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Abstract. Personal computers lack of a security foothold to allow the end-users
to protect their systems or to mitigate the damage. Existing candidates either rely
on a large Trusted Computing Base (TCB) or are too costly to widely deploy for
commodity use. To fill this gap, we propose a hypervisor-based security foothold,
named as Guardian, for commodity personal computers. We innovate a bootup
and shutdown mechanism to achieve both integrity and availability of Guardian.
We also propose two security utilities based on Guardian. One is a device mon-
itor which detects malicious manipulation on camera and network adaptors. The
other is hyper-firewall whereby Guardian expects incoming and outgoing network
packets based on policies specified by the user. We have implemented Guardian
(≈ 25K SLOC) and the two utilities (≈ 2.1K SLOC) on a PC with an Intel pro-
cessor. Our experiments show that Guardian is practical and incurs insignificant
overhead to the system.

1 Introduction

The operating system is the cornerstone of all security applications such as anti-virus
and firewall. Once the OS is compromised, the adversary has the ability to disable all
security services and access all sensitive data in the system. Even if a security-conscious
end-user is aware of the attack, she still can not get a reliable security foothold to miti-
gate the damage. It is challenging to seek a feasible and secure solution. Rewriting com-
modity OS, e.g., splitting the OS into low- and high-assurance portions, is too costly to
be practical. Adopting new security-capable devices (e.g., secure co-processors) usually
requires substantial modifications to hardware, OS and/or applications, which makes
these solutions difficult to widely deploy in the near future.

A usable security foothold should meet the following requirements. Firstly, it should
be secure against attacks from rootkits which can subvert the operating system. Sec-
ondly, it should allow the human user to use it, e.g., to issue a command. Last but not
the least, it should be always available throughout the life cycle even when the OS is
corrupted. By virtue of the virtualization, a hypervisor is widely deemed as a software
which can resists attacks from an untrusted guest OS. However, almost no hypervisor
can simultaneously satisfy all the above requirements, especially for the availability
requirement.

In this paper, we harness the fast-growing hardware-assisted virtualization tech-
niques to build a tiny but reliable hypervisor as the security foothold for personal com-



puters. The hypervisor we propose is named as Guardian. Guardian has two promi-
nent new features which are the enabling techniques for the hypervisor to become a
security foothold. The first is a new secure bootup and shutdown mechanism, which
enhances the existing hardware-based security boot up by offering integrity and avail-
ability protection of the TCB image and critical information. The other feature is a
secure user-hypervisor interface which allows the end-user to issue commands to and
receive responses from Guardian at runtime. The interface is secure in the sense that
the channel between the human end-user and the hypervisor is authentic and the ex-
changed information is not exposed to the guest. We also propose two practical security
utilities based on Guardian. The first is a device monitor utility, whereby the user can
instruct Guardian to monitor the state of peripheral devices, e.g., a camera. The sec-
ond is a hyper-firewall whereby Guardian inspects inbound/outbound network traffic
and drops illegal packets. We have implemented Guardian on a desktop with a Linux
guest. Guardian consists of around 25K SLOC, and the utilities consist of around 2.1K
SLOC. Our experiments show that Guardian inflicts an insignificant workload to the
whole system.

The growing hardware support for virtualization will continue to empower the hy-
pervisor with more effective and stronger security control over commodity platforms
with smaller code size and better performance. We envisage that using a hypervisor as
a generic security foothold is a promising direction to greatly boost up the security for
commodity platforms. Our work presented in this paper is an important step towards
this ultimate goal. We summarize our contributions as follows:

1. We design and implement Guardian which is the first system to provide both in-
tegrity and availability guarantees. Note that all existing hypervisors do not achieve
the availability guarantee.

2. We design and build a device monitor and a hyper-firewall as two security utilities
on top of Guardian.

In the next section, we present our research objectives and threat model. Then we
present the design of Guardian and the security utilities in Section 3 and Section 4. In
Section 5, we describe the implementation and the evaluation. Finally, we discuss the
related work in Section 6 and conclude the paper in Section 7.

2 Problem Definition

We aim to provide a tiny and reliable hypervisor as a security foothold for personal
computers. Namely, we undertake to furnish the end-user with a reliable security basis
when the conventional one (typically the operating system) fails. Though the security
foothold, the human user can configure security policies and manage resources in the
platform. It not only boosts up the system security, but also facilitates the end-user to
determine the trustworthiness of her system. Note that we do not attempt to detect and
remove malicious software from the platform, nor is to protect the operating system or
a user application.



2.1 Threat Model
Since our goal is to assist the end-user, we assume that they are security- conscious
users, who are happy and intended to use our system to protect their systems. We do
not consider any human adversary who may have physical access to the system. For
instance, the adversary can issue malicious DMA accesses by inserting extra physical
devices (e.g., a firewire device). A malicious human user can always remove the hyper-
visor from the platform.

The adversary in our threat model is malware residing in the operating system which
can subvert the operating system and launch arbitrary attacks. However, we assume
that they can not compromise the hypervisor. Note that the hypervisor makes use of
hardware-assisted virtualization techniques to defend against malicious software ac-
cesses and illicit DMA accesses. This assumption can be more reasonably held if the
hypervisor has a tiny code size and simple logic so that only a small attack interface
is exposed to the adversary. Existing techniques [4, 24, 39, 40] can also be applied to
enhance hypervisor security.

We assume that the adversary can not compromise the hardware devices whose be-
havior always exactly follow their specifications. We also assume the system firmware
is trusted. In fact, the modern BIOS has a built-in hardware lock mechanism [17,35] to
set itself as read-only so that the OS cannot tamper with it. Furthermore, the modern
BIOS only accepts signed updates [36, 38]. Due to the complexity of the x86 platform
(e.g., optional ROM), this assumption may not always true. Nonetheless, it is still pos-
sible to validate the system firmware by the proposed attestation approach [20] or by a
trusted system integrator.

3 Design of Guardian

In this section, we introduce the techniques for establishing Guardian as a security
foothold, and describe the functionalities of the two secure user interfaces.

3.1 Establishing Guardian as a Security Foothold
To establish Guardian as a security foothold, it is necessary but not sufficient to ensure
a secure boot. The secure boot alone can only validate the integrity of the system’s
TCB image during booting up, while a reliable security foothold needs both integrity
and availability guarantee, so that the system still boots up into a trusted state even if
the TCB image on the hard drive are modified by attackers. We do not elaborate the
details of secure boot (e.g., TPM-based secure boot [37]) to avoid verbosity as it has
been widely used in the literature. Our focus is to explain how to ensure that the intact
TCB image is always available for the boot up. The TCB of our system consists of the
BIOS, the bootloader-core and the Guardian image. Recall that the BIOS is protected
by the hardware and is trusted in our threat model. Therefore, we intend to protect the
bootloader core and the Guardian image against runtime attacks.

A straightforward approach is for Guardian to intercept and validate every disk I/O,
such that any access to the security critical image residing on the disk is blocked. Ob-
viously, this solution is costly due to the high overhead and complexity of a disk I/O
interception multiplied by the huge number of disk operations.



We devise a novel scheme without interposing on disk operations. The basic idea
(visualized in Figure 1) is that once Guardian is launched, it immediately relocates
its image and the bootloader core from the disk into a protected memory region prior
to launching the guest. Then, Guardian intercepts all power off events, and writes the
protected image back to the disk before cleaning up the memory. In the following,
we describe the details of secure boot up and secure shutdown, which in tandem with
runtime protection bolster the availability of Guardian throughout its whole life cycle.
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Fig. 1. Protection of the TCB (from power up to power down). The TCB consists of the Guardian
image and the bootloader core. The protected memory for the TCB image is reserved by Guardian
and inaccessible for the guest OS.

Secure Bootup Figure 2 illustrates the disk layout for Guardian, where a special parti-
tion, referred to as the hypervisor-partition, is created during installation to avoid being
trespassed by normal file systems. To allow for a secure boot without increasing the
TCB size and complexity, we make slight changes on the bootloader (e.g., Grub 2). The
BIOS passes the control to the bootloader core in the boot track. The bootloader core
includes the Master Boot Record (MBR), the diskboot image and the basic-function
image, which provides all basic functions and usually has to load other modules and
configuration files such as grub.cfg to launch an operating system due to the limited
size of the boot track (32KB in maximum).

Our modification is on the basic-function image only, such that it always launches
Guardian before loading other components including the OS. In specific, once the core
is loaded to the CPU by the BIOS (illustrated by Step 1 in Figure 3), it checks a bit
flag in main memory (referred to as VMM flag) which indicates Guardian’s presence.
If VMM flag is not set, i.e., the core immediately passes the control to Guardian whose
image is placed at a fixed disk address upon installation (Step 2 in Figure 3). The address
of Guardian is hard-coded into the core, such that it loads Guardian directly using disk
I/O without involving any file system.
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Fig. 2. An illustration of the disk layout.

After occupying the CPU, Guardian loads the TCB image into a reserved memory
region. It then configures the hypervisor page table, the EPT and IOMMU to ensure that
the reserved region is not in the hypervisor or the guest’s space and not accessible by
DMA devices either. Separating the reserved region from the hypervisor space ensures
no accidental accesses to the region. (As shown later, Guardian must map the region
into its space by re-configuring the page table in order to access it.)

Finally, Guardian sets VMM flag indicating its presence, and passes the control
back to the bootloader core (Step 3). After asserting the flag is set, the core loads other
modules and configuration files (Step 4) and proceeds to boot up the guest in the normal
way (Step 5).

!"#$

!%%&'%()*+,-%+*

./(+)0(1

./*2&,#$

3+/2&*) 41&+/2&*)

!%%&'%()*+

!"

#"$"%"

&"

Fig. 3. The sequence of secure bootup.

Device Configuration Space Protection. A rootkit may manipulate the device
configuration space (e.g., the space-overlapping attack [44]) to thwart Guardian to in-
tercept certain I/O events or access to I/O data. In order to defeat the configuration space
manipulations and conflicts/overlapping between different devices, Guardian is poised
to intercept and validate any update to the device configuration registers after its boot
up. Note that these registers are located in the northbridge chipset [11]. The interception



are realized via configuring Virtual-Machine Control Structure (VMCS) for I/O ports
and the EPT for MMIO regions.

Secure Shutdown The guest may modify the Guardian image on the disk. Therefore,
when the system is powered off, the TCB saved in the reserved memory must be written
back to their original locations in the disk for the next round of execution. There exist
two types of shutdown events. One type is the sleep events, where the system enters
a sleep state through the Advanced Configuration and Power-management Interface
(ACPI) [14]; the other is the reboot event, where the system restarts from the BIOS.
Guardian intercepts both types of shutdown events and responds accordingly.
ACPI Sleep. The ACPI sleep event is managed by the Operating System Power Man-
agement (OSPM) subsystem on the modern ACPI-compatible system. Receiving com-
mands from software (e.g., system call) or external interrupts (e.g., the System Control
Interrupt triggered by pressing the power/sleep button or closing the laptop lid), the
OSPM subsystem sets the PM1a CNT register to force the system entering the corre-
sponding sleep state. Note that Guardian prohibits the ACPI sleep event to be triggered
by the optional sleep control and PM1b CNT registers. Specifically, there is a 32-bit
pointer in the Fixed ACPI Table (FADT) pointing to the PM1b CNT block. Guardian
clears this pointer and intercepts accesses to the PM1b CNT register. The same method
is used on the control sleep register.

Guardian intercepts the guest’s sleep command issued to the PM1a CNT register.
Note that the actual interception method depends on whether the register is accessed by
PIO or MMIO. The former involves VMCS configuration whereas the latter requires
the EPT.

S5 (Soft-Off)

S4 (Hibernate)

S0~S3 (Light-Sleep)

Running
ACPI

Sleep States

Fig. 4. ACPI sleep states.

Among the six Sleep states (S0 to S5) defined in the ACPI specification (in Fig-
ure 4), the light-sleep (S0 to S3) states are not of concern, because the main memory
remains powered and Guardian remains alive. Therefore, Guardian performs no action.
For the soft-off state (S5) where the system will be powered off, Guardian restores



the TCB image back to the respective disk locations by using direct disk I/O opera-
tions. Note that Guardian needs to re-activate the disk which has been closed (but re-
mains powered) before the ACIP sleep command is issued. In the end, Guardian clears
VMM flag and resumes the intercepted ACPI command which turns the platform off.

It is slightly more complicated to deal with the hibernation state S4 due to the need
for platform context saving. Guardian needs to save its context into the hypervisor par-
tition, in addition to the restoration work done for S5. For the guest context, Guardian
disables and prohibits the ACPI S4BIOS Transition 1, which bypasses Guardian as the
BIOS directly saves all memory content into the hard disk including Guardian’s con-
text. Therefore, only the OS-assisted hibernation method is supported and the OS must
write its own context into the disk before hibernation.

Note that after the PM1a CNT register is set, the platform passes the point of no
return, because the ACPI hardware will force the platform to enter S4 or S5 state and
no software will be loaded to the CPU. In other words, Guardian is the last piece of
code executed before shutdown, which guarantees the security of the TCB and critical
data resting on the disk.
System Reboot. There are three possible ways to reboot a system. One is ACPI reset,
which is activated by the ACPI reset register. Note that the system will immediately
reboot once the reset register is set. The ACPI reset register can be accessed by port I/O
or memory-mapped I/O, which can be intercepted by Guardian through configuring the
VMCS or EPT, respectively. The second way is essentially triggered by the CPU INIT
signal. Guardian intercepts the event through configuring the VMCS.

In the third way, an attacker can switch the CPU to the real mode and jump to
the BIOS entry to reboot the system. The tricky part is that it can bypass the INIT
and ACPI reset mechanisms, meaning that the previous two interception methods will
fail to intercept this one. To intercept it, a straightforward solution is to intercept the
CPU switch from protected mode to real mode. However, the cost will significantly rise
up when legitimate CPU-mode switches take place frequently, e.g., in Windows. Our
solution is to prevent jumping to the BIOS reboot-routine from the guest by configuring
the EPT. Any attempts from the guest OS to reboot the system will be intercepted by
Guardian whose response is to repeat Step 3-5 in secure bootup without rebooting the
whole platform.

Recovery Guardian provides an alternative secure boot mechanism, where the system
is able to boot up from a trusted-storage, such as a live CD or a read-only USB token.
The bootup sequence is the same as the one described in Section 3.1. For convenience,
the end-user can configure the system always boot up from a trusted storage, such that
the system still can boot up into a trusted state.

The secure shutdown procedure may not be triggered due to some unexpected and
irresistible events, e.g., power failure or system crash. Given that such unexpected sys-
tem failure events may lead to the untrustworthiness of the TCB image, we need the
TPM-based secure boot [37] to guarantee that only the trusted image can be booted.

1 It clears the F bit in the Firmware ACPI Control Structure (FACS) and intercepts accesses to
the SMI CMD command register, which is S4BIOS service activation.



In such cases, the system can not boot up, and the security-conscious end-users need
the recovery mechanism to restore Guardian image. Specifically, the bootloader in the
trusted storage is extended to restore TCB image into the hard drive. Note that the boot-
loader originally has the capabilities to read/write the hard drive, the trusted storage and
the main memory. Therefore, we can easily combine these functions to do the recovery.

3.2 Secure User-Hypervisor Interface

The secure interface is a duplex channel between the end-user and Guardian without
involving the guest OS. Guardian shields the channel against any access from the guest.
With the interface, the end-user can configure Guardian during its boot-up, and issue
commands during runtime. For the sake of usability and simplicity, we do not rely on
any external device such as a USB token. The user inputs are through the keyboard
while the outputs are via the display in VGA mode.

Guardian provides two secure UIs. One is the Boot Up Secure User Interface (BUSUI),
which is used in the secure boot phase before the guest starts to run. Since the platform
then is in a trustworthy state, the implementation of BUSUI is straightforward. Guardian
utilizes the BIOS services (i.e. INT 0x16 and 0x10) for input and output. The end-user
activates it by holding a special key for a few seconds. In our current design, a user can
deposit a text message to Guardian as a shared secret and can also input policies.

The other interface is the Run Time Secure User Interface (RTSUI), which is used
after the guest boots up. The RTSUI can be dynamically launched by the end-user.
RTSUI extends the secure user interface in KGuard [8]. Namely, Guardian securely
receive inputs of a human user through a keyboard while it securely produces outputs
through the display. Both the input and output paths are inaccessible to the guest OS.
Since the interface in KGuard is only for password input, we extend it to a command-
line interface such that the user can conveniently input commands and read responses.

4 Security Utilities

When designing security utilities based on Guardian, we endeavor to deal with threats
plaguing normal end-users and system administrators. To this end, we propose a device
monitor and a hyper-firewall.

4.1 Device Monitoring

A rootkit can misuse a peripheral device without the user’s consent. For instance, it can
quickly turn on the camera of a laptop to take a picture of the user and then turn it off. In
a stealthy manner, it can also turn a network adaptor into the promiscuous mode so as
to sniff the entire LAN traffic. We develop a Guardian utility to monitor the states of the
camera and the network interface. In case of risky device usage, the end-user is alerted
via the hypervisor-user interface or a beep sound. Note that the beep cannot be stopped
by the adversary, because Guardian is able to intercept all accesses to that device.

Camera Control. Our design considers an external camera attached to the platform
through a USB interface. (It can also be extended for a built-in camera.) The USB port



is controlled by an EHCI [16] or UHCI [15] controller. In either case, a frame list, with
its base address specified by the PERIODICLISTBASE register, is used to queue I/O
commands. To enable the camera, the driver must insert a transfer descriptor or TD to
the frame list. The host controller automatically fetches it from the queue and responds
properly.

Upon the user’s activation command, the camera control utility makes use of the
interception primitive to set read-only on the region for the base register, the frame list
and the TD queue. If it detects a new TD with the open command UVC SET CUR for
the camera, it alerts the user through a beep sound.

NIC Promiscuous Mode Control. The control on the network interface is simpler
than EHCI. The Unicast Promiscuous Enabled (UPE) bit and the Multicast Promiscuous
Enabled (MPE) in the Receive ConTroL Register (RCTL) are the flags that turns on the
NIC’s promiscuous mode. The monitoring utility intercepts the accesses to RCTL. Once
the UPE bit or the MPE bit is set, an alert is raised to the user.

Note that Guardian and its utilities are not burdened with the complicated task of
device management, for instance, to block illegal operations. This is to keep the hyper-
visor size small and more reliable.

4.2 Hyper-firewall

Recent attacks have shown that both application-level and OS-level firewalls can be
disabled by rootkits. One solution proposed recently is the VMwall [32], which isolates
the firewall in a separated domain (i.e., the Dom0 in the Xen setting). However, this
approach dramatically increases the TCB size and requires the user to run two domains
concurrently.

We propose in this section a more elegant and stronger solution called hyper-firewall
as the firewall functions in the hypervisor space. The basic idea is that a Guardian utility
interposes on network I/O. It drops illegal packets if their TCP/IP headers are not com-
pliant to the firewall policies set by the end-user through the secure UI. Since Guardian
does not comprise any NIC driver, this utility does not significantly increase Guardian’s
code size. The main challenge is how to intercept network packets in an efficient way.
Before presenting the details, we briefly explain the network I/O mechanism.

The packet transmission mechanism is illustrated in Figure 5. The NIC makes use
of a ring buffer (essentially a circular queue) to store transmit descriptors which point
to the packets to transmit. The ring buffer has its base address saved in the TDBAL
and TDBAH registers, has its size saved in the TDLENL and TDLENH registers, and
has a head register and a tail register pointing to the queue head and tail respectively.
The NIC always dequeues the descriptor pointed by the head register, and then fetches
the corresponding packet. After retrieval, it advances the head pointer. The tail pointer
is maintained by the device driver. To send a new packet, the driver enqueues one or
multiple descriptors. Then, the tail pointer is also advanced. The NIC only uses the
descriptors between the head and the tail. It stops transmission when the two pointers
collide.

The packet receiving mechanism is analogous to the transmission mechanism. It
also has a ring buffer storing receive descriptors, and has its own base address registers,
length registers, and the head and tail registers. Initially, the driver allocates a set of fixed
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Fig. 5. The transmit descriptor circular queue used by the NIC.

length DMA buffers, and enqueues the corresponding descriptors into the ring queue.
When receiving packets, the NIC stores them into those pre-allocated DMA buffers,
updates the corresponding descriptors, and advances the head pointer accordingly. Fi-
nally, it throws out an interrupt to notify the driver to fetch the packets according to the
descriptors. Since the packet sending and receiving mechanisms are different, we de-
sign two interposition schemes, respectively. Note that the registers used by NICs may
be different. To support all NICs, we can provide a profile which can provide necessary
information for Guardian to understand register meanings.

Outbound Packet Filter Guardian uses the EPT to intercept all write accesses the TD-
BAL, TDBAH, TDLENL and TDLENH registers so that Guardian can always locate
the legitimate ring buffer. Similarly, it sets up the EPT and IOMMU tables, such that
the head register can only be updated by the NIC2, and all accesses to the tail register
are intercepted by Guardian. Lastly, it sets the entire ring buffer as read-only.

When a write access to the ring buffer is intercepted by Guardian, it checks whether
the write overwrites an existing descriptor which has not been fetched by the NIC. If so,
the access is blocked; otherwise, Guardian emulates the write. When a write access to
the tail register is intercepted, Guardian performs the following. (1) It checks whether
the packets pointed by the descriptors between the present tail and the new tail are
compliant with the firewall policies; (2) It copies all legal packets to the hypervisor
space and updates those descriptors accordingly so that the NIC can fetch them from
their new locations; for illegal packets, it sets the packet-length field in their descriptors
as zero; (3) It emulates the tail update.

2 In the current hardware specification, the driver is not able to instruct the NIC to update the
header register



Once the packets are moved to the hypervisor space, their descriptors are not al-
lowed to be changed. Note that packets are much smaller than a memory page. There-
fore, relocating them into the hypervisor space avoids undesirable page faults as com-
pared to protecting them in the guest space.

Inbound Packet Filter The inbound packet filter mechanism is similar to its outbound
counterpart. By enforcing access control on those control registers and the ring buffer
for the receiving descriptor, Guardian locates the DMA buffers allocated by the driver.
To retrieve a packet, the driver first fetches the receive descriptor which triggers a page
fault. Guardian then performs the packet inspection according to the firewall policies,
and drops illegal ones.

5 Implementation

We have built a prototype of Guardian on a Dell OptiPlex 990 MT desktop with an In-
tel(R) Core(TM) i7-2600 CPU @ 3.40GHz processor3 and 4GB main memory. Guardian
consists of around 25K SLOC for its core functions, which is much smaller than Xen
(263K SLOC for Xen-4.1.2) and Linux (8,143k SLOC for Linux-2.6.33.20). A com-
prehensive comparison between Guardian and other hypervisors is listed in Figure 6.

The binary size of Guardian is around 223KB, which is much smaller than Xen
(around 1,264KB for Xen-4.1.2 ) and Linux (around 134,134KB for Linux-2.6.33.20)
image, and the bootloader core is around 30KB. Guardian reserves 512KB memory
space for TCB images and other critical information. Guardian also provides 11 hy-
percalls for security services, which is smaller than Xen exported hypercall surfaces
(i.e., 46 hypercalls). Note that Guardian only focus on the security services, while these
systems (e.g., Xen) usually provide many more functional services.

5.1 Device Monitoring Evaluation

The device management component consists of 1.2K SLOC. Currently Guardian sup-
ports to monitor camera and network card working modes. It can be extended to support
other similar devices, such as a microphone.

We experiment with a USB Logitech web camera attached on an EHCI host con-
troller. Note that the monitoring has no effect on the camera’s performance as the
scheme does not intercept runtime commands and data transferring.

The network card mode monitor is built upon the Intel 82579LM Gigabit Network
Card, whose registers are accessed using MMIO. The experiment results produced by
network benchmark tool netperf [25] prove that the monitor service almost does not
affect the network I/O throughout. Note that the device management service does not
require any modifications in the guest kernel or device drivers.
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5.2 Hyper-firewall Evaluation

The packet filter service is built on the Intel Corporation 82579LM Gigabit Network
Card, and does not add any code into the guest OS. Current hyper-firewall supports
adding policies on inbound and outbound packets. For the outbound packets, hyper-
firewall restricts the region of the target destination (e.g., external IP addresses), and for

3 The Hyper-threading mode is disabled since our current hypervisor does not support the multi-
processor mechanism.



the inbound packets, hyper-firewall restricts the connection ports (e.g., SSH port 22).
All hyper-firewall policies can be enabled and disabled through the RTSUI. All experi-
ments show the hyper-firewall works well. We tested the network I/O performance with
benchmark tool netperf [25]. When we only enable outbound policy, the performance
results show that our hyper-firewall only introduces (0.096% - 0.064%) performance
overhead; when we enable inbound and outbound policies, the hyper-firewall introduces
(18.29% - 0.26%) performance overhead. Note that the short packet setting generates
more interceptions. Thus its performance is relatively low. Note that the monitoring of
NIC does not affect the I/O speed of other derives. The packet filter service only adds
0.9K SLOC into Guardian.

5.3 System Benchmark

0

20

40

60

80

100

Pe
rf

o
rm

an
ce

 O
ve

rh
ea

d
 (

%
) 

LmBenchmark Results 

Fig. 8. The LmBench results on OS operations.

We first measure the overhead on the OS operations using the LmBench suite. Fig-
ure 8 shows the results: socket (local connection), memory operations (i.e., read, write
and bcopy) and some system calls (i.e., mmap, fork+exec and fork+exit). However,
fork+exec and fork+exit incur higher performance penalties of 39% and 38%, which
are heavily dependent on the Intel EPT performance. We do believe that this could be
improved with the performance enhancing of memory virtualization.

We also measure computation performance with Guardian. The results generated
by the benchmark tool SPEC CPU 2006 (see Figure 9) show that Guardian usually
only introduces 0.2% - 10.3% performance loss, and may lead to 38.2% performance
overhead in some extreme cases (i.e., memory intensive operations with extreme low
cache hit rate), which is also dependent on the page operations of current Intel EPT.
Again, we believe that it can be improved in the further.

For I/O-bound benchmark test, we select a range of benchmark tools, including
Bonnie, Postmark, netperf and Linux kernel. For Bonnie, we use a 1GB file and per-
form sequential read/write (fread/fwrite) and random access (frandom). For Postmark,
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Fig. 9. The system benchmark comparison results generated by SPEC CPU 2006.

we choose 20,000 files, 100,000 transactions and 100 subdirectories, as well as all other
default parameters. For netperf, we use another local machine as the netperf server, and
run both TCP STREAM and UDP STREAM benchmarks to measure basic network
performance. For Linux kernel, we compile the Linux-2.6.33.20 with default configu-
ration. Figure 10 shows the results.
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Fig. 10. The I/O-bound benchmark results.

6 Related Work

Software-based Root of Trust Software-based ROTs have been proposed and used in
[27,29,30]. The trust establishment is based on a challenge-response protocol. A speed-
optimized function (code block) is established as the ROT on a platform if, within an
acceptable time delay, it can compute a correct checksum of memory regions according



to a given challenge. It is based on the assumption that it incurs a noticeably longer
delay for any other implementation of this function. It also has a restriction on both the
adversary’s capability, for instance no collusion with a third party, as mentioned in [10])
and the capabilities of the target platforms. In addition, to stop the proxy attack, it may
even require to unplug the network and disable the wireless to physically cut down the
connection with outside. These limitations and requirements lead to inconvenience or
even to impracticability. Thus, software ROTs are unqualified to be a security foothold
for normal users’ computers.

Hardware-based Root of Trust The hardware-based ROT can be categorized into
static ROTs and dynamic ROTs. A static ROT is a built-in platform component. When
the platform boots up, a trust chain can be established from the ROT up to the oper-
ating system. The TPM chip [37] is a typical example of static hardware ROT. As a
chip on the motherboard, it is secure against all software attacks. Secure (or authen-
ticated) boot up, remote attestation and sealed storage are the main security services
provided by the TPM framework. The main disadvantages of TPM are its low speed,
inflexibility and passiveness. Therefore, to support various security services, it usually
requires assistance from certain secure software routine (e.g., hypervisor). IBM’s secure
co-processor [2] is a strong hardware root of trust with such a high price tag that it is not
feasible for the mass market. SMART [10] is a hardware-software co-designed scheme,
where a piece of code works on a modified low-end microcontroller units (MCU) to
function as a dynamic ROT. The SwitchBlade architecture [5] can prevent persistent
rootkits from infecting security-critical files (e.g., kernel image) with an ROT residing
on the disk controller. These ROTs may be integrated with Guardian though carefully
design and implementation.

AMD Secure Virtual Machine (SVM) [1] and Intel Trusted Execution Technology
(TXT) [18] are dynamic ROTs. These new processor features allow a piece of code
to be securely executed in an isolated environment enforced by the hardware. Despite
of their easiness of use, they incur high latency as showed in the Flicker system [22].
Fortunately, the high latency may be tolerable for the end-users, since it only required
once when the system as well as Guardian boots up. The boot mechanism of Guardian
is compatible with dynamic ROT techniques.

Hypervisor Related Security Systems Many hypervisor-based security systems
have been designed and reported in the literature. For instance, a hypervisor can be
applied for I/O related protection [9,31], for kernel integrity protection [3,13,23,26,28,
41,42], and for user space protection [6,7,12,21,34,43]. By studying these systems, we
identify cryptographic engine, measurement, emulation, interception and manipulation
as the fundamental security primitives which are adopted in Guardian as well.

Our work has remarkable differences with the aforementioned systems. Guardian
aims to be a versatile hypervisor. By bring together a number of fundamental security
primitives, Guardian facilitates the design and implementation of virtualization-based
security systems, rather than focusing only on a single security problem. In addition,
Guardian caters to the security needs of the end-user, which demands Guardian to be
highly efficient, easy-to-use and compatible with the operating system and applications



Note that those schemes [4,24,39,40] that enhance the hypervisor security are com-
plimentary to our work. The security of Guardian will be further improved if these
techniques are applied in its implementation.

7 Conclusion

In this paper, we have proposed Guardian as a security foothold on the end-user sys-
tems to enhance their security. Specifically, we introduced Guardian whose integrity and
availability were guaranteed by the novel bootup and shutdown technique. Guardian
also provided a secure user interface, through which the end-user could update the con-
figurations of Guardian or dynamically activate/deactivate a dedicated security service
for the security needs. We also proposed two security utilities based on Guardian: a
device monitor which detects malicious device operations and a hyper-firewall which
inspects the incoming and outgoing network packets from the hypervisor space. We
have implemented Guardian and the two utilities. The experiment results show that
they are efficient and easy to use. Our work demonstrates that computer security can be
significantly boosted up by using a tiny and reliable hypervisor.
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