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ABSTRACT
In a proxy re-encryption (PRE) scheme [4], a proxy, autho-
rized by Alice, transforms messages encrypted under Alice’s
public key into encryptions under Bob’s public key without
knowing the messages. Proxy re-encryption can be used ap-
plications requiring delegation, such as delegated email pro-
cessing. However, it is inadequate to handle scenarios where
a fine-grained delegation is demanded. For example, Bob
is only allowed Alice’s encrypted emails containing a spe-
cific keyword. To overcome the limitation of existing PRE,
we introduce the notion of conditional proxy re-encryption
(or C-PRE), whereby only ciphertext satisfying one condi-
tion set by Alice can be transformed by the proxy and then
decrypted by Bob. We formalize its security model and pro-
pose an efficient C-PRE scheme, whose chosen-ciphertext se-
curity is proven under the 3-quotient bilinear Diffie-Hellman
assumption. We further extend the construction to allow
multiple conditions with a slightly higher overhead.

1. INTRODUCTION
The notion of proxy re-encryption (PRE) was initially in-
troduced by Blaze, Bleumer and Strauss introduced in [4].
In a PRE system, Bob is allowed to decipher public key en-
cryptions for Alice with the assistance from an authorized
proxy. Specifically, Alice authorizes the proxy by giving it a
re-encryption key. The proxy can then convert any cipher-
text under Alice’s public key into ciphertext under Bob’s
public key. The requirement is that the semantic security
of encryptions for Alice is preserved throughout the conver-
sion, such that the proxy gains no information about the
involved plaintext messages.

Proxy re-encryption has found many practical applications,
such as encrypted email forwarding, secure distributed file
systems, and outsourced filtering of encrypted spam. We use
the encrypted email forwarding as an example to illustrate
the usage of PRE and to motivate our work as well. Imagine
that a department manager, Alice, is to take a vacation. She
delegates her secretary Bob to process her routine emails.

Among the incoming emails, some could be encrypted un-
der Alice’s public key. Traditional public key encryption
schemes does not allow Bob to process such emails, follow-
ing the security norm that one’s private key should never be
shared with other. With a PRE system, Alice can simply
give the email server a re-encryption key. For an encrypted
incoming email, the email server (i.e. the proxy in PRE’s
jargon) transforms it into an encryption for Bob. Then Bob
can read this email using his secret key. When Alice is back,
she instructs the email server to stop the transformation.

The existing notion of PRE does not facilitate flexible dele-
gation. Suppose that Alice instructs Bob to process emails
only when its subject contains the keyword urgent. For other
emails, Alice prefers to read them by herself after back to of-
fice. Obviously, the existing PRE schemes do not meet such
needs. To show further motivation, we consider the case that
Alice wants Bob to process only emails with keyword mar-
ket and prefers Charlie to process emails only with keyword
sales. Using existing PRE mandates an escalated trust on
the email server, since the email server is trusted to enforce
the access control policy specified by Alice. We observe that
such trust model is unrealistic in many applications.

In this paper, we introduce the notion of conditional proxy
re-encryption or C-PRE, whereby Alice has a fine-grained
control over the delegation. As a result, Alice can flexibly
assign her delegate (Bob) the decryption capability based
on the conditions attached to the messages, using a proxy
with no higher trust than in existing PRE schemes.

1.1 Our Results
Our contribution includes a formal definition of conditional
proxy re-encryption and its security notion. Briefly speak-
ing, a C-PRE scheme involves three principals: a delegator
(say user Ui), a proxy, and a delegatee (say user Uj), similar
to existing PRE systems. A message sent to Ui with condi-
tion w is encrypted by the sender using both Ui’s public key
and w. To authorize Uj to decrypt such an encryption as-
sociated with w, Ui gives the proxy a partial re-encryption
key rki,j and a condition key cki,w corresponding to the
condition w. These two keys form the secret trapdoor used
by the proxy to perform ciphertext translation. The proxy
is unable to translate those ciphertext whose corresponding
condition keys are not available. Therefore, Ui has a flexible
control on delegation by releasing condition keys properly.

We also construct a concrete C-PRE scheme using bilinear



pairings. Under the 3-Quotient Bilinear Diffie-Hellman (3-
QBDH) assumption, we prove its chosen-ciphertext security
in the random oracle model. We further extend this basic
scheme to a conditional proxy re-encryption with multiple
conditions (MC-PRE). In the MC-PRE system, a proxy with
a partial re-encryption key can translate a ciphertext asso-
ciated with multiple conditions, if and only if he has all the
required condition keys. The proposed MC-PRE scheme is
efficient, since the number of bilinear pairings in use is in-
dependent of the number of the conditions.

1.2 Related Work
In the pioneer work due to Blaze, Bleumer and Strauss [4],
they presented the first bidirectional PRE scheme (refer to
Remark 1 for the definitions of bidirectional/unidirectional
PRE). In 2005, Ateniese et al. [1, 2] presented a unidirec-
tional PRE scheme based on bilinear pairings. Both of
these schemes are only secure against chosen-plaintext at-
tack (CPA). However, applications often require security
against chosen-ciphertext attacks (CCA). To fill this gap,
Canetti and Hohenberger [11] presented a construction of
CCA-secure bidirectional PRE scheme from bilinear pair-
ings. Later, Libert and Vergnaud [23] presented a CCA-
secrue unidirectional PRE scheme from bilinear pairings.
Recently, Deng et al. [15] proposed a CCA-secure bidirec-
tional PRE scheme without pairings. All these construc-
tions are standard PRE schemes, and hence can not con-
trol the proxy at a fine-grained level. In Pairing’08, Lib-
ert and Vergnaud [24] introduced the notion of traceable
proxy re-encryption, where malicious proxies leaking their
re-encryption keys can be identified.

Proxy re-encryption has also been studied in identity-based
scenarios. Based on the ElGamal-type public key encryp-
tion system [16] and Boneh-Boyen’s identity-based encryp-
tion system [3], Boneh, Goh and Matsuo [7] described a
hybrid proxy re-encryption system. Based on Boneh and
Franklin’s identity-based encryption system [6], Green and
Ateniese [18] presented CPA and CCA-secure identity-based
proxy re-encryption (IB-PRE) schemes in the random ora-
cle model. Chu and Tzeng [13] presented the constructions
of CPA and CCA-secure IB-PRE schemes without random
oracles

Another related work is the proxy encryption cryptosystem
introduced by Mambo and Okamoto [26]. In a proxy en-
cryption scheme [14, 21, 26], A delegator allows a delegatee
to decrypt ciphertext intended for her with the help of a
proxy: an encryption for the delegator is first partially de-
crypted by the proxy, and then fully decrypted by the del-
egatee. However, this scheme requires the delegatee to pos-
sess an additional secret for each delegation from Alice. In
contrast, the delegatee in proxy re-encryption systems only
needs his own private key as in a standard PKE.

Proxy re-encryption should not be confused with the uni-
versal re-encryption [19], in which ciphertext is only re-
randomized, instead of replacing the public keys.

1.3 Organization
The rest of the paper is organized as follows. Section 2 gives
an introduction to bilinear pairings and related complex-
ity assumptions. In Section 3, we formalize the definition

and security notions for C-PRE systems. In Section 4, we
propose a C-PRE scheme, and prove its chosen-ciphertext
security under the 3-QBDH assumption. In Section 5, we
further extend our C-PRE scheme to obtain a conditional
proxy re-encryption scheme with multiple conditions. Fi-
nally, Section 6 lists some open problems and concludes this
paper.

2. PRELIMINARIES
2.1 Notations
Throughout this paper, for a prime q, let Zq denote {0, 1, 2, · · · , q−
1}, and Z∗q denote Zq\{0}. For a finite set S, x

$← S means
choosing an element x from S with a uniform distribution.
Finally, a function f : N → [0, 1] is said to be negligible if
for all c ∈ N there exists a kc ∈ N such that f(k) < k−c for
all k > kc.

2.2 Bilinear Groups and Bilinear Pairings
Let G and GT be two cyclic multiplicative groups with the
same prime order q. A bilinear pairing is a map e : G×G→
GT with the following properties:

• Bilinearity: ∀g1, g2 ∈ G, ∀a, b ∈ Z∗q , we have e(ga1 , g
b
2) =

e(g1, g2)ab;

• Non-degeneracy: There exist g1, g2 ∈ G such that
e(g1, g2) 6= 1GT ;

• Computability: There exists an efficient algorithm to
compute e(g1, g2) for ∀g1, g2 ∈ G.

2.3 Complexity Assumptions
The security of our proposed schemes is based on a complex-
ity assumption called 3-Quotient Bilinear Diffie-Hellman (3-
QBDH) assumption. The decisional version of this assump-
tion was recently used to construct a unidirectional proxy re-
encryption with chosen-ciphertext security [23]. We briefly
review the n-QBDH assumption, a generalized version of
3-QBDH.

The n-QBDH problem in groups (G,GT ) is, given a tuple

(g, g1/a, ga, · · · , g(an−1), gb) ∈ Gn+2 with unknown a, b
$←

Z∗q , to compute e(g, g)
b

a2 . A polynomial-time algorithm B
has advantage ε in solving the n-QBDH problem in groups
(G,GT ), if

Pr[B(g, g
1
a , ga, · · · , g(an−1), gb) = e(g, g)

b
a2 ] ≥ ε,

where the probability is taken over the random choices of
a, b in Zq, the random choice of g in G, and the random bits
consumed by B.

Definition 1. We say that the (t, ε)-n-QBDH assump-
tion holds in groups (G,GT ) if no t-time adversary B has ad-
vantage at least ε in solving the n-QBDH problem in groups
(G,GT ).

3. MODEL OF CONDITIONAL PROXY RE-
ENCRYPTION

In this section, we formalize the definition and security no-
tions for C-PRE systems.



3.1 Definition of C-PRE systems
Formally, a C-PRE scheme consists of the following seven
algorithms:

GlobalSetup(λ): The key generation algorithm takes as in-
put a security parameter λ. It generates the global
parameters param.

KeyGen(i): The key generation algorithm generates the pub-
lic/secret key pair (pki, ski) for user Ui.

RKeyGen(ski, pkj): The partial re-encryption key genera-
tion algorithm, run by Ui, takes as input a secret key
ski and another public key pkj . It outputs a partial
re-encryption key rki,j .

CKeyGen(ski, w): The condition key generation algorithm,
run by user i, takes as input a secret key ski and a
condition w. It outputs a condition key cki,w.

Encrypt(pk,m,w): The encryption algorithm takes as input
a public key pk, a plaintext m ∈ M and a condition
w. It outputs ciphertext CT associated with w under
pk. Here M denotes the message space.

ReEncrypt(CTi, rki,j , cki,w): The re-encryption algorithm,
run by the proxy, takes as input a ciphertext CTi as-
sociated with w under public key pki, a partial re-
encryption key rki,j and a condition key cki,w. It out-
puts a re-encrypted ciphertext CTj under public key
pkj .

Decrypt(CT, sk): The decryption algorithm takes as input
a secret key sk and a cipertext CT. It outputs a mes-
sage m ∈M or the error symbol ⊥.

The correctness of C-PRE means that, for any condition
w, any m ∈ M, any (pki, ski) ← KeyGen(i), (pkj , skj) ←
KeyGen(j), and CTi = Encrypt(pki,m,w),

Pr
ˆ
Decrypt(CTi, ski) = m

˜
= 1, and

Pr
ˆ
Decrypt (ReEncrypt(CTi,RKeyGen(ski, pkj),CKeyGen(ski, w)), skj) = m

˜
= 1;

while for any other condition w′ and user j′ with w′ 6= w
and j′ 6= j, we have

Pr
ˆ
Decrypt

`
ReEncrypt(CTi,RKeyGen(ski, pkj),CKeyGen(ski, w

′)), skj
´

=⊥
˜

= 1− neg(λ),

Pr
ˆ
Decrypt (ReEncrypt(CTi,RKeyGen(ski, pkj′),CKeyGen(ski, w)), skj) =⊥

˜
= 1− neg(λ).

Remark 1. Blaze, Bleumer and Strauss [4] differentiated
two types of proxy re-encryption systems: bidirectional PRE
and unidirectional PRE. In bidirectional PRE systems, the
re-encryption key allows the proxy to translate Alice’s ci-
phertext to Bob’s and vice versa. In unidirectional PRE
systems, the re-encryption key can used only for one direc-
tion. In general, unidirectional PRE systems are preferable
to bidirectional ones, since (i) any unidirectional scheme can
be easily transformed to a bidirectional one [11], and (ii) in
bidirectional PRE systems, if the proxy and the delegatee
collude, they can recover the delegator’s secret key. The
same argument applies to C-PRE systems. Therefore, in
this paper, we only consider unidirectional C-PRE.

3.2 Security Notions
In plain words, the semantic security of a C-PRE encryp-
tion should be preserved against both the delegate and the
proxy if they do not possess the proper condition key. More
formally, the semantic security against chose-ciphertext at-
tacks for a C-PRE scheme Π can be defined via the following
game between an adversary A and a challenger C:

Setup. Challenger C runs algorithm GlobalSetup(λ) and gives
the global parameters param to A.

Phase 1. A adaptively issues queries q1, · · · , qm where query
qi is one of the following:

• Uncorrupted key generation query 〈i〉: C first runs
algorithm KeyGen(i) to obtain a public/secret key
pair (pki, ski), and then sends pki to A.
• Corrupted key generation query 〈j〉: C first runs

algorithm KeyGen(j) to obtain a public/secret key
pair (pkj , skj), and then gives (pkj , skj) to A.
• Partial re-encryption key query 〈pki, pkj〉: C runs

algorithm RKeyGen(ski, pkj) to generate a partial
re-encryption key rki,j and returns it to A. Here
ski is the secret key with respect to pki. It is
required that pki and pkj were generated before-
hand by algorithm KeyGen.
• Condition key query 〈pki, w〉: C runs algorithm

CKeyGen(ski, w) to generate a condition key cki,w
and returns it to A. It is required that pki was
generated beforehand by algorithm KeyGen.
• Re-encryption query 〈pki, pkj , (w,CTi)〉: To re-

ply this query, challenger C runs algorithm ReEncrypt(CTi,RKeyGen(ski, skj),CKeyGen(ski, w)),
and returns the resulting ciphertext CTj to A. It
is required that pki and pkj were generated be-
forehand by algorithm KeyGen.
• Decryption query 〈pk, (w,CT)〉 or 〈pkj ,CTj〉: Here
〈pk, (w,CT)〉 and 〈pk,CT〉 denote the queries on
original ciphertexts and re-encrypted ciphertexts
respectively. Challenger C returns the result of
Decrypt(CT, sk) to A. It is required that pk was
generated beforehand by algorithm KeyGen.

Challenge. Once A decides that Phase 1 is over, it outputs
a target public key pki∗ , a target condition w∗ and two
equal-length plaintexts m0,m1 ∈M. C flips a random
coin δ ∈ {0, 1}, and sets the challenge ciphertext to be
CT∗ = Encrypt(pki∗ ,mδ, w

∗), which is sent to A.

Phase 2. A adaptively issues queries as in Phase 1, and C
answers them as before.

Guess. Finally, A outputs a guess δ′ ∈ {0, 1} and wins the
game if δ′ = δ.

During the above game, adversary A is subject to the fol-
lowing restrictions:

(i). A can not issue corrupted key generation queries on
〈i∗〉 to obtain the target secret key ski∗ .

(ii). A can issue decryption queries on neither 〈pki∗ , (w∗,CT∗)〉
nor 〈pkj ,ReEncrypt(CT∗, rki∗,j , cki∗,w∗)〉.

(iii). A can not issue re-encryption queries on 〈pki∗ , pkj , (w∗,CT∗)〉
if pkj appears in a previous corrupted key generation
query.



(iv). A can not obtain both the condition key cki∗,w∗ and
the partial re-encryption key rki∗,j if pkj appears in a
previous corrupted key generation query.

Remark 3. The above four restrictions rule out cases where
A can trivially win the game. To illustrate this, we use
the restriction (iv) as an example. Suppose A obtains both
the condition key cki∗,w∗ and the partial re-encryption key
rki∗,j with j is a corrupted user, then she can run algorithm
ReEncrypt(CTi∗ , rki∗,j , cki∗,w∗) to obtain a re-encrypted ci-
phertext CTj under public key pkj . Using the secret key
skj , A can decrypt the ciphertext to recover mδ, and hence
break the challenge.

We refer to the above adversary A as an IND-CPRE-CCA
adversary. His advantage in attacking scheme Π is defined
as

AdvIND-CPRE-CCA
Π,A =

˛̨
Pr[δ′ = δ]− 1/2

˛̨
where the probability is taken over the random coins con-
sumed by the challenger and the adversary.

Definition 2. A C-PRE scheme Π is (t, qu, qc, qrk, qck, qre, qd, ε)
IND-CPRE-CCA secure, if and only if for any t-time IND-
CPRE-CCA adversary A that makes at most qu uncorrupted
key generation queries, at most qc corrupted key genera-
tion queries, at most qrk partial re-encryption key queries,
at most qck condition key queries, at most qre re-encryption
queries and at most qd decryption queries, AdvIND-CPRE-CCA

Π,A ≤
ε.

For the sake of an easy understanding of the security proofs
for our proposed C-PRE scheme, we differentiate two sub-
cases of restriction (iv) described in the above IND-CPRE-
CCA game, and distinguish between two types of IND-CPRE-
CCA adversaries:

• Type I IND-CPRE-CCA adversary: During the IND-
CPRE-CCA game, adversary A does not obtain the
partial re-encryption key rki∗,j with pkj is corrupted.

• Type II IND-CPRE-CCA adversary: During the IND-
CPRE-CCA game, adversary A does not obtain the
condition key cki∗,w∗ .

Note that these cases are mutually exclusive (by definition)
and complete. Therefore, the IND-CPRE-CCA security of a
C-PRE scheme can be proven by showing that neither Type
I nor Type II IND-CPRE-CCA adversary can win with a
non-negligible advantage.

4. A SECURE C-PRE SCHEME
In this section, we first present our C-PRE scheme, and
then briefly explain the intuition behind the construction.
Finally, based on the 3-QBDH assumption, we prove the
security for the proposed scheme.

4.1 Construction
The proposed C-PRE scheme consists of the following seven
algorithms:

GlobalSetup(λ): The setup algorithm takes as input a secu-
rity parameter λ. It first generates (q,G,GT , e), where
q is a λ-bit prime, G and GT are two cyclic groups
with prime order q, and e is the bilinear pairing e :

G×G→ GT . Next, it chooses g, g1, f, f1
$← G, and five

hash functions H1, H2, H3, H4 and H5 such that H1 :
{0, 1}∗ → Z∗q , H2 : GT → {0, 1}l0+l1 , H3 : {0, 1}∗ →
G, H4 : GT → {0, 1}l0+l1 and H5 : {0, 1}∗ → Z∗q . Here
l0 and l1 are determined by the security parameter,
and the message space is {0, 1}l0 . The global parame-
ters are

param = ((q,G,GT , e), g, g1, f, f1, H1, · · · , H5).

KeyGen(i): To generate the public/secret key pair for user

Ui, it picks xi
$← Z∗q , and sets the public key and secret

key to be pki = (Pi, Qi) = (gxi , g
1/xi
1 ) and ski = xi,

respectively.

RKeyGen(ski, pkj): On input a secret key ski = xi and a

public key pkj = (Pj , Qj) = (gxj , g
1/xj

1 ), it outputs

the partial re-encryption key rki,j = P
1/xi
j = gxj/xi .

CKeyGen(ski, w): On input a secret key ski = xi and a
condition w ∈ {0, 1}∗, it outputs the condition key

cki,w = H3(w, pki)
1/xi .

Encrypt(pki,m,w): On input a public key pki = (Pi, Qi), a
condition w and a message m ∈ {0, 1}l0 , it works as
following:

1. Pick r′
$← {0, 1}l1 and compute r = H1(m, r′, w).

2. Compute and output the ciphertext CT = (A,B,C,D)
as:

A = gr1 , B = P ri , C = H2 (e(g, g)r)⊕(m‖r′)⊕H4 (e(Qi, H3(w, pk))r) , D =
`
fH5(A,B,C)f1

´r
.

(1)

ReEncrypt(CTi, rki,j , cki,w): On input the ciphertext CTi
associated with condition w under public key pki, a
condition key cki,w and a partial re-encryption key
rki,j , this algorithm generates the re-encrypted cipher-
text under key pkj as follows:

1. Parse pki as (Pi, Qi) and CTi as (A,B,C,D).

2. Check whether both of the following equalities
hold:

e(A,Pi) = e(g1, B), e(A, fH5(A,B,C)f1) = e(g1, D).
(2)

If not, output⊥; otherwise, output the re-encrypted
ciphertext CTj = (B′, C′) as

B′ = e(B, rki,j), C
′ = C ⊕H4(e(A, cki,w)). (3)

Indeed, the re-encrypted ciphertext CTj = (B′, C′) is of the
following forms:

B′ = e(g, gskj )r, C′ = H2(e(g, g)r)⊕ (m‖r′), (4)

where r = H1(m, r′, w).

Decrypt(CTi, ski): On input a secret key ski = xi and a
ciphertext CTi under public key pki = (Pi, Qi), this
algorithm works according to two cases:



• CT is an original ciphertext associated with a con-
dition w, i.e., CT = (A,B,C,D): If Eq. (2) does
not hold, output ⊥; otherwise, compute (m‖r′) =

C ⊕ H4(e(A,H3(w, pki)
1/xi)) ⊕ H2(e(B, g)1/xi),

and return m if gxi·H1(m,r′,w) = B holds and ⊥
otherwise.
• CT is a re-encrypted ciphertext, i.e., CT = (B′, C′):

Compute (m‖r′) = C′⊕H2(B
′ 1

xi ), and return m

if e(g, g)xi·H1(m,r′,w) = B′ holds and ⊥ otherwise.

Correctness: It can be verified that, all the correctly gener-
ated original/re-encrypted ciphertexts can be correctly de-
crypted. We here explain why a re-encrypted ciphertext,
generated by a proxy who does not have both the right
partial re-encryption key and the right condition key, can
not be decrypted by the delegatee with non-neglibible prob-
ability. For example, given an original ciphertext CTi =
(A,B,C,D) associated with condition w under public key
pki = (Pi, Qi) as in Eq. (1). Suppose a proxy, who has

a partial re-encryption key rki,j = gxj/xi and a condition
key cki,w′ = H3(w′, pki)

1/xi with w′ 6= w, runs ReEncrypt
to translate ciphertext CTi into a ciphertext intended for
Uj . Obviously, CTi can pass the validity check of Eq. (2),
and hence he generates the re-encrypted ciphertext CT′j =
(B′, C′) as

B′ = e(B, rki,j) = e(P ri , g
xj/xi) = e(gxir, gxj/xi) = e(g, g)xjr,

C′ = C ⊕H4(e(A, cki,w′)) = H2 (e(g, g)r)⊕ (m‖r′)⊕H4 (e(Qi, H3(w, pki))
r)⊕H4(e(A, cki,w′))

= H2 (e(g, g)r)⊕ (m‖r′)⊕H4 (e(Qi, H3(w, pki))
r)⊕H4

`
e(Qi, H3(w′, pki))

r´ .
Since w′ 6= w, the term H4 (e(Qi, H3(w, pki))

r) in com-
ponent C′ can not be canceled by H4 (e(Qi, H3(w′, pki))

r)
with overwhelming probability. So, when user j with se-
cret key skj = xj receives the above re-encrypted ciphertext
CT′j , he computes C′ ⊕ H2(B′1/xj ) and obtains (m‖r′) ⊕
H4 (e(Qi, H3(w, pki))

r)⊕H4 (e(Qi, H3(w′, pki))
r) instead of

(m‖r′). Obviously, this resulting value can not pass the va-
lidity check as shown in algorithm Decrypt. Therefore, re-
encrypted ciphertext CT′j can not be decrypted by Uj with
overwhelming probability.

Security Intuitions: Next, we briefly explain why the pro-
posed scheme can ensure the chosen-ciphertext security. It
follows two important facts. First, the re-encrypted cipher-
text given in Eq. (4) is indeed a ciphertext of the “hashed”
CCA-secure ElGamal encryption [9, 16, 17] using the bilin-
ear pairings, and hence it is impossible for the adversary
to gain any advantage through malicious manipulating the
re-encrypted ciphertext. Second, the validity of the original
ciphertext given in Eq. (1) can be publicly verified by check-
ing Eq. (2). Thus, it is also impossible for the adversary to
maliciously manipulate the original ciphertext. In the next
subsection, we show detailed security proofs.

4.2 Security
The proposed C-PRE scheme is IND-CPRE-CCA secure in
the random oracle model as stated below.

Theorem 1. Our C-PRE scheme is IND-CPRE-CCA se-
cure in the random oracle model, assuming the 3-QBDH as-
sumption holds in groups (G,GT ).

Theorem 1 follows directly from the following Lemma 1 and
2.

Lemma 1. If there exists a (t, qH1 , qH2 , qH3 , qH4 , qH5 , qu, qc, qrk, qck, qre, qd, ε)
Type I IND-CPRE-CCA adversary A against our scheme,
then there exists an algorithm B which can solve the (t′, ε′)-
3-QBDH problem in groups (G,GT ) with

ε′ ≥ 1

qH2

“ ε

e(1 + qrk)
− qH1(1 + qd)

2l0+l1
− qre + qd

q

”
,

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qck + qre + qd)O(1)

+ (2qu + 2qc + qrk + qck + qre + qH1qre + 2qH1qd + 3)te + (6qre + 5qd + 1)tp.

where te denotes the running time of an exponentiation in
group G, tp denotes the running time of a pairing in groups
(G,GT ), qHi(i = 1, · · · , 5) denotes the number of oracle
queries to Hi, and qu, qc, qrk, qck, qre and qd have the same
meaning as those in Definition 2.

Proof. Suppose B is given as input a 3-QBDH challenge

tuple (g, g1/a, ga, g(a2), gb) with unknown a, b
$← Z∗q . Algo-

rithm B’s goal is to output e(g, g)
b

a2 . Algorithm B first picks

u, α1, α2
$← Z∗q , defines g1 =

`
g(a2)

´u
, f =

`
g(a2)

´α1 , f1 =`
g(a2)

´α2 , and gives (g, g1, f, f1) to A. Next, B acts as a
challenger and plays the IND-CPRE-CCA game with ad-
versary A in the following way:

Hash Oracle Queries. At any time adversary A can issue
the random oracle queries Hi with i ∈ {1, · · · , 5}. Algorithm
B maintains five hash lists H list

i with i ∈ {1, · · · , 5}, which
are initially empty, and responds as below:

• H1 queries: On receipt of an H1 query (m, r′, w),
if this query already appears on the H list

1 in a tuple
(m, r′, w, r), return the predefined value r. Otherwise,

choose r
$← Z∗q , add the tuple (m, r′, w, r) to the H list

1

and respond with H1(m,w, r′) = r.

• H2 queries: On receipt of an H2 query U ∈ GT , if this
query already appears on the H list

2 in a tuple (U, β),

return the predefined value β. Otherwise, choose β
$←

{0, 1}l0+l1 , add the tuple (U, β) to the list H list
2 and

respond with H2(U) = β.

• H3 queries: On receipt of an H3 query (w, pki), if
this query already appears on the H list

3 in a tuple
(w, pki, s, S), return the predefined value S. Other-

wise, choose s
$← Z∗q , compute S = (ga)s, add the tuple

(w, pki, s, S) to theH list
3 and respond withH3(w, pki) =

S.

• H4 queries: On receipt of an H4 query V ∈ GT ,
if this query already appears on the H list

4 in a tu-
ple (V, γ), return the predefined value γ. Otherwise,

choose γ
$← {0, 1}l0+l1 , add the tuple (V, γ) to the

H list
4 and respond with H4(V ) = γ.

• H5 queries: On receipt of an H5 query (A,B,C), if
this query already appears on the H list

5 in a tuple
(A,B,C, η), return the predefined value η. Otherwise,

choose η
$← Z∗q , add the tuple (A,B,C, η) to the H list

5

and respond with H5(A,B,C) = η.



Phase 1. In this phase, adversaryA issues a series of queries
subject to the restrictions of the Type I IND-CPRE-CCA
game. B answers these queries for A as follows:

• Uncorrupted key generation query 〈i〉: Algorithm B
first picks xi

$← Z∗q . Next, as in Coron ↪aŕs proof tech-
nique [12], it flips a biased coin coini ∈ {0, 1} that
yields 0 with probability θ and 1 with probability 1−θ.

If coini = 0, define pki = (Pi, Qi) = (ga
2xi , g

1
a2xi
1 ) =

((g(a2))xi , g
u
xi ); else define pki = (Pi, Qi) = (gaxi , g

1
axi
1 ) =

((ga)xi , (ga)
u
xi ). Finally, it returns pki to adversary A

and adds the tuple (pki, xi, coini) to the K list.

• Corrupted key generation query 〈j〉: Algorithm B first

picks xj
$← Z∗q and defines pkj = (Pj , Qj) = (gxj ,

`
g(a2)

´u/xj )
and coinj = ‘−’. Next, it adds the tuple (pkj , xj , coinj)
to the K list and returns (pkj , xj) to adversary A.

• Partial re-encryption key query 〈pki, pkj〉: B first parses
pkj as (Pj , Qj), and recovers tuples (pki, xi, coini) and
(pkj , xj , coinj) from the K list. Next, it constructs the
partial re-encryption key rki,j for adversary A accord-
ing to the following situations:

– If coini = ‘−’, it means that ski = xi. Algorithm

B simply outputs rki,j = P
1/xi
j .

– If (coini = 1∧ coinj = 0), it means that ski = axi

and skj = a2xj . B returns rki,j = (ga)
xj
xi . Note

that this is a valid partial re-encryption key since

(ga)
xj
xi = g

a2xj
axi = P

1
ski
j .

– If (coini = 1∧coinj = 1) or (coini = 0∧coinj = 0),

algorithm B returns rki,j = gxj/xi .
– If (coini = 1∧ coinj = ‘−’) or (coini = 0∧ coinj =

1), B returns rki,j =
“
g1/a

”xj/xi

.

– If (coini = 0 ∧ coinj = ‘−’), B outputs “failure”
and aborts.

• Condition key query 〈pki, w〉: Algorithm B first re-
covers tuple (pki, xi, coini) from the K list and tuple
(w, pki, s, S) from the H list

3 . Next, it constructs the
condition key cki,w for adversary A according to the
following cases:

– If coini = ‘−’, it means that ski = xi: Algorithm
B responds with cki,w = S1/xi .

– If coini = 1, it means that ski = axi: Algorithm
B responds with cki,w = gs/xi . Note that this is

indeed a valid condition key, since g
s

xi = g
as

axi =

(gas)
1

axi = H(w, pki)
1

ski .
– If coini = 0, it means that ski = a2xi: B responds

with cki,w =
“
g1/a

”s/xi

. Note that this is indeed

a valid condition key, since
“
g1/a

” s
xi = g

as
a2xi =

(gas)
1

a2xi = H(w, pki)
1

ski .

• Re-encryption query 〈pki, pkj , (w′,CTi)〉: Algorithm
B parses CTi as CTi = (A,B,C,D). If Eq. (2) does
not hold, it outputs ⊥; otherwise, it works as follows:

1. Recover tuples (pki, xi, coini) and (pkj , xj , coinj)
from the K list.

2. Issue a condition key query 〈pki, w′〉 to obtain the
condition key cki,w′ .

3. Finally, generate the re-encrypted ciphertext ac-
cording to the following two cases:
– coini = 0 ∧ coinj = ‘−’: search whether there

exists a tuple (m, r′, w, r) ∈ H list
1 such that

gr1 = A and w = w′. If yes, compute B′ =
e(g, P rj ), C′ = C ⊕ H4(e(A, cki,w′)), and re-
turn CTj = (B′, C′) as the re-encrypted ci-
phertext to A; otherwise return ⊥.

– Otherwise: Algorithm B first constructs the
partial re-encryption key rki,j as in the par-
tial re-encryption key queries, and then runs
algorithm ReEncrypt(CTi, rki,j , cki,w′), and fi-
nally returns the resulting re-encrypted ci-
phertext CTj to A.

• Decryption query 〈pki, (w′,CT)〉 or 〈pki,CT〉: Algo-
rithm B parses pki as pki = (Pi, Qi) and then recov-
ers tuple (pki, xi, coini) from the K list. If coini = ‘−’
(meaning ski = xi), algorithm B decrypts the cipher-
text using xi and returns the plaintext to A. Other-
wise, it proceeds as follows.

1. Parse CT as CT = (A,B,C,D) or CT = (B,C).
When CT = (A,B,C,D), work as follows: if Eq.
(2) does not hold, return ⊥, else construct the
condition key cki,w′ as in the condition key query,
and define C = C ⊕H4(e(A, cki,w′)).

2. Search lists H list
1 and H list

2 to see whether there
exist tuples (m, r′, w, r) ∈ H list

1 and (U, β) ∈ H list
2

such that

w = w′, P ri = B, β⊕(m‖r′) = C and U = e(g, g)r.

If yes, return m to A. Otherwise, return ⊥.

Challenge. When A decides that Phase 1 is over, it out-
puts a target public key pki∗ , a condition w∗ and two equal-
length messages m0,m1 ∈ {0, 1}l0 . Algorithm B responds
as follows:

1. Recover tuple (pki∗ , x
∗, coin∗) from theK list. If coin∗ 6=

0, output “failure” and abort. Otherwise (meaning
ski∗ = a2x∗), algorithm B continues to execute the
following steps.

2. Pick y∗
$← Z∗q , C∗

$← {0, 1}l0+l1 , and define A∗ =

guby
∗
, B = gbx

∗y∗ , D∗ = gby
∗(α1H5(A∗,B∗,C∗)+α2).

3. Construct the condition key cki∗,w∗ as in the condition
key query.

4. Pick a random bit δ
$← {0, 1}, r′ $← {0, 1}l1 . Implic-

itly define H1(mδ, r
′, w∗) = by∗

a2
and H2(e(g, g)

by∗

a2 ) =
C∗⊕ (mδ‖r′)⊕H4(e(A∗, cki∗,w∗)) (note that B knows

neither by∗

a2
nor e(g, g)

by∗

a2 ).

5. Return CT∗ = (A∗, B∗, C∗, D∗) as the challenged ci-
phertext to adversary A.

Note that by the construction given above, if let r∗ , by∗

a2
,

we can see that the challenged ciphertext CT∗ has the same
distribution as the real one, sinceH2 acts as a random oracle,
and



A∗ = guby
∗

=
`
g(a2u)´ by∗

a2 = gr
∗

1 , B∗ = gbx
∗y∗ =

`
ga

2x∗´ by∗

a2 = P r
∗

i∗ ,

C∗ = C∗ ⊕
`
(mδ‖r′)⊕H4(e(A∗, cki∗,w∗)

´
⊕
`
(mδ‖r′)⊕H4(e(A∗, cki∗,w∗)

´
,

=
`
C∗ ⊕ (mδ‖r′)⊕H4(e(A∗, cki∗,w∗)

´
⊕
`
(mδ‖r′)⊕H4(e(Qi∗ , H3(w∗, pki∗)

r∗)
´

= H2(e(g, g)
by∗

a2 )⊕
`
(mδ‖r′)⊕H4(e(Qi∗ , H3(w∗, pki∗)

r∗)
´

= H2(e(g, g)r
∗
)⊕ (mδ‖r′)⊕H4(e(Qi∗ , H3(w∗, pki∗)

r∗),

D∗ = gby
∗(α1H5(A∗,B∗,C∗)+α2) =

“
ga

2α1H5(A∗,B∗,C∗)ga
2α2
” by∗

a2
=
“
fH5(A∗,B∗,C∗)f1

”r∗
.

Phase 2. A continues to issue the rest of queries as in Phase
1, with the restrictions described in the Type I IND-CPRE-
CCA game. Algorithm B responds to these queries as in
Phase 1.

Guees. Eventually, adversary A returns a guess δ′ ∈ {0, 1}
to B. Algorithm B randomly picks a tuple (U, β) from the

list H list
2 , and outputs U1/y∗ as the solution to the given

3-QBDH instance.

Analysis. Now let’s analyze the simulation. The main idea
of the analysis is borrowed from [9]. We first evaluate the
simulations of the random oracles. From the constructions
of H3, H4 and H5, it is clear that the simulations of these
oracles are perfect. As long as adversary A does not query

(mδ, r
′, w∗) to H1 nor e(g, g)

by∗

a2 to H2, where δ and r′ are
chosen by B in the Challenge phase, the simulations of H1

and H2 are perfect. By AskH∗1 we denote the event that
(mδ, r

′, w∗) has been queried to H1. Also, by AskH∗2 we

denote the event that e(g, g)
by∗

a2 has been queried to H2.

As argued before, the challenged ciphertext provided forA is
identically distributed as the real one from the construction.
From the description of the simulation, it can be seen that
the responses to A’s uncorrupted key generation queries,
corrupted key generation queries, condition key queries are
also perfect.

Next, we analyze the simulation of the partial re-encryption
key oracle and the Challenge phase. Obviously, if B does not
abort during the simulation of the partial re-encryption key
queries, the response to A’s partial re-encryption key queries
is perfect. Similarly, if B does not abort in the Challenge
phase, the Challenge phase is also perfect. Let Abort denote
the event of B’s aborting during the whole simulation. Then
we have Pr[¬Abort] ≥ θqrk(1 − θ), which is maximized at
θopt = qrk

1+qrk
. Using θopt, the probability Pr[¬Abort] is at

least 1
e(1+qrk)

.

We proceed to analyze the simulation of the re-encryption
oracle. The responses to adversary A’s re-encryption queries
are perfect, unless A can submit valid original ciphertexts
without querying hash function H1(denote this event by
ReEncErr). However, since H1 acts as a random oracle and
adversaryA issues at most qre re-encryption queries, we have
Pr[ReEncErr] ≤ qre

q
.

Now, we evaluate the simulation of the decryption oracle.

The simulation of the decryption oracle is perfect, with the
exception that simulation errors may occur in rejecting some
valid ciphertexts. However, these errors are not significant as
shown below: Suppose a ciphertext CT has been queried to
the decryption oracle. Even if CT is a valid ciphertext, there
is a possibility that CT can be produced without querying
e(g, g)r to H2, where r = H1(m, r′, w). Let Valid be an
event that CT is valid. Let AskH2 and AskH1 respectively
be events that e(g, g)r has been queried to H2 and (m, r′, w)
has been queried to H1. We then have

Pr[Valid|¬AskH2] ≤ Pr[Valid ∧ AskH1|¬AskH2] + Pr[Valid ∧ ¬AskH1|¬AskH2]

≤ Pr[AskH1|¬AskH2] + Pr[Valid|¬AskH1 ∧ ¬AskH2] ≤ qH1

2l0+l1
+

1

q
.

Let DecErr be the event that Valid|¬AskH2 happens during
the entire simulation. Then, since qd decryption oracles are
issued, we have Pr[DecErr] ≤ qH1qd

2l0+l1
+ qd

q
.

Now let Good denote the event (AskH∗2 ∨ (AskH∗1|¬AskH∗2)∨
ReEncErr ∨ DecErr)

˛̨
¬Abort. If event Good does not hap-

pen, due to the randomness of the output of the random
oracle H2, it is clear that adversary A can not gain any
advantage greater than 1

2
in guessing δ. Namely, we have

Pr[δ = δ′|¬Good] = 1
2
. Hence, by splitting Pr[δ′ = δ], we

have

Pr[δ′ = δ] = Pr[δ′ = δ|¬Good]Pr[¬Good] + Pr[δ′ = δ|Good]Pr[Good]

≤ 1

2
Pr[¬Good] + Pr[Good] =

1

2
(1− Pr[Good]) + Pr[Good] =

1

2
+

1

2
Pr[Good]

and

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Good]Pr[¬Good] =
1

2
(1− Pr[Good]) =

1

2
− 1

2
Pr[Good].

By definition of the advantage for the Type I IND-CPRE-
CCA adversary, we then have

ε =
˛̨
2× Pr[δ′ = δ]− 1

˛̨
≤ Pr[Good] = Pr[(AskH∗2 ∨ (AskH∗1|¬AskH∗2) ∨ ReEncErr ∨ DecErr)

˛̨
¬Abort]

=
(Pr[AskH∗2] + Pr[AskH∗1|¬AskH∗2] + Pr[ReEncErr + Pr[DecErr])

Pr[¬Abort]
.

Since Pr[AskH∗1|¬AskH∗2] ≤ qH1
2l0+l1

, Pr[DecErr] ≤ qH1qd

2l0+l1
+ qd

q
,

Pr[ReEncErr] ≤ qre
q

and Pr[¬Abort] ≥ 1
e(1+qrk)

, we obtain

Pr[AskH∗2] ≥ Pr[¬Abort] · ε− Pr[AskH∗1|¬AskH∗2]− Pr[DecErr]− Pr[ReEncErr]

≥ ε

e(1 + qrk)
− qH1

2l0+l1
− qH1qd

2l0+l1
− qd

q
− qre

q
=

ε

e(1 + qrk)
− qH1(1 + qd)

2l0+l1
− qre + qd

q
.

Meanwhile, if event AskH∗2 happens, algorithm B will be able

to solve the 3-QBDH instance by picking
“
e(g, g)

by∗

a2
”1/y∗

from the list H list
2 . Consequently, we obtain

ε′ ≥ 1

qH2

Pr[AskH∗2] ≥ 1

qH2

“ ε

e(1 + qrk)
−qH1(1 + qd)

2l0+l1
−qre + qd

q

”
.



From the description of the simulation, the running time of
algorithm B can be bounded by

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qck + qre + qd)O(1)

+ (2qu + 2qc + qrk + qck + qre + qH1qre + 2qH1qd + 3)te + (6qre + 5qd + 1)tp.

This completes the proof of Lemma 1.

Next, we prove that under the 2-QBDH assumption, there
exists no Type II IND-CPRE-CCA adversary A against our
scheme with non-negligible probability. Note that the 2-
QBDH assumption is weaker than the 3-QBDH assumption
and is implied by the latter.

Lemma 2. If there exists a (t, qH1 , qH2 , qH3 , qu, qc, qrk, qck, qre, qd, ε)
Type II IND-CPRE-CCA adversary A against our scheme,
then there exists an algorithm B which can solve the (t′, ε′)-
2-QBDH problem in groups (G,GT ) with

ε′ ≥ 1

qH4

“ ε

e(1 + qck)
− qH1(1 + qd)

2l0+l1
− qre + qd

q

”
,

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qck + qre + qd)O(1)

+ (2qu + 2qc + qrk + qck + 2qre + qH1qre + 2qH1qd + 3)te + (6qre + 4qd + qH1qd + 1)tp.

where te, tp, qHi(i = 1, · · · , 5), qu, qc, qrk, qck, qre and qd have
the same meaning as Lemma 1.

The proof is in Appendix A.

5. EXTENSIONS
In this section, we extend our C-PRE scheme to obtain a
conditional proxy re-encryption system with multiple con-
ditions (MC-PRE). In a MC-PRE system, the proxy with a
partial re-encryption key rki,j can translate ciphertexts as-
sociated with a set of conditions {wt}t∈{k1,··· ,kn} from user
Ui to user Uj , if and only if he has all the condition keys
{cki,wt}t∈{k1,··· ,kn} with respect to these conditions.

Based on the C-PRE scheme in Section 4.1, we present a
MC-PRE scheme. The proposed MC-PRE scheme consists
of seven algorithms, where GlobalSetup, KeyGen, RKeyGen
and CKeyGen are the same as those in the C-PRE scheme,
and the other three algorithms are specified as below:

Encrypt(pk,m, {wt}t∈{k1,··· ,kn}): On input a public key pk =

(P,Q), a plaintext m ∈ {0, 1}l0 and a set of conditions
{wt}t∈{k1,··· ,kn}, this algorithm works as below:

1. Pick r′
$← {0, 1}l1 and compute r = H1(m, r′, {wt}t∈{k1,··· ,kn}).

2. Compute A = gr1 , B = P r, C = H2 (e(g, g)r) ⊕
(m‖r′)⊕H4

“
e
`
Q,
` Q
t∈{k1,··· ,kn}

H3(wt, pk)
´r´”

, and

D =
“
fH5(A,B,C)f1

”r
.

3. Output the original ciphertext CT = (A,B,C,D).

ReEncrypt(CTi, rki,j , {cki,wt}t∈{k1,··· ,kn}): On input a ci-
phertext CTi associated with a set of conditions {wt}t∈{k1,··· ,kn}
under public key pki, a partial re-encryption key rki,j
and a set of condition key {cki,wt}t∈{k1,··· ,kn}, it gen-
erates the ciphertext under key pkj as follows:

1. Parse pki = (Pi, Qi) and CTi = (A,B,C,D).
2. Check whether both of the following equalities

hold:

e(A,Pi) = e(g1, B), e(A, fH5(A,B,C)f1) = e(g1, D).
(5)

If not, output⊥; otherwise, computeB′ = e(B, rki,j),

C′ = C ⊕H4

“
e(A,

Q
t∈{k1,··· ,kn}

cki,wt)
”

, and out-

put the re-encrypted ciphertext CTj = (B′, C′).

Decrypt(CT, sk): On input a secret key sk = x and a ci-
phertext CT under public key pk, this algorithm works
according to two cases:

• CT is an original ciphertext associated with a set
of conditions {wt}t∈{k1,··· ,kn}, i.e., CT = (A,B,C,D):
Check whether Eq. (5) holds. If not, output ⊥.

Otherwise, compute (m‖r′) = C⊕H4

“
e(A,

Q
t∈{k1,··· ,kn}

H3(wt, pk))1/x
”
⊕

H2

`
e(B, g)1/x

´
, and ifB = gx·H1(m,r′,{wt}t∈{k1,··· ,kn}),

return m, else return ⊥.
• CT = (B′, C′): Compute (m‖r′) = C′⊕H2(B′1/x).

If B′ = e(g, g)x·H1(m,r′,{wt}t∈{k1,··· ,kn}), return
m, else return ⊥.

Interestingly, the number of bilinear pairings needed in the
above MC-PRE scheme is independent of the number of con-
ditions, and the efficiency of this MC-PRE scheme is com-
parable to that of the C-PRE scheme in Section 4.1.

Similarly to the C-PRE scheme, the chosen-ciphertext se-
curity of the proposed scheme can be proved under the 3-
QBDH assumption. Of course, the security model should
be slightly modified to address the situations under multi-
ple conditions. Due to the space limit, we omit the security
model and proofs.

6. CONCLUSIONS AND OPEN QUESTIONS
In this paper, we tackle the problem of how to control the
proxy in PRE systems at a fine-grained level. We intro-
duce the concept of conditional proxy re-encryption. We
formalize its definition and its security notions, and propose
a CCA-secure C-PRE scheme. We further extend this C-
PRE scheme to support multiple conditions with reasonable
overhead. The conditions in our proposed solution are lim-
ited to keywords. It remains as an interesting open problem
how to construct CCA-secure C-PRE schemes with anony-
mous conditions or boolean predicates.
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Appendix
A Proof of Lemma 2

Proof. Suppose B is given as input a 2-QBDH challenge

tuple (g, g1/a, ga, gb) with unknown a, b
$← Z∗q . Algorithm

B’s goal is to output e(g, g)b/a
2
. Algorithm B first picks

u, α1, α2
$← Z∗q , defines g1 = gu, f = (ga)α1 , f1 = (ga)α2 ,

and gives (g, g1, f, f1) to A. Next, B acts as a challenger and
plays the Type II IND-CPRE-CCA game with adversary A
in the following way:

Hash Oracle Queries. B maintains five hash lists H list
i

with i ∈ {1, · · · , 5}, and responds in the same way as in the
proof of Lemma 1, except that H3 queries are conducted in
the following way:

• H3 queries: On receipt of an H3 query (w, pki), if this
query already appears on theH list

3 in a tuple (w, pki, s, S, coin),

return the predefined value S. Otherwise, pick s
$← Z∗q

and flip a random biased coin coin ∈ {0, 1} that yields
0 with probability θ and 1 with probability 1 − θ. If
coin = 0 then the hash value H3(w, pki) is defined as
S = gs, else S = gbs. Finally, S is returned to A and
(w, pki, s, S, coin) is added to the H list

3 .

Phase 1. In this phase, A issues a series of queries subject
to the restrictions of the Type II IND-CPRE-CCA game. B
maintains a list K list, and answers these queries as follows:

• Uncorrupted key generation query 〈i〉: B first picks

xi
$← Z∗q , and defines pki = (Pi, Qi) = (gaxi , g

1
axi
1 ) =

((ga)xi , (g
1
a )

u
xi ). Next, it defines ci = 0, adds the tuple

(pki, xi, ci) to the K list, and returns pki to adversary
A. Here the bit ci is used to denote whether the se-
cret key with respect to pki is corrupted, i.e., ci = 0
indicates uncorrupted and ci = 1 means corrupted.

• Corrupted key generation query 〈j〉: B first picks xj
$←

Z∗q and defines pkj = (Pj , Qj) = (gxj , g
u

xj ), cj = 1.

Next, it adds the tuple (pkj , xj , cj) to the K list and
returns (pkj , xj) to A.
• Partial re-encryption key query 〈pki, pkj〉: B recovers

tuples (pki, xi, ci) and (pkj , xj , cj) from the K list, and
constructs the partial re-encryption key rki,j for A ac-
cording to the following cases:
– If ci = cj . Respond with rki,j = gxj/xi .
– If ci = 1 ∧ cj = 0. Respond with rki,j = (ga)xj/xi .

– If ci = 0∧cj = 1. Respond with rki,j =
“
g1/a

”xj/xi

.



• Condition key query 〈pki, w〉: B first recovers the tuple
(pki, xi, ci) from theK list and the tuple (w, pki, s, S, coin)
from the H list

3 . Next, it constructs the condition key
cki,w for adversary A according to the following cases:

– If ci = 1, it means that ski = xi. Algorithm B
responds with cki,w = S1/xi .

– If ci = 0 ∧ coin = 0, it means that ski = axi
and H3(w, pki) = gsi . Algorithm B responds with

cki,w =
“
g1/a

”si/xi

.

– If ci = 0 ∧ coin = 1, it means that ski = axi and
H3(w, pki) = gbsi . Algorithm B outputs “failure”
and aborts.

• Re-encryption query 〈pki, pkj , (w′,CTi)〉: B parses pki =
(Pi, Qi), pkj = (Pj , Qj) and CTi = (A,B,C,D). If Eq.
(2) does not hold, it outputs ⊥; otherwise, it acts as
follows:

1. Recover tuples (pki, xi, ci) and (pkj , xj , cj) from
the K list.

2. Issue a partial re-encryption key query to obtain
the partial re-encryption key rki,j .

3. Recover the tuple (w′, pki, s, S, coin) from the H list
3 ,

and produce the re-encrypted ciphertext according
to the following two cases:
– ci = 0∧coin = 1: Search whether there exists a

tuple (m, r′, w, r) ∈ H list
1 such that gr1 = A and

w = w′. If yes, compute B′ = e(g, P rj ), C′ =
C ⊕H4(e(Qi, S

r)), and return CTj = (B′, C′)
as the re-encrypted ciphertext to A; otherwise
return ⊥.

– Otherwise: Algorithm B first constructs the
condition key cki,w′ as in the condition key
queries, and then returns ReEncrypt(CTi, rki,j , cki,w′)
to A.

• Decryption query 〈pki, (w′,CT)〉 or 〈pki,CT〉: Algo-
rithm B responds as follows:

1. Parse pki as (Pi, Qi). Recover the tuple (pki, xi, ci)
from the K list. If ci = 1 (i.e., ski = xi), decrypt
CT using xi and return the resulting plaintext to
A.

2. Parse CT as CT = (A,B,C,D) or CT = (B,C).
When CT = (A,B,C,D), return ⊥ if Eq. (2) does
not hold.

3. Search lists H list
1 and H list

2 to see whether there
exist tuples (m, r′, w, r) ∈ H list

1 and (U, β) ∈ H list
2

such that
P ri = B,U = e(g, g)r, w = w′,

and


β ⊕ (m‖r′) = C, If CT=(A,B,C,D);
β ⊕ (m‖r′)⊕H4(e(Qi, H3(w, pki))

r) = C, If CT=(B,C).
If yes, return m to A. Otherwise, return ⊥.

Challenge. WhenA decides that Phase 1 is over, it outputs
a target public key pki∗ = (Pi∗ , Qi∗), a condition w∗ and
two equal-length messages m0,m1 ∈ {0, 1}l0 . Algorithm B
responds as follows:

1. Recover the tuple (w∗, pki∗ , s
∗, S∗, coin∗) from theH list

3 .
If coin∗ = 0, output “failure” and abort. Otherwise
(meaning that H3(w∗, pki∗) = gbs

∗
), continue to exe-

cute the rest steps.

2. Recover the tuple (pki∗ , x
∗, c∗) from the K list.

3. Pick y∗
$← Z∗q and C∗

$← {0, 1}l0+l1 . Define A∗ =“
g1/a

”uy∗
, B = gx

∗y∗ , D∗ = g(α1H5(A∗,B∗,C∗)+α2)y∗ .

4. Pick δ
$← {0, 1} and r′

$← {0, 1}l1 . Implicitly define

H1(mδ, r
′, w∗) = y∗

a
and H4(e(g, g)

ubs∗y∗

a2x∗ ) = C∗ ⊕
(mδ‖r′)⊕H2(e(g, g

1
a )y
∗
) (note that algorithm B knows

neither y∗

a
nor e(g, g)

ubs∗y∗

a2x∗ ).
5. Return CT∗ = (A∗, B∗, C∗, D∗) as the challenged ci-

phertext to adversary A.

Note that by the construction given above, if let r∗ , y∗

a
,

we can see that the challenged ciphertext CT∗ has the same
distribution as the real one, since H2 and H4 act as random
oracles, and

A∗ =
`
g1/a´uy∗ =

`
gu
´y∗/a

= gr
∗

1 ,

B∗ = gx
∗y∗ =

`
gax
∗´y∗/a

= P r
∗

i∗ ,

C∗ = (mδ‖r′)⊕H2(e(g, g1/a)y
∗
)⊕

`
C∗ ⊕ (mδ‖r′)⊕H2(e(g, g1/a)y

∗
)
´

= (mδ‖r′)⊕H2(e(g, g)
y∗
a )⊕H4(e(g, g)

ubs∗y∗

a2x∗ )

= (mδ‖r′)⊕H2(e(g, g)
y∗
a )⊕H4(e((gu)

1
ax∗ , gbs

∗
)

y∗
a )

= (mδ‖r′)⊕H2(e(g, g)r
∗
)⊕H4(e(Qi∗ , H3(w∗, pki∗)

r∗),

D∗ = g(α1H5(A∗,B∗,C∗)+α2)y∗ =
`
ga(α1H5(A∗,B∗,C∗)+α2)´y∗/a =

`
fH5(A∗,B∗,C∗)f1

´r∗
.

Phase 2. Adversary A continues to issue the rest of queries
as in Phase 1, with the restrictions described in the Type II
IND-CPRE-CCA game. B responds to these queries as in
Phase 1.

Guees. Eventually, adversary A outputs a guess δ′ ∈ {0, 1}.
Algorithm B randomly picks a tuple (V, γ) from the listH list

4 ,

and outputs V
x∗

us∗y∗ as the solution to the given 2-QBDH
instance.

Analysis. Similarly to the analysis in Lemma 1, it can be
seen that B’s advantage against the 2-QBDH problem is at
least

ε′ ≥ 1

qH4

“ ε

e(1 + qck)
− qH1(1 + qd)

2l0+l1
− qre + qd

q

”
,

and B’s running time is bounded by

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + qu + qc + qrk + qck + qre + qd)O(1)

+ (2qu + 2qc + qrk + qck + 2qre + qH1qre + 2qH1qd + 3)te + (6qre + 4qd + qH1qd + 1)tp.

This completes the proof of Lemma 2.


