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Abstract
A computing device typically identifies itself by exhibiting
unique measurable behavior or by proving its knowledge
of a secret. In both cases, the identifying device must reveal
information to a verifier. Considerable research has focused
on protecting identifying entities (provers) and reducing
the amount of leaked data. However, little has been done to
conceal the fact that the verification occurred.

We show how this problem naturally arises in the context of
digital emblems, which were recently proposed by the Interna-
tional Committee of the Red Cross to protect digital resources
during cyber-conflicts. To address this new and important
open problem, we define a new primitive, called an Oblivious
Digital Token (ODT) that can be verified obliviously.
Verifiers can use this procedure to check whether a device
has an ODT without revealing to any other parties (including
the device itself) that this check occurred. We demonstrate
the feasibility of ODTs and present a concrete construction
that provably meets the ODT security requirements, even
if the prover device’s software is fully compromised. We
also implement a prototype of the proposed construction and
evaluate its performance, thereby confirming its practicality.

1 Introduction

We begin with the problem that motivates this research. Given
the rapid growth of cyber armed forces in numerous states and
the increasing likelihood of cyber-warfare, the International
Committee of the Red Cross (ICRC) introduced a digital red
cross emblem. According to ICRC, this emblem should [26]:

“(...) convey a simple message: in times of armed
conflict, those who wear them, or facilities and ob-
jects marked with them, must be protected against
harm.”

Similarly to prominently displayed red cross emblems phys-
ically painted on (or attached to) protected buildings, facilities,
or vehicles in war zones, the digital emblem is intended to flag

digital assets, e.g., computing devices, that are off-limits to
cyber-attacks under international humanitarian law. A possi-
ble use-case [26] described by the ICRC is as follows: During
an armed conflict with State A, State B’s malware spreads
automatically to affect computers managing A’s military
supplies. State B’s reconnaissance indicates that some sys-
tems are marked by digital emblems and belong to a hospital.
State B therefore amends its attack program to avoid harming
such systems. Among the various technical and operational
issues listed by the ICRC, we believe that any digital emblem
scheme must satisfy three important properties for the parties
involved in a cyber-conflict (e.g, States A and B) to respect it1:

• Verification Obliviousness Emblem verification must
not put the aggressor (State B) at risk of being exposed.

• Binding Integrity Emblems should not be misused by
the administrator (State A) “to falsely claim protection,
e.g., by routing operations through facilities showing the
emblem.” [26]

• Security Preservation The security of protected assets
should not be weakened by emblems, i.e., State B should
be unable to leverage information returned by emblems
to facilitate or ease its attacks on State A, even if it
decides to do this contrary to the law.

Since the original call to action on digital emblems by
the ICRC, there is increasing interest in this topic, including
within the Internet Engineering Task Force (IETF) [33].
Thus far, two realizations of a digital emblem [26, 32] have
been proposed and more may be on the way. Both proposals
assume that the administrator (State A) is trusted. One
technique embeds information in visible system artifacts
[26] (e.g., file names, IP addresses, or domain names) where
the names or associated metadata indicate that the entity is
protected. The other technique is the Authenticated Digital
Emblem (ADEM) scheme [32], which builds a PKI-like
infrastructure for verifying digital emblems inserted into
DNS, TLS, and other communication.

In practice, we believe that the security of either technique

1The fact that some parties may not respect international humanitarian
law neither lessens nor obviates the ICRC’s need for digital emblems.



is uncertain. A dishonest administrator can easily break verifi-
cation obliviousness by monitoring accesses to a file emblem.
It can also compromise binding integrity by cloning a file em-
blem to unauthorized devices or by using a device protected
by a digital emblem as a network proxy for its own (not pro-
tected) devices’ communications. These administrator attacks
are possible due to the inherent tension between binding
integrity and (either or both) verification obliviousness and
security preservation. We elaborate on this in the next section.

In this paper, we tackle these limitations and propose a
novel digital emblem scheme that satisfies three properties
listed above without trusting the system software and the
network infrastructure on the administrator’s side. The
proposed digital emblem is a dynamically generated proof
that a device is protected under international humanitarian
law, in contrast with prior schemes where the emblem is static.
To highlight this distinction and the different trust model, we
call our emblems Oblivious Digital Tokens (ODTs).

At a high level, we devise a way for a device to insert an
ODT into every outgoing TLS handshake. ODT generation
takes place inside a pre-installed Trusted Execution Environ-
ment (TEE) instantiated using Intel SGX or Arm TrustZone
(currently the most popular commodity TEEs), combining
system security and cryptographic techniques. Disguised as
a regular TLS server, an aggressor expects TLS connections
from compromised devices and verifies the ODTs (if any)
received over these connections. ODT verification is made
oblivious by ensuring that messages sent by the aggressor
are indistinguishable from a standard TLS message flow.

This work makes the following contributions.
• We propose the notion of ODT, which formulates the

ICRC’s digital emblem concept by considering both
sides of a cyber-conflict as adversaries with respect to
ODT security.

• We present a concrete ODT scheme constructed using
two components: a TEE-based system to generate ev-
idence for binding integrity and a Privacy-Preserving
Equality Test (PPET) protocol for evidence verification.

• We prototype the ODT scheme based on OpenSSL and
SGX and evaluate its practicability and performance.
Our results show that ODT generation costs about 144ms
per TLS handshake. For the security evaluation, we use
the Tamarin protocol verifier to prove binding integrity
and conduct a statistical and system analysis for security
preservation and verification obliviousness, respectively.

Generally speaking, the ODT scheme can be viewed as a
special type of a remote attestation technique. However, to
the best of our knowledge, it is the first-of-its-kind scheme
that considers both the prover and the verifier to be malicious
and is thus designed from the stance of a neutral third-party.
ORGANIZATION. Section 2 formulates the ODT problem as
an extension of digital emblems. Section 3 overviews our
ODT construction, components of which are described in
Sections 4 and 5. The complete scheme is presented in Sec-

tion 6. Our security analysis is given in Section 7, followed
by discussion and related work in Section 8.

2 Problem Formulation

We now review the ICRC digital emblem notion and formulate
it as an ODT under an adversary model that is more realistic
and stronger than those of prior schemes [26, 32].

2.1 ICRC Emblems
Figure 1 depicts the digital emblem setting considered by the
ICRC. There are three stakeholders:
(1) The neutral third party (N T P ) represents an organization,
such as the ICRC or Doctors Without Borders, that is
protected under international humanitarian law. N T P
issues and installs emblems on its devices: desktops,
servers, laptops, and smartphones. These devices are said
to be N T P -protected to reflect their special legal status.
Analogous to physical emblems, digital emblems just signal
this status and do not prevent attacks. Device D in Figure 1
illustrates one such example.
(2) Once deployed, i.e., placed in the field, D is managed by
an entity on one side of the cyber-conflict, called the adminis-
trator (Adm). Adm also manages other non-protected devices
without emblems, e.g., D′ in Figure 1.
(3) The offensive party in the conflict is the aggressor (Aggr),
who mounts cyber-attacks on Adm’s devices. According to
international humanitarian law, Aggr is expected to check for
the presence of an N T P -issued emblem on the targeted or
compromised device, before causing any damage. Hereafter,
we use the terms Aggr and Verifier interchangeably.

Admin Device D
Administrates

Aggressor
Connect

Proof

Neutral third party
Issue

Device D′
Connect

No proof

Message
Relation

Emblem

Figure 1: Overview of ICRC digital emblem use-case. D is
N T P -protected while D′ is not.

2.2 Incentives and Models
To simplify the description, we only consider two devices,
D and D′, as in Figure 1, throughout the rest of the paper.
The proposed technique is easily generalized to settings with
additional devices.



Adm and Aggr are hostile to each other and both attempt
to exploit the digital emblem scheme to their maximum ad-
vantage, in different ways.

• Adm has incentives to break binding integrity. It at-
tempts to deceive Aggr into believing that D′ is N T P -
protected.

• Adm also has incentives to break verification oblivious-
ness. It attempts to detect the existence of emblem verifi-
cation activities in D and D′, e.g., to determine whether
a file read or a network connection is being used for
emblem verification.

• Aggr has incentives to verify emblems in order to com-
ply with international humanitarian law. It also aims to
break security preservation by abusing emblem verifi-
cation to gather information about the target devices’
software and configuration, which is otherwise unavail-
able.

Attack Capabilities We assume that Aggr can stealthily hack
into both D and D′, and inject code using techniques indepen-
dent of the digital emblem. Adm fully controls the network
and its infrastructure. This is a more powerful model than the
classic Dolev-Yao adversary [19] that only controls communi-
cations. Adm also controls all system software, i.e., operating
systems and hypervisors (if any) in both D and D′, and has ac-
cess to all system resources, e.g., memory and I/O ports. Adm
monitors all relevant events, such as system calls, network,
and disk I/O, as well as scans all memory for specific patterns.

Trust Model We assume that D is equipped with a hardware-
based publicly identifiable TEE, e.g., Intel SGX or Arm Trust-
Zone. We assume that no adversary against binding integrity
can break the security assurances of the TEE, including data
confidentiality and control flow integrity. However, we do not
assume that executions inside the TEE reveal no side-channel
information to the adversary that attacks verification oblivi-
ousness, since such assurance is outside the TEE’s own design
scope. Thus, the TEE is not part of the Trusted Computing
Base (TCB) of verification obliviousness, which is realized
using cryptography.

We do not consider Aggr’s false claims of emblem absence
on N T P -protected devices. Likewise, emblem-unrelated
attacks launched from N T P -protected devices, e.g., a DDoS
attack against Aggr, are out of scope of this work.
CAVEAT. It is well-known that secret keys maintained within
TEEs are subject to various side-channel attacks [45, 12, 41].
The compromise of such keys directly breaks binding integrity
since the attacker can then clone the emblem. However, it
does not affect verification obliviousness in our model and is
orthogonal to security preservation.

2.3 Oblivious Digital Token (ODT)

The ODT definition embodies the ICRC’s notion of digital
emblems in the setting of Figure 1 with security in the adver-

sarial model described above.

Definition 1. Given any N T P -protected device D and
any unprotected device D′, an ODT is an unforgeable and
verifiable digital emblem created by an emblem generation
functionality, such that, if verified successfully, the ODT
proves to Aggr that D is N T P -protected and satisfies three
properties: (a) it is infeasible to produce an emblem proving
that D′ is N T P -protected (binding integrity); (b) no entity
(including Adm and N T P ) can detect the existence of Aggr’s
verification (verification obliviousness); and (c) no informa-
tion about D is leaked to Aggr (security preservation). □

Formal definitions of the properties (a)–(c) are deferred
to Section 7, which also contains our security analysis.
Note that an invalid ODT does not mean that the device
is not N T P -protected, because this could be the result of
tampering with ODT generation or transmission. Also note
that security preservation requires that an adversary cannot
deduce non-public information about D, for example, library
versions, running processes or secret keys, by engaging in
ODT verification. Security preservation is not concerned with
the anonymity of the device, since protected devices belong
to public institutions.

2.4 To Invade or Not To Invade
Aggr may wish to verify the ODT of a device just via network
communication because, by being non-invasive, it can easily
remain oblivious to Adm. However, our threat model reflects
that Adm is capable of system manipulation and we argue that
this prevents a non-intrusive Aggr from verifying emblems
with binding integrity. To see why this is the case, we describe
attacks on ADEM and some hypothetical schemes before
delving deeper into the problem.

2.4.1 Attacks on ADEM and Its Variants

Consider a DNS-based ADEM as a warm-up example. Adm
can simply assign D′ the IP address ostensibly for D. As
a result, Aggr would mistakenly believe that D′ is N T P -
protected. Similar attacks work against other types of ADEM
emblems.

One might try to strengthen ADEM with a hardware-based
TEE. For example, N T P could install a TEE on D to host
a device-specific signing key, with an associated certificate.
For every TLS connection, the TEE then returns to its peer
a dynamically generated emblem, i.e., an attestation using
the current TLS handshake secret and the device state. This
scheme would prevent Adm from cloning the emblem from D
to D′, since the TEE’s key is bound to D’s hardware. However,
Adm can route D′’s network traffic through D, similar to a
NAT setting. This attack, which is explicitly noted by ICRC,
breaks binding integrity since the remote party would mis-
takenly treat its communication peer D′ as N T P -protected.



Similarly, isolating the entire TLS layer or even the hard-
ware interface using the TEE only makes Adm’s routing at-
tack more complex, rather than effectively stopping the attack.

2.4.2 The Core Issue

Under our adversary model, Adm can manipulate the system
and network infrastructure so that no reliable device name-
space is accessible to Aggr. Keys, IP addresses, host names,
etc. are all logical identifiers. By themselves, they neither
enable Aggr to securely pinpoint a physical device nor deter-
mine the emblem’s protection scope.

This issue is somewhat similar to cuckoo attacks [42, 55],
a well-known problem in identifying the root of trust (RoT)
in a remote device. Current solutions to cuckoo attacks, such
as those using distance-bounding [17] and ambient properties
[55], fail in the ODT context for two reasons: First, they
require Aggr to have physical control over the relevant device,
e.g., by being in close physical proximity. Second, they
require the prover’s explicit and interactive cooperation with
the verifier. Both are impractical in a cyber-conflict. They
also conflict with the verification obliviousness requirement.

2.4.3 Necessity of Compromise-then-Verify

Recall the use case in ICRC’s report [26] that suggests a
compromise-then-verify paradigm in which Aggr invades
a target device and injects its agent, an executable program
for reconnaissance purpose, to check the existence of a file
emblem or a process emblem among an “active process list".
This paradigm is consistent with the so-called “kill-chain
model” used in the Advanced Persistent Threat (APT) attacks
as reported by Hutchins et al. [25], as well as ransomware,
and supply chain attacks. These sophisticated attacks,
with several US government organizations (including the
DoD) on their victim list, establish a persistent and stealthy
command-and-control channel between a compromised
device and a remote server on the Internet.

We thus propose for Aggr to build the namespace for its
targets by leveraging its capability of invading them. The
intuition is that the reconnaissance agent helps Aggr to iden-
tify the target. Namely, Aggr checks whether the program’s
execution and ODT generation take place on the same device.

Stealthy Compromise v.s. ODT Properties Clearly, Aggr’s
stealthy compromise is a prerequisite for its ODT verification
to achieve binding integrity. If the agent is detected, Adm can
run it on D′ and enlarge its execution scope to enclose D, thus
breaking binding integrity. The relation between stealthy com-
promise and verification obliviousness is more intricate and
subtle. It is neither in our scope nor is it N T P ’s responsibility
to ensure that the program remains undetected. Nonetheless,
it is in our scope to ensure that ODT verification does not
induce additional risks of exposing Aggr’s reconnaissance
agent.

3 ODT Scheme: Overview

The proposed scheme follows the compromise-then-verify
paradigm. We assume that Aggr can stealthily inject its re-
connaissance agent into target devices. In the following, we
first describe how our scheme expects the agent to behave
and then describe the scheme’s workflow, followed by the
technical approach.

3.1 Agent Description
The agent either runs as an independent process or resides
within a victim process. The ODT scheme only expects the
agent to use its hosting device’s default library to establish
TLS connections with a remote server, presumably under
Aggr’s control. We chose TLS over other protocols since
it is very widely used by applications in laptops and mobile
phones, thus providing a better coverage than less popular
protocols. We neither impose requirements on the bytes sent
or received in the connections nor do we require the agent
to perform any specific operation or have specific memory
contents, such as a key or a secret pattern.

Since the proposed scheme only assumes that the agent
makes TLS connections in the same way as other applications
and malware do that, we show in Section 7.4 that the scheme
does not make the agent more susceptible to detection than
TLS-using malware.

3.2 High-Level Workflow
Figure 2 illustrates a system consisting of D′ and D managed
by Adm. Processes in both devices make TLS connections to
various servers. N T P ’s TEE (denoted O-TEE, for oblivious
TEE) is installed on D. O-TEE holds a globally unique
public key certified by N T P and inserts itself into all TLS
handshakes initiated by local processes in D. Aggr’s agent
stealthily runs on D and D′. As O-TEE and Aggr operate
without coordination, we sketch their operations separately.

Treating each incoming TLS server handshake as a
challenge, O-TEE produces the corresponding co-residence
witness, which serves as evidence that O-TEE is (or is not) on
the same platform as the client process. After the handshake,
O-TEE returns to the TLS server the ODT which consists
of the witness and a signature. We stress that O-TEE behaves
the same way in every TLS connection and cannot determine
if its peer is Aggr’s TLS server.

Upon receiving a TLS client handshake, Aggr’s TLS
server (i.e., the second server in Figure 2) sends an ODT
verification challenge disguised as the server handshake, such
that the resulting flow is indistinguishable from those sent by
regular servers. After the handshake, it extracts the ODT (if
any) from received messages. It then verifies the ODT offline
by checking the signature and whether the witness matches
the expected state of its agent.
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Figure 2: A system view of the ODT scheme. O-TEE mediates
four TLS handshake sessions and produces distinct ODTs.
Red lines indicate Adm’s attack on binding integrity.

3.3 Our Approach

Our security rationale is as follows. We design a Witness
Generation System to attain binding integrity, and a Privacy-
Preserving Equality Test protocol (PPET) for witness veri-
fication. The latter prevents an ODT verifier from inferring
information from the witness, thus contributing to security
preservation. Moreover, the witness generation system and
the PPET protocol are integrated with TLS messages, such
that neither O-TEE nor Adm can detect whether an ODT
verification is taking place, which ensures verification oblivi-
ousness. We now outline the three components of the ODT
scheme whose details are given in subsequent sections using
the notations in Table 1.

1. Witness Generation System: A witness is a hash digest
that securely captures both the memory state of the TLS client
thread and the thread’s co-residence (or lack thereof) with
O-TEE. Essentially, O-TEE runs this component to perform a
memory measurement that attests to binding integrity without
trusting the operating system. (See Section 4.)

2. Privacy-Preserving Equality Test (PPET) Protocol: The
second component is an interactive cryptographic protocol. It
has three message flows between Prover (i.e., O-TEE) holding
a secret w and Verifier (i.e., Aggr) that guesses Prover’s
secret as w′. At the end of the protocol, Verifier determines
whether w = w′ is true, without being able to derive any
other information about w. The distinguishing feature of this
PPET protocol, compared with similar schemes [34, 36], is
its TLS-compatibility, rather than stronger security or better
performance. This feature means that: (i) protocol messages
are compatible with the TLS standard; and (ii) Prover can suc-
cessfully run the protocol without differentiating whether TLS
handshake messages come from a normal TLS server or Veri-
fier. This compatibility paves the way for the third component
that makes Aggr indistinguishable from a normal TLS server,
which yields verification obliviousness. (See Section 5.)

3. TLS Integration The third component integrates the
Prover part of the PPET protocol with the TLS client hand-
shake protocol run by O-TEE, and integrates the Verifier part

Table 1: Notation used throughout the paper.
Notation Description
pkD,skD public/private key pair for O-TEE in D

σD signature generated using skD
Bn set of all n-bit binary strings.
Ω predefined set of address ranges, Ω⊂ B48

HS TLS handshake secret i.e., the ephemeral
Diffie-Hellman key

ι−1(), ι() Elligator [8] encoding and decoding functions.

of the PPET protocol with the TLS server handshake protocol
run by Aggr. This integration allows O-TEE to perform
PPET as Prover in every TLS handshake, oblivious to whether
its peer is an actual Verifier. Hence Aggr hides its PPET
execution under the guise of a TLS server. (See Section 6.)

4 Witness Generation

Recall that Adm is the adversary (working against binding
integrity) that controls all system software in D and D′. Hence,
the main problem for witness generation is to detect whether
the data acquired by O-TEE is not staged by Adm.

4.1 O-TEE Initialization
When D boots up, its hardware launches O-TEE provi-
sioned by N T P . O-TEE generates an asymmetric key-pair
(pkD,skD), the public key component of which (pkD) is certi-
fied by the underlying hardware. N T P defines a set of 48-bit
virtual address2 segments to be used as the domain of memory
measurement, denoted by Ω⊂ B48.

4.2 Memory Measurement Scheme
The co-residence witness is the outcome of the O-TEE-based
memory measurement scheme. We define this scheme below
and describe how a valid co-residence witness can only be
produced for a process running on the same device. The
measurement is executed by O-TEE after deriving the TLS
handshake secret k. Hence, we define the measurement
scheme with k as one of the inputs.

Suppose that process P in D is to be measured. Based on
k, O-TEE selects one or more virtual memory locations of
P using the function Select, and produces a witness w by
running the procedure Measure.

• Select is a function that takes k as input and returns a
vector of m challenge addresses (c1, · · · ,cm) where: ci =
M(H (i||k)) (for 1 < i ≤ m). H is a cryptographic hash
function, and M is a random function that uniformly maps
a hash digest into Ω.

2Both x86-64 and ARM64 architectures use such addresses.



• Measure is a procedure that reads m memory words
(w1, · · · ,wm) from P’s virtual memory at challenge ad-
dresses (c1, · · · ,cm). It also sets a bit-flag BCO to zero to
indicate its co-residence with P. It returns a 256-bit w as
the witness: w = H (BCO∥w1∥w2 · · ·∥wm). The methods for
determining BCO depend on the O-TEE architecture. Two
concrete ones are described in Section 4.3.

The measurement must be secret, atomic and performed at
native speed. Secret means that the memory address to be
read is unknown to Adm before the read operation, which
prevents Adm from gaining any advantage by preparing
the targeted data ahead of time. Atomic means that, if the
memory read is interrupted, the interruption is faithfully
factored into the measurement result. Performed at native
speed means that it is not slower than the kernel.

The rationale for using a secret, atomic and native-speed
memory measurement scheme is as follows. Consider a
process P̂ running on D′. Adm wants to deceive O-TEE
about its co-residence with P̂. Under our adversary model,
Adm cannot tamper with O-TEE’s execution. It also does
not know any challenge addresses before the measurement
starts. Hence, it either (i) replicates P̂’s entire virtual memory
to D, or (ii) tampers with O-TEE’s measurement to learn the
challenge addresses before making a targeted copy.

The former (i) is a brute-force attack that incurs a
prohibitively high cost since the size of an application’s
virtual memory ranges from a few to hundreds of megabytes.
It requires copying the memory words as well as building
the same address mapping, which involves page table
modifications. The cost is even higher considering that Adm
does not know which process on D′ is Aggr’s agent. It must
clone every process from D′ to D in order to pass ODT
verification with a 100% probability. This is equivalent to
running them directly on D.

For attack (ii) to succeed, Adm must: (1) win the race with
O-TEE (i.e., complete the forgery before O-TEE finishes the
read), and (2) hide any trace of tampering. O-TEE always
starts the measurement before Adm can attack, and O-TEE
reads the memory as fast as Adm. On one hand, without inter-
rupting O-TEE, Adm cannot win because it must first observe
and then copy. On the other hand, an interrupt can be detected
by O-TEE. Moreover, since all memory locations are indepen-
dently chosen ci =M(H (i||k)), similar to shuffled measure-
ments [11] used in device attestation, exposure of the locations
measured thus far reveals nothing about subsequent ones.

In summary, if the O-TEE-based memory measurement
scheme is secret, atomic and performed at native speed,
it yields a valid co-residence witness with respect to the
measured process P and O-TEE. The concrete schemes
described in Section 4.3 satisfies the three requirements
above. O-TEE uses the secret key k to determine the memory
location(s) to measure. It reads the target memory at the
native speed and in an atomic way. The hardware updates

the O-TEE state if an interrupt or exception occurs when
executing the memory read instruction.

4.3 Concrete Schemes

On laptops, desktops, and servers, we propose to instantiate
O-TEE using the well-known Intel SGX3. On mobile and
IoT devices, we instantiate O-TEE using Arm TrustZone on
Cortex-M or Cortex-A processors. Confidential computing
technologies, such as Intel TDX [27], Arm CCA, and AMD
SEV, are not ideal for O-TEEs because it is difficult (if not
impossible) for software running in those TEEs to atomically
access virtual memory of external processes.

4.3.1 SGX-based O-TEE

Intel SGX isolates user space data and code demarcated by a
virtual address range with an enclave comprising a set of En-
clave Page Cache (EPC) pages. SGX provides a confidential
computing environment: no software outside an enclave (e.g.,
kernel or BIOS) can access an enclave’s EPC pages. Also, an
SGX enclave is publicly verifiable.

O-TEE can take the form of an enclave mapped to all
processes’ virtual address spaces as part of the system library.
Intel’s Attestation Service (IAS) provides a hardware-based
remote attestation facility that allows a remote verifier to
authenticate an enclave’s genuineness based on the hash
digest of memory pages loaded during enclave creation.
O-TEE encloses the hash of its public key pkD into its local
attestation to the Quoting Enclave, an enclave provisioned
by Intel to facilitate remote attestation. The latter generates
and signs the enclave quote for O-TEE using the platform’s
attestation key. The signed quote is released for public
verification. Hence, Aggr can determine that there exists a
legitimate O-TEE instance that owns pkD.

Atomic Memory Access SGX does not provide a secure
clock for the enclave code to measure time. When executing
enclave code, the CPU accesses non-EPC pages the same way
as when running normal code, i.e., via the MMU’s address
translation and the memory controller. A memory load
instruction is either executed unobstructed or it encounters an
exception. No software can intervene in its operation without
triggering an exception. Any exception during enclave
execution causes an immediate enclave exit. Before the CPU
is trapped to the kernel, an EXITINFO object located in the
enclave State Save Area (SSA) page is updated by hardware
to reflect the exception cause. Since the SSA page is inside
the enclave, no system software can read from, or write to, it.
Our design uses this SGX feature to detect exceptions during
memory measurement.

3While SGX is deprecated on future “client platform" processors, it con-
tinues to be available on Xeon processors for servers and cloud platforms.



Measurement and Witness Computation O-TEE enclave
is pre-configured to enable the hardware to log page faults
and general protection exceptions. (Other types of exceptions
are logged by default.) It clears EXITINFO in the SSA page
just before the measurements. It then sets BCO to 0 after the
measurement if EXITINFO indicates an exception and sets
BCO to 1 otherwise.

4.3.2 TrustZone-based O-TEE

Arm TrustZone partitions the platform into: Normal World
that hosts the Rich OS plus regular applications and Secure
World that hosts the Trusted OS and secure applications.
O-TEE is realized as a kernel module of the Trusted OS.
Unlike Intel SGX, there is no centralized trust hierarchy
established on a processor and software in Secure World.
Nonetheless, the Trusted OS can carry a credential certified
by N T P or the manufacturer. The Trusted OS on D can
further certify pkD generated by O-TEE. Thus, the certificate
of pkD is publicly verifiable.

Atomic Memory Access As part of the Trusted OS, O-TEE
runs at Exception Level 1 (EL1) of Secure World. Its code and
data are located in the kernel virtual address range and are thus
translated via the TTBR1_EL1 register. When execution of a
user process P is trapped to Secure World for requesting TLS
connections, O-TEE clones the TTBR0_EL1 register serving P.
This way, O-TEE memory loading instructions can directly
read P’s virtual memory.

All exceptions raised in Secure World are delivered to the
Trusted OS by the hardware. To detect an exception during
measurement, O-TEE hooks the exception handler of the
Trusted OS before the measurement starts. It sets BCO to 0
if its handler is called; and to 1 otherwise.

5 Privacy-Preserving Equality Test (PPET)

Recall that PPET is a building block for the ODT scheme.
It allows Aggr to check whether the witness w generated
by O-TEE matches the value w′ expected by Aggr. We now
describe cryptographic aspects of the protocol, showing how
the privacy of w is protected against Aggr when w ̸= w′ and
how it is structurally compatible with TLS.

While prior private equality test (PET) [34, 36] and private
set intersection (PSI) [50, 16, 24] protocols provide the
privacy properties we need, they are not TLS-compatible.
For instance, some protocols require the verifier to send
two messages [34] or a zero-knowledge proof showing that
its message is well-formed [16]. Since large messages and
complex cryptographic data structures do not fit into TLS
messages, Aggr cannot send them covertly. This leads us to
construct a TLS-compatible PPET protocol.

5.1 The Protocol
Let p be a large prime number and G be a group of order p
where the DDH assumption [9] holds. Let g be a generator
in G. The PPET protocol PPET consists of four steps run by
Prover and Verifier as in Figure 3.

PPET protocol between Prover holding w and
Verifier holding w′

1. (by Prover) Send a random group element u ∈R G.

2. (by Verifier) Do the following:

• Pick a random number s ∈r Zp and compute v = gsuw′

as the commitment to its w′.

• Send v.

3. (by Prover) If v is not in G, send two random group elements
y,z ∈R G; otherwise do the following:

• Pick a random number t ∈r Zp and compute y = gt and
z = vtu−wt .

• Send (y,z).

4. (by Verifier) Assert w = w′ iff z = ys.

Figure 3: PPET Protocol PPET .

If and only if w′ = w, z = gstu(w
′−w)t = gst = ys . Hence, if

both parties execute the protocol faithfully, the protocol
returns the correct outcome with respect to w and w′. The
rationale behind PPET is that Verifier commits to its witness
w′ as part of sending v. Prover’s response is computed from v
such that a mismatching w′ is not canceled out of the ut term,
which masks information about w. As a result, Verifier must
run the protocol with Prover to verify its guessed value for w.
If Verifier intends to learn w, it must perform online guessing
attacks. By keeping w secret, we minimize information
leakage about the memory locations used to derive it.

5.2 Privacy Preservation
If, after running PPET , Verifier learns that w′ = w, informa-
tion is leaked. However, if w′ ̸= w, Verifier learns nothing
about w except that it differs from w′. Thus, a malicious Veri-
fier can eliminate at most one value after each protocol run
and cannot perform an offline guessing attack. We denote the
resulting security property as privacy preservation.

Definition 2 (Privacy Preservation). LetG be a group of order
p and g a group generator. Let W be the domain of possible
witnesses. For all witness verification protocols PPET and
all adversaries Adv, we define the advantage function:

advPPAdv ,PPET =
∣∣∣1
2
−Pr

[
G $−→ u;Zp

$−→ t;W $−→ w;

Adv(u) $−→ v ∈G;z0 = vtu−wt ;G $−→ z1;

{0,1} $−→ b;Adv(gt ,zb)
$−→ b′ : b′ == b

]∣∣∣.



A PPET satisfies privacy preservation if, for all efficient
algorithms Adv, advPPAdv ,PPET is negligible when Adv incor-
rectly guesses the witness.

Theorem 1. PPET satisfies privacy preservation. 4

5.3 Structure Compatibility with TLS
The message flows of the PPET protocol and a TLS hand-
shake have a similar composition structure. (The distribution
indistinguishability between corresponding data objects is
addressed in the next section.) Figure 4 illustrates the client-
server interaction in a TLS v1.3 handshake [46]. The first
two messages perform an ephemeral Diffie-Hellman key ex-
change. After receiving ClientHello, the server computes the
handshake secret HS= Xys before sending ServerHello.

TLS client TLS ServerClientHello(n0,X = gxs
DH)

ServerHello(n1,Y = gys
DH),Cert,Finished

Finished,ApplicationData

Figure 4: Message flows in the TLS v1.3 handshake.

Verifier Flow vs. TLS Server Flow PPET requires Verifier
to send one random group element v, while in TLS a server
sends a nonce. The congruence between the two flows allows
us to make them indistinguishable using additional encoding
techniques (see Section 6), which are needed for oblivious ver-
ification. Note that it is insecure to use TLS application data to
send v since it is not a universal behavior for all TLS servers.

Prover Flows vs. TLS Client Flows The first flow in
PPET from Prover is congruent to its counterpart in TLS
ClientHello. Both include random numbers. However, TLS
client’s FINISHED message does not involve any random
numbers. Hence, when PPET is integrated with TLS, y and
z are sent in a TLS heartbeat message [46].

6 Complete ODT Scheme Over TLS

We now present the ODT scheme that integrates: (1) witness
generation and Prover steps of PPET into TLS client
functionality inside O-TEE on N T P -protected devices, and
(2) Verifier steps of PPET into Aggr acting as a TLS server.
This integration ensures that the Aggr’s message is indistin-
guishable from a ServerHello message. Hence, O-TEE runs
consistently with standard TLS servers and Aggr’s server.

6.1 TLS for ODT Communication
While the PPET and TLS flows are structurally similar, we
must fine-tune the data representation in order to achieve
indistinguishability.

4For the proof, see the appendix.

6.1.1 TLS Placeholders

For ODT messages from O-TEE, we use the field
ClientHello.random (i.e., client nonce n0 in Figure 4) to
send u and the TLS heartbeat request for sending y and z.
We chose to send the message v from Aggr in the field
ServerHello.random, i.e., server nonce n1 in Figure 4. This
chosen field is mandatory in the TLS handshake phase. Hence,
its appearance in the flow does not violate obliviousness.

Both nonces are 256 bits long and, more importantly, both
are randomly sampled values, so no subsequent TLS com-
putations restrict their domain. By default, a TLS heartbeat
request carries a payload of up to 2,048 bytes and requires
a heartbeat response echoing it back to the sender. The table
below summarizes the TLS objects involved in the scheme.

TLS obj Type in TLS ODT obj Sent by
nonce n0 random 256 bits u O-TEE
heartbeat 2048 bytes y,z O-TEE
nonce n1 random 256 bits v Server /Aggr

6.1.2 PPET Data in TLS Objects

To load PPET data into selected TLS objects, we must address
both the size issue (to fit the limited binary size) and the
binary representation issue (to match the distribution of the
TLS objects). Since both nonces are 256 bits, we instantiate
group G in PPET as an elliptic curve whose group elements
can be represented by 256-bit strings. As a result, both u and
v fit in their respective nonces. Since the heartbeat request can
accommodate up to 2,048 bytes, it can easily hold y and z.

Group Elements vs. Random Numbers As described in
Section 5, Aggr’s commitment v is uniformly distributed in G.
Since G is instantiated as a subgroup of points on an elliptic
curve, v must be converted into a 256-bit string. Hence the set
of the binary strings representing all group elements is only a
subset of the domain B256, which is used for nonce generation.
Since the server nonce is not always convertible to an element
in G, directly using v as a nonce in ServerHello indicates that
there is a non-negligible chance that the server is Aggr.

To address this issue, we use Elligator [8] – a censorship-
circumvention technique that transforms elliptic curve points
into random-looking strings and vice versa – so that an
adversary cannot differentiate between an elliptic curve point
and a random string with non-negligible probability. We use
Curve25519 [7] for G since it is supported by Elligator. To
represent v with a 256-bit nonce, we first apply the Elligator
decoding function which returns a 254-bit binary string,
and then prepend the string with two random bits to get the
nonce. To parse a 256-bit nonce to v, we discard the two most
significant bits and apply the Elligator encoding function to
the remaining bits.



CAVEAT. Note that G is used by both O-TEE and Aggr
in the PPET protocol. It is independent of the group used
in the Diffie-Hellman handshake in TLS. Moreover, we do
not require O-TEE’s message u in the PPET protocol to be
encoded using Elligator, since O-TEE always sends out a
random group element regardless of whether its peer is Aggr
or not. There is therefore no risk to verification obliviousness.

6.2 A Complete Account of the ODT Scheme
Figure 5 shows the computational steps of the ODT scheme.
We first describe how O-TEE runs as a TLS client and emits
an ODT in every TLS handshake. Afterwards, we describe
how Aggr runs as a TLS server and verifies an ODT.

O-TEE as TLS client TLS Server (Aggressor)
ClientHello{n0 = u,X = gxs

DH}G $−→ u

ServerHello{n1 = ι(v),Y = gys
DH},Cert,Finished

Zp
$−→ s;

v = gsuw̄
Derive HS= Y xs ;
k = HKDF(HS);
c = Select(k);
w←Measure(c);
v = ι−1(n1);

Zp
$−→ t;y = gt ;z = vtu−wt ;σ = Sign(y,z,H(k))

Finished,HeartbeatRequest{y,z,σ}

Continue data exchange

Figure 5: Process P’s TLS handshake through O-TEE.

6.2.1 O-TEE as TLS client

Triggered by process P’s request to establish a TLS connec-
tion, O-TEE executes the following steps.
STEP 1. It initiates a TLS handshake session by sending
ClientHello. It sets nonce n0 as the binary representation of
a random group element u ∈R G. This is the first message in
PPET .

STEP 2. After receiving ServerHello with nonce n1, it com-
putes the handshake secret HS following the TLS specifica-
tion and runs the witness generation procedure in Section 4
against P’s virtual memory. It also treats n1 as the Verifier
message in PPET and decodes n1 into v ∈G. It sets

k=HKDF(HS);c=Select(k);w=Measure(c);v= ι
−1(n1);

where HKDF is the key derivation function used in TLS and
ι−1 is the Elligator encoding function used to extract an ellip-
tic curve point from a binary string.

STEP 3. It uses witness w to compute (y,z) in the third flow
of PPET . It signs (y,z) and H (k) with skD, and embeds both
(y,z) and the resulting signature σ into a heartbeat request
message immediately after the handshake’s end.

STEP 4. It passes all session keys to an external TLS library
and is not involved in the rest of the TLS connection in order
to achieve better performance. □

Note that the triple (y,z,σ) returned in Step 3 is the ODT in
our scheme. Issuing a heartbeat request is not a normal TLS
client’s behavior. However, it does not compromise oblivious-
ness since O-TEE does this for all TLS connections, except
for TLS servers that explicitly disable heartbeat messages.
We discuss alternatives to heartbeat messages in Section 8.2.

Since the hash of HS is covered by σ, a successful
signature verification by the TLS server implies that O-TEE,
which owns pkD, is also the TLS client holding k. This
assures the TLS server that O-TEE is the communication
endpoint with which it interacts and that the generated ODT
is cryptographically linked to this TLS connection. Revealing
all TLS session keys after signing (y,z,H (k)) does not break
the ODT-TLS link. Although it can intercept the heartbeat
request, Adm cannot replace the ODT because it cannot
force O-TEE to generate a TLS shared key equal to k. Note
that, to verify if D is the device it intends to check and also
contains O-TEE owning pkD, Aggr must validate (y,z) using
the verifier algorithm in PPET .

6.2.2 Aggr as a TLS Server

Note that N T P publishes all parameters used in witness
generation and PPET , such as group G and generator g so
that Aggr has all the needed parameters before starting any
verification.

Suppose that Aggr sets up its own TLS server and waits
for its agents’ connection requests. There are several ways
for Aggr to obtain the expected value of the witness. For
instance, if Aggr trusts its command-and-control channel
with the agent, it can use that channel to secretly extract
needed memory data. If the agent’s memory state is less
influenced by external factors, Aggr can execute the agent
on the system environment similar to the one in D. The agent
runs until it requests a TLS connection to Aggr’s TLS server
for ODT verification. The resulting memory state mirrors the
agent’s state running on the remote devices. Note that address
space layout randomization [43, 53] used in commodity
operating systems only randomizes base addresses of code,
stack, heap and libraries. Also note that these are only
suggestions: our scheme does not prescribe a specific way
for Aggr to obtain the witness value.

Upon receiving a TLS connection request, Aggr proceeds
as follows:
STEP 1. Following the TLS standard, it generates its Diffie-
Hellman key share, computes HS, and sets

k = HKDF(HS);c = Select(k) .

It obtains expected witness w′ and follows the PPET protocol
to compute the commitment v using the client nonce n0 = u if
it is in G. Otherwise, v is computed with a randomly chosen
u. It then uses the Elligator decoding function ι to convert v
into the 256-bit server nonce n1 in its ServerHello. After this
step, it behaves exactly according to the TLS standard.



STEP 2. If a heartbeat request message is received from the
present TLS session, Aggr responds to the heartbeat request
following the TLS standard and saves the ODT in the message
for an offline verification in two steps described below.

(a) Aggr parses the binary string in the heartbeat request
into (y,z) and signature σ. It then verifies σ against (y,z) and
H (k) with the credential certified by N T P .

(b) Following the PPET protocol, Aggr checks if z ?
= ys

returns True. If so, it asserts that the device where its agent
resides is N T P -protected. □

If z ̸= ys, Aggr cannot assert that the device is not
N T P -protected. There are various possible reasons for
that outcome. For instance, the ODT scheme’s execution is
attacked by an adversary or the client process is not Aggr’s
agent. Note that the agent can repeat the verification by
making a new TLS connection.

6.3 Experiments

We built a prototype of the proposed ODT scheme to assess its
performance and practicality. All experiments were conducted
on a laptop with Intel i5-10210U CPU and Manjaro Linux
with the 5.15.155 kernel.

6.3.1 Implementation

To implement Aggr’s TLS server, we integrate the operations
specified in Section 6.2.2 with OpenSSL server version 3.2.0-
alpha2. In addition to the OpenSSL’s Curve25519 implemen-
tation, we use the Elligator functionality of the Monocypher5

library to implement cryptographic parts of the protocol.
For the O-TEE, we use the Intel SGX SSL6 library that

embeds OpenSSL in an SGX enclave. We modify the TLS
client functionality of this library for operations specified in
Section 6.2.1. An API is added to send the heartbeat request
containing the ODT following the Finished flow. Since the
cryptographic setup of the ODT scheme is separate from the
one for TLS, the scheme does not restrict the cryptographic
configuration of existing TLS clients and servers.

6.3.2 Performance Results

On the experimental platform, we set up two TLS clients (a
native client and one using O-TEE) and two TLS servers (a
native server and an ODT server for verification). Since all
TLS connections under measurement are local, the results are
dominated by computation time rather than network delays,
which more faithfully reflect the performance of the scheme.
Both the ODT server and O-TEE sample the heap in five
locations and try to perform a verification for all incoming
and outgoing connections respectively.

5https://monocypher.org/
6https://github.com/intel/intel-sgx-ssl

We run two experiments, each repeated 1,000 times, to get
the averaged data. The first assesses how the ODT server per-
forms and how it differs from the native server. We use the curl
tool to connect to both servers and measure the time between
sending ClientHello and receiving ServerHello. Note that al-
though curl uses the native TLS client, the ODT server still
generates v using a randomly chosen group element u. Table 2
reports the results. The ODT server incurs a slowdown of less
than 1 millisecond per request due to parsing the client nonce
into u and calculating the commitment v. Among the addition
time spent by the ODT server, the PPET commitment genera-
tion and Elligator decoding cost 0.33 ms and 0.17 ms, respec-
tively. The performance difference with the native TLS server
does not compromise verification obliviousness. A detailed
analysis of side-channel attacks is presented in Section 8.3.

Table 2: Server response time measured using curl (in ms).
ODT Server (overall cost) 8.25±0.71

(a) PPET commitment 0.33±0.26
(b) Elligator decoding 0.17±0.11

OpenSSL Server 7.93±0.73

The second experiment measures the performance impact
of O-TEE. We measure the time for a complete handshake
session in four combinations of client-server setups. The
results are shown in Table 3. Compared with the native TLS
client, it costs O-TEE around 144ms more per handshake.
The overhead is due to cryptographic operations (including
generating u, encoding v, and calculating the ODT), witness
generation, and extra time for SGX ocall and ecall.
While none of these costs can be saved, we can reduce the
handshake time by letting O-TEE send the Finished message
before ODT and witness generation. This optimization does
not affect security of the scheme.

Table 3: Total handshake duration in four combinations of
TLS connections (in ms)

ODT server OpenSSL Server
O-TEE 164.30±2.81 164.10±2.72

OpenSSL Client 20.40±0.65 20.08±0.63

7 Security Analysis

7.1 Background on the Tamarin Prover

Tamarin [52, 37] is a tool for the mechanized analysis of
security protocols. Tamarin works with a formal model of
the security protocol, its desired properties, and the adversary.
It is used to construct either: (1) a proof that the protocol
is secure, i.e., its properties hold in the specified adversarial
model (even when run with an unbounded number of protocol



participants), or (2) a counter-example, i.e., an attack on the
protocol. Tamarin has been used for formal verification of a
wide range of large-scale real-world protocols [6], including
5G authenticated key agreement [5], TLS v1.3 [14], and the
electronic payment standard EMV [4].

Tamarin reasons using a symbolic model of cryptography,
going back to the seminal work of Dolev and Yao [19].
Protocols are represented as labeled transition systems
augmented with equational theories formalizing common
cryptographic operators. This kind of model abstracts away
from a low-level implementation of cryptography, focusing
instead on the properties of idealized cryptographic operators.

7.2 Protocol Model in Tamarin

To prove binding integrity, we first model the protocol.

Protocol roles We specify five protocol roles: (1) an
aggressor role that can create agents, (2) an agent role (Agt)
created by an aggressor and that can run on a device, (3) a
device role that can run agents and be assigned an O-TEE,
(4) a neutral party (N T P ) role that can instantiate O-TEE
bound to a device, and (5) an O-TEE role.

Adversary model The Tamarin adversary represents the dis-
honest Adm. This adversary has all the capabilities of the
standard (Dolev-Yao) adversary used in symbolic models: it
can read, create, modify, and block any messages created or
sent over the network. Moreover, it can compromise any de-
vice and gain its capabilities, though it cannot compromise
N T P . On compromised devices, it can interrupt and resume
the execution of an attached O-TEE and read, create, mod-
ify, and block all messages the device sends or receives over
the network or from O-TEE. If it interrupts an O-TEE, the
adversary can modify the data O-TEE reads. As explained
in Section 4.2, the O-TEE measurement scheme ensures that
the co-residence witness generated by O-TEE after an inter-
rupt is invalid. We also assume that the adversary can mirror
only a small subset of a running process’s memory between
devices instead of the whole memory. We justify this using
the argument presented in Section 4.2.

Measurements As described in Section 4, the core of our pro-
tocol is the witness generation scheme that has two functions:
Select and Measure. While the protocol measures the agent’s
memory, we model an abstraction of this and assume O-TEE
measures properties of a process. Note that memory measure-
ment is one way to achieve binding integrity and that other
measurements, such as cache or control flow measurements,
are possible, provided they identify the process.

Given Agt with a set of properties P (Agt), O-TEE
measures a subset of these properties. To select the subset,
O-TEE uses the Select(k) function that takes as arguments
a key k, and returns a set S of positions that are measured.
We do not model subsets explicitly and instead leave them

lemma binding_integrity:
"All AGR O-TEE AGT prop #i.
AcceptedVerificationWithAgent(AGR, O-TEE, AGT, prop) @i
==> (Ex NP D #j #k #l #m #n.

OTEERegisteredOnDevice(NP, O-TEE, D) @j &
OTEEHonestPropertyRead(O-TEE, D, AGT, prop) @k &
AggressorCreateAgent(AGR, AGT , prop) @l &
AggrDHKey(AGR, DHE) @m & OTEEDHKey(O-TEE, DHE) @n)"

Figure 6: Binding integrity property as specified in Tamarin.

in their symbolic form S = Select(k), where k represents the
shared secret between O-TEE and the aggressor.

We model measurement as a function Measure(S ,P (Agt))
that returns a witness w given the set of indices S and the
properties P (Agt) of an agent process. As already mentioned,
the adversary can interrupt O-TEE and recover the indices
S or modify the values O-TEE reads.

Verification We model verification in the same way we spec-
ify it in our scheme. The aggressor first verifies that signature
σ is valid and belongs to a registered O-TEE, and then verifies
if the witness response is correct. If both checks succeed, we
consider the verification to be successful.

In summary, given public O-TEE measure-
ment functions Select and Measure, we define
w = Measure(Select(k),P (Agt)) to be the witness ex-
tracted from an agent process Agt with properties P (Agt),
given a key k shared between the aggressor and O-TEE.
O-TEE’s measurement and signature ensure that the aggressor
can establish a binding between its agent process, O-TEE,
and the TLS connection.

7.3 Binding Integrity
We formalize binding integrity from Section 2.3 as a trace

property in Tamarin as shown in Figure 6. We prove that a
successful verification by an aggressor AGR that believes it is
talking with an O-TEE and that created its own agent process
AGT exhibiting properties prop, implies: 1) that the O-TEE is
a genuine O-TEE registered on device D by a neutral party NP,
2) that the O-TEE measured the agent process AGT residing
on device D that exhibited the properties prop, 3) the aggressor
AGR created the agent AGT with properties prop, and 4) AGR
and O-TEE derived the same Diffie-Hellman secret DHE.

In Section 2.3 we note that the intrinsic challenge of ODT
verification is to determine how entities to be authenticated
are identified. In our ODT scheme, the aggressor uses distinct
injected agents to build a namespace of devices. Since an
agent’s identity is ambiguous, i.e. there is no canonical way
to refer to a piece of code, we use the properties that the
code itself exhibits as the agent’s identity. As explained in
Section 4.2, our approach to witness generation guarantees
co-residence: when the measurement succeeds, the process
memory that was measured is on the same device as O-TEE.
This, combined with the fact the aggressor connects to an



agent over a TLS channel, enables our ODT scheme to
achieve binding integrity as proven in Tamarin.

7.4 Verification Obliviousness
We formalize verification obliviousness as the adversary’s
advantage over a random guess in differentiating a given pro-
cess’s two TLS handshakes: with a regular server and with
Aggr performing ODT verification. Specifically, we define
it as a game where the adversary (Adm), given an N T P -
protected device D and all secrets in its O-TEE, is challenged
to determine if ODT verification took place with an oracle
that simulates either a normal TLS server or Aggr depending
on a random bit. Note that verification obliviousness is not de-
pendent on O-TEE’s security. The formal definition is below.

Definition 3 (Verification Obliviousness). Let D be a device
with O-TEE. Let Aggr be an aggressor and pA be Aggr’s
agent on device D. Let O(b) be an oracle that, with a random
input bit b, simulates a standard TLS server for b = 0 or Aggr
otherwise. For all protocols ODT and all adversaries Adv,
we define the advantage function:

advVOAdv ,ODT =

∣∣∣∣12 −Pr
[
Aggr $−→ pA ;{0,1} $−→ b;

AdvO(b)(D, pA)
$−→ b′ : b′ == b

]∣∣∣∣.
An ODT protocol satisfies verification obliviousness if, for

all efficient algorithms Adv that have complete control over
the device and its O-TEE, advVOAdv ,ODT is negligible.

To show our scheme satisfies Definition 3, we first prove
that the verifier’s message v of the PPET protocol in Figure 3
is random in G. This is a necessary condition for Elligator to
encode elliptic curve points into uniformly random looking
strings, a fact we use in our verification obliviousness proof.
We call this intermediate security property: verifier message
uniformity.

Definition 4 (Verifier Message Uniformity). Let G be a group
of order p and g a generator of the group. Let W be the
domain of possible witnesses. For all PPET protocols PPET,
all adversaries Adv, we define the advantage function:

advVM_UNI
Adv ,PPET =

∣∣∣1
2
−Pr

[
Adv $−→ u ∈G;Zp

$−→ s;

W $−→ w′;v0 = gsuw′ ;G $−→ v1;

{0,1} $−→ b;Adv(vb)
$−→ b′ : b′ == b

]∣∣∣.
A witness verification protocol PPET satisfies verifier
message uniformity if, for all efficient algorithms Adv,
advVM_UNI

Adv ,PPET is negligible.

Lemma 1. The Privacy-Preserving Equality Test Protocol
PPET in Figure 3 satisfies verifier message uniformity.

Proof. Observe that uw′ is an element of G. For a given uni-
formly random group element gs, the probability that gsuw′ is
equal to a given group element is 1/p. Since this holds for any
possible value of uw′ , v0 is uniformly distributed in G. Since v1
is also uniformly distributed in G, the statistical difference be-
tween v0 and v1 is zero. Hence, advVM_UNI

Adv ,PPET is negligible.

Theorem 2. Our ODT scheme satisfies Definition 3.

Proof. In order to determine whether a verification took place,
the adversary can run pA and other processes of its choice
on device D and look at: (1) the oracle’s response v, and (2)
the behavior of O-TEE. We discuss timing attacks and other
side-channels in Section 8.

For (1), the only difference the adversary can detect
between an honest TLS server and the aggressor is in how the
ServerHello nonce is generated. When the aggressor sends
ι−1(v), the nonce’s distribution might be different from a
uniformly random string that is sent by a normal TLS server.
However, according to Lemma 1, we know that v is uniformly
random in G. After v is Elligator encoded, we are guaranteed
that an adversary has a negligible probability to differentiate
the Elligator-encoded v from a uniformly random looking
string. For (2), the adversary cannot use O-TEE as an oracle
to test if a given process is performing verification, as O-TEE
always behaves in the same way for all processes that invoke
a TLS connection. Therefore, we conclude that advVOAdv ,ODT
is negligible.

The proof shows that Adm cannot use our ODT protocol
to detect a verification attempt. It does not capture the
probability that Adm can detect the agent. The likelihood of
agent detection ultimately depends on the arms race between
Aggr and Adm, whose outcome is not prescribed by our
design. We show below that detecting an agent for ODT
verification is as hard as detecting TLS-using malware.

Discussion on Agent Detection According to several
surveys [49, 40], it is popular for malware to use TLS to
communicate with its backend server due to the widely
used HTTPS protocol. For instance, the TLS-based Cobalt
Strike Command & Control channel was widely used by
ransomware as reported by CISCO [38] and was also later
found in the SolarWinds attack [20]. Accompanying this
trend is the evolution of malware detection techniques based
on TLS anomalies, benefiting from advances in machine
learning. Traffic data often used in anomaly analysis includes
port numbers, the amount of transported data, connection
duration, and handshake parameters [2]. The potential
anomaly exhibited by malware is due to the involved task,
such as downloading a payload or uploading stolen data.
Since the ODT verification agent does not have such tasks,
it can avoid detection by making ordinary TLS connections.

Our ODT scheme imposes no requirements on an agent’s
memory contents. Thus, memory contents involved in O-
TEE’s measurement do not have a specific pattern for Adm to



fingerprint an agent. Aggr can utilize existing anti-detection
techniques [1], undocumented evasion techniques, and
zero-day exploits to conceal its agent’s existence. The mere
existence of a TLS connection to a rarely-accessed server
could appear suspicious in certain scenarios. Aggr may evade
such detection by covertly compromising existing processes
that use TLS and connecting them to its servers providing
legitimate Internet services (e.g., DNS or NTS).

Lastly, we acknowledge that not all aggressors can
invade target devices with a stealthy agent performing
TLS connections. However, it is feasible for a state-backed
aggressor, which is the primary subject of the ICRC’s emblem
application and international humanitarian law, to have such
a capability. We leave it to future work to investigate ODT
schema with less demanding requirements.

7.5 Security Preservation
Security preservation concerns a TLS server that extracts in-
formation about D from its TLS connections. We formulate
it as the adversary’s winning probability in the game where
it guesses the value stored at a specific memory location. We
quantify the probability that the adversary guesses correctly
in relation to the memory’s size, the number of memory loca-
tions O-TEE measures, the number of values each position
can have, and the number of adversary queries. In the proof,
we show that this probability is negligible.

Definition 5 (Security preservation). Let D be a device with
O-TEE. Let X be the set of values that can be stored at a mem-
ory location. Let p be a process on D with memory contents
(xi)i∈I , where I is the index set of memory locations and xi ∈X
is the value stored at location i. Let Op be an oracle that, for
the process p, simulates the execution of O-TEE on device
D that measures C locations up to q times. For all protocols
ODT, all adversaries Adv that output a set {x′j1 ,x

′
j2 , . . . ,x

′
jC}

where x′j ∈ X, we define the advantage function:

advSPAdv ,ODT = Pr[It = {i1, i2, . . . , iC},∀i ∈ I;

AdvOp(It)
$−→ {x′i1 , . . . ,x

′
iC} : ∀i ∈ It .x′i == xi].

An ODT protocol satisfies security preservation if, for all
efficient algorithms Adv, advSPAdv ,ODT is negligible.

Theorem 3. Our ODT scheme satisfies Definition 5. □

Our proof (in the appendix) considers two different attack
scenarios: extracting information from a low-entropy process,
and extracting information about a 256-bit secret key with
the knowledge of contents at all other memory locations. For
the first scenario, we show that Adv only has a negligible
success probability given that C is sufficiently large. We can
lower Adv’s success chance by measuring more locations.
However, this demands Aggr to have a more complete and
accurate view of the agent’s memory.

For the second scenario, assuming that O-TEE measures
one 64-bit word, we show that Adv learns at least one of
the four words of the 256-bit secret key with a small (2−59)
probability after making 106 guesses for a process with one
megabyte of memory. The relatively high probability is not
an issue considering Adv relies on the device to initiate a
TLS connection with its server. This scenario also represents
an ideal case for Adv where it knows all other memory
locations, which is generally infeasible in practice. Using
more locations to measure also lowers the probability.

8 Discussions and Related Work

8.1 Alternatives to TLS v1.3

Among the protocols in the TLS family, the ODT scheme is
compatible with DTLS v1.3 [48], a variant of TLS v1.3 for se-
cure UDP communications. However, TLS v1.2 [47] (and its
DTLS variant) do not fit the ODT scheme well. Servers using
TLS v1.2 typically use public-key encryption-based hand-
shakes where ServerHello is sent before the handshake secret
is generated. As a result, Aggr cannot send its commitment
v as a server nonce and instead has to send it in TLS records
that carry application data. This undermines verification obliv-
iousness since there is no uniform pattern for TLS servers’
application data sending and O-TEE has to respond differ-
ently. It is thus seems infeasible to prove that Aggr’s message
is indistinguishable from those sent by regular TLS servers.

Although there are other protocols involving random data
exchanges and shared keys, none of them is more suitable
for the ODT scheme than TLS. Application layer protocols
(such as Tor [18], IRC, and SSH) are not generic enough for
all applications. Network layer protocols (such as the Internet
Key Exchange protocol [29] for IPSec) are not application
specific; hence, it is difficult to link the connection to a
particular process.

8.2 Compatibility with TLS Implementation

Aggr’s server is fully compatible with the TLS specifica-
tion and provides services to all TLS clients. However, we
discovered that the heartbeat request sent by O-TEE in our
prototype disrupts TLS connections with servers that use
OpenSSL. Although TLS v1.3 [46] defines the heartbeat ex-
tension, OpenSSL maintainers removed it from the code due
to lack of real-world use-cases and concerns over implemen-
tation bugs.7 We believe that the ICRC emblems are an impor-
tant real-world use-case that would warrant the re-introduction
of heartbeats into OpenSSL.

To avoid the compatibility issue, an O-TEE implementation
can instead use an ICMP Echo-Request messages to deliver
ODTs to TLS servers. This alternative does not compromise

7https://github.com/openssl/openssl/issues/4856

https://github.com/openssl/openssl/issues/4856


binding integrity, since our scheme does not depend on the
security of the TLS connection to protect this message.

8.3 Side-Channel Attacks on Verification
Obliviousness

We briefly consider the risks of compromising verification
obliviousness via side-channel attacks on Aggr’s messages
and O-TEE. Since Aggr is remote from Adm, the only
side-channel observable to Adm is based on time intervals
between sending ClientHello and arrival of ServerHello. How-
ever, Aggr can introduce an artificial delay in its non-ODT
computations to mask the difference. Unless Adm knows the
hardware that Aggr’s server runs, it cannot detect this delay.

On the client side, the proposed ODT scheme eliminates
the device’s side-channel leakage about ODT verification. O-
TEEs behave in the same fashion regardless whether the TLS
peer is a regular server or Aggr. Furthermore, the scheme
does not require Aggr’s agent to carry out special operations
for ODT verification. For example, it does not perform a local
attestation against an enclave O-TEE. While we acknowledge
that there are side-channel attacks against secrets of various
TEEs, coping with them is orthogonal to this work.

8.4 Limitations of Our ODT Scheme
Our scheme cannot be deployed on devices without a
hardware-based TEE or virtual machines in a cloud even
if confidential VM techniques such as Intel TDX are in place.
It also cannot help aggressors without an agent on the tar-
get devices. Note that such aggressors can resort to ADEM
[32] to perform preliminary checks. Also, N T P can deploy
ADEM and ODT side by side.

The ODT schemes guarantees that if an ODT passes
Aggr’s verification, the device is N T P -protected. However,
the converse is not guaranteed. Thus, Aggr cannot conclude
that the device is not N T P -protected if verification fails.
While it seems impossible to prove an ODT’s non-existence,
it is an open problem how to use the ODT verification
transcript as an unforgeable proof for Aggr’s due diligence.

Another limitation is the dependency on TLS v1.3,
especially for the Diffie-Hellman handshake. It may require
changes to work with future versions of TLS or a successor
protocol suite. However, if the handshake algorithm is
unchanged, we are optimistic that the adaptation will only
involve message encoding, rather than changes of core
algorithms.

8.5 Related Work
As mentioned earlier, ADEM [32] proposed an emblem
based on digital signatures for use in network communica-
tions. While it ensures verification obliviousness, the resulting
emblem-device binding is insecure against a malicious kernel.

The functionality of ODT is related to RoT attestation
whereby a prover device attests its RoT attributes to a trusted
verifier. These attributes include RoT genuineness [10, 51],
RoT presence [55], and the distance [15, 17] to the verifier.
More specifically, our protocol is related to remotely attested
TLS protocols [23, 54, 31, 39]. These protocols combine
TLS with remote attestation to create trusted channels, i.e.
secure channels where one or both endpoint(s) is/are attested
to the other. However, they are incompatible with verification
obliviousness.

In terms of verification obliviousness, the ODT scheme
is related to privacy protection techniques for hiding sensitive
information that would otherwise be exposed to observers
monitoring system or network actions. Related work includes
oblivious RAM (ORAM) [21] and Private Information
Retrieval (PIR) [13], which prevent an entity’s interest in
particular data items from leaking due to its actions on the
data set. Anonymous communications techniques such as
Tor [18] and mix networks [28], prevent sender or receiver
information leakage from network activities.

The proposed PPET protocol provides another type of pri-
vacy protection, which primarily considers the privacy of data
used in multi-party computation. Similar techniques include
oblivious transfer [30], zero-knowledge proofs [22], secret
handshakes [3] and private set intersection [50, 44, 24, 16].

9 Conclusions

The need for digital emblems arises in the context of cyber-
conflicts and international humanitarian law. Developing ef-
fective solutions triggers novel requirements for labeling de-
vices in a way that provides binding integrity, while ensuring
obliviousness for the verifier and security preservation for the
provers. In this paper, we defined this problem, fleshed out
its requirements, and provided the first solution, along with a
prototype implementation. Future work includes experiments
with the proposed scheme to further assess its practicality and
exploring open problems, such as ascertaining the absence of
oblivious digital tokens.
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Appendix A: Theorem 1 Proof

Proof. We use a hybrid proof to show that the PPET protocol
PPET from Figure 3 satisfies privacy preservation. We first
define starting and end distributions:

Db = {G
$−→ u;Zp

$−→ t;W $−→ w;Adv(u) $−→ v ∈G;

z0 = vtu−wt ;G $−→ z1 : (gt ,zb)}.
(1)

Note that D0 exactly matches the inputs given to the ad-
versary in the privacy preservation game when b = 0 and
D1 matches the inputs when b = 1. From this, we have
advPPAdv ,PPET = adv∆

Adv ,D0,D1
. To prove that the protocol is

secure, we show that D0 and D1 are computationally indistin-
guishable.

First hybrid We define H1 and show that it is statistically
indistinguishable from D0:

H1 = {G
$−→ u;Zp

$−→ t;W $−→ w;Adv(u) $−→ ux;

z = uxt−wt : gt ,z}.
(2)

By the protocol, v must be an element from G. Therefore,
there exists an x such that ux is equal to v. Hence this is just a
syntactic change and we have adv∆

Adv ,D0,H1
= 0.

Second hybrid We define H2 and show that it is statistically
indistinguishable from H1:

H2 = {G
$−→ u;Zp

$−→ t;W\ x $−→ w;Adv(u) $−→ ux;

z = uxt−wt : gt ,z}.
(3)

The only change is that we are sampling w from a smaller
set. The adversary can distinguish H1 and H2 with an advan-
tage of at most the probability of outputting such an x. In the
real world, this advantage represents the adversary’s a priori
knowledge of the distribution of the witness values. However,
as stated in Definition 2, we perform this proof under the
assumption that the adversary guesses the witness incorrectly.
Therefore, we consider the advantage of the adversary in this
step to be zero, i.e. adv∆

Adv ,H1,H2
= 0, when the adversary

guesses the witness incorrectly.

Third hybrid We define H3 and show that it is statistically
indistinguishable from H2:

H3 = {G
$−→ u;Zp

$−→ t;Adv(u) $−→ ux;

W\0 $−→ k;z = ukt : gt ,z}.
(4)

This is again just a syntactic change where we rewrite
k = x−w ∈W\0, therefore adv∆

Adv ,H2,H3
= 0. Note that the

distribution of k depends on the adversary’s distribution of
witnesses embedded in x. Because the adversary might have

some a priori knowledge on the distribution of witnesses, we
cannot assume k is sampled uniformly.

Fourth hybrid We define H4 and show that it is computa-
tionally indistinguishable from H3:

H4 = {G
$−→ u;Zp

$−→ t;Adv(u) $−→ ux;

W\0 $−→ k;Zp
$−→ c;z = gkc : gt ,z}.

(5)

We uniformly sample c and use it instead of t to compute z.
We do a reduction to the Decisional Diffie-Hellman (DDH)
problem and show that adv∆

Adv ,H3,H4
is negligible. We assume

that there exists an algorithm Adv that can efficiently distin-
guish H3 and H4. We build an algorithm R that uses Adv to
break DDH.

R receives from its DDH challenger α = ga,β = gb,γ = gc.
It simulates Adv’s game and uses α instead of u, β instead of
gt , and γ instead of ut . When b = 0 in R ’s game, R outputs
(β,gkab) that exactly matches the distribution H3. When b = 1
in R ’s game, R outputs (β,gkc) that exactly matches the
distribution H4. If Adv outputs b′ = 0 as its own guess R
outputs 0, and if Adv outputs b′ = 1 it outputs 1. Because R
perfectly simulates Adv’s distinguishing game, we conclude
that advDDH

R = adv∆

Adv ,H3,H4
. However, this is a contradiction

because DDH is difficult in the group G. Hence adv∆

Adv ,H3,H4
is negligible.

Last step We show adv∆

Adv ,H4,D1
= 0. For convenience, D1

is:

D1 = {G
$−→ u;Zp

$−→ t;Adv(u) $−→ v;G $−→ z1 : (gt ,z1)}. (6)

While the distribution of k is not uniform, combining it with
a uniformly random variable c ensures that gkc is uniform.
To prove that we use the fact that the order of G is prime.
For any value of k, gk is a generator of the group. Because c
takes all possible values from Zp, the probability that gkc is
equal to any group element is 1/p. Since this holds for every
k (no matter the distribution of k), we can conclude that the
probability that gkc is equal to a specific group element is also
1/p. Therefore, the distributions H4 and D1 are statistically
indistinguishable.

Conclusion We have shown for all distributions in our chain
that they are either computationally or statistically indistin-
guishable from their neighbors. Using the hybrid argument,
we conclude that D0 and D1 are computationally indistin-
guishable and therefore the advantage advPPAdv of the adversary
Adv in winning the PP game is negligible.

Appendix B: Theorem 3 Proof

We argue this, considering two scenarios: (i) the adversary
has partial knowledge of the memory and (ii) the adversary
has full knowledge of the entire memory except for a 256



bit secret. The first scenario models a general brute force
attack where Adv attempts to extract information from a
system that has a relatively low entropy. We show that Adv
has a negligible advantage given that the number of measured
locations C is our security parameter. The second scenario
models a targeted attack where the adversary is interested in
extracting a cryptographic key from a process’s memory. We
use these cases to show that our scheme remains practically
secure even against extremely powerful adversaries.

(i) Assume, for simplicity, that O-TEE measures 64 bit
locations and that the adversary knows k out of 64 bits for
every measurable location but not all of them. For the first
measurement, the adversary has a probability of (|X |−2k)−C

to guess correctly. After l guesses over the same subset of
measured values, the probability of the next guess being cor-
rect increases to

(
(|X |−2k)C− l

)−1. On average, each subset

is measured q
(|I|

C

)−1
times. To simplify the calculations, we

assume the adversary correctly guesses with the probability

of the last guess
((
|X |−2k

)C−q
(|I|

C

)−1)−1
, which provides

an upper bound on the adversary’s chance of success. The
probability P that the adversary wins in the game by correctly
guessing at least once using q queries is then

P = 1−

(
1−
((
|X |−2k

)C
−q
(
|I|
C

)−1)−1
)q

.

Note that we interpret the adversary’s output as an additional
query and absorb it into q. This shifts the domain of q by one
and ensures that q is greater than zero.

A function is defined to be negligible if limn→∞ f (n)ns =
0 for all s > 0. We set f (n) := P(C) and show that
limC→∞ P(C)Cs goes to zero when C is our security parame-
ter. First, we simplify P(C) to P̄(C) = 1− (1− (2C−q)−1)q

by setting
(|I|

C

)−1
to one and |X |− 2k to two. Both of these

changes do not diminish the adversary’s winning probability,
hence P(C)≤ P̄(C). Let e = (2C−q)−1, we calculate:

P̄(C) = (1− (1− e)q) = e
q−1

∑
i=0

(1− e)i < eq = q(2C−q)−1.

It is easy to see that limC→∞ q(2C − q)−1Cs = 0. Since
P(C) is bounded from above by q(2C − q)−1, we have
limC→∞ P(C)Cs = 0 and therefore the probability the adver-
sary wins in the security preservation game is negligible.

For the second scenario (ii), we assume that the 256 bit
secret is aligned to the measured positions, i.e. four positions
cover it fully, that O-TEE measures only one 64 bit position,
and that the adversary knows all memory contents except the
secret. We slightly modify the security game by fixing It to
be the set of four locations containing the key. The adversary
wins if it guesses correctly at least one of the four locations.

The probability of correctly guessing the value of the key
after l guesses on the same position is (|X | − l)−1. Each

position will be measured q/|I| times on average. Similarly to
the previous scenario, we assume that the adversary is always
guessing with the probability of the last guess giving us the
formula (|X | − q/|I|)−1. The probability of the adversary
winning the game by guessing correctly at least one of the
four key positions using q queries is then

1−
(

1−
(
|X |−q/|I|

)−1
)4q/|I|

.

For a one megabyte program, the adversary has a probabil-
ity of 2−59 of winning in the game assuming it can make 106

requests. While this probability is relatively high for crypto-
graphic standards, we believe this is not an issue in practice.
With the results from our first scenario, we can increase the
security of our scheme by measuring more locations. More-
over, the adversary does not have full freedom of establishing
requests and must rely on the victim process to initiate a con-
nection. Finally, an adversary that has perfect knowledge of
every memory location at every moment a TLS connection
opens is highly unlikely.
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