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ABSTRACT

L S Penrose’s Limit Theorem – which is implicit in Penrose [7, p. 72] and
for which he gave no rigorous proof – says that, in simple weighted voting
games, if the number of voters increases indefinitely and the relative quota is
pegged, then – under certain conditions – the ratio between the voting powers
of any two voters converges to the ratio between their weights. Lindner and
Machover [4] prove some special cases of Penrose’s Limit Theorem. They
give a simple counter-example showing that the theorem does not hold in
general even under the conditions assumed by Penrose; but they conjecture,
in effect, that under rather general conditions it holds ‘almost always’ – that
is with probability 1 – for large classes of weighted voting games, for various
values of the quota, and with respect to several measures of voting power.
We use simulation to test this conjecture. It is corroborated with respect to
the Penrose–Banzhaf index for a quota of 50% but not for other values; with
respect to the Shapley–Shubik index the conjecture is corroborated for all
values of the quota (short of 100%).

Keywords: limit theorems, majority games, simulation, weighted voting
games

JEL classifications: C71, D71



LS Penrose’s limit theorem:
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1 Introduction

Throughout this paper, we shall be concerned with weighted voting games.
Let us recall briefly their definition. A weighted voting game W consists of
a finite set N together with an assignment of a non-negative real weight wx

to each x ∈ N ; and a real q ∈ (0, 1). We refer to N as the assembly of W ,
to the members of N as voters, and to q as the quota.1 Any subset A ⊆ N
is often referred to as a ‘coalition’.

For our purposes it will be convenient, and will entail no loss of generality,
to assume that all weights are positive. The relative weight of voter a in W
is given by

wa :=
wa∑

x∈N wx

. (1)

A coalition A is said to be winning if∑
x∈A

wx ≥ q. (2)

L S Penrose’s Limit Theorem is an assertion about the asymptotic behaviour
of the voting power of voters in weighted voting games with a large number
of voters. Here we shall consider the two major indices of voting power:
the so-called Banzhaf index β (which is obtained by normalization from the
absolute measure of voting power first proposed by Penrose [6]); and the
Shapley–Shubik index φ proposed by these two authors in [8] (which is a
special case of the Shapley value for co-operative games). For the definitions
of these indices see, for example, Felsenthal and Machover [3].

Penrose [7, p. 72] gives an approximation formula for the voting power
(as defined by him) of a voter in a weighted voting game W with quota 1

2
,

according to which voters’ powers are approximately proportional to their
respective weights. He claims that this approximation is valid provided the
number of voters in W is large, and the relative weights of the voters in
question are small. He offers no rigorous proof of his claim, merely an outline
of an argument, obviously based on some version of the central limit theorem
of probability theory.

1In the voting-power literature, q is often referred to as the relative quota, as distinct
from the absolute quota, which equals q ·

∑
x∈N wx.
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However, Lindner and Machover [4] show by means of a simple counter-
example that these conditions are insufficient for Penrose’s approximation
formula and the version of Penrose’s Limit Theorem implied by it. On the
other hand, they prove the approximation formula (in a somewhat improved
form) as well as Penrose’s Limit Theorem under more stringent conditions:
both with respect to β for q = 1

2
(see [4, Theorem 3.6]); and with respect to

the Shapley–Shubik index φ for arbitrary q ∈ (0, 1) (see [4, Theorem 2.3]).
Furthermore, they conjecture that Penrose’s Limit Theorem holds ‘almost

always’ with respect to both β and φ for all q ∈ (0, 1).
For a rigorous treatment of their special cases, as well as for a precise

statement of their conjecture, they use the concept of a q-chain of weighted
voting games. This is an infinite sequence W(k)(k = 0, 1, . . .) of such games
in which the assembly of each W(k) is a proper subset of the assembly of its
successor, W(k+1); the voters of W(k) keep their old weights in W(k+1); and
the quota q is held fixed.

Their conjecture is that under a ‘reasonable’ probability measure on the
space of all q-chains, Penrose’s Limit Theorem holds with probability 1 with
respect to both β and φ.

In this paper we report the results of simulation designed to test a version of
this conjecture. Here is an outline of how we go about it. (A more detailed
account will be given in Section 2.)

Obviously, we cannot use simulation to test the conjecture directly in the
form stated above, because we cannot select at random an entire q-chain,
which is an infinite object. Instead, we set up a finite framework that will
allow us to state and test a hypothesis that is a suitably modified version of
the conjecture.

For any given n, consider the (n − 1)-dimensional simplex ∆(n−1) of all
real n-vectors x with non-negative components xi that add up to 1:

∆(n−1) :=

{
x ∈ Rn : xi ≥ 0, i = 1, . . . , n;

n∑
i=1

xi = 1

}
. (3)

We endow this set with a reasonable probability measure, thus making it
into a probability space. On this space, we define an n-dimensional random
variable w = (w1, . . . , wn). For any fixed q ∈ (0, 1), this gives us a random
weighted voting game W , with assembly N = {1, . . . , n}, with w as its vector
of relative weights and q as quota.

This random weighted voting game determines the corresponding vector
of values of the Banzhaf index β = (β1, . . . , βn) and that of the Shapley–
Shubik index φ = (φ1, . . . , φn). These n-dimensional vectors are also random
variables on ∆(n−1). In what follows, ‘ξ’ stands for either β or φ.
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The discrepancy (measured by a suitable metric) between the vector ξ and
the relative weight vector w is then a scalar non-negative random variable.
Our hypothesis concerns the asymptotic behaviour of the distribution of this
random variable: it says that as n increases this distribution tends to become
increasingly concentrated near 0. More precisely, both the expected value and
standard deviation of this random variable approach 0 as n increases.2

We test this hypothesis by simulation, as follows. First, we fix some
‘large’ values of n, which will be the number of voters. (We allow n to get as
large as feasibility of computation allows.) We also fix various values of the
quota q, spaced at fairly close intervals.

Next, for each of our n, we select at random positive weights w1, . . . , wn.
Replacing these by the corresponding relative weights, we get a vector w =
(w1, . . . , wn) in ∆(n−1).

This random selection is repeated a large number of times, so that for
each of our n we obtain a large random sample of vectors w ∈ ∆(n−1).

For each randomly selected w and fixed q we compute the correspond-
ing vector of values of the Banzhaf index β = (β1, . . . , βn) and that of
the Shapley–Shubik index φ = (φ1, . . . , φn). These vectors ξ also belong
to ∆(n−1).

Next, we compute the discrepancy between the vector ξ and the relative
weight vector w.

Finally, for each of our n and q, we compute the mean and standard error
of this discrepancy, over our large sample of w ∈ ∆(n−1).

If, for a given value of q, the mean and standard error of the discrepancy
between ξ and w approach 0 as n increases, then this corroborates our hy-
pothesis with respect to ξ for this value of q. If the mean discrepancy shows
no tendency to approach 0 as n increases, this provides evidence against that
hypothesis.

In Section 2 we fill in the details of the method outlined above. In particular,
we specify our choice of ‘reasonable’ probability measure on ∆(n−1) (see Sub-
section 2.1), and ‘reasonable’ metric for measuring the discrepancy between
ξ and w (see Subsection 2.4).

In Section 3 we present and discuss the results of our simulation. We
shall see that our hypothesis is corroborated with respect to β for q = 1

2

(but not for other values of q); and with respect to φ for all q ∈ (0, 1).

2This hypothesis is in fact equivalent to the conjecture made in [4]. The equivalence
can be proved using the well-known theorem (due to Andersen and Jessen) about the
probability measure on the product of an infinite sequence of probability spaces (see, for
example, Halmos [5, p. 157]). However, we do not wish to press this point, as in our
opinion the present hypothesis is of obvious interest per se.
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We shall also point out some additional interesting features of the statistical
behaviour of β and φ which our simulation reveals as a sort of by-product. In
particular, in the case of β our simulation provides independent corroboration
of a phenomenon observed by Życzkowski and S lomczyński [10].

2 Description of the method

2.1. Random selection of weights In fact, we use two different methods
of random selection, corresponding to two probability measures on ∆(n−1).
The first method selects n positive integer weights wi independently of one
another, with a Poisson probability distribution, shifted so as to avoid 0
weights; thus, for each i = 1, 2, . . . , n we have

Prob{wi = k} =
e−1

(k − 1)!
, k = 1, 2, . . . . (4)

Our second method selects the random vector w from an (n−1)-dimensional
uniform distribution on ∆(n−1). There are of course various ways for achieving
this. We use the following method, which is very efficient computationally.3

We select positive real weights wi independently of one another, each with
an exponential probability density

f(x) =

{
e−x if x > 0,

0 otherwise.
(5)

The exponential distribution is a special case of the gamma distribution; and
the fact that this probability density for the wi yields the required uniform
distribution for the normalized vector w follows from a property of the so-
called Dirichlet composition. (For details, see [1, pp. 59f].)

Thus we have two separate series of samples. We shall refer to them as
the Poisson and uniform samples, respectively.

In each of these two series, the size of our random sample of vectors
w ∈ ∆(n−1) is 1,000 for every chosen value of n.

2.2. Choice of n As lowest value for n we took n = 15, because experience
suggests that in cases where the asymptotic behaviour asserted by Penrose’s
Limit Theorem occurs, it begins to manifest itself at about this value.

The choice of highest value for n was dictated by computational feasibility.
The time needed to compute the vectors of values β and φ for given w and

3We are grateful to Friedrich Pukelsheim for suggesting this method to us.
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q increases very steeply with n. We were able to go up to n = 57; for larger
n the computation (using the means at our disposal) became impractically
slow.

Fortunately, this range of values of n is sufficient for providing results
from which quite firm conclusions can be drawn.

2.3. Choice of q Although the hypothesis we are testing concerns values of
q in the open interval (0, 1), we need only consider values of q in the half-open
interval [0.5, 1).

To see this, note that both β and φ are self-dual (see [3, p. 180]). Thus,
let W be a weighted voting game with weights wx (x ∈ N) and quota q; and
let W∗ be the simple voting game with the same assembly, N , whose winning
coalitions are those A ⊆ N such that∑

x∈A

wx > 1− q. (6)

(W∗ is called the dual of W . It is easy to see that it is a weighted voting
game with the same weights as W and quota 1 − q + ε, for any sufficiently
small positive ε.) The self-duality of β and φ implies that

βx[W∗] = βx[W ] and φx[W∗] = φx[W ] for all x ∈ N. (7)

Although in our definition (2) of a weighted voting game with quota q we
had a ‘blunt’ inequality (≥), whereas here in (6) we have a sharp inequality
(>), it is not difficult to see that this makes no difference to the asymptotic
behaviour. More precisely: the asymptotic behaviour, with respect to both
β and φ, of weighted voting games with randomly chosen weights is the same
for quota 1− q as for q.4

In our initial simulation we fixed q at the following values:

q = 0.50, 0.51, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95.

However, as explained in Subsection 3.1, the results of this initial simulation
revealed an interesting phenomenon concerning the asymptotic behaviour of
β at lower values of q, near q = 0.50. Also, as explained in Subsection 3.2,
the simulation revealed a noteworthy phenomenon concerning the asymptotic
behaviour of φ at higher values of q, approaching q = 1.00.

In order to get a better view of these phenomena, we repeated the simu-
lation with a finer subdivision, with intervals of 0.01:

q = 0.50, 0.51, 0.52, 0.53, . . . , 0.98, 0.99. (8)

4In this connection note that the results of Lindner and Machover [4] hold also – with
virtually the same proofs – if in the definition (2) of weighted voting game ≥ is replaced
by >.
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2.4. Measuring the discrepancy For each w in our samples and each
chosen value of q, we compute the vectors β and φ of the values of the
Banzhaf and the Shapley–Shubik indices, respectively.

Penrose’s Limit Theorem with respect to ξ claims that asymptotically ξ
approaches the vector of relative weights w. We measure the ‘discrepancy’
of ξ compared to w in two ways.

First, we measure the overall discrepancy between ξ and w by the well-
known index of distortion D, commonly attributed to Loosemore and Hanby:5

D[ξ,w] :=
1

2

n∑
i=1

|ξi − wi|. (9)

Second, we measure the local (or componentwise) discrepancy between ξ and
w by

d[ξ,w] := max
1≤i≤n

∣∣∣1− ξi

wi

∣∣∣. (10)

Note that ξ is completely determined by w and q. Therefore, if we fix n
and q, and regard w as a random variable vector, then D[ξ,w] and d[ξ,w]
are random variable scalars, whose distributions depend on that of w. We
are interested in the expected value and standard deviation of these random
variable scalars, as functions of n and q.

2.5. Output of computation In our simulation, we estimate the expected
value and standard deviation of D[ξ,w] and d[ξ,w] by computing their mean
and standard error for each of our samples. This yields the following outputs
for all the chosen values of n and q :

µD(n, q), σD(n, q), µd(n, q), σd(n, q).

Here ‘µ’ and ‘σ’ stand for mean and standard error, respectively.
More specifically, we have a set of four such outputs for each of the two

indices and each of our sample series. Thus we have altogether:

µP D(β; n, q), σP D(β; n, q), µP d(β; n, q), σP d(β; n, q),

µUD(β; n, q), σUD(β; n, q), µUd(β; n, q), σUd(β; n, q),

µP D(φ; n, q), σP D(φ; n, q), µP d(φ; n, q), σP d(φ; n, q),

µUD(φ; n, q), σUD(φ; n, q), µUd(φ; n, q), σUd(φ; n, q).

Here ‘β’ and ‘φ’ and the subscripts ‘P ’ and ‘U ’ are labels that refer to the
Banzhaf and Shapley–Shubik indices, and the Poisson and uniform samples,
respectively.

5See however discussion by Taagepera and Grofman [9] of the authorship of this index.
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In [2] we present detailed tables as well as 3-D graphs of each of these
sixteen statistics. These occupy too much space to be included in the present
paper; here we only include, as representative illustration, two of the tables
(Tables 1 and 2) and four 3-D graphs (Figures 1, 1a, 2 and 2a).6 In each
diagram, the values of the statistic in question are plotted along the vertical
axis; n is plotted along the ↘ axis and q along the ↗ axis.

In addition, we present in [2] four graphs concerned with the ‘dip’ dis-
cussed in Subsection 3.1; and four graphs concerned with the ‘regime tran-
sition’ discussed in Subsection 3.2. As representative illustration we include
here Figures 3 and 4 for the dip and transition, respectively.

3 Results and conclusions

The output of our simulation shows a conspicuous difference between the
behaviours of the two indices. We consider these indices in turn.

3.1. The Banzhaf index The data for the statistics labelled ‘β’ – see
Table 1 and Figures 1, 1a (and cf. fuller data in [2]) – do not corroborate the
hypothesis with respect to the Banzhaf index except for q = 0.5 and perhaps
for values of q very close to 0.5. Note that Penrose’s original claim concerned
only q = 0.5. This claim, as we know, does not hold in all cases even for
q = 0.5, but it does now appear to hold in almost all such cases.

Our negative findings with respect to β for q > 0.5 of course do not
exclude the possibility that Penrose’s Limit Theorem holds for large classes
of weighted voting games with q > 0.5. Finding ‘natural’ and sufficiently
interesting such classes is an open problem.

One feature of these data – which we had not anticipated – ought to be
pointed out. For fixed values of n near the bottom of our range, the mean
discrepancy between β and w has a dip – a minimum, indicating the closest
mean fit between β and w – at a value of q considerably greater than 0.5.
But as n increases the dip edges towards q = 0.5. This is shown in Figure 3.

The same general pattern applies to both the Poisson and the uniform
samples, and to both measures of discrepancy. The differences are in minor
details; for these, see [2].

Extrapolating from these data, it is reasonable to expect that for still
greater values on n, beyond our range, the dip of all these four quantities

6The tables show the values of each statistic for all values of n from 15 to 57, but only
for 20 selected values of q out of the 50 listed in (8) for which we performed the simulation.
The selection is different for the two indices and is designed to focus on values of q which
are of special interest.
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– µP D(β; n, q), µP d(β; n, q), µUD(β; n, q) and µUd(β; n, q) – should occur at
q = 0.5.

These observations provide an independent corroboration of results an-
nounced in an unpublished report by Życzkowski and S lomczyński [10, Sec-
tion 10], which came to our attention after completing an earlier draft of
this paper. These two authors (using much smaller samples and consider-
ably fewer values of n) made essentially the same observations and drew the
same conclusion regarding the behaviour of the dip (which they call ‘critical
point’) in the mean discrepancy between β and w.7

3.2. The Shapley–Shubik index The data for the statistics labelled ‘φ’
– see Table 2 and Figures 2, 2a (and cf. fuller data in [2]) – corroborate the
hypothesis with respect to the Shapley–Shubik index for all q ∈ (0, 1). For
every chosen value of q, the mean discrepancy between φ and w – whether
measured by µD(φ,w) or µd(φ,w) – seems to approach 0 as n increases.
It appears that the Penrose’s Limit Theorem with respect to φ does hold
almost always.

Let us look at the behaviour of the mean discrepancy between φ and w
as a function of q and n.

Clearly, for any fixed n, as q gets very close to 1, we would expect a
weighted voting game with n voters to behave somewhat like a unanimity
game, in which all voters have the same voting power, irrespective of their
weights. Therefore it is reasonable to expect that as q approaches 1, the
mean discrepancy between φ and w should increase. Also, it is reasonable to
expect that as q gets closer to 1, it would take greater values of n to overcome
this ‘unanimity effect’. In other words, the closer q is to 1, the slower the
convergence to 0 of the mean discrepancy as n increases.

Our data show that this is indeed the case. However, we wish to point
out an additional interesting phenomenon concerning the dependence on n of
the the mean discrepancy between φ and w. For every fixed value of n in our
range, this mean discrepancy tends to increase with q, albeit with some slight
fluctuations; but the rate of increase is by no means uniform. For each n, as q
increases from 0.5 towards 1, we can discern two regimes: at first the increase
in the mean discrepancy is very gentle, barely noticeable, and may fluctuate
slightly; then, rather abruptly, the rate of increase becomes quite steep. In
other words, the transition from the ‘Penrose’s Limit Theorem effect’ to the

7The focus of [10] is rather different from that of the present paper. Życzkowski and
S lomczyński are not primarily interested in the asymptotic behaviour of β (they do not
consider φ at all) but in getting the closest fit between β and w for a decision rule designed
for the Council of Ministers of the EU. They consider a close fit desirable in the interest
of transparency.
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‘unanimity effect’ is rather sharp. As may be expected, it seems that the
greater the value of n, the higher is the value of q at which this transition
takes place. This is shown in Figure 4.8

This general pattern applies to both the Poisson and the uniform samples,
and to both measures of discrepancy. Here too, the differences are in minor
details; for which see [2].

3.3. Caveats We would like to conclude by voicing two warnings against
misinterpretation and misuse of our results.

First, it must be emphasized that these results are purely statistical : they
concern the probability with which β or φ tends to be close to w in a ran-
domly chosen weighted voting game with many voters. Even where this
probability is high, there are atypical counter-examples, in which the dis-
crepancy between β or φ and w is quite large. This must be borne in mind
especially when dealing with a weighted voting game taken from real life
rather than drawn out of a hat: there may be reasons making such a game
quite atypical.

Second, our results provide additional evidence that – contrary to a still
common misapprehension – the Banzhaf and Shapley–Shubik indices behave
quite differently, and therefore have quite different meanings. It is there-
fore far from being a matter of indifference which one should be used: this
must depend on what exactly one wishes to measure.9 Moreover, this holds
also for weighted voting games with quota of 1

2
, for which the two indices

display similar statistical behaviour. In particular, it must be emphasized
that – unlike the Shapley–Shubik index – the Banzhaf index is merely an
arithmetical artefact, obtained by normalization from the absolute measure
of voting power defined by Penrose [6, 7]. And it is the latter measure, not
the Banzhaf index, which must be used when comparing the powers of a
voter in two different voting games.

8In this graph we pinpointed the transitional values of q using two criteria. First, the
magnitude of the change at the selected transitional point must be at least 0.0010. Second,
the mean discrepancy increases monotonically after the selected transitional point.

9For a detailed discussion, see [3, Comment 7.10.2 and passim].
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