a model is not favored by the web publishers, be-
cause a dishonest advertiser may undercount the actions and consequently pays
less commission fee. This type of cheating is called deflation fraud. Such frauds
can also be found in other applications. For example, in publish-subscribe net-
works [7, 14], an event publisher shares profits with the brokers, and a dishonest
broker can undercount the number of subscriptions. In online content distribu-
tion businesses, a content distributor may cheat a content provider in a similar
fashion.

A dual problem of deflation fraud is inflation fraud, whereby an entity cheats
by maliciously over-counting or over-reporting transactions for its financial ad-
vantages. Although there exist many schemes proposed to address the inflation
fraud as in [8, 17, 18, 15, 9, 11, 20], the deflation fraud has not caught sufficient
attention except in [10]. As explained in [10], the philosophy for all inflation
fraud detection schemes is knowledge proof. Intuitively, an inflation adversary



is challenged to prove sufficient knowledge pertaining to the inflated count. Un-
fortunately, the same tactic fails for deflation fraud detection, as no scheme can
challenge an adversary to present a proof on absence of knowledge. Therefore,
the general approach for deflation detection is that the verifier (e.g. the web
publisher in our context) gathers as much information as possible regarding the
claim made by the prover (e.g. the advertiser). The solutions used in [10] are
based on an online trusted third party (TTP) which mediates the transactions.
A similar approach taken by Google’s AdWords is that the verifier watches over
the transactions directly. Obviously, the more information the verifier gathers,
the stronger the detection scheme is.

Obviously, the aforementioned approaches are inefficient and unscalable as
they are intrusive to the advertiser’s business operation and involve an online
TTP. We observe that missing a few transactions is a tolerable counting error to
Ps as long as the fraction of fraud is sufficiently small. Therefore, we design an
efficient and flexible scheme by slightly relaxing the security. The main results
of this paper is a cryptography and probability based deflation-fraud detection
scheme with the following attractive features.

– It detects any z amount of deflation frauds with a success probability at
least growing exponentially with z. The web publisher can tune a security
parameter to strike a balance between a high security assurance and a low
cost.

– It allows the web publisher to estimate the expected transaction amount,
which provides a sound basis to detect any frauds in a large magnitude.

– It is not intrusive to the advertiser in the sense that the transactions only
involve the advertiser and its users only. It is also user-friendly as end-users
do not need to maintain any secret information.

– It is efficient and scalable. The communication, computation and storage
costs incurred by our scheme are independent of the amount of transactions.

The rest of the paper is organized as follows. We discuss related work in
Section 2 and the building blocks in Section 3. Then, we formulate the problem
in Section 4. Section 5 proposes the deflation fraud detection scheme. We analyze
its security and performance in Section 6, then conclude the paper in Section 7.

2 Related Work

The most relevant work is by Johnson and Staddon [10]. They considered de-
flation fraud in content distribution. Three schemes are proposed in [10]. In the
first scheme, the verifier impersonates regular users using different pseudonyms.
Then, it checks whether its pseudonyms appears in the content distributor’s re-
port. The second scheme involves a TTP to pre-issue a set of keys to users in
certain distribution. The content distributor must use a key known to all users,
which helps the auditor to estimate the user set size. The third scheme is similar
to the second one with the difference being a reduced user storage. The con-
structions of [10] has obvious architecture drawbacks and are not applicable to
online advertising.



The problem investigated in this paper is akin to the count integrity in
publish-subscribe networks [7, 14]. A publish-subscribe system [7] involves a pub-
lisher which is the data source, a set of subscribers who receive their preferred
data items, and a broker network consisting of a set of broker nodes which dis-
seminate data from the publisher to the subscribers. The brokers report to the
publisher about the amount of data delivered to the subscribers. The approach
to count integrity proposed in [14] requires the publisher to participate in all
data delivery transactions. This approach obviously abandons the design prin-
ciple of publish-subscribe systems whose primary goal is to decouple publishers
and subscribers in order to be more scalable and to save the publisher from the
heavy workload of data delivery.

Web metering mainly deals with overcount fraud (a.k.a. inflation attacks).
Naor and Pinkas [17] proposed a secret sharing based scheme to verify the num-
ber of users served by a web server. Their scheme is not suitable for generic
online transactions since it requires the audit agency to initialize every user be-
fore running transactions. A special form of inflation attack is the well-known
click fraud, whereby the adversary cheats on the amount of website visits in-
stead of transactions. Gandhi et. al proposed in [9] countermeasures based on
construction of advertisement code. Similar works also include [11, 20, 18, 15, 9].

In [12], Markus Kuhn proposed a novel approach to probabilistically counting
a large collection of digital signatures, which may be used in applications like web
page metering or ranking mechanisms. Though very efficient, this scheme suffers
from inaccuracy, since it only provides an estimation on magnitude. However,
many business applications demand a more precise count. Moreover, it does not
address deflation fraud.

Another line of research related to our study is electronic voting schemes,
such as [6, 5, 16]. Among many security requirements such as receipt-freeness, a
fundamental requirement is that the ballots should be tallied correctly. Although
secure e-voting schemes can theoretically defeat inflation/deflation attacks, they
are not suitable for online advertising or content distribution, mainly because
e-voting has a special and expensive infrastructure and has a heavy toll on the
computation/communication costs.

3 Building Block and Notations

The cryptographic building block used in our scheme is the signature of knowl-
edge [4, 13], a non-interactive form of the zero-knowledge proof. The most primi-
tive signature of knowledge is Schnorr signatures [19], whereby the signer proves
that she knows the discrete logarithm of y to the base g in a cyclic group G = 〈g〉.
An extension of Schnorr signatures can be used to prove the equality of two dis-
crete logarithms. Suppose that g and g′ are two generators of group G, and
y = gx, y′ = g′x. Knowing x, the signer produces a signature of knowledge prov-
ing that DLOG(y, g) = DLOG(y′, g′). In essence, the signer generates a tuple
which can be treated as two Schnorr signatures sharing the same challenge. We
denote it by SKELOG[x : y = gx ∧ y′ = g′x].



In [4], Camenisch and Stadler defined the signature of knowledge of a dou-
ble discrete logarithm of y to the base g and a. Let y = ga

x

. Knowing x,
the signer computes (c, s1, · · · , sl) as the signature of knowledge denoted as
SKLOGLOG(x : y = ga

x

), where l is a security related parameter. Their scheme
is essentially a non-interactive version of l rounds of zero-knowledge proof with
l binary challenges. Since the challenge used in each round is one bit, the signer
can successfully cheat the verifier in one round with a probability 1/2. Therefore,
an adversary can forge SKLOGLOG[x : y = ga

x

] with a probability 1/2l. When
l is sufficiently large, the probability is negligible.

In this paper, we combine SKLOGLOG[x : y = ga
x

] and SKELOG[x : y =
gx∧y′ = hx], so that with the knowledge of x, the signer can produce a signature
of knowledge proving that the double discrete logarithm of y = ga

x

equals to the
discrete logarithm of y′ = hx. We denote it as SKELOGLOG[x : y = ga

x ∧ y′ =
hx]. Note that the computation of ax in computing y and the computation of hx

are in the same group. The details are shown in Section 5.

4 Problem Formulation

4.1 System Overview

A typical online advertisement system consists of three types of entities: a web
publisher Ps offering the advertising service through its web or search engines;
a (unknown-sized) set of users U ; and an advertiser Ad who offers services or
products to users. Ps displays to users the advertisement for Ad. By clicking the
advertisement, the user is redirected to Ad’s web site. The user is said to perform
a transaction if he signs up the service or downloads the product. The user
may or may not perform a transaction, solely depending on his own willingness.
Periodically, Ad reports to Ps the number of transactions contributed by Ps’s
advertisement. In deflation fraud, Ad under-reports to Ps in order to pay less
commission fee.

Our goal is to allow Ps to detect Ad’s cheating in an efficient fashion. In a
nutshell, the basic approach is to collect information from Ad and a tiny subset
of U . By analyzing the received data, Ps can discover (or suspect) the fraud in
a probability growing with the fraud amount. The proposed scheme consists of
the protocols/algorithms listed below.

– Initialization: Both Ps and Ad are initialized with the proper states. Ps au-
thorizes Ad to run n transactions in maximum within one billing cycle.

– Advertising: In this protocol, a user U ∈ U interacts with Ps, where an
advertisement of Ad is shown to U .

– Transaction: U may interact with Ad for an transaction, e.g. sign-up. It re-
ceives a receipt signed by Ad.

– Feedback: With a probability ρ, U runs this protocol with Ps to return his
receipt, where ρ is a system-wide parameter selected by Ps. (The choice of
ρ is discussed in Section 6.)



– Report: Ad reports to Ps about the amount of transactions performed. Ps
detects fraud based on both the receipts collected from users and the report
from Ad, and estimates the fraud amount (if any).

4.2 Assumptions, Adversary Model and Security Notions

We assume that every user U ∈ U is independent, and their protocol executions
are regarded as independent events. We assume that all communication channels
are confidential and authentic, e.g. via SSL/TLS connections. Henceforth, we do
not consider attacks on the communication channels.

The adversary in our scheme is Ad. If there are in fact N transactions, Ad’s
objective is to report to Ps a fraudulent transaction count N ′ < N without
being detected. We assume that Ad is rational in the sense that it would not
risk the exposure of its long term secret and it sets a risk threshold for itself.
We do not consider collusion attacks between Ad and corrupted users. This is
because Ad can always run the transaction with its colluders without executing
the prescribed protocol1.

The security strength of our scheme is defined based on the upper bound of
the detection miss probability with regard to the amount of frauds.

Definition 1 (Deflation Resistance). A deflation fraud detection scheme in-
volving a publisher Ps and an advertiser Ad is said to be (z, ν)-secure for ν ∈ [0, 1]
and z ∈ N, if and only if the probability that Ad successfully undercounts x ≥ z
transactions without being detected is bounded by ν, i.e. Pr[detection fail |x ≥
δ] ≤ ν.

A perfect detection scheme should be (1, 0)-secure. Namely, Ps successfully de-
tects any amount of deflation fraud. This can only be achieved by supplying
Ps with the complete information about Ad’s transactions. The aforementioned
naive approaches, for instance, by introducing an online TTP, fall in this cate-
gory. Our goal is to construct an efficient and scalable scheme by relaxing the
security strength slightly, as long as z and ν are small enough to meet the ap-
plication needs.

5 The Scheme

A high level view of the proposed scheme is as follows. Ps delivers a sequence
of hash tokens to Ad. When Ad performs a transaction, a receipt derived using
a fresh token is returned to the user. A small set of users report their receipts
to Ps. The latter verifies whether Ad honestly runs the prescribed protocol and
detects any anomaly using the received data. The details are presented below.
In the sequel, we use the notations listed in Table 1.

1 Note that cryptography techniques alone can not detect collusion attacks. Promising
solutions could be based on trusted hardware or TTP. Nonetheless, we remark that
it is infeasible for Ad to collude with a large portion of Internet users.



Notations Description

(x, y) Ad’s private and public key pair for signing receipts to users;
(u, v) Ad’s another private and public key pair for token usage proof;
ti the i-th tokens issued to Ad;
C Ad’s transaction counter;

Iclick Ps’s click counter;
Cf the maximum transaction count received by Ps.
If the click count corresponding to Cf .
N the actual amount of transactions;
M the total number of advertisement clicks;
ρ the probability for a user to run Feedback after Transaction.

Table 1. Table of Notations

5.1 Initialization

Given a system wide security parameter κ, all participants agree on the following
cryptographic setting. Let p, q, q′ be three large primes satisfying q|p − 1 and
q = 2q′ + 1, and the discrete logarithm problem is intractable in both Z∗p and
Z∗q . Let g ∈R Z∗p such that G = 〈g〉 is a cyclic subgroup of Z∗p of order q. Let
h ∈R Z∗q such that Gh = 〈h〉 is a cyclic subgroup of Z∗q of order q′. Hereafter,
we omit the modulus p and q for group operations in G and Gh respectively, if
they are indicated from the bases in use. Let H :Zq→Zq be a collision resistant
hash function; and let H :{0, 1}∗ → {0, 1}k be a collision resistant hash function,
where k is a parameter determined by κ, e.g. k = 160. Let l be a parameter for
SKELOGLOG determined by κ as well, e.g. l = 80.

Ps authorizes Ad to generate a chain of n hash tokens for n transactions. The
benefits of using a hash chains are: 1) to save the communication and storage
cost (i.e. a seed can generate the entire chain.); 2) to model the hash function
as a random oracle for the provable security, because a hash token will be used
in Transaction to derive a random number for signing a receipt. Note that the
communication cost for the protocol is constant. The protocol of initialization is
shown in Figure 1.

5.2 Advertising

Ps displays Ad’s advertisements, e.g. a flash or a banner, on its web pages. It also
maintains a counter Iclick to keep track of the number of advertisement clicks.
Initially, Iclick = 0. Advertising begins when U clicks the advertisement. Then,
Ps sends the (Iclick, t0) to U . Then, Ps sets Iclick ← Iclick+1. To avoid confusion,
we use M to denote the final Iclick, i.e the total number of advertisement clicks.



Initialization Protocol (by Ps and Ad)

1. Ps executes the following:
(a) Generate a random seed T ∈R Zq; choose n ∈ N as the maximum amount

of transactions Ad can perform;

(b) Set t0 ← Hn(T ), where Hn(T )
4
= H(. . . H︸ ︷︷ ︸

n times

(T ) · · · );

(c) Send {T, t0, n} to Ad;
2. Ad executes the following:

(a) Select x ∈R Zq and set y ← gx mod p.
(b) Select u ∈R Zq′ and set v ← hu mod q
(c) Output PK := (y, v, p, q) as Ad’s public key and SK := (x, u) as its

private keys. Ad’s receipt signature key pair are (y, x).
(d) On receiving {T, t0, n}, check whether t0 = Hn(T ). Abort if not equal.

Otherwise, accept them.

Fig. 1. The Initialization protocol

5.3 Transaction

Ad maintains a counter denoted by C to count the number of transactions.
Initially, C = 0. After running Advertising, U may decide to run a transaction
with Ad. Similarly, a user can also decide not to run Transaction.

In the protocol, U first sends its Iclick to Ad requesting for a transaction. Ad
then signs Iclick using its receipt signature key x together with a random number
derived from the token tC . As a result, Ad responds to U with two parts: a receipt
which is a Schnorr signature on Iclick, and a SKELOGLOG proof proving that
the randomness in the Schnorr signature is derived from a hash token in the
authorized hash chain. U completes the transaction if both the signature and
the proof are verified true. The protocol details are described below in Figure 2.

5.4 Feedback

After running Transaction, U may choose to run Feedback to send a feedback to
Ps. Let ρ denote the expected probability for a user to run Feedback after Trans-
action2. In the protocol, U simply returns its Iclick and its receipt (C, tC , γ, β)
to Ps. Let Λ denote all receipts received. Let Cf denote the largest C in Λ, and
If denote the Iclick paired with Cf . When a new receipt is inserted into Λ, Ps
runs the function Fraud(Λ) which returns 1 if there exist two distinct receipts
with the same hash token. The details are described in Figure 3. Initially, Λ = ∅
and Cf = 0.

2 Ps sets ρ by using financial tools, e.g. receipt redemption or lucky draw, to attract
users to run the protocol.



Transaction Protocol (by Ad and U)

Ad’s input : {T, x, u}, the present transaction counter C; U ’s input: {Iclick, t0}.

1. Ad executes the following steps, when receiving Iclick from U .
(a) Compute tC ← Hn−C(T ), and α← H(tC‖Ad).
(b) Compute r ← αu mod q.
(c) Compute a Schnorr signature (γ, β) as γ = H(tC‖y‖g‖Iclick‖gr) and

β = r − x · γ mod q.
(d) Randomly selecte r1, · · · , rl ∈R Zq′
(e) Compute wi ← hri and w′i ← g(αri ), for i = 1, · · · , l.
(f) Set ψ ← H(v‖h‖gr‖g‖tC‖w1‖ · · · ‖wl‖w′1‖ · · · ‖w′l).
(g) For i = 1, · · · , l, set

λi =

{
ri if ψ[i] = 0,

ri − u mod q′ otherwise.

(h) Send {C, tC , (γ, β), (ψ, λ1, · · · , λl)} to U ; then C ← C + 1.
2. U performs the following on receiving {C, tC , (γ, β), (ψ, λ1, · · · , λl)},

(a) Verify whether tC is in the hash chain rooted at t0. Namely, if t0 6=
HC(tC), return 0 and abort;

(b) Compute α← H(tC‖Ad).
(c) Evaluate the transaction verification function denoted by

V (tC , Iclick, γ, β, ψ, λ1, · · · , λl) as follows.
i. Compute W ← gβyγ .
ii. If γ 6= H(tC‖y‖g‖Iclick‖W ), return 0 and abort;

iii. For i = 1, · · · , l, compute

wi =

{
hλi if ψ[i] = 0,

vλi otherwise.
and w′i =

{
g(αλi ) if ψ[i] = 0,

W (αλi ) otherwise.

iv. If ψ 6= H(v‖h‖W‖g‖tC‖w1‖ · · · ‖wl‖w′1‖ · · · ‖w′l), return 0 and abort.
(d) Accept (C, tC , γ, β) as a receipt for this transaction and return 1.

Fig. 2. The Transaction Protocol

Note that the first step in Fraud(Λ) does not require additional modular expo-
nentiations since gβyγ has been computed when verifying the Schnorr signature
(γ, β). To save the time cost for finding cheating, Ps can make use of a Bloom
Filter to test the membership of gβyγ .

5.5 Report

Report is run by Ad and Ps at the end of each billing cycle. In the protocol,
Ad reports to Ps with Ĉ as the number of transactions. In a deflation fraud, Ĉ
is less than the actual number of transactions (denoted by N). Since Feedback



Feedback Protocol (by Ps and U)

Ps’s input: Λ,Cf ; U ’s input: {C, tC , Iclick, γ, β, ψ, λ1, · · · , λl}.

1. U sends to Ps: {Iclick, C, tC , γ, β, ψ, λ1, · · · , λl}.
2. Ps executes the following steps.

(a) Verify the receipt using the same algorithm in Figure 2. Abort if
V (tC , Iclick, γ, β, ψ, λ1, · · · , λl) = 0.

(b) Set Λ← Λ ∪ {(C, Iclick, γ, β)}.
(c) Execute Fraud(Λ) as follows:

i. If ∃(C, I ′click, γ′, β′) ∈ Λ, s.t 1) I ′click 6= Iclick and 2) gβyγ = gβ
′
yγ

′
,

compute x← (β−β′)/(γ′−γ). Claim Ad’s deflation fraud and return
1.

ii. If C > Cf , set Cf ← C, and If ← Iclick. Return 0.

Fig. 3. The Feedback Protocol

is independent of the Report, the execution of Report implies that Ps does not
discover cheating from Feedback. Therefore, Ps assesses the credibility of Ĉ using
the data it receives.

The data includes M,Cf , If , where M is the total number of advertisement
clicks and is the result from Advertising; Cf and If are from Feedback. With
these data and ρ, Ps runs the following steps.

1. If Cf > Ĉ, then Ps claims that Ad cheats and the amount of deflation fraud

is at least Cf − Ĉ.

2. Ps may runs an anomaly detection using Ĉ, ρ, Cf , If ,M . In short, Ps first

computes E[N ]. An alarm will be raised if the difference between E[N ] and Ĉ
is larger than a positive threshold selected by Ps. Furthermore, Ps evaluates
the probability that Ad cheats. If both are significantly large, Ps can seek for
the intervene of a trusted party for auditing. Note that anomaly detection
produces false positives and false negatives. More details are explained in
Section 6.2.

3. Ps and Ad settle the payment. If Ĉ = n, they reset the entire protocol.
Namely, Ps issues a new batch of hash tokens to Ad by running a new round
of Initialization. Otherwise, Ps and Ad continue to use the present batch of
tokens until n transactions are performed.

6 Analysis

Recall that we do not consider collusion attacks. Therefore in order to produce a
valid receipt, Ad has to either honestly execute all Transaction with fresh tokens
or to cheat by using duplicated tokens. For easiness of discussion, we refer to
the first type of attack by withholding attack and the second type of attack by
duplication attack. Let Pw,z denote the maximum probability of detection failure
when Ad runs withholding attacks for z transactions only; and Pd,z denote the



maximum probability of detection failure when Ad runs duplication attacks for
z transactions only.

Caveat. The withholding attack actually does not benefit Ad in the long run,
as it will not get new authorization tokens until the current batch of n tokens
are used up. If Ad undercounts for the present, it has to inflate the count back in
the future. Moreover, as shown later in Lemma 3, the duplication attack is more
advantageous to Ad. Although our scheme has such deterrence, we still include
the withholding attack into our analysis for the completeness of the discussion.

We now first proceed to analyze the success probability that Ps catches dupli-
cation attacks. We then analyze how Ps further detects fraud by finding anomaly.
Finally, we analyze other security properties and performance.

6.1 Token Duplication Detection

To prove the security strength of the scheme, we first show that one hash token
only results in one unique random number in Ad’s Schnorr signature (γ, β).

Lemma 1. Let σ = (t,M, γ, β, ψ, λ1, · · · , λl) and σ′ = (t′,M ′, γ′, β′, ψ′, λ′1, · · · , λ′l, )
be the user receipts for two transactions. If t = t′ and V (σ) = V (σ′) = 1, then
Pr(gβyγ 6= gβ̄yγ̄) is negligible.

Proof. The proof is trivial. We show that Pr(gβyγ 6= gβ
′
yγ

′
) < 2ε, where ε

denotes the error probability of the signature of knowledge scheme.
Let W = gβyγ and W ′ = gβ

′
yγ

′
. Since V (σ) = V (σ′) = 1, we have

Pr[DLOGLOG(W,g,t)=DLOG(v,u)]=Pr[DLOGLOG(W ′,g,t′)=DLOG(v,u)]=1−ε

according to the soundness definition of signature of knowledge. Since t = t′,
we have Pr(W 6= W ′) < 1− (1− ε)2 < 2ε. Therefore, if the signature of knowl-
edge scheme is sufficiently sound, the probability that one hash token results in
different randomness is negligible. �

Thus, if two users have verified their receipts with the same hash token tC
in Transaction, the probability that Ad has used the same randomness gr in
generating two different Schnorr signatures is overwhelming. This serves as the
basis for Ps to catch Ad’s fraud. We summarize it in the following lemma.

Lemma 2. If ρ < 1/3, then Ad’s duplication attack with z tokens can escape
detection with the maximum probability being (1−ρ2)z. Namely, Pd,z = (1−ρ2)z.

Proof. (sketch) For each of the z duplication attacks, Ad computes a Schnorr
signature with a duplicated hash token which has been used in another signature.
According to Lemma 1, Ad will be caught if any two users return the same hash
token.

To cheat z times, Ad has two exclusive tactics. One is to use z distinct tokens
with each being used exactly twice, i.e. reused exactly once. The other approach
is that there exists at least one token which is used more than twice in total. The
first tactic is more optimal for Ad than the second one. It can be proved by using



an induction on z to compare the two probabilities of Ad’s successful evasion. A
rigorous proof is in Appendix A. The intuition is as follows. For the first tactic,
only when both users receiving the same hash token return their receipts to Ps,
can Ad be caught. In contrast, for the second one, it allows polynomially more
combinations of feedbacks. Therefore, the first tactic maximizes the likelihood
for Ad to evade detection.

To be conservative, we evaluate the scheme’s resistance to Ad’s best tactic,
i.e. no hash token is used more than twice. Therefore, there are z pairs of Schnorr
signatures which share a common hash token. Note that every user runs Feedback
independently. Hence, the probability that two users with the same hash token
return is ρ2. As a result, Ad can escape after cheating z times with a probability
(1− ρ2)z. �

Next, we show that the duplication attack is more advantageous to Ad, as
it allows Ad to escape fraud detection with a higher probability than the with-
holding the same amount of transactions.

Lemma 3. For a deflation fraud with z transactions, Ad has a higher probability
to escape detection by the duplication attack only than by the withholding attack
only for z transactions. Namely, Pw,z < Pd,z.

Proof. In proving Lemma 2, we have shown that Pd,z = (1−ρ2)z. The withhold-
ing attack can only be detected in Report, when there exists (C, Iclick, γ, β) in Λ
s.t. C > Ĉ. Thus, for withholding z transactions, Ad evades detection as long as
none of those z users ignored by Ad runs Feedback with Ps. The probability of
that event to occur is Prw,z = (1− ρ)z, which is less than Pd,z. �

From the lemmas above, we show the security strength of the proposed
scheme in the following theorem.

Theorem 1. The proposed scheme is (z, (1 − ρ2)z)-deflation-resistant for ρ <
1/3.

Proof. Suppose that Ad intends to deflate the transaction count by z in total.
Without loss of generality, suppose that Ad withholds z1 transactions and du-
plications z2 tokens, s.t. z = z1 + z2 and z1, z2 ≥ 0. Ad evades detection when
Ps fails to detect both attacks. Thus Pr[detection fail|z] = Pw,z1 · Pd,z2 . From
Lemma 3, Pr[detection fail|z] < Pd,z1 · Pd,z2 = Pd,z = (1− ρ2)z.

Alternative, we can prove this by showing Pr[detection fail|z] = (1−ρ)z1(1−
ρ2)z2 = (1− ρ)z(1 + ρ)z2 which reaches its upper bound when z2 = z. Thus, the
propose scheme is (z, (1− ρ2)z)-deflation-resistant. �

Remark 1. Our scheme deters deflation fraud by revealing Ad’s private key,
in a similar fashion as in offline detection of double-spending e-cash [3]. Suppose
that there exit two distinct user receipts (β1, γ1) and (β2, γ2) using the same
random number r, i.e. β1 = r − x · γ1 mod q and β2 = r − x · γ2 mod q. Thus,
it is straightforward to derive x by computing (β1 − β2)(γ2 − γ1)−1 mod q. We
argue that the private key extraction is a deterrence to Ad’s duplication attacks.



Remark 2. It is an interesting challenge to design an efficient and practical
(1, 0)-deflation-resistant deflation fraud detection scheme. The difficulty stems
from the efficiency requirement. We observe that it seems infeasible to detect all
frauds by using cryptographic techniques alone, unless all transactions data are
known to Ps.

Remark 3. When ρ ≥ 1/3, the probability to detect fraud is even higher,
because Ps collects more information with a higher ρ. Nonetheless we do not
have a close form formula to describe the success probability. Therefore, the
constraint on ρ in the above theorem is not an advantage to the adversary. We
also argue that a practical ρ is typically small due to Ps’s expense constraints.

6.2 Anomaly Detection

Even though Ad’s attack possibly evades the token-duplication detection in both
Feedback and Report, Ps can also detect the fraud by using probability analy-
sis. Different from the previous detection which relies on the non-repudiable
evidences, the probability analysis only indicates the likelihood of Ad’s cheating.

Detection using Cf . Recall that from Feedback execution, Ps concludes that
there are at least Cf transactions. Based on Cf , Ps estimates the expected N
using the following theorem.

Theorem 2. Let N be the random variable denoting the total number of trans-
actions. Let X be the random variable denoting the maximum transaction count
received in Feedback, whose space is [0, N ]. Then E[N ] > E(X) + (1− ρ)/ρ.

Proof. Since every user is independent in running Feedback, thus Pr[X = c|N =
n] = ρ(1 − ρ)n−c. Thus, we have E[X|N = n] =

∑n
i=0 iρ(1 − ρ)n−i = n − (1 −

ρ)/ρ− (1− ρ)n+1/ρ. Therefore, we have

E[X] = E[E[X|N = n]] =
∑
n

E[X|N = n]Pr[N = n]

=
∑
n

(n− (1− ρ)/ρ− (1− ρ)n+1/ρ)Pr[N = n]

= E[N ]− (1− ρ)/ρ
∑
n

Pr[N = n]− 1

ρ

∑
n

(1− ρ)n+1Pr[N = n]

< E[N ]− (1− ρ)/ρ

Therefore, E[N ] > E(X) + (1− ρ)/ρ which completes the proof. �

In fact, if N is known to be in the range (N0,+∞) where (1 − ρ)N0+1 ≈ 0,
Ps can even conclude that E[N ] ≈ E[X] + (1 − ρ)/ρ. Next, we analyze how to
estimate E[X] from the known information.

Let εA be Ad’s risk threshold. Let Z be the total amount of duplication
attacks Ad feels safe to perform in order to evade the token-duplication detection.
Namely (1−ρ2)Z < εA. To maximize its deflation fraud, Ad attempts to minimize



Cf as much as possible. Since each user runs Feedback independently, Ad cannot
predict which user would return a receipt. We remark that for every transaction,
Ad’s cheating is prior to the user’s Feedback. Thus, Ad’s Z cheating is equivalent
to reduce the transaction count by Z, since Z tokens are duplicated. Thus, the
actual E[X] is only E[N ]− Z − (1− ρ)/ρ.

As Ps knows ρ, it can estimate Z < z0 where (1 − ρ2)z0 ≈ εA. Then, it
estimates the expected N as Cf +z0 +(1−ρ)/ρ according to the above theorem.

If the difference between the calculated E[N ] and Ĉ is much larger than a pre-
determined threshold, Ps suspects that Ad has deflation frauds.

Detection using If . From the protocol execution, Ps observes that there exist
M − If users whose click counts are larger than If and none of them offers
feedback. Let d = M − If and let Ω denote this set of d users. According to Ad’s

report, there exist k = Ĉ − Cf transactions generated by Ω. Ps checks whether
Ad cheats by executing the following steps.

1. Ps computes ξ = Cf/If as the expected probability for one user making a
transaction following an advertisement click.

2. Let Pi denote the probability of the event that there are i users in Ω who
have run Transaction with Ad. Ps computes Pi =

(
d
i

)
ξi(1− ξ)d−i.

3. Let a random variable A denote the number of feedbacks from Ω, and a ran-
dom variable B denote the number of transactions from Ω with no feedback
being sent to Ps. Let χ denote Pr[B > k|A = 0]. Essentially, χ is the condi-
tional probability that Ad has under-reported in the present circumstance.
Ps evaluates χ as

χ =

∑d
i=k+1 Pi(1− ρ)i∑d
i=0 Pi(1− ρ)i

=

∑d
i=k+1

(
d
i

)
ξi(1− ξ)d−i(1− ρ)i

(1− ξρ)d

If χ is larger than a positive threshold, e.g. 0.5, Ps suspects that Ad cheats.

In summary, Ps can detect deflation cheating according to Cf and If . With

a chosen ρ, the expected k = Ĉ − Cf is at least (1 − ρ)/ρ. If k is significantly
less than its expected value, Ps calculates χ. Figure 4 plots the relation between
k and χ for d = 500 and different ρ, ξ. It shows that if Ad under-reports Ĉ, a
smaller k will result in a larger χ. In the worst case, ρ = 0.01 and ξ = 0.03 where
the expected k is 99, Ad can hide about 80 transactions if the threshold for χ is
0.5. In the best case, ρ = 0.05 and ξ = 0.1 where the expected k is only 19, any
deflation will be detected since χ is almost 1 when k < 19.

Note that ξ is application specific. Ps can only tune ρ for the desired security
strength. Next, we show how to tune ρ by taking all factors into consideration.

Tuning Security and Cost On the one hand, Ps prefers a larger ρ so that
more users return their receipts, and as a result, the chance of successful fraud
detection is higher; on the other hand, a larger ρ implies a higher financial cost
for more rewards. We show below how Ps strikes a balance between security



020406080100120

k

0

0.2

0.4

0.6

0.8

1

Χ

ξ=0.1, ϱ=0.01
ξ=0.1, ϱ=0.05
ξ=0.03, ϱ=0.01
ξ=0.03, ϱ=0.05

Fig. 4. χ grows when k decreases, for d = 500, ξ = 0.1, 0.03, and ρ = 0.01, 0.05.

and cost by tuning ρ.3 Let τ denote the probability to successfully catch the
dishonest Ad by protocol execution, i.e. τ = 1− (1− ρ2)z.

0 200 400 600 800 1000
Number of Frauds, z

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y 
of

 b
ei

ng
 c

au
gh

t, 
τ

ρ=0.2
ρ=0.1
ρ=0.05
ρ= 0.02

(a) Exponential growth of τ with z using
different ρ.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

The probability to run Feedback, ρ

0

200

400

600

800

1000

M
ax

im
um

 n
um

be
r o

f f
ra

ud
s,

 z τ=0.3
τ=0.5
τ=0.7
τ=0.8

(b) Fraud deterrence with different ρ

Fig. 5. Balancing security and cost by tuning the redemption probability

Figure 5(a) depicts the exponential correlation between τ and the number of
frauds z, when different fixed ρ are chosen by Ps. As evident in the figure, a low ρ
results in a reasonably high probability in detecting a small amount of deflation
frauds. Note that in a large scale web advertising, the volume of transactions
is usually in thousands or even more. With around one tenth of all users run
Feedback, it is expected for our scheme to catch any fraud which accounts for
more than one percent of the total volume.

3 The more rewards are offered by Ps, the higher ρ for user redemption. The exact
relation between ρ and financial cost is beyond the scope of this paper.



Suppose that Ad sets up a risk threshold τ and will not make frauds causing
a risk higher than τ . Figure 5(b) shows the maximum frauds Ad would have in
different risk profiles. The figure depicts the correlation between z and ρ with
respect to different constant risk profile τ . For instance, if 10% of the users
redeem their receipts, Ad can only cheat around 80 transactions to keep its risk
below 50%.

In summary, the anomaly detection has a weaker demand for ρ, than dupli-
cation detection does. Therefore, Ps can set ρ according to its own risk profile.
Generally, for applications with thousands of transactions, Ps only needs to set
ρ between 0.05 and 0.1, which provides sufficient security assurance.

6.3 Other Security Properties

Unforgeability and Non-repudiation. A malicious publisher Ps may collude
with corrupted users to forge Ad’s signatures so as to frame Ad. We show that
the Schnorr signature from Ad is still existentially unforgeable against chosen
message attacks. In other words, our scheme does not compromise the security
of the standard Schnorr signature scheme.

Theorem 3. With the discrete logarithm assumption in G and Gh, Ad’s Schnorr
signature in Transaction is secure against existential forgery attacks under the
random oracle model.

Proof. (sketch) Let A be the algorithm forging Ad’s Schnorr signature. A is
allowed to access a signature oracle Os with a query m, and is allowed to query
a random oracle O. A’s goal is to forge a signature (γ∗, β∗) on a message m∗

which is not sent to Os. We show that if A succeeds in forging a signature,
we can construct an algorithm B which uses A to solve the discrete logarithm
problem in G.
B is given (g, y, p, q, q′) where p, q, q′ are large primes satisfying q = 2q′ + 1

and q|p−1, and g’s order in Z∗p is q. B’s goal is to find x such that y = gx mod p.
It simulates O and Os and interacts with A. B sets Ad’s public key as y. Then
it randomly chooses h ∈ Zq, picks u ∈ Zq′ and computes v = hu mod q. B
initializes A with (y, v, g, h, p, q). The hash function H() is modeled as a random
oracle.

– When A queries Os with t,M , B’s simulation is done as follows:
1. Select γ, β ∈R Zq; Select α ∈R {0, 1}k;
2. Set O such that γ = H(t‖y‖g‖M‖gβyγ) and α = H(t‖Ad). Namely, O

stores (t‖y‖g‖M‖gβyγ , γ) and (t‖Ad, α) into its local table.
3. Select ψ, λ1, · · · , λl ∈R Zq′ ;
4. For i = 1, · · · , l, set wi = hλi and w′i = gα

λi
if ψ[i] = 0; otherwise set

wi = vλi and w′i = (gβyγ)α
λi

;
5. Set O such that ψ = H(v‖h‖gβyγ‖g‖t‖w1‖ · · · ‖wl‖w′1‖ · · · ‖w′l), and

store (v‖h‖gβyγ‖g‖t‖w1‖ · · · ‖wl‖w′1‖ · · · ‖w′l, ψ) in the local table and
then return (α, γ, β, λ1, · · · , λl) to A.



Note that A is not able to distinguish whether the tuples returned by B are
simulated results or from a real protocol execution, because all are from the
same uniform distribution. Note that gβyγ in our construction is random as
well, because α is an output from the random oracle.

– When A queries O with a query m, B searches its table. If there is an entry
(m,mh), it returns mh to A. If no such entry is found, B randomly picks
mh ∈R {0, 1}k, returns mh and stores (m,mh) into the table.

Finally, A halts and outputs a Schnorr signature (γ∗, β∗ = r∗−xh∗). By the
Forking Lemma, A can produce another valid signature (γ∗1 , β

∗
1 = r∗−xh∗1) with

a non-negligible probability by rewinding the random oracle. Therefore, B can
solve the discrete logarithm problem by computing x = (β∗1 − β∗)/(h∗ − h∗1). �

Theorem 3 shows that neither Ps nor users can forge Ad’s Schnorr signatures.
This has twofold implications. On the one hand, it provides security assurance
for Ad since its signatures are not be forged; on the other hand it implies that
Ad cannot repudiate its fraud, if it is caught with two Schnorr signatures using
the same hash token.

Privacy. If Ad uses hash tokens along the hash chain, a user knows the count
of transactions. In case the exposure of transaction count is undesirable for Ad,
the following minor revision on the protocol can be applied.

In Initialization, both Ad and Ps can agree on a pseudo-random permutation
function Fs keyed by a shared secret s. For C ∈ [1, n], Fs(C) maps C into another
random number in [1, n]. In Transaction, Ad picks a hash token based on Fs(C).
Without knowledge of s, U cannot infer the total amount of hash tokens used
by Ad. In Feedback, Ps recovers C using the hash token and F−1

s (C). Note that
the revelation of unused hash tokens poses no threat to either Ad or Ps.

6.4 Performance

The amount of information stored by Ad are only its secret keys (x, u), a trans-
action counter C and a hash chain seed T . Therefore, the storage cost is constant
with respect to the amount of transactions. In terms of computation cost, Ad
makes 3l + 1 modular exponentiations. Nonetheless, if Ad needs to reduce its
real-time response time, it can pre-compute all the modular exponentiations,
then only performs modular additions and hash computations to issue receipts.
In terms of communication cost, Ad has a constant communication cost with Ps
during Initialization and Report, and sends (l + 3) · |q| bits in Transaction, which
is nearly two kilobytes in a practical setting.

The main cost of Ps is its storage overhead for Λ, whose expected size is
asymptotically linear with ρN . The main cost for users is their computations for
signature verification in Transaction, which involve 3l + 1 modular exponentia-
tions. Therefore, our scheme may not be suitable for devices with constraints in
computation resource, such as mobile phones.



7 Conclusion

In conclusion, we propose a deflation fraud detection scheme for the CPA ad-
vertising model, taking a hybrid approach based on cryptography and proba-
bility techniques. For any z amount of deflation cheating in the advertiser Ad’s
transactions, the web publisher Ps can detect it with a success probability at
least 1 − (1 − ρ2)z. As a deterrence, Ps can extract Ad’s secret signature key.
Although in the long run Ad does not benefit from the deflation fraud by with-
holding transactions, Ps can still detect it if the amount is over a prescribed
threshold. Furthermore, Ps can estimate the expected transaction amount N as
Cf + (1− ρ)/ρ+ z0 where z0 is estimated according to Ad’s risk profile.

The proposed scheme preserves the simplicity of the existing advertising
model, without introducing any third party. It is user-friendly in the sense that
users are not required to possess any secrets. Ad’s communication, computation,
storage cost are all constant. In addition, Ps can tune its security parameter ρ
to balance the security and cost.

Acknowledgement

We thank Robert Deng, Jian Wen and Junzhuo Lai for the valuable discussions.
We thank anonymous reviewers for their constructive comments. This work is
supported by the Office of Research, Singapore Management University.

References

1. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and veriably en-
crypted signatures from bilinear maps. In Proceedings of Advances in Cryptology
- EUROCRYPTO, 2003.

2. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In
Proceedings of Advances in Cryptology- ASIACRYPTO, 2007.

3. S. Brands. Untraceable off-line cash in wallet with observers. In Proceedings of
Advances in Cryptology - CRYPTO’93.

4. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Advances in Cryptology- CRYPTO, 1997.

5. D. Chaum. Secret-ballot receipts: True voter-verifiable elections. In IEEE Security
and Privacy, 2004.

6. D. Chaum, P. Y. Ryan, and S. Schneider. A practical voter-verifiable election
scheme. In Proceeding of ESORICS, 2005.

7. P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys, 35, June 2003.

8. M. Franklin and D. Malkhi. Auditable metering with lightweight security. Journal
of Computer Security, 6(4), 1998.

9. M. Gandhi, M. Jakobsson, and J. Ratkiewicz. Badvertisements: Stealthy click-
fraud with unwitting accessories. Anti-Phishing and Online Fraud, Part I Journal
of Digital Forensic Practice, 1, Nov 2006.

10. R. Johnson and J. Staddon. Deflation-secure web metering. International Journal
of Information and Computer Security, 1, 2007.



11. A. Juels, S. Stamm, and M. Jakobsson. Combatting click fraud via premium clicks.
In Proceedings of USENIX Security, 2007.

12. M. Kuhn. Probabilistic counting of large digital signature collections. In USENIX
Security Symposium, 2000.

13. A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable solution
to electronic cash. In Proceeds of Financial Crypto, 1998.

14. S. Majumdar, D. Kulkarni, and C. Ravishankar. Addressing broker violations of
count integrity in publish-subscribe systems. In Proceedings of ACM Infocom, 2007.

15. B. Masucci and D. Stinson. Efficient metering schemes with pricing. IEEE Trans-
actions on Information Theory, 47(7), 2001.

16. T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting
privacy. In Proceedings of Advances in Cryptology- CRYPTO, 2006.

17. M. Naor and B. Pinkas. Secure and efficient metering. In Proceedings of Advances
in Cryptology -EUROCRYPTO, 98.

18. W. Ogata and K. Kurosawa. Provably secure metering scheme. In Advances in
Cryptography – Asiacrypto, 2000.

19. C. P. Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology- CRYPTO, 1989.

20. L. Zhang and Y. Guan. Detecting click fraud in pay-per-click stream of online
advertising network. In Proceedings of ICDCS, 2008.

Appendix A

Theorem 4. Suppose that each user has a probability ρ to redeem a receipt. Let
Pk denote Ad’s escape probability of cheating k times by reusing k distinct hash
tokens. Let P ′k denote Ad’s maximum escape probability of cheating k times by
reusing k′ distinct hash tokens, 0 < k′ < k. Therefore, if ρ < 1/3, then for all
k > 1, Pk > P ′k.

Proof. We prove the theorem by using induction on k.
(i) k = 2. It is straightforward to see that P2 = (1− ρ2)2. In addition, we have
k′ = 1. In other words, Ad uses a hash token for three times, two out of which are
considered as cheating. Therefore, Ad’s fraud can be detected when any two of the
three corresponding users redeem their receipts. Thus, P ′2 = (1−ρ)3 +3ρ(1−ρ)2.
So, P2 − P ′2 = ρ2 − 3ρ3 = ρ2(1− 3ρ) > 0.
(ii) k > 2. (Induction hypothesis) Suppose that Pk > P ′k for some k. We prove
that Pk+1 > P ′k+1. Clearly, we have Pk+1 = (1 − ρ2)k+1. Let U denote any
user among the k + 1 cheating victims and t denote the hash token in the
signature U receives. Suppose that there are c cheats whereby the token t is
used. Therefore, Ad can escape detection when these c cheats are not detected
and the remaining k + 1 − c cheats are not detected either. Hence, If c = 1,
P ′k+1 = P ′kP1 < PkP1 = Pk+1, due to the induction hypothesis. Otherwise,
P ′k+1 ≤ P ′k+1−cP

′
c < Pk+1−cPc = Pk+1. Thereby, P ′k+1 < Pk+1 which completes

the proof. �


