
 
 

ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS & SOCIAL SCIENCES, SMU 

 

 

   
 

 
 
 
 
 

 
 

On Domains That Admit Well-behaved Strategy-proof 
Social Choice Functions 

 
 

Shurojit Chatterji, Remzi Sanver and Arunava Sen 
May 2010 

 
 
 
 
 
 
 
 

   Paper No. 07-2010 



On domains that admit well-behaved

strategy-proof social choice functions

Shurojit Chatterji, ∗ Remzi Sanver † and Arunava Sen ‡

May 18, 2010

Abstract

In this paper, we investigate domains which admit “well-behaved”, strategy-proof
social choice functions. We show that if the number of voters is even, then every domain
that satisfies a richness condition and admits an anonymous, tops-only, unanimous and
strategy-proof social choice function, must be semi-single-peaked. Conversely every
semi-single-peaked domain admits an anonymous, tops-only, unanimous and strategy-
proof social choice function. Semi-single-peaked domains are generalizations of single-
peaked domains on a tree introduced by Demange (1982). We provide sharper versions
of the results above when tops-onlyness is replaced by tops-selectivity and the richness
condition is weakened.

Keywords and Phrases: Voting-rules, Strategy-proofness, Restricted Domains, Tops-

Only domains.

JEL Classification Numbers: D71

1 Introduction

The celebrated Gibbard-Satterthwaite Theorem (Gibbard (1973), Satterthwaite (1975)) rules

out the existence of strategy-proof, non-dictatorial social choice function over the complete

domain of preferences. This is a powerful negative result and has stimulated a very large

literature which has investigated the structure of strategy-proof social choice functions on

restricted domains. One of the most salient restricted domains in this respect is the domain

of single-peaked domains. It is now well-known that these domains admit a large class
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of strategy-proof social choice functions satisfying additional, attractive properties such as

anonymity and Pareto-efficiency. These include the median voter rule (see Moulin (1980)).

Of course, single-peaked domains are also very important in Arrovian aggregation theory

and forms the bedrock of the modern theory of political economy. In this paper, we address

a converse question. What are the domains that admit “well-behaved” strategy-proof social

choice functions? In particular, do single-peaked domains emerge in a natural way from a

characterization of domains that admit“well-behaved”strategy-proof social choice functions?

We consider a standard voting environment with a finite number of individuals/voters and

alternatives. Preferences are assumed to be antisymmetric. We provide two partial character-

izations of domains. Our first result states that if the there is an even number of individuals,

then any domain that satisfies a richness condition and admits an anonymous, tops-only,

unanimous and strategy-proof social choice function, is semi-single-peaked. Moreover every

semi-single-peaked domain admits an anonymous, tops-only, unanimous and strategy-proof

social choice function for an arbitrary number of individuals. Our second result considers

the case where the tops-only condition is replaced by the tops-selectivity condition. We show

that if there is an even number of individuals, then any domain that satisfies a weaker rich-

ness condition than in the first result and admits an anonymous, tops-selective, unanimous

and strategy-proof social choice function, is extreme-peaked. Moreover every extreme-peaked

domain admits an anonymous, tops-selective, unanimous and strategy-proof social choice

function for an arbitrary number of individuals.

As the name suggests, semi-single-peakedness is closely related to single-peakedness. In

fact, it is a generalization of the notion of single-peaked preferences on a tree initially pro-

posed by Demange (1982) in a different context. Semi-single-peakedness is defined in the

following way. There is a tree where the nodes are alternatives. There is also a distinguished

alternative on every maximal path in the tree which we refer to as the threshold on that

path. The location of thresholds on different maximal paths are subject to strong restric-

tions. Semi-single peaked preferences on every path satisfy two restrictions: (i) they“decline”

along the path from the peak in the direction of the threshold on that path (ii) alternatives

that lie beyond the threshold are worse than the threshold. Single-peaked preferences are

a special case of semi-single-peaked preferences when the underlying tree is a line and the

preference restrictions are satisfied with respect to any placement of the threshold. An im-

portant respect in which semi-single-peaked preferences differ from single-peaked preferences

is that, unlike the latter, restrictions are imposed in one direction. Extreme-peaked prefer-

ences are a special case of single-peaked preferences when the underlying tree is a line and

the threshold is at one extremity of the line. In Section 3, we discuss semi-single peakedness

at greater length and note that the domain of single-peaked preferences is the largest domain

of “neutral” semi-single-peaked preferences.

One feature of our results deserves special mention. The notions of semi-single-peakedness

and extreme-peakedness are based on an underlying structure on alternatives (a tree in the

2



case of semi-single-peakedness and a line in the case of extreme-peakedness). We do not start

with the assumption that there is an underlying structure of a tree or a line on alternatives;

instead we uncover this structure as a consequence of our assumption that the domain admits

well-behaved, strategy-proof social choice functions. The only structure that we impose on

alternatives is via a richness condition on domains that we have used in our earlier papers

(Aswal et al. (2003) and Chatterji and Sen (2010)). For the semi-single-peakedness result,

we assume that the domain is strongly path-connected. Two alternatives ai and aj are

strongly path-connected if there exists an ordering in the domain where ai and aj are ranked

first and second respectively and another one where the reverse is true; moreover the rankings

of other alternatives are the same in the two orderings. We require that the graph of strong

connections be path connected; i.e. that we can find a path between any pair of alternatives

in terms of strong connections. Importantly, we do not make any other assumptions on

this graph. One of the major steps in our proof is to show that if such a domain admits

a well-behaved strategy-proof social choice function, then this graph must be a tree. We

go on to show that there must be appropriate thresholds on every path of the tree and

that preferences must satisfy appropriate restrictions with the respect to the tree and the

specification of the thresholds. For the extreme peakedness result we require an even weaker

notion of path-connectedness. Two alternatives ai and aj are weakly connected if there

exists an ordering in the domain where ai and aj are ranked first and second respectively

and another one where the reverse is true. We say that the domain is rich if there exists a

path between any pair of alternatives in terms of weak path-connectedness. We then show

that if such a domain admits an anonymous, tops-selective and strategy-proof social choice

function, then the graph of weak connections must be a line. In addition, the threshold must

be an extreme point of the line and that preferences must be extreme-peaked.

In a series of papers (Nehring and Puppe (2007b), Nehring and Puppe (2007a)) investi-

gate the structure of strategy-proof social choice functions in an abstract algebraic setting.

Formally our results are independent of theirs; however some of their results are motivated

by similar concerns. We discuss the relationship between our results in Section 3.1. There

are several other papers (Danilov (1994), Schummer and Vohra (2002)) that investigate the

structure of strategy-proof social choice functions that choose locations on trees where pref-

erences are single-peaked-like (such as quadratic). It is clear that our focus is different from

these papers; however our results confirm that such domains are salient from the point of

view of admitting well-behaved, strategy-proof social choice functions.

Recently Ballester and Haeringer (2007) have provided a characterization of single-peaked

preferences using axioms directly on voter preferences and profiles. In contrast, our approach

focuses on domains that admit well-behaved strategy-proof social choice functions.

The paper is organized as follows. In Section 2, we set out the model and the basic

definitions. Sections 3 and 4 are concerned with semi-single-peaked and extreme-peaked

domains respectively. Section 5 concludes.
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2 Preliminaries

We let A = {a1, ..., am} denote the set of alternatives where ∞ > m ≥ 3. There is a finite set

of voters or individuals N = {1, ..., n} with n ≥ 2. Each voter i is assumed to have a linear

order Pi over the elements of the set A which we shall refer to as her preference ordering.

For all aj, ak ∈ A, ajPiak will signify the statement “aj is strictly preferred to ak according

to Pi. We let P be the set of all linear orders over the elements of the set A. The set of all

admissible orderings is a set D ⊂ P . A preference profile P = (P1, ..., Pn) ∈ Dn is a list of

admissible preference orderings, one for each voter.

For all s = 1, ..., m, Pi ∈ D, and aj ∈ A, we shall say that aj is sth ranked in Pi if

|{ak ∈ A|ajPiak}| = m− s. We will write aj = rs(Pi) if aj is sth ranked in Pi.

The object of study of the paper is a social choice function (SCF). An SCF is a mapping

f : Dn −→ A. We restrict attention to SCF’s that satisfy unanimity, that is, f(P ) = aj

whenever P ∈ Dn is such that aj = r1(Pi), i = 1, ..., n. We will also assume that D satisfies

minimal richness, which requires that for each aj ∈ A, there exists Pi ∈ D such that r1(Pi) =

aj, j = 1, ..., m.

In our framework each voters’ preference ordering is private information; they must there-

fore be elicited by the mechanism designer. If an SCF is strategy-proof, then no voter can

benefit by misrepresenting her preferences irrespective of her beliefs about the preference an-

nouncement of other voters. Formally, an SCF is strategy-proof if for all P = (Pi, P−i) ∈ Dn,

and for all P ′
i ∈ D, we have either f(Pi, P−i) = f(P ′

i , P−i) or f(Pi, P−i)Pif(P ′
i , P−i). An SCF

is tops-only if it is determined completely by the peaks of the voters preferences, that is,

f(P ) = f(P ′) whenever r1(Pi) = r1(P
′
i ), i = 1, ..., n. An SCF is top-selective if for each

profile P of preference orderings, f(P ) ∈ {ak|ak = r1(Pi), i ∈ {1, ..., n}}. In order to define

an anonymous SCF, we let η : N → N denote a one to one function and define the η per-

mutation of a profile P of preference orderings as the profile P η = (Pη(1), ..., Pη(n)). An SCF

is anonymous if for any profile P and any η permutation of P , f(P ) = f(P η).

3 Tops-Onlyness and Semi-Single-Peaked Domains

In this section we investigate domains which admit a strategy-proof, anonymous, unanimous

and tops-only SCF. We require domains under consideration to satisfy a further richness

condition which we describe below.

Definition 1 Two alternatives aj, ak are strongly connected in D, denoted aj ≈ ak, if there

exists Pi, P̄i ∈ D such that

(i) r1(Pi) = aj = r2(P̄i)

(ii) r2(Pi) = ak = r1(P̄i)
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(iii) rj(Pi) = rj(P̄i), j = 3, . . . ,m.

According to the definition, two alternatives aj, ak are strongly connected if there exists

an admissible ordering where aj and ak are ranked first and second respectively; another

ordering where ak and aj are ranked first and second respectively while both orderings

agree in the ranking of the rest of the alternatives. This notion is a strengthening of the

connectedness condition (see Definition 5 below) that was introduced in Aswal et al. (2003)

and used subsequently in Chatterji and Sen (2010).

Definition 2 The domain D is strongly path-connected iff for all ar, as ∈ A, there exists a

sequence of alternatives aj(k) ∈ A, k = 0, . . . , T such that

(i) aj(0) = ar

(ii) aj(T ) = as

(iii) aj(k) ≈ aj(k+1), k = 0, . . . , T − 1.

It is convenient to think of strong path-connectedness in terms of graphs. Fix a domain

D. Consider a graph whose nodes are the elements of A. Two nodes in this graph constitute

an edge if they are strongly connected. The domain D is strongly path-connected if every

pair of nodes in this graph can be joined by a sequence of edges, i.e if the graph is connected.

Strong path-connectedness is a richness condition on the admissible domain of preferences

in that it requires that there be sufficiently many strong connections among alternatives.

This condition is satisfied by many of the admissible domains that have been studied in the

literature on strategy-proofness. We give some examples below.

Example 1 The domain of all preference orderings P is clearly a strongly path connected

domain. The associated strong connectivity graph is the complete graph on A. Note that

there are much smaller domains whose strong connectivity graph is the complete graph on

A. The smallest such domain has M(M − 1) orderings.

Example 2 Single-Peaked Domains These domains were introduced in Black (1948) and

have been extensively studied in the context of strategy-proofness. (see, for example Moulin

(1980)).

Let > be a linear ordering over A. A preference ordering Pi is single-peaked (with respect

to >) if for all a, b ∈ A, [r1(Pi) > a > b or b > a > r1(Pi)] =⇒ aPib.

Alternatives are ordered, say on the real line. An ordering is single-peaked if alternative

a which lies “between” the peak of the ordering and another alternative b, is strictly preferred

to b. We will let DSP denote the set of all single-peaked preferences with respect to some

fixed order >.
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Figure 1: The graph G

We claim that DSP is a strongly connected domain. To see this assume without loss of

generality that a1 > a2 > . . . > am. Note that for any ordering in DSP , if aj is first-ranked,

then either aj+1 or aj−1 must be ranked-second, for any j = 2, . . . , m. If a1 is first, then

a2 must be second and if am is first, then am−1 must be second. A critical observation is

that if an ordering is single-peaked, then the ordering obtained by switching the first and

second alternatives while leaving all other alternatives unchanged, is also single-peaked. Thus

a1 ≈ a2 ≈ . . . ≈ am. The strong connectivity graph for this case is shown in Figure 2 below.

Example 3 We can start with an arbitrary connected graph on A and construct a do-

main which induces the graph as its strong connectivity graph. For instance let A =

{a1, a2, a3, a4, a5, a6}. Consider the graph G in Figure 1.

The domain D induces G as its associated strong connectivity graph.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

a1 a2 a2 a3 a3 a3 a4 a4 a5 a5 a6 a6

a2 a1 a3 a2 a6 a4 a3 a5 a6 a4 a3 a5

a3 a3 a4 a4 a5 a2 a2 a3 a3 a3 a5 a3

a6 a6 a6 a6 a4 a1 a1 a2 a4 a2 a4 a4

a5 a5 a5 a5 a2 a5 a5 a1 a2 a1 a2 a2

a4 a4 a1 a1 a1 a6 a6 a6 a1 a6 a1 a1

Table 1: The domain D

Observe that D is not the unique domain which induces G. In fact, it is a minimal in the

set of domains which induce G, i.e. there does not exist a domain of smaller size which induces

G. If one assumes that domains under consideration satisfy the symmetry requirement that
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if there exists an ordering with aj first and ak second ranked, then there exists another

ordering with ak first and aj second ranked, then the maximal domain inducing G has 288

orderings. In general, suppose G is an arbitrary strong connectivity graph. Suppose G

has e edges. Let D be a domain satisfying the symmetry property described above whose

associated connectivity graph is G and let |D| denote its cardinality. Then, it is easy to verify

that 2e ≤ |D| ≤ 2e(m − 2)!. Conversely, let t be an even integer with 2e ≤ t ≤ 2e(m − 2)!.

Then there exists a domain D with |D| = t such that D induces G.

We give an example below of a class of well-known domains that violate the property of

strong path-connectedness.

Example 4 Separable Preferences over Product Domains (LeBreton and Sen (1999),

Barberá et al. (1991), Barberà et al. (1993)). In this setting the set A is the product of M

component sets, i.e A ≡ A1× ...×AM where |Aj| ≥ 2 for all j = 1, . . . , M . We shall write a

typical element a ∈ A as a ≡ (a1, ..., aM) or (aQ, a−Q) where Q ⊂ {1, ...,M}.
The ordering Pi is separable if for all Q ⊂ {1, ..., M}, and a, b, c, d ∈ A, we have

[(aQ, c−Q)Pi(bQ, c−Q) =⇒ [(aQ, d−Q)Pi(bQ, d−Q)].

We shall let DSEP denote the set of all separable preferences over A. We claim that DSEP

violates path-connectedness.

To see this pick Pi and let r1(Pi) = a. Separability implies that the second ranked alterna-

tive in Pi must be of the form (bk, a−k) for some bk ∈ Ak and some k ∈ {1, . . . ,M}. Assume

without loss of generality that k = 1. Pick b2 ∈ A2 such that b2 6= a2. Since Pi is separable, we

must have (a1, b2, a−{1,2})Pi(b1, b2, a−{1,2}). Now consider any P ′
i ∈ DSEP such that r1(P

′
i ) =

(b1, a−1) and r2(P
′
i ) = a. Separability of P ′

i implies that (b1, b2, a−{1,2})P ′
i (a1, b2, a−{1,2}).

Hence P ′
i contains at least two preference reversals relative to Pi contradicting part (iii)

of Definition 1. Thus no pair of alternatives is strongly connected, i.e DSEP is not strong

path-connected.

We address the following question: what strongly connected domains D admit SCFs that

are strategy-proof, anonymous, unanimous and satisfy the tops-only property? The class of

domains that we will identify in this context is related to the domains initially identified in

Demange (1982). In order to do so we need some additional concepts.

Let G be a connected graph, the set of whose nodes is A. Recall that a path in G is a

sequence {aj(k)}, k = 0, . . . , T such that every pair (aj(k), aj(k+1)), k = 0, . . . T − 1 is an edge

in G.

We say that G is a tree if there is a unique path linking every pair aj, ak ∈ A. In other

words G contains no cycles. The graph in Figure 1 is not a tree but the graphs in Figures 2,

3, 4 are trees.

A path {aj(k)}, k = 0, . . . , T in a tree G is maximal if there does not exist an alternative

ar distinct from aj(0) or an alternative as distinct from aj(T ) such that (ar, aj(0)) or (as, aj(T ))

7
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Figure 2: Connectivity Graph GL: The Line
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Figure 4: Connectivity Graph G0

are edges in G. In other words, a path is maximal if it cannot be “extended” by adding more

edges at the ends. Note that every path in G can be extended to a maximal path. For any

pair of distinct alternatives aj, ak ∈ A, we will let 〈aj, ak〉 denote the unique path connecting

aj and ak. If ar is one of the alternatives in the sequence of alternatives which comprises

the path between aj and ak, we shall simply say that ar belongs to the path between aj and

ak and write it as ar ∈ 〈aj, ak〉. We will let int〈ar, as〉 denote the alternatives in the path

〈ar, as〉 excluding ar and as. We will also let 〈aj, ak〉 denote a maximal path containing aj

and ak. We shall let P(G) = {p1, . . . pR} denote the set of maximal paths in G.

Observation 1 Let pt ∈ P(G) and let al /∈ pt. We claim that there exists a unique alter-

native, ar ∈ pt such that every path from any as ∈ pt to al, contains ar. To see this, pick an

arbitrary as ∈ pt and consider the unique path 〈as, al〉. Without loss of generality, represent

this path by the sequence {aj(k)}, k = 0, . . . T where aj(0) = as and aj(T ) = al. Let k∗ be the

minimal integer such that aj(k∗) ∈ pt and aj(k∗+1) /∈ pt. Such an integer clearly exists. We

claim that aj(k∗) is the alternative ar. To verify this pick any another as′ ∈ pt and suppose

that the path from as′ to al does not contain aj(k∗). Then we have another path from as′

to al: from as′ to aj(k∗) on pt and then the path {aj(k)}, k = k∗, . . . T . This contradicts the

assumption that G is a tree. A similar argument shows that ar is unique.

For any maximal path pt and ak /∈ pt, let γ(pt, ak) be the alternative ar described in the

previous paragraph, i.e. ar is the unique alternative in pt with the property that every path
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from an alternative in pt to ak contains ar.

Consider for example the graph in Figure 4. Let pt = {a1, a2, a3} and let ak = a4. Clearly

ak /∈ pt. Then γ(pt, ak) = a2 because all paths connecting nodes in pt contain a2.

Definition 3 Let G be a tree. The map λ : P(G) → A is a Threshold Assignment Map

(TAM) if there exists ak ∈ A such that

(i) For all pt ∈ P(G), [ak ∈ pt] =⇒ [λ(pt) = ak].

(ii) For all pt ∈ P(G), [ak /∈ pt] =⇒ [λ(pt) = γ(pt, ak)].

The function λ specifies a threshold for every maximal path in G. In particular, there

exists an alternative ak such that the threshold for every maximal path containing ak is ak;

for maximal paths that do not contain ak, the threshold is the unique alternative that lies

on every path from an alternative on the path and ak (Observation 1).

Let G be a tree and λ, a TAM (for G). We shall refer to the pair (G, λ) as an admissible

pair.

We give some examples of admissible pairs. Observe that there exists a unique maximal

path {a1, a2 . . . , a6} in GL. Here, the threshold for the unique maximal path can be any of

the alternatives a1, . . . , a6. Formally, let λi be the function that associates the alternative

ai, i = 1, 2 . . . 6 with the unique maximal path. Then (GL, λi) is an admissible pair.

There are 10 maximal paths in GS of the form {aj, a1, ak} where j, k ∈ {2, 3, 4, 5, 6} with

j 6= k. One TAM λ1 specifies a1 as the threshold for every maximal path. In addition, let

λj, j = 2, 3 . . . 6 be the TAMs which specify aj as the threshold for every maximal path

containing aj and a1 for every other maximal path. The only admissible pairs here, are

(GS, λj), j = 1, 2 . . . , 6.

Maximal paths in G0 are as follows: p1 = {a1, a2, a3}, p2 = {a4, a5, a6}, p3 = {a1, a2, a5, a4},
p4 = {a1, a2, a5, a6}, p5 = {a3, a2, a5, a4} and p6 = {a3, a2, a5, a6}. Define the function λ4 as

follows: λ4(p1) = a2, λ4(pt) = a4 for t = 2, 3, 5 and λ4(t) = a5 for t = 4, 6. Then λ4 is a

TAM and (G0, λ
4) is an admissible pair. Other admissible pairs can be similarly defined.

We now define restrictions on preferences.

Definition 4 The domain D is semi-single-peaked with respect to the admissible pair (G, λ)

such that for all Pi ∈ D and all pt ∈ P(G) such that r1(Pi) ∈ pt, we have

(i) [ar ∈ pt such that λ(pt) ∈ 〈r1(Pi), ar〉] =⇒ [λ(pt)Piar].

(ii) [ar, as ∈ pt such that ar, as ∈ 〈r1(Pi), λ(pt)〉 and ar ∈ 〈r1(Pi), as〉] =⇒ [arPias].

We say that D is semi-single-peaked if there exists and admissible pair (G, λ) with respect

to which it is semi-single-peaked.
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Let Pi be a semi-single peaked ordering. Let a be the peak of Pi. Pick a maximal path pt

containing a. Let b be the threshold for this path, i.e. λ(pt) = b. Then, it must be the

case preferences “decline” on the path from a to b. Moreover b is better (according to Pi)

than any alternative c which is further along pt than b in the direction “away” from a. These

restrictions are shown in the diagram below.

Peaklambda(path)
path

Figure 5: Semi-Single Peaked Preferences

Consider the admissible pair (GL, λ3), i.e the λ for the unique path is a3. Consider the

preference orderings below.

P1 P2 P3 P4 P5

a5 a5 a5 a5 a5

a6 a4 a4 a3 a4

a4 a3 a3 a4 a1

a3 a6 a1 a6 a3

a1 a2 a2 a2 a2

a2 a1 a6 a1 a6

Table 2: Preferences in the case (GL, λ3)

In Table 2, preference orderings P1, P2 and P3 are semi-single- peaked for (GL, λ3). How-

ever P4 and P5 are not; P4 and P5 violate parts (ii) and (i) of Definition 4 respectively.

Consider semi-single-peaked preferences with respect to the admissible pair (GS, λj), for

any j = 1, . . . , 6. All such preference orderings are subject to the same restriction: whenever

aj, j = 2, . . . , 6 is ranked first, a1 must be ranked second. No other restrictions are implied.

Finally, consider semi-single-peaked preferences with respect to (G0, λ
4). Suppose a1 is

ranked first in Pi. Then semi-single-peakedness would require (i) a2 to be ranked above a3

(ii) a2 should be ranked above a5 which in turn should be ranked above both a4 and a6.

In Table 3, P1, P2 and P3 are semi-single-peaked with respect to (G0, λ
4) but P4 and P5

are not.

Semi-single-peaked preferences are clearly related to “single-peaked orders on a tree”

introduced by Demange (1982). An order > is single-peaked on a tree G if and only if it is
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P1 P2 P3 P4 P5

a1 a5 a2 a5 a2

a2 a6 a3 a3 a4

a5 a2 a5 a4 a1

a3 a4 a1 a6 a3

a6 a3 a4 a2 a5

a4 a1 a6 a1 a6

Table 3: Preferences in the case (G0, λ
4)

single-peaked on every path of G. This notion was introduced in the context of aggregation

theory. In particular it was shown that a non-empty core is guaranteed for every simple

game defined on the set of players N and profiles of single-peaked orders on G. Moreover,

such preferences were the “largest” set which had the non-emptiness of the core property.

We identify semi-single-peaked domains as a salient domain in a different context; we show

that domains which admit well-behaved SCFs are semi-single-peaked provided they satisfy

some richness conditions.

It is important to point out that single-peaked orders on a tree are a subset of semi-

single-peaked preferences. In fact the set of semi-single-peaked preferences is significantly

larger than the set of single-peaked orders on a tree. This is because semi-single-peaked

preferences are restricted only on one side of the peak. In contrast single-peaked preferences

are restricted on both sides of the peak. Consider the simplest case where G is a line (Figure

2). Suppose a3 is the peak. Then single-peakedness would require a2 to be ranked above a1

and a4 to be ranked above a5 and a5 to be ranked above a6. Semi-single-peakedness specifies

an additional alternative, the threshold, say a4. Suppose a2 is the peak. We only impose

restrictions on alternatives in the “increasing” direction from a2; in particular a3 should be

better than a4 and a5 and a6 must be worse than a4.

We can make the relationship between semi-single-peaked and single peaked preference

on a tree, precise. Let G be a tree and let DSP (G) denote the set of single-peaked preferences

on G. Let (G, λ) be an admissible pair and let D(G, λ) denote the set of semi-single-peaked

preferences with respect to (G, λ). Finally, let Λ(G) denote the set of TAMs λ such that

(G, λ) is admissible. The following proposition establishes the connection between single-

peakedness and semi-single-peakedness.

Proposition 1 DSP (G) = ∩λ∈Λ(G)D(G, λ).

Proof : It is easy to check that if Pi ∈ DSP (G), then Pi ∈ ∩λ∈Λ(G)D(G, λ). Now suppose

that Pi ∈ ∩λ∈Λ(G)D(G, λ) but Pi /∈ DSP (G). There must therefore exist alternatives b, c and

a path pt containing r1(Pi) and b, c such that b ∈ 〈r1(Pi), c〉 and cPib. Let λ be a TAM where
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the alternative ak in Definition 3 is the alternative c. Then Pi violates part (ii) in Definition

4, contradicting the assumption that Pi ∈ D(G, λ). ¥

Proposition 1 implies that the domain of single-peaked preferences on a tree G, is the

largest domain of semi-single-peaked domains consistent with all specifications of thresholds.

Single-peaked preferences are therefore, “neutral”within the class of semi-single-peaked pref-

erences, i.e. one where it is not necessary to specify thresholds. We note that a meaningful

notion of a neutral domain requires restrictions on the set of admissible permutations on

alternatives with respect to which the neutrality property is defined. If neutrality is required

with respect to all permutations of alternatives then the only neutral domain is the complete

domain P. According to Proposition 1, single-peaked preferences is the neutral domain where

admissible permutations can relabel thresholds arbitrarily. However the ordering generated

by such a permutation must be semi-single-peaked with respect to the relabeled threshold.

Can one offer a behavioural justification of semi-single-peaked preferences? For every

path pt ∈ P(G), one can think of the threshold λ(pt), as a focal point “beyond” (in the

direction “away” from the peak) which preferences are comparatively vague. Consider a

tax-payer’s preferences over tax rates from 0 to a 100 percent. If she has a threshold of 25

percent and a peak of 10 percent, then her preferences decline till 25. Beyond this threshold,

she has no views (say whether 45 percent is better than 50 percent) except that everything

is worse than 25 percent. On the other hand, if her peak is 40 percent, then her preferences

decline till 25 percent with everything below 25 percent less-well preferred to 25 percent.

We now state our main result.

Theorem 1 Let D be a strongly path-connected domain and let n be an even integer. If

there exists an anonymous, tops-only, unanimous and strategy-proof SCF f : Dn → A, then

D is semi-single peaked. Conversely, if D is a semi-single-peaked domain, then there exists

an anonymous, strategy-proof, tops-only and unanimous SCF f : Dn → A for all integers n.

Proof : We first prove the first part of the Theorem. We begin with a Proposition which is

of some independent interest.

Proposition 2 Let D be an arbitrary domain and let n be a positive even integer. Suppose

there exists an anonymous, tops-only, unanimous and strategy-proof SCF f : Dn → A. Then

there exists an anonymous, tops-only, unanimous and strategy-proof SCF g : D2 → A.

Proof : Let f : Dn → A be a anonymous, tops-only and strategy-proof SCF and suppose n

is even. Let N1 = {1, . . . , n
2
} and let N2 = {n

2
+ 1, . . . , n}. Define g : D2 → A as follows.

Pick an arbitrary pair P1, P2 ∈ D. Then g(P1, P2) = f(P ) where P ∈ Dn and Pj = P1 for

all j ∈ N1 and Pj = P2 for all j ∈ N2. In other words, the value of G at the two-individual

profile (P1, P2) is the value of the f at the n-individual profile P where all individuals in the
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set N1 have the same ordering P1 and all individuals in N2 have the same ordering P2. It

is easy to verify that g is unanimous and tops-only (these properties are inherited from the

corresponding properties in f). We show below that g is anonymous and strategy-proof.

In order to show that g is anonymous, pick P1, P2 ∈ D. We will show that g(P1, P2) =

g(P2, P1). Let P be the n-individual profile where individuals in N1 and N2 have the orderings

P1 and P2 respectively and let P̄ be the n-individual profile where individuals in N1 and N2

have the orderings P2 and P1 respectively. Consider the permutation η : N → N defined

by η(i) = (i + n
2
) mod n. Observe that P̄ is the image of P under η, i.e. P η = P̄ . Since

f is anonymous, f(P ) = f(P̄ ). But g(P1, P2) = f(P ) and g(P2, P1) = f(P̄ ), so that g is

anonymous.

We now show that g is strategy-proof. Pick arbitrary orderings P1, P
′
1, P2 ∈ D. Once

again let P be the n-individual profile where individuals in N1 and N2 have the orderings

P1 and P2 respectively. Let g(P1, P2) = f(P ) = a. Let f(P ′
1, P1, . . . , P1, P2, . . . , P2) = b.

We must have either b = a or aP1b; otherwise individual 1 would manipulate in P via P ′
1

contradicting the strategy-proofness of f . Now let f(P ′
1, P

′
1, P1 . . . , P1, P2, . . . , P2) = c. In

order to prevent individual 2 from manipulating in the profile (P ′
1, P1, . . . , P1, P2, . . . , P2) via

P ′
1, we must have c = b or bP1c, i.e either c = a or aP1c. Progressively switching individual

preferences in the set N1 from P1 to P ′
1, we obtain that if g(P ′

1, P2) = x, then either x = a

or aP1x. Therefore g is strategy-proof. 1 ¥

Let D be a strongly path-connected domain. Suppose that there exists n even, such that

there exists f : Dn → A which is anonymous, tops-only, unanimous and strategy-proof. In

view of Proposition 2, we can assume without loss of generality that n = 2. We will show

that D is semi-single-peaked.

Let f be a two-person anonymous, tops-only, unanimous and strategy-proof SCF. We

shall denote the two individuals by i and j and their typical preference orderings by Pi and

Pj respectively. Since f is tops-only we can also represent the profile (Pi, Pj) by (ak, ar)

where ak and ar are the peaks of Pi and Pj respectively. Thus f(ak, ak′) will denote the

social choice for a profile of preferences where individual i has a preference ordering whose

peak is ak and j has a preference ordering whose peak is ak′ . We will also interchangeably use

the notation (akal . . . ) to signify a preference ordering whose (i) peak is ak (ii) whose second

ranked element is al and (iii) the order of the remaining alternatives is not specified. Finally,

a preference profile where individual i has the preference ordering (akal . . . ) and j has the

preference ordering (ak′al′ . . .) is denoted (akal . . . , ak′al′ . . . ), and f(akal . . . , ak′al′ . . . ) will

denote the outcome of f at this profile.

We begin with two important properties of the ≈ relation associated with D.

1It is clear from our proof that the following more general statement is true. Suppose that there exists
an anonymous, tops-only, unanimous, strategy-proof SCF f : Dn → A. Then there exists an anonymous,
tops-only, unanimous, strategy-proof SCF f : Dm → A whenever m divides n.
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Lemma 1 Let ar, as ∈ A such that ar ≈ as. Then f(ar, as) ∈ {ar, as}.

Proof : Suppose the lemma is false, i.e let f(ar, as) = ak 6= ar, as. Since f is tops-only

f(aras . . . , as) = ak (we are using the fact that there exists a feasible ordering aras . . . since

ar ≈ as). But then individual i manipulates via (as . . .) thereby obtaining as since f is

unanimous. ¥

Lemma 2 Let ar, as ∈ A and suppose f(ar, as) = ar. Let at be an alternative distinct from

ar and as.

(i) If at ≈ as, then f(ar, at) = ar.

(ii) If at ≈ ar and at ≈ as, then f(at, as) = at.

Proof : We consider (i) first. Since as ≈ at, we can find Pj, P
′
j ∈ D such that (i) r1(Pj) =

as = r2(P
′
j) (ii) r2(Pj) = at = r1(P

′
j) and (iii) rl(Pj) = rl(P

′
j), l = 3, . . . , m. Since f is tops-

only f(ar, Pj) = ar. Suppose f(ar, P
′
j) 6= ar. If f(ar, P

′
j)Pjar, then j manipulates at (ar, Pj)

via P
′
j . If arPjf(ar, P

′
j), then arP

′
jf(ar, P

′
j) as well by construction, so that j manipulates at

(ar, P
′
j) via Pj. Hence f(ar, P

′
j) = ar. Since f is tops-only f(ar, at) = ar.

We now show that (ii) holds. Since at ≈ ar, we can find Pi, P
′
i ∈ D such that r1(Pi) =

ar = r2(P
′
i ) and (ii) r2(Pi) = at = r1(P

′
i ). Since f is tops-only f(Pi, as) = ar. Since f

is strategy-proof, it also follows from standard arguments that f(P ′
i , as) ∈ {ar, at}. Since

at ≈ as, Lemma 1 that f(P ′
i , as) ∈ {at, as}. Hence f(P ′

i , as) = at. Since f is tops-only

f(at, as) = at as required. ¥

We can now demonstrate further important properties regarding the ≈ relation.

Lemma 3 The ≈ relation does not admit cycles i.e. there does not exist a sequence ak(j),

j = 0, . . . , T such that ak(j) ≈ ak(j+1), j = 0, . . . , T − 1 and ak(T ) ≈ ak(0).

Proof : Since ak(0) ≈ ak(1), Lemma 1 implies f(ak(0), ak(1)) ∈ {ak(0), ak(1)}. Assume with-

out loss of generality that f(ak(0), ak(1)) = ak(0). Since ak(1) ≈ ak(2), Lemma 2 (i) im-

plies f(ak(0), ak(2)) = ak(0). Moreover applying the same argument along the sequence ak(j),

j = 2, . . . , T , we obtain f(ak(0), ak(T )) = ak(0). Suppose to the contrary ak(0) ≈ ak(T ).

Since f(ak(0), ak(T−1)) = ak(0), ak(0) ≈ ak(T ) and ak(T ) ≈ ak(T−1), we can apply Lemma 2

to obtain f(ak(T ), ak(T−1)) = ak(T ). Now applying Lemma 2 (i) repeatedly along the sequence

ak(j), j = T−1, . . . , 0, we obtain f(ak(T ), ak(0)) = ak(T ). By anonymity, f(ak(0), ak(T )) = ak(T ).

But this contradicts our earlier conclusion that f(ak(0), ak(T )) = ak(0). ¥

We have demonstrated that the strong-connectivity graph induced by D is a tree. Let

this tree be denoted by G. The set of its maximal paths will be denoted by P(G).

14



The distance between any pair as, ar ∈ A, denoted by d(as, ar) is defined as |{k 6= s, r :

ak ∈ 〈as, ar〉}|. It is thus, the number of alternatives not including as and ar that lie on the

path between as and ar.

Lemma 4 f(ar, as) ∈ 〈ar, as〉 for all ar, as ∈ A.

Proof : We prove the lemma by induction on d(ar, as). Observe first that the lemma holds in

the case where d(ar, as) = 0 (i.e. ar = as) by virtue of the assumption that f is unanimous.

Now suppose that f(ar, as) ∈ 〈ar, as〉 whenever d(ar, as) ≤ t for some integer t < m − 1.

Pick ar, as such that d(ar, as) = t + 1. Suppose f(ar, as) = az /∈ 〈ar, as〉. There must exist

ak ∈ 〈ar, as〉 such that ar ≈ ak. Note that d(ak, as) = t so that f(ak, as) ∈ 〈ak, as〉 ⊂
〈ar, as〉. Since ar ≈ ak, there exists Pi, P̄i ∈ D such that (i) r1(Pi) = r2(P̄i) = ar (ii)

r2(Pi) = r1(P̄i) = ak and (iii) rj(Pi) = rj(P̄i) for j = 3, . . . , m. Since f is tops-only,

f(Pi, as) = az. Moreover, using standard arguments for strategy-proofness, it follows that

f(P̄i, as) = az. Hence f(ak, as) = az by tops-onlyness. Since az /∈ 〈ar, as〉 by assumption, we

have a contradiction to our earlier conclusion that f(ak, as) ∈ 〈ak, as〉. ¥

Pick an arbitrary pair ar, as be such that d(ar, as) = 1. Let 〈ar, as〉 be a maximal path.

Suppose 〈ar, as〉 = {aj(0), . . . , aj(k) = ar, aj(k+1), aj(k+2) = as, aj(k+3) . . . , aj(T )}.

Lemma 5 (i) Suppose f(ar, as) = ar, i.e. f(aj(k), aj(k+2)) = aj(k). Pick integers u, v such

that u ≥ 0, u < v and k + v ≤ T . Then f(aj(k+u), aj(k+v)) = aj(k+u).

(ii) Suppose f(ar, as) = as, i.e. f(aj(k), aj(k+2)) = aj(k+2). Pick integers u, v such that

v ≤ 0, u < v and k + u ≥ 0. Then f(aj(k+u), aj(k+v)) = aj(k+v).

Proof : We first prove (i). Consider the case where u = 0. Since f(aj(k), aj(k+2) = aj(k)

and aj(k+1) ≈ aj(k+2), a direct application of Lemma 2(i) yields f(aj(k), aj(k+1)) = aj(k). An

identical argument yields f(aj(k), aj(k+3)) = aj(k). Moreover, since aj(k+3) ≈ aj(k+4) etc till

aj(k+v−1) ≈ aj(k+v), the same argument applied repeatedly yields f(aj(k), aj(k+v)) = aj(k).

Now consider the case where u = 1. Choose an arbitrary v such that v > 1 and k+v ≤ T .

By Lemma 4, f(aj(k+1), aj(k+v)) ∈
〈
aj(k+1), aj(k+v)

〉
. Note that since aj(k) ≈ aj(k+1), we can

argue (like in the proof of Lemma 2 (ii)) that f(aj(k+1), aj(k+v)) ∈ {aj(k), aj(k+1)}. But aj(k) /∈
〈aj(k+1), aj(k+v)〉. Hence f(aj(k+1), aj(k+v)) = aj(k+1). Applying this argument repeatedly, we

obtain f(aj(k+u), aj(k+v)) = aj(k+u).

The proof of part (ii) is the symmetric counterpart of the proof of part (i) of the Lemma

and is therefore omitted. ¥

Lemma 5 says the following. Suppose we can find two alternatives ar and as where there

is exactly one alternative other than ar and as in the (unique) path that connects ar and as.

Suppose f(ar, as) = ar. Then if one picks a profile, (ak, ak′) where (i) both ak and ak′ lie on
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a maximal path connecting ar and as (ii) both ak and ak′ lie on the segment of this maximal

path which begins at ar and contains the path from ar to as and (iii) ak is closer to ar than

ak′ , then f(ak, ak′) = ak.

Consider an arbitrary maximal path pt ∈ P(G). Assume without loss of generality that

pt = {aj(0), . . . , aj(k), . . . , aj(T )}. Consider profiles of preferences where the peaks of both

individual’s preferences lie on pt, i.e. profiles of the form (aj(k), aj(k+2)), k = 1, . . . , T − 2. In

view of Lemma 4, the following cases are mutually exhaustive.

Case A: There exists k ∈ {0, . . . , T − 2} such that f(aj(k), aj(k+2)) = aj(k+1).

Case B : For all k ∈ {0, ..., T − 2}, f(aj(k), aj(k+2)) ∈ {aj(k), aj(k+2)}.
Suppose Case A holds. The following lemma characterizes the SCF in this case.

Lemma 6 Suppose Case A holds, i.e. there exists k such that f(aj(k), aj(k+2)) = aj(k+1).

Then for any preference profile (aj(r), aj(s)), 0 ≤ r, s ≤ T (i.e. both individual’s peaks lie on

pt),

f(aj(r), aj(s)) =





aj(k+1) if min{r, s} ≤ k + 1 ≤ max{r, s}
aj(max{r,s}) if k + 1 > max{r, s}
aj(min{r,s}) if k + 1 < min{r, s}

Proof : We have assumed that f(aj(k), aj(k+2)) = aj(k+1). We show that f(aj(k−1), aj(k+3)) =

aj(k+1) as well. Since aj(k) ≈ aj(k−1) there exists Pi, P̄i ∈ D such that (i) r1(Pi) = aj(k) = r2(P̄i)

(ii) r2(Pi) = aj(k−1) = r1(P̄i) and (iii) rj(Pi) = rj(P̄i) for j = 3, . . . , m. By tops-onlyness

f(Pi, aj(k+2) . . . ) = aj(k+1). Now consider f(P̄i, aj(k+2) . . . ). Since for all al, aj(k+1)Pial iff

aj(k+1)P̄ial, strategy-proofness implies f(P̄i, aj(k+2) . . . ) = aj(k+1). By tops-onlyness, one has

f(aj(k−1), aj(k+2)) = aj(k+1). An analogous argument with respect to k + 3 applies to yield

f(aj(k−1), aj(k+3)) = aj(k+1). Repeated application of this procedure yields f(aj(r), aj(s)) =

aj(k+1) whenever min{r, s} ≤ k + 1 ≤ max{r, s}.
Now take (aj(r), aj(s)) with k + 1 > max{r, s}. As f(aj(k), aj(k+3)) = aj(k+1), by strategy-

proofness, f(aj(k+1), aj(k+3)) = aj(k+1) holds. We have f(aj(r), aj(s)) = aj(max{r,s}) by Lemma 5

(ii). An analogous reasoning appealing to Lemma 5 (i) establishes f(aj(r), aj(s)) = aj(min{r,s})
whenever k + 1 < min{r, s}. ¥

Consider maximal paths pt = 〈aj(0), . . . , aj(T )〉 where Case A holds, i.e. there exists

k ∈ {0, . . . , T − 2} such that f(aj(k), aj(k+2)) = aj(k+1). Define λ(pt) = aj(k+1). We show

that properties (i) and (ii) of Definition 4 hold. Pick Pi such that r1(Pi) ∈ pt and let

aj(r) ∈ pt be such that λ(pt) ∈ 〈r1(Pi), aj(r)〉. It is evident from Lemma 6 that f(Pi, aj(r)) =

aj(k+1) = λ(pt). Suppose that individual deviates to P
′
i where r1(P

′
i ) = aj(r). Since f satisfies
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unanimity, f(P
′
i , Pj) = aj(r). Since f is strategy-proof, we must have λ(pt)Piaj(r) as required

by part (i) of Definition 4.

Now, pick some aj(r), aj(s) ∈ pt such that aj(r), aj(s) ∈ 〈r1(Pi), λ(pt)〉 and aj(r) ∈ 〈r1(Pi), aj(s)〉.
Let individual j have preference Pj with r1(Pj) = aj(r). By Lemma 6, f(Pi, Pj) = aj(r). Now

consider a deviation by individual i to P̄i such that r1(P̄i) = aj(s). Again by Lemma 6,

f(P̄i, Pj) = aj(s). By strategy-proofness of f , we must have aj(r)Piaj(s), as required by part

(ii) of the Definition 4.

Now consider a path pt = {aj(0), . . . , aj(k), . . . , aj(T )} where Case B holds. Note that in

this case we must have f(aj(0), aj(2)) ∈ {aj(0), aj(2)}.
Suppose f(aj(0), aj(2)) = aj(0). Define λ(pt) = aj(0). Consider any Pi ∈ D with r1(Pi) ∈ pt.

Consider ar, as ∈ 〈λ(pt), r1(Pi)〉 such that ar ∈ {as, r1(Pi)}. From Lemma 5 (i) we have

f(Pi, ar) = ar and f(as, ar) = as. Strategy-proofness, yields arPias as required by Definition

4.

Suppose f(aj(0), aj(2)) = aj(2). There are two subcases to consider.

(a) f(aj(k), aj(k+2)) = aj(k+2) for all k ∈ {0, . . . , T −2}. Then, in particular f(aj(T−2), aj(T )) =

aj(T ). Let λ(pt) = aj(T ). Consider any Pi ∈ D with r1(Pi) ∈ pt. Consider ar, as ∈
〈λ(pt), r1(Pi)〉 such that ar ∈ 〈as, r1(Pi)〉. By Lemma 5 (ii), f(Pi, ar) = ar and f(as, ar) = as.

From strategy-proofness, we must have arPias, as required by Definition 4.

(b) Suppose there exists t where f(aj(t), aj(t+2)) = aj(t). Let t be the lowest index for

which f(aj(t), aj(t+2)) = aj(t) that is, f(aj(l), aj(l+2)) = aj(l+2), 0 ≤ l < t. Therefore,

f(aj(t−1), aj(t+1)) = aj(t+1). Since aj(t+1) ≈ aj(t+2), and f(aj(t), aj(t+2)) = aj(t), Lemma 2 (i)

implies f(aj(t), aj(t+1)) = aj(t). However, since aj(t−1) ≈ aj(t), and f(aj(t−1), aj(t+1)) = aj(t+1),

Lemma 2 (i) implies f(aj(t), aj(t+1)) = aj(t+1). We have a contradiction. Hence this case

cannot arise.

We have shown that there exists a tree G and a function λ : P(G) → A such that all

orderings in D satisfy the restrictions in Definition 4. In order to show that D is semi-single-

peaked, we only need to show that the pair (G, λ) is admissible for G (Definition 3).

For every ar, aj ∈ A, as is the neighbour of ar on the path 〈aj, ar〉 if (i) as ∈ 〈aj, ar〉 (ii)

there does not exist ak 6= ar, as with ak ∈ 〈as, ar〉. In other words, as is a neighbour of ar

on the path 〈aj, ar〉 if as lies on the path and there does not exist an alternative ak on the

same path lying “between” as and ar. We say that as is a neighbour of ar if there exists a

path containing ar and as is a neighbour of ar on that path.

Let pt ∈ P(G). Let P(pt) denote the set of maximal paths that contain λ(pt). Let

P(pt) = {pl ∈ P(pt) : λ(pl) 6= λ(pt)}. Thus P(pt) are those paths containing λ(pt) with the

property that their λ’s do not coincide with λ(pt).

Lemma 7 Let pt be a maximal path such that P(pt) 6= ∅. Then there exists a unique neighbour

as of λ(pt) such that as ∈ pl for all pl ∈ P(pt). Moreover λ(pl) 6= λ(pt) for all pl = 〈λ(pt), as〉.
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Proof : Pick arbitrary pl, pl′ ∈ P(pt). Let as be the neighbour of λ(pt) on the path

〈λ(pl), λ(pt)〉. We claim that as ∈ pl
′ . Suppose not. Then there exists ar distinct from

as which is the neighbour of λ(pt) on the path 〈λ(pt), λ(pl′ )〉.
Applying Lemma 5 (ii) to the path pl

′ , we have f(λ(pt), as) = as. Applying the same

lemma to the path pl, we have f(λ(pt), ar) = ar. Now consider the path 〈ar, as〉. Since G is

a tree, this path contains λ(pt). In fact 〈ar, as〉 can be written as

{aj(0), . . . , aj(k−1), aj(k), aj(k+1), . . . aj(T )} where aj(k−1) = ar, aj(k) = λ(pt) and aj(k+1) = as.

Then we have f(aj(k−1), aj(k)) = aj(k−1) and f(aj(k), aj(k+1)) = aj(k+1). However we have

already shown in dealing with Case B, part (b) above (using Lemma 2 (i)) that f cannot

behave like this. This establishes the first part of the Lemma.

Suppose the second part of the Lemma is false, i.e. there exists pl = 〈λ(pt), as〉 such

that λ(pl) = λ(pt). Applying Lemma 5 (i) to the path pl, we have f(λ(pt), as) = λ(pt).

By assumption and the first part of the Lemma, there exists pl′ = 〈λ(pt), as〉 such that

λ(pl′) 6= λ(pt). Applying Lemma 5 (ii) to the path pl′ we have f(λ(pt), as) = as, contradicting

our earlier conclusion. ¥

We identify an alternative a∗k by the following algorithm. Start with an arbitrary maximal

path p1
t . If P(p1

t ) = ∅, we let λ(p1
t ) = a∗k. If P(p1

t ) 6= ∅, pick an arbitrary p2
t ∈ P(p1

t ). If

P(p2
t ) = ∅, we let λ(p2

t ) = a∗k. Otherwise pick p3
t ∈ P(p2

t ) and check if P(p3
t ) = ∅ etc. The

algorithm stops whenever a∗k has been found.

Consider the rth step of the algorithm, r > 1. Since the algorithm has not stopped at

step r−1, i.e. P(pr−1
t ) 6= ∅. Therefore there must exist a maximal path pl containing λ(pr−1

t )

such that λ(pl) 6= λ(pr−1
t ). It follows from the construction of the algorithm that pl contains

the alternatives λ(p1
t ), λ(p2

t ), . . . , λ(pr−1
t ), i.e pl = 〈λ(p1

t ), . . . , λ(pr−1
t )〉. It follows from the

second part of Lemma 7 that λ(pr
t ) 6= λ(p1

t ), . . . , λ(pr−1
t ).

For any positive integer r, let D(pr
t ) = P(pr

t ) − P(pr
t ). These are the maximal paths

discarded in the rth step of the algorithm. By definition these are paths pl which contain

λ(pr
t ) and satisfy λ(pl) = λ(pr

t ). Suppose that pr
t ∈ D(pl

t) for some integer l < r. From our

earlier remarks, pr
t ∈ 〈λ(p1

t ), . . . , λ(pr−1
t )〉. Also λ(pr

t ) 6= λ(pl
t) contradicting our assumption

that pr
t ∈ D(pl

t). Thus the algorithm cannot pick a maximal path in the rth step which has

been discarded in an earlier step. Since the number of maximal paths is finite, this implies

that the algorithm must terminate, i.e a∗k exists.

Observe that by construction, λ(pl) = a∗k for all maximal paths pl that contain a∗k. Now

pick a maximal path pt such that a∗k /∈ pt. Since G is a tree, there must exist a (unique)

path containing a∗k that has a unique alternative in common with pt. Let this alternative

be aj. In order to prove that the pair (G, λ) is an admissible pair, it suffices to prove that

λ(pt) = aj. Suppose that this is false, i.e. λ(pt) 6= aj. Let ar be the neighbour of aj on the

path 〈aj, λ(pt)〉 and let as be the neighbour of aj on the path 〈aj, a
∗
k〉. Applying Lemma 5

to the path pt, we have f(aj, ar) = ar. Applying the same lemma to the path pl, we have
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f(as, aj) = as. Now consider the path 〈ar, as〉. Since G is a tree, this path contains aj.

In fact 〈ar, as〉 can be written as {aj(0), . . . , λ(pt), . . . , aj(k−1), aj(k), aj(k+1), . . . , a
∗
k, . . . , aj(T )}

where aj(k−1) = ar, aj(k) = aj and aj(k+1) = as. Then we have f(aj(k−1), aj(k)) = aj(k−1) and

f(aj(k), aj(k+1)) = aj(k+1). As we have seen earlier, this contradicts the strategy-proofness of

f via Lemma 2 (i).

This completes the first part of the proof.

We now show that if D is semi-single-peaked (with respect to an admissible pair (G, λ)),

then it admits an anonymous, tops-only, unanimous and strategy-proof SCF for all n.

For any set B ⊂ A, let G(B) be the minimal subgraph of G that contains B as nodes.

More formally, G(B) is the unique graph that satisfies the properties below.

1. The set of nodes in G(B) contains B.

2. Let aj, ak ∈ B. The graph G(B) has an edge {aj, ak} only if {aj, ak} is an edge in G.

3. G(B) is connected.

4. ak ∈ G(B) if and only if ak ∈ 〈ar, aj〉 where ar, aj ∈ B.

An alternative way to define G(B) would be as the minimal graph satisfying properties

1, 2 and 3 above. It is clear that G(B) exists and is a tree.

For any profile P ∈ Dn, let {r1(P )} denote the set of all first-ranked alternatives in

the profile P , i.e {r1(P )} = {ai ∈ A|r1(Pi) = ai for some i ∈ N}. Let ak ∈ A be the

alternative specified in Definition 3 applied to the admissible pair (G, λ). Consider the

graph G({r1(P )}). Assume ak /∈ {r1(P )}. Since G is a tree and contains no cycles, there

exists a unique alternative in G({r1(P )}) that belongs to every path from ak to {r1(P )}. Let

this alternative be denoted by β(P ).

Consider the following example. Suppose N = {1, 2, 3}. Consider the admissible pair

(G0, λ
4) (Figure 4) and let P be a profile such that {r1(P )} = {a1, a2, a3}. Then β(P ) = a2.

Define the SCF f : Dn → A as follows.

f(P ) =

{
ak if ak ∈ G({r1(P )})
β(P ) if ak /∈ G({r1(P )})

It follows immediately from the construction that f is anonymous, unanimous and tops-

only. We now show that f is strategy-proof, which will conclude the proof.

Fix a profile P . Observe that whether ak ∈ G({r1(P )}) or ak /∈ G({r1(P )}), there exist

individuals i and j such that f(P ) ∈ 〈r1(Pi), r1(Pj)〉 (since G({r1(P )}) only considers nodes

that belong to an interval of the form 〈r1(Pi), r1(Pj)〉). Moreover these individuals can be

chosen such that there does not exist an individual i
′

such that r1(Pi′ ) ∈ 〈r1(Pi), f(P )〉
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and r1(Pi′ ) ∈ 〈r1(Pj), f(P )〉 (i.e i and j are the closest peaks on either “side” of f(P ) on a

maximal path containing f(P )). Note that these individuals need not be unique; let the set

of these individuals be N
′
.

We first show that an individual i /∈ N
′
cannot manipulate at P . Observe first that if

ak ∈ G({r1(P )}) (i.e. f(P ) = ak), then i cannot the change the outcome by any deviation.

Suppose therefore that ak /∈ G({r1(P )}) so that f(P ) = β(P ). By deviating to P
′
i where

r1(P
′
i ) = ak, i can change the outcome to ak. We claim that this is, in fact, the only outcome

different from β(P ) that i can obtain by deviating from Pi. Suppose this is false. Then it

must be the case that there exists P
′
i which induces the sub-tree G({r1(P

′
i , P−i)}) and the

outcome β(P
′
i , P−i) which is distinct from both β(P ) and ak. Consider i

′ ∈ N
′
. It follows

that there exists a path in G from r1(Pi′ ) to ak via β(P ) and another distinct one from

r1(Pi
′ ) to ak via β(P

′
i , P−i)). This contradicts our assumption that G is a tree.

Suppose therefore that f(P
′
i , P−i) = ak for some P

′
i ∈ D. In that case β(P ) ∈ 〈r1(Pi), ak〉.

Since λ(〈r1(Pi), ak〉) = ak (since (G, λ) is an admissible pair), it follows from Definition 4

(ii) of semi-single-peakedness that β(P )Piak. Hence i cannot manipulate.

Now consider deviations by individuals i ∈ N
′
. Suppose j is the other individual such

that f(P ) ∈ 〈r1(Pi), r1(Pj)〉. Consider λ(pt) where pt is any path 〈r1(Pi), r1(Pj)〉. There are

several possibilities enumerated below.

1 ak ∈ pt where pt ∈ 〈r1(Pi), r1(Pj)〉. Clearly λ(pt) = ak (part (i) of Definition 3).

2 ak /∈ pt where pt ∈ 〈r1(Pi), r1(Pj)〉. Let the unique path from ak to G({r1(P )}) intersect

a path pt in 〈r1(Pi), r1(Pj)〉 at a∗k. Clearly λ(pt) = a∗k (part (ii) of Definition 3).

Case 1 can be sub-categorized into the cases below.

1(i) ak ∈ int〈r1(Pi), r1(Pj)〉. Then f(P ) = ak.

1(ii) r1(Pi) ∈ 〈r1(Pj), ak〉. Then f(P ) = r1(Pi).

1(iii) r1(Pj) ∈ 〈r1(Pi), ak〉. Then f(P ) = r1(Pj).

Similarly Case 2 can be sub-categorized into the cases below.

2(i) a∗k ∈ int〈r1(Pi), r1(Pj)〉. Then f(P ) = a∗k.

2(ii) r1(Pi) ∈ 〈r1(Pj), a
∗
k〉. Then f(P ) = r1(Pi).

2(iii) r1(Pj) ∈ 〈r1(Pi), a
∗
k〉. Then f(P ) = r1(Pj).
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In Cases 1(ii) and 2(ii), individual i is getting her best alternative and will clearly not

manipulate.

Suppose either Case 1(i) or 2(i) occurs. In each case f(P ) = λ(pt) where pt = 〈r1(Pi), r1(Pj)〉.
If i announces P

′
i such that r1(P

′
i ) ∈ 〈r1(Pj), f(P )〉, then f(P

′
i , P−i) = r1(P

′
i ). By semi-single-

peakedness, f(P )Pif(P
′
i , P−i) (Definition 4 (i)) so that i does not manipulate. Suppose i

deviates to P
′
i such that r1(P

′
i ) /∈ 〈r1(Pj), f(P )〉. It follows from the construction of f that

f(P
′
i , P−i) = r1(Pj) or else f(P

′
i , P−i) = ak = f(P ). This case is clearly covered by our

earlier argument (Definition 4 (i)).

Now suppose either Cases 1(iii) or 2(iii) hold. By deviating to P
′
i such that r1(P

′
i ) ∈

〈r1(Pj), ak〉 (in Case 1(iii)) or r1(P
′
i ) ∈ 〈r1(Pj), a

∗
k〉 (in Case 2(iii)), i can obtain the out-

come f(P
′
i , P−i) = r1(P

′
i ). By part (ii) of Definition 4 of semi-single-peakedness, we have

f(P )Pif(P
′
i , P−i). Once again i cannot manipulate. ¥

We now discuss semi-single-peakedness and related literature.

3.1 Discussion

In this section, we discuss the relationship of our work with that of Nehring and Puppe

(2007b) and Nehring and Puppe (2007a). They define a ternary relation B over A with the

following interpretation: if (x, y, z) ∈ B, then y is “between” x and z. They say that a

linear order Pi is generalized single-peaked with respect to B iff (r1(Pi), y, z) ∈ B ⇒ yPiz.

They define the notion of a property space and use it to construct a natural “between-

ness” relationship. According to Theorem 4 in Nehring and Puppe (2007b), if there exists

a strategy-proof and neutral social choice function defined on a rich domain of generalized

single-peaked preference induced by a property space, then this property space must, in fact,

be a median space. They go on to characterize strategy-proof and neutral social choice func-

tions on these domains. The necessity part of this result is similar in spirit to our analysis.

However our analysis and results are quite different in view of the following observations.

(1) They start with a property space and a rich domain of generalized single-peaked pref-

erences with respect to the betweenness relation induced by the space. The starting point

of our analysis is a different and more direct notion of rich domains which has no reference

to property spaces or any notion of betweenness. (2) Our notion of richness is specified in

terms of the terms of the ways in which alternatives are ranked first and second in admissible

orderings in the domain. It is this structure that we exploit to obtain the ordering on alter-

natives which is central to the variant of single-peakedness that we characterize. Although

their definition of richness does put restrictions on the way that alternatives are ranked

first and second in the domain, the exact specification is different from ours. Nor is the

structure of these relationships used in the manner that we do. (3) The notions of general-

ized single-peakedness and semi-single-peakedness are related but independent of each other.
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For instance, a single-peaked (in the standard sense) is both generalized single-peaked and

single-peaked. However domains that are generalized single-peaked are not necessarily semi-

single-peaked and vice-versa. For instance, the complete domain is generalized single-peaked

but not semi-single-peaked. Conversely one can construct semi-single-peaked domains with a

suitable specification of a threshold that is not generalized single-peaked for any betweenness

relation. (4) The axioms on social choice functions, in addition to strategy-proofness, used

to characterize domains are different. They focus on neutrality while we look at anonymity

and either tops-only ness or tops-selectivity.

4 Tops-Selectivity and Extreme-Peaked domains

In this subsection, we explore the consequences of replacing the tops-only requirement by

the top-selectivity requirement. In general the two requirements are independent of each

other. Note that the SCF f defined in the proof of the previous theorem is tops-only but

not top-selective (there exist profiles where the outcome is ak which is not the peak of any

individual). One can also easily construct a SCF where the outcome is always, say either

individual j or k’s peak depending on individual j’s bottom-ranked alternative. Such a SCF

would be tops-selective but not tops-only. Observe however that a tops-selective SCF is

always unanimous.

Our main result in this subsection states that an appropriately rich domain which admits

an anonymous, strategy-proof and tops-selective SCF for an even number of voters must

be a special class of semi-single peaked domains which we call extreme-peaked domains.

Conversely, every extreme-peaked domain admits an anonymous, strategy-proof and tops-

selective SCF for an arbitrary number of voters. An important aspect of this result is that the

richness condition required for this result is weaker than the richness required for Theorem

1. The reason for this is that though tops-selectivity and tops-onlyness are independent

conditions, tops-selectivity in conjunction with strategy-proofness implies tops-onlyness in

the case of two voters. Therefore for the case of two voters at least, domains which admit

anonymous, strategy-proof and tops-selective SCFs must be semi-single peaked. We are able

to identify the exact sub-class of semi-single peaked domains which satisfy this property in

the presence of a weaker richness property.

We now describe this richness property.

Definition 5 Two alternatives aj, ak are connected in D, denoted aj ∼ ak, if there exists

Pi, P̄i ∈ D such that r1(Pi) = aj = r2(P̄i), r2(Pi) = ak = r1(P̄i).

This notion was introduced in Aswal et al. (2003). Observe that two alternatives which

are strongly connected are also connected.
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Definition 6 The domain D is weakly path-connected iff for all ar, as ∈ A, there exists a

sequence of alternatives aj(k) ∈ A, k = 0, . . . , T such that

• aj(0) = ar

• aj(T ) = as

• aj(k) ∼ aj(k+1), k = 0, . . . , T − 1.

The notion of weak path-connectedness is analogous to the notion of path-connectedness.

It requires every pair of alternatives to be joined by a sequence of pairs of alternatives which

are connected. We note that the notion of weak path-connectedness is substantially weaker

than that of strong path connectedness. For instance, the domain of separable preferences in

Example 4 is weakly path-connected (for details, see Aswal et al. (2003)) although we have

shown that it is not strongly path-connected.

Definition 7 A domain D is extreme-peaked with respect to the linear order τ iff either (i)

or (ii) below hold.

(i) [asτarτr1(Pi)] ⇒ [arPias] for all Pi ∈ D, and for all ar, as ∈ A.

(ii) [r1(Pi)τarτas] ⇒ [arPias] for all Pi ∈ D, and for all ar, as ∈ A.

We say that D is extreme-peaked if there exists a linear order with respect to which it is

extreme-peaked.

We claim that an extreme-peaked domain is semi-single-peaked. In particular it corre-

sponds to the semi-single-peakedness where the admissible pair (G, λ) is such that G consists

of a single maximal path (i.e. G = GL as in Figure 2) and the TAM λ for the unique path

selects one of the extreme alternatives/nodes (terminal nodes) in the maximal path (i.e.

either a1 or a6 in Figure 2).

Our main result in this subsection is the following.

Theorem 2 Let D be a weakly path-connected domain and let n be an even integer. If there

exists an anonymous, tops-selective and strategy-proof SCF f : Dn → A, then D is extreme-

peaked. Conversely, if D is an extreme-peaked domain, then there exists an anonymous,

strategy-proof and tops-selective SCF f : Dn → A for all integers n.

Proof : We begin with the first part of the Theorem. Using the same arguments as in

Proposition 2, it is straightforward to prove the following.

Proposition 3 Let D be an arbitrary domain and let n be an even positive integer. Suppose

there exists an anonymous, tops-selective and strategy-proof SCF f : Dn → A. Then there

exists an anonymous, tops-selective and strategy-proof SCF g : D2 → A.
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Let D be a weakly path-connected domain. In view of Proposition 3 above, we can assume

that there exists f : D2 → A which is anonymous, tops-selective and strategy-proof.

We first show that f is tops-only. Suppose that this is false, i.e there exists Pi, P
′
i , Pj, P

′
j ∈

D with r1(Pi) = r1(P
′
i ) = a, r1(Pj) = r1(P

′
j) = b but f(Pi, Pj) 6= f(P ′

i , P
′
j). Since f is tops-

selective f(Pi, Pj) ∈ {a, b}. Assume without loss of generality that f(Pi, Pj) = a. Since f is

strategy-proof, it must be the case that f(P ′
i , Pj) = a; otherwise i will manipulate at (P ′

i , Pj).

Since f(P ′
i , P

′
j) ∈ {a, b} (by tops-selectivity) and since f(Pi, Pj) 6= f(P ′

i , P
′
j), it must be the

case that f(P ′
i , P

′
j) = b. But then j will manipulate at (P ′

i , Pj). Hence f is tops-only.

Since f is tops-only, we can consider a profile as a pair (ar, as) with the interpretation

that i has an ordering Pi with ar = r1(Pi) and j has an ordering Pj with as = r1(Pj).

Once again, we establish several facts about the ∼ relation.

Lemma 8 Let ar, as ∈ A and suppose f(ar, as) = ar. Let at be an alternative distinct from

ar and as.

(i) If at ∼ as, then f(ar, at) = ar.

(ii) If at ∼ ar, then f(at, as) = at.

Proof : We consider (i) first. Since as ∼ at, we can find preferences (asat . . .) and (atas . . .).

Since f is tops-only f(ar, asat . . .) = ar. By tops-selectivity, f(ar, atas . . .) ∈ {ar, at}. If

f(ar, atas . . .) = at, individual j manipulates at (ar, asat . . .) via (atas . . .). Hence

f(ar, atas . . .) = ar. The result now follows from tops-onlyness.

We now show that (ii) holds. Since at ≈ ar, we can find preferences (arat . . .) and

(atar . . .). Since f is tops-only f(arat . . . , as) = ar. Since f is strategy-proof, it also fol-

lows from standard arguments that f(atar . . . , as) ∈ {ar, at}. But tops-selectivity requires

f(atar . . . , as) ∈ {at, as}. Hence f(at, ar . . . , as) = at. Since f is tops-only f(at, as) = at as

required. ¥

Lemma 9 The ∼ relation does not admit cycles i.e. there does not exist a sequence ak(j),

j = 0, . . . , T − 1 such that ak(j) ∼ ak(j+1), j = 0, . . . , T − 1 and ak(T ) ∼ ak(0).

Proof : By tops-selectivity, f(ak(0), ak(1)) ∈ {ak(0), ak(1)}. Assume without loss of generality

that f(ak(0), ak(1)) = ak(0). Since ak(1) ∼ ak(2), Lemma 8 (i) implies f(ak(0), ak(2)) = ak(0).

Moreover applying the same argument along the sequence ak(j), j = 2, . . . , T , we obtain

f(ak(0), ak(T )) = ak(0).

Since f(ak(0), ak(T−1)) = ak(0), ak(0) ∼ ak(T ) we can apply Lemma 8 (ii) to obtain

f(ak(T ), ak(T−1)) = ak(T ). Now applying Lemma 8 (i) repeatedly along the sequence ak(j),

j = T − 1, . . . , 0, we obtain f(ak(T ), ak(0)) = ak(T ). By anonymity, f(ak(0), ak(T )) = ak(T ). But

this contradicts our earlier conclusion that f(ak(0), ak(T )) = ak(0). ¥
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Lemma 10 Suppose ar, as, at ∈ A such that ar ∼ as and ar ∼ at. Then there does not exist

ak ∈ A such that ar ∼ ak.

Proof : Suppose that the Lemma is false, i.e ar ∼ as, ar ∼ at and ar ∼ ak where ar, as, at

and ak are distinct. We consider two cases.

Case I: f(ar, as) = ar. Since ar ∼ at, f(at, as) = at (Lemma 8 (ii)). Since as ∼ ar,

f(at, ar) = at (Lemma 8 (i)) and since ar ∼ ak, f(at, ak) = at (Lemma 8 (i)).

Since ar ∼ ak, f(ak, as) = ak (Lemma 8 (ii)). Since as ∼ ar, f(ak, ar) = ak (Lemma 8

(i)) and since ar ∼ at, f(ak, at) = ak (Lemma 8 (i)). By anonymity f(at, ak) = ak which

contradicts our earlier conclusion that f(at, ak) = at. ¥

We can now completely characterize the structure of the connectivity graph generated

by the ∼ relation. Start with an arbitrary alternative say aj(k). By Lemma 10, there

exist at most two alternatives, say aj(k−1) and aj(k+1) such that aj(k) ∼ aj(k−1) and aj(k) ∼
aj(k+1). Also there can be at most one alternative, say aj(k−2) such that aj(k−2) ∼ aj(k−1).

From Lemma 9, aj(k−2) 6= aj(k), aj(k+1). Similarly there can be at most one alternative, say

aj(k+2) distinct from aj(k), aj(k−1), aj(k−2) such that aj(k+2) ∼ aj(k+1). Since A is finite, we

can conclude that A = {aj(0), aj(1), . . . , aj(m−1)} where aj(k) ∼ aj(k+1), k = 1, . . . , m − 1.

Let τ be the linear order on A defined by aj(0)τaj(1)τ . . . τaj(m). We will show that D is

extreme-peaked with respect to τ .

We assume without loss of generality that τ is the order a1τa2 . . . τam so that ar ∼ as

if and only if s = r + 1, r = 1, . . . , m − 1. In view of the assumption of top-selectivity, the

following cases are mutually exhaustive.

Case A: f(a1, a3) = a1.

Case B : f(a1, a3) = a3.

The next two lemmas pave the way for the characterization of f in either case.

Lemma 11 If f(a1, a3) = a1, then f(ai, aj) = amin{i,j} for all i, j ∈ {1, . . . , M}.

Proof : Pick any i, j ∈ {1, . . . , m}. As f is anonymous, assume without loss of generality

that i < j. We first note that f(ai, aj) = ai implies f(ai, aj+1) = ai from Lemma 8 (i).

Similarly f(ai, aj) = ai implies f(ai, aj−1) = ai. Since we have f(a1, a3) = a1, the previous

arguments imply that f(a1, at) = a1 for any t ∈ {1, . . . , m}. Now consider f(a2, at) for

t > 2. We argue that f(a2, at) = a2. If not, by top-selectivity, f(a2, at) = at. Since tops-

onlyness implies f(a1a2..., at) = a1, individual j can manipulate at the profile (a2a1..., at) via

(a1a2 . . .) to obtain a1. Thus f(a2, at) = a2. Repeated application of this argument yields

f(ai, aj) = ai. ¥

Lemma 12 If f(a1, a3) = a3, then f(ai, aj) = amax{i,j} for all i, j ∈ {1, ..., m}.
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The proof of this Lemma is the symmetric counterpart of the proof of Lemma 11 and is

therefore omitted.

We complete the proof by showing that in both Case A and Case B, D is extreme-peaked

with respect to τ . Pick any Pi ∈ D. Suppose Case A holds. Pick any two alternatives

ar, as such that asτarτr1(Pi). From Lemma 11 we have f(Pi, ar) = ar and f(as, ar) = as.

By strategy- proofness, we must have arPias fulfilling Part (i) of Definition 7. Now suppose

Case B holds. Pick ar and as such that r1(Pi)τarτas. By Lemma 12, f(Pi, ar) = ar and

f(as, ar) = as. Since f is strategy-proof, arPias fulfilling Part (ii) of Definition 7.

We now prove the second part of the Theorem. Let D be an extreme-peaked domain with

respect to the order τ . Suppose without loss of generality that Part (i) of Definition 7 holds,

i.e that [asτarτr1(Pi)] ⇒ [arPias] for all Pi ∈ D, and for all ar, as ∈ A. Let n be an arbitrary

positive integer n ≥ 2. Define the SCF fτ : Dn → A as follows. For any profile P ∈ Dn,

let fτ (P ) = max({r1(P1), . . . , r1(Pn)}, τ). It is clear from inspection that fτ is anonymous

and tops-selective. We show that fτ is strategy-proof. Let P be an arbitrary profile and let

f(P ) = ar. Consider an arbitrary individual i. If r1(Pi) = ar then i clearly cannot do better

by deviation. If r1(Pi) 6= ar, then arτr1(Pi). Moreover according to the definition of fτ , if

fτ (P
′
i , P−i) = as where as 6= ar, then asτar. It follows from extreme-peakedness that arPias

so that fτ is strategy-proof. ¥

Our final example demonstrates that strong path-connectedness cannot be replaced by

weak path-connectedness in Theorem 1 and tops-selectivity cannot be replaced by tops-

onlyness in Theorem 2.

Example 5 Let A = {a1, a2, a3, a4}. Let D̂ consist of the orderings below.

a1 a2 a2 a2 a3 a3 a3 a4

a2 a1 a3 a3 a2 a4 a2 a3

a4 a3 a1 a4 a1 a2 a4 a1

a3 a4 a4 a1 a4 a1 a1 a2

Table 4: Preferences in the domain D̂

The domain D̂ is weakly path-connected with a1 ∼ a2, a2 ∼ a3 and a3 ∼ a4. However, it

is not strongly path-connected because when a1 is not strongly connected to a2 (or anything

else). We claim that D̂ is not semi-single-peaked and hence, not extreme-peaked. To see this

observe that the graph associated with the domain is the line and it is not possible to specify

an admissible pair satisfying conditions (i) and (ii) of Definition 4. A SCF f : D̂2 → A is

defined by unanimity and the following specifications: f(a1, a2) = f(a2, a1) = a2, f(a1, a3) =

f(a3, a1) = a3, f(a2, a3) = f(a3, a2) = a3, f(a1, a4) = f(a4, a1) = a4, f(a2, a4) = f(a4, a2) =

a3 and f(a3, a4) = f(a4, a3) = a3. By construction f is anonymous, satisfies tops-onlyness
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and unanimity. Finally, we claim that f is strategy-proof. When one of the voters has a3 as

her peak, then the the outcome cannot be moved from a3. Suppose the profile is (a1, a2) or

(a2, a1). The outcome is then a2. The voter whose peak is a1 can only obtain his last-ranked

alternative a3 by deviation. If the profile is (a1, a4) or (a4, a1), then the outcome is a4. Here

the voter with peak a1 can only obtain her worst outcome a3 by deviating.

5 Conclusion

In this paper we have attempted to characterize (subject to certain richness requirements)

domains of preferences which admit “well-behaved” strategy-proof social choice functions.

According to our results, these domains are closely related to variants of domains of single-

peaked preferences.
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