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Abstract

We characterize the class of dominant-strategy incentive-compatible (or strategy-
proof) random social choice functions in the standard multi-dimensional voting model
where voter preferences over the various dimensions (or components) are lexicograph-
ically separable. We show that these social choice functions (which we call generalized
random dictatorships) are induced by probability distributions on voter sequences of
length equal to the number of components. They induce a fixed probability distri-
bution on the product set of voter peaks. The marginal probability distribution over
every component is a random dictatorship. Our results generalize the classic random
dictatorship result in Gibbard (1977) and the decomposability results for strategy-
proof deterministic social choice functions for multi-dimensional models with separable
preferences obtained in LeBreton and Sen (1999).

1 Introduction

Randomization has been used as a method of resolving conflicts of interest since antiquity.

It has been analyzed extensively in a variety of models such as the pure voting model,
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matching and auctions from the perspectives of aggregation, fairness and mechanism de-

sign. 1 In the context of mechanism design, allowing for randomization expands the set

of incentive-compatible social choice functions relative to the deterministic case. This is so

because domain restrictions are inherent in the preference ranking of lotteries that satisfy the

expected utility hypothesis. A classical result in this area is that of Gibbard (1977) which

characterizes the class of strategy-proof random social choice functions over the complete

domain of preferences.

In this paper we investigate the class of strategy-proof random social choice rules over a

specific sub-domain of multi-dimensional (or multi-component) domains with separable pref-

erences. The multi-dimensional separable preferences model is an important one with sev-

eral applications and has been extensively studied in the deterministic setting, for example in

Barberà et al. (1991), Barberà et al. (1993), LeBreton and Sen (1999), Barberà et al. (1997),

Barberà et al. (2005) and Svensson and Torstensson (2008). For a survey see Sprumont

(1995).

LeBreton and Sen (1999) show that every strategy-proof deterministic social choice func-

tion satisfying unanimity defined over a rich domain of preferences is decomposable, i.e. a

strategy-proof social choice function is composed of strategy-proof social choice functions

defined over each component domain. An immediate consequence of this result and the

Gibbard-Satterthwaite Theorem (Gibbard (1973), Satterthwaite (1975)) is the following: if

the domain is rich and each component domain is complete and has at least three alterna-

tives, then a social choice function is strategy-proof if and only if there is a dictator for each

component.

In this paper, we analyze the structure of random strategy-proof social choice functions

(satisfying unanimity) defined over a domain where preferences are separable and compo-

nents are lexicographically ordered. This is the domain of lexicographically separable pref-

erences and is a subset of the domain of all separable preferences. This domain is rich in the

sense of LeBreton and Sen (1999) (see their Example 3.3); according to the result referred

to earlier, every deterministic strategy-proof social choice function over this domain must

be a component random dictatorship. If the decomposability property extended straight-

forwardly to random social choice functions, we would expect strategy-proof random social

choice functions (satisfying unanimity) over this domain to be the stochastic product of com-

ponent random dictatorships. This is false; for instance, random dictatorship itself is clearly

strategy-proof but not the product of component random dictatorships. The latter would

put non-zero probabilities on alternatives that are not first-ranked by any voter unlike a

random dictatorship. Thus products of component random dictatorships are strategy-proof

but do not describe all random strategy-proof choice functions.

1See for example, Barberà and Sonnenschein (1978), Myerson (1981), Bogomolnaia and Moulin (2001),
Bogomolnaia and Moulin (2004), Bogomolnaia et al. (2005), Moulin and Stong (2002).
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Our main result is a complete characterization of random strategy-proof social choice

functions satisfying unanimity defined over lexicographically separable domains. We call such

random social choice functions generalized random dictatorships and they include random

dictatorships and products of component random dictatorships. A random dictatorship is a

fixed probability distribution on the set of voters. At any preference profile, the probability of

an alternative is the sum of the probability weights of voters for whom the alternative is the

best. A generalized random dictatorship on the other hand, is a fixed probability distribution

on the set of all voter sequences of length m where m is the number of components. For

instance, if there are three voters and five components, there are 35 possible voter sequences.

A generalized random dictatorship assigns a probability to each of these sequences. An

alternative is consistent with a sequence at a profile if each component of the alternative

is the best (amongst all component alternatives) for the voter specified in the sequence for

that component. The total probability of the alternative at the profile is simply the sum

of probabilities of voter sequences consistent with the alternative. A generalized random

dictatorship thus induces a fixed probability distribution on the product set of the maximal

alternatives of all voters. A critical feature of these social choice functions is that the induced

marginal probability distribution on each component is a random dictatorship.

The paper is organized as follows. In the next section, we introduce the model, the

notation and the background results. The following section contains the main result and its

proof while the final section concludes.

2 Background and Preliminaries

The set of alternatives is a finite set A ≡ A1 × A2... × Am where Aj, j = 1, ...m is the jth

component set. The set of components will be written as M = {1, ..., m}. An element a ∈ A

is an m-tuple a ≡ (a1, ..., am). For any Q ⊂ M , we will let AQ =
∏

j∈Q Aj. Abusing notation

slightly, we will write AM−j for the set
∏

k 6=j Ak. Typical elements of AM−j will be denoted

by aM−j, bM−j etc.

2.1 Preferences

The set of voters is I = {1, .., N}. Each voter i has an antisymmetric preference ordering P i

over the elements of A which is assumed to be separable.

Definition 1 The ordering P i is separable if for all Q ⊂ M , for all aQ, bQ ∈ AQ, for all

cM−Q, dM−Q ∈ AM−Q,

[(aQ, cM−Q)P i(bQ, cM−Q)] ⇒ [(aQ, dM−Q)P i(bQ, dM−Q)].
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If a preference ordering is separable, then choices over a subset of components do not

affect ranking of alternatives over the remaining components. In other words, choices over

components do not impose “externalities” over other components.

A particular class of separable orderings is the class of lexicographically separable or simply

lexicographic orderings.

Definition 2 The ordering P i is lexicographic if there exists an antisymmetric ordering Â
on the set M and antisymmetric orderings P i

j on each component set Aj, j ∈ M such that,

for all a, b ∈ A, aP ib iff there exists a component j such that

1. ajP
i
j bj

2. ak = bk for all k ∈ M such that k Â j.

Let P i be a lexicographic ordering. We shall refer to the components that are maximal and

minimal according to the ordering Â over M as the lexicographically best and lexicographically

worst components respectively. In general if, components j and k are such that k Â j, we

shall say that component k is lexicographically better than component j.

Let P, DS and DL denote respectively the set of all antisymmetric orderings, the set of

separable orderings, the set of additively separable orderings and the set of lexicographic

preference orderings over A respectively. We note that DL ⊆ DS ⊂ P. 2

A separable preference P i induces a marginal preference ordering P i
Q over AQ, Q ⊂ M

in a natural way: for every aQ, bQ ∈ AQ

[aQP i
QbQ] if [(aQ, cM−Q)P i(bQ, cM−Q) for all cM−Q ∈ AM−Q].

Let D ⊂ DS. The set of marginal preference orderings over components in the set Q ⊂ M

will be denoted by DQ. If Q consists of a single component, we shall write Dj for the set of

orderings induced by D over Aj.

For any D ⊂ P, a preference profile P is an N -tuple (P 1, ..., PN) ∈ DN . For any voter i,

ordering P̄ i and profile P , we shall let (P̄ i, P−i) denote the profile where the ith component

of P has been replaced by P̄ i. A marginal preference profile for components Q is similarly an

N -tuple, PQ ≡ (P 1
Q, ..., PN

Q ) ∈ DN where D ⊂ DS. We shall say that two profiles P, P̄ ∈ DN

(D ⊂ DS) are marginally equivalent if P i
j = P̄ i

j for all voters i ∈ I and j ∈ M .

2The set of lexicographic orderings coincides with the separable orderings in the special case when there
are two components and exactly two alternatives in every component set. In general DL is a strict subset of
DS .
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2.2 Random Social Choice Functions

We let L(A) denote the set of lotteries over the elements of the set A. If λ ∈ L(A), then

λa will denote the probability that λ puts on a ∈ A. Clearly λa ≥ 0 and
∑

a∈A λa = 1. For

every j ∈ M we can define L(Aj) accordingly.

Definition 3 Let D ⊂ P. A Random Social Choice Function (RSCF) (for the domain D)

is a map ϕ : DN → L(A).

Our focus is on RSCFs that are strategy-proof, i.e. those that provide voters with

dominant-strategy incentives to reveal their preference orderings (which are assumed to be

private information), truthfully. In models such as ours where the outcome of voting is a

probability distribution over outcomes, there are several ways to define strategy-proofness.

Here we follow the approach of Gibbard (1977).

Definition 4 A utility function u : A → < represents the ordering P i over A if for all

a, b ∈ A,

[aP ib] ⇔ [u(a) > u(b)]

Definition 5 A RSCF ϕ : DN → L(A) is manipulable by voter i at profile P ∈ DN via

P̄ i ∈ D if there exists a utility functions u representing P i such that

∑
a∈A u(a)ϕa(P̄

i, P−i) >
∑

a∈A u(a)ϕa(P
i, P−i).

Definition 6 A RSCF ϕ : DN → L(A) is strategy-proof if it is not manipulable by any

voter at any profile. Equivalently, ϕ is strategy-proof if, for all i ∈ I, for all P ∈ DN , for all

P̄ i ∈ D and all utility functions u representing P i, we have

∑
a∈A u(a)ϕa(P

i, P−i) ≥ ∑
a∈A u(a)ϕa(P̄

i, P−i).

A RSCF is strategy-proof if at every profile no voter can obtain a higher expected utility

by deviating from her true preference ordering than she would if she announced her true

preference ordering. Here, expected utility is computed with respect an arbitrary utility

representation of her true preferences. It is well-known that this is equivalent to requiring

that the probability distribution from truth-telling stochastically dominates the probability

distribution from misrepresentation in terms of a voter’s true preferences. This is stated

formally below.

For any i ∈ I, P i ∈ D and a ∈ A, we let B(a, P i) = {b ∈ A : bP ia} ∪ {a}, i.e. B(a, P i)

denotes the set of alternatives that are weakly preferred to a according to the ordering P i.

Definition 7 A RSCF ϕ : DN → L(A) is manipulable by voter i at profile P ∈ DN via

P̄ i ∈ D if there exists a ∈ A such that
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∑
b∈B(a,P i) ϕb(P̄

i, P−i) >
∑

b∈B(a,P i) ϕb(P
i, P−i).

It is strategy-proof if for all i ∈ I, for all P ∈ DN , for all P̄i ∈ D and all a ∈ A, we have

∑
b∈B(a,P i) ϕb(P

i, P−i) ≥ ∑
b∈B(a,P i) ϕb(P̄

i, P−i).

We also assume throughout the paper that RSCFs satisfy the standard (and mild) re-

quirement of unanimity. This requires an alternative that is first-ranked by all voters in any

profile to be selected with probability one in that profile. For any P i ∈ D, let τ(P i, A) de-

note the maximal element in A according to P i. Since the domain consists of antisymmetric

orderings and A is finite, a maximal element always exists and is unique.

Definition 8 A RSCF ϕ : DN → L(A) satisfies unanimity if for all P ∈ DN and a ∈ A,

[a = τ(P i, A) for all i ∈ I] ⇒ [ϕa(P ) = 1].

We now review some existing results that have a bearing on the results in this paper.

2.3 Existing Results

A RSCF of particular significance is random dictatorship.

Definition 9 Let D ⊂ P. The RSCF ϕr : DN → L(A) is a random dictatorship if there

exist non-negative real numbers βi, i ∈ I with
∑

i∈I βi = 1 such that for all P ∈ DN and

a ∈ A,

ϕr
a(P ) =

∑
{i:τ(P i,A)=a} βi

In a random dictatorship, each voter i gets weight βi where the sum of these βi’s is one. At

any profile, the probability assigned to an alternative a is simply the sum of the weights of the

voters whose maximal element is a. A random dictatorship is clearly strategy-proof for any

domain; by misrepresentation, a voter can only transfer weight from her most-preferred to a

less-preferred alternative. A fundamental result in Gibbard (1977) states that the converse

is also true for the complete domain P. 3

Theorem 1 [Gibbard (1977) ] Assume |A| ≥ 3. A RSCF ϕ : PN → L(A) is strategy-proof

and satisfies unanimity if and only if it is a random dictatorship.

3Gibbard’s result is actually more general than Theorem 1 below because it does not assume unanimity.
However since unanimity will be a maintained hypothesis throughout the paper, we state only the version
of the result with unanimity. See also Sen (2011) for a generalization of the Gibbard result with unanimity.
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We now recall results for deterministic social choice functions. For convenience, we pro-

vide definitions only for domains D ⊂ DS.

Definition 10 A deterministic social choice function (DSCF) f is a map f : DN → A.

A DSCF is simply a RSCF whose image set is the set of degenerate probability distri-

butions over A. The definitions of strategy-proofness and unanimity for a DSCF are special

cases of those of RSCFs and are omitted.

Definition 11 A DSCF f : [DL]N → A is a component dictatorship if there exists a map

σ : M → N such that for all P ∈ [DL]N ,

[f(P ) = a] ⇒ [aj = τ(P
σ(j)
j , Aj)].

In a component dictatorship, the jth component of the outcome at a profile is the maximal

element of the jth component of voter σ(j). Since preferences are separable for all individuals,

these maximal elements are well-defined. We can imagine the DSCF being decomposable

into component DSCFs which are dictatorial.

Theorem 2 [LeBreton and Sen (1999)] Assume |Aj| ≥ 3 for all j ∈ M . A DSCF f :

[DL]N → A is strategy-proof and satisfies unanimity if and only if it is a component dicta-

torship.

The result is an immediate consequence of Theorem 5.1, in LeBreton and Sen (1999).

2.4 Generalized Random Dictatorships

Does the decomposability property carry over to RSCFs? A particular generalization of

component dictatorship is a RSCF where the probability distribution over the set A is the

product of component random dictatorships. We define this below.

Definition 12 A RSCF is ϕ : [DL]N → L(A) is an independent component random dicta-

torship if for each j ∈ M , there exists a random dictatorship ϕj : Pj
N → L(Aj) such that

for all P ∈ [DL]N

ϕ(P ) =
∏
j∈M

ϕj(Pj).

Consider the case where there are two voters and two components. Suppose the weight

vectors for components 1 and 2 are (β1
1 , β

2
1) and (β1

2 , β
2
2) respectively. Then in any profile

where voter 1 and 2’s maximal elements are a1a2 and b1b2 respectively, the alternatives

a1a2, a1b2, b1a2 and b1b2 get probability weights β1
1β

1
2 , β1

1β
2
2 , β1

2β
2
1 and β2

1β
2
2 respectively.
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An independent component random dictatorship is strategy-proof (we shall verify this

later) and clearly satisfies unanimity. Is every strategy-proof RSCF defined over the domain

DS with |Aj| ≥ 3 an independent component random dictatorship? No, and this is estab-

lished by the observation that a random dictatorship is strategy-proof but not an independent

component random dictatorship unless it is deterministic, i.e. there exists a voter i such that

βi = 1. Showing that a random dictatorship is strategy-proof is routine. To demonstrate

the other claim, consider for simplicity the case where there are two voters i and k and two

components. Suppose also that βi, βk > 0. Consider a profile where i’s maximal element is

a1a2 and k’s is b1b2 where a1 6= b1 and a2 6= b2. Observe that this RSCF would put proba-

bilities βi and βk on a1a2 and b1b2 respectively and zero on all other alternatives. However

every independent component random dictatorship which puts strictly positive probability

on a1a2 and b1b2 also puts strictly positive probability on the alternatives a1b2 and b1a2.

Below, we formulate a generalization of both random dictatorship and independent com-

ponent random dictatorship which coincides with the class of strategy-proof RSCFs satisfying

unanimity in the case where each component set has at least three alternatives.

Let i ≡ (i1, . . . , im) ∈ Im be an m-tuple of voters. We shall call such an m-tuple, a voter

sequence. We note that a voter may appear multiple times in a voter sequence. For all a ∈ A

and P ∈ [DS]N , we shall let χ(a, P ) denote the set of voter sequences consistent with a and

P where χ(a, P ) = {i ∈ Im : aj = τ(P
ij
j , Aj) for all j = 1, . . . m}.

Definition 13 A RSCF ϕg : [DS]N → L(A) is a generalized random dictatorship if there

exist non-negative real numbers γ(i) for all i ∈ Im with
∑

i∈Im γ(i) = 1 such that for all

a ∈ A and P ∈ [DS]N ,

ϕg
a(P ) =

∑

i∈χ(a,P )

γ(i).

Consider the following example. Suppose I = {1, 2} and Aj = {aj, bj, cj} with j = 1, 2.

Here i is one of four, two-tuples (1, 1), (1, 2), (2, 1) and (2, 2). The function γ specifies four

non-negative real numbers γ(1, 1), γ(1, 2), γ(2, 1) and γ(2, 2) which sum to one. Consider

a profile P where the maximal alternatives of voters 1 and 2 are (a1a2) and (b1b2) respec-

tively. Observe that χ((a1a2), P ) = {(1, 1)}, χ((a1b2), P ) = {(1, 2)}, χ((b1a2), P ) = {(2, 1)}
and χ((b1b2), P ) = {(2, 2)}. Hence, a generalized random dictatorship puts probabilities

of γ(1, 1), γ(1, 2), γ(2, 1) and γ(2, 2) on (a1a2), (a1b2), (b1a2) and (b1b2) respectively and

zero on all other alternatives. Consider another profile P̄ where voter 1 and 2’s maximal

alternatives are (a1, c2) and (a1b2) respectively. Here χ((a1c2), P̄ ) = {(1, 1), (2, 1)}, and

χ((a1b2), P ) = {(1, 2), (2, 1)}. Hence this RSCF will put probability γ(1, 1) + γ(2, 1) on

(a1c2) and γ(1, 2) + γ(2, 2) on (a1b2) and zero on everything else.

In general, a generalized random dictatorship is specified by Nm non-negative real num-

bers adding up to one. For any i ≡ (i1, . . . , im), the probability of an alternative a in profile
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P is the sum of γ(i)’s over those i’s which have the property that for every j = 1, . . . , m, aj

is the maximal element in Aj for voter ij, i.e. over all elements of the set χ(a, P ).

We make several observations about generalized random dictatorships.

Observation 1 The value of a generalized random dictatorship at a profile depends only

on the maximal alternatives (or “tops”) of voter preferences at the profile. However it may

assign positive probabilities to all elements of the product set of the top alternatives. In

other words, a generalized random dictatorship is a probability distribution over the set∏
j∈M{τ(P 1

j , Aj), . . . , τ(PN
j , Aj)}.

Observation 2 Let ϕg be a generalized random dictatorship with an associated map γ.

Pick a component j, a voter s and let βs =
∑

{i≡(i1,...,im):ij=s} γ(i). Clearly 0 ≤ βs ≤ 1 and∑
s∈I βs = 1. For any profile P ∈ [DS]N , observe that the probability of aj ∈ Aj in the

marginal distribution ϕg
j (P ) is

∑
{s:τ(P s

j )=aj} βs. Hence, a generalized random dictatorship

induces a marginal random social choice function over each component that is a random

dictatorship with respect to marginal preferences over that component. More formally, if ϕg

is a generalized random dictatorship, there exist component random dictatorships ϕr
j : PN →

L(Aj), j = 1, . . . , m such that for all P ∈ [DS]N , ϕg
j (P ) = ϕr

j(Pj) for each j = 1, . . . m.

Observation 3 A random dictatorship is a special case of a generalized random dictator-

ship when γ(i) = 0 for all voter sequences i such that ij 6= ij′ for some j 6= j′. Equivalently,

γ(i) > 0 implies i = (i, i, . . . , i) for some i ∈ I.

Observation 4 An independent component random dictatorship is a special case of a gen-

eralized random dictatorship. Define the component random dictatorships as follows: for all

j = 1, . . . , m, let γj(i), i = 1, . . . , N be non-negative real numbers with
∑

i∈I γj(i) = 1. Now

define a generalized random dictatorship as follows: for all voter sequences i ≡ (i1, . . . , im),

γ(i) = γ1(i1)× γ2(i2)× . . .× γm(im).

Observation 5 In the special case where m = 1, a generalized random dictatorship is

simply a random dictatorship.

In the next section we show that all strategy-proof RSCFs satisfying unanimity are gen-

eralized random dictatorships.

3 The Result

Our main result is the following.

Theorem 3 Assume |Aj| ≥ 3 for all j = 1, . . . , m. A RSCF ϕ : [DL]N → L(A) is strategy-

proof and satisfies unanimity if and only if it is a generalized random dictatorship.
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Proof : (Sufficiency) We show that generalized random dictatorships satisfy unanimity and

strategy-proofness over the domain DS. Unanimity follows from Observation 1. We show

strategy-proofness. Let ϕg be a generalized random dictatorship specified by the function

γ in Definition 13. Let P ∈ [DS]N be an arbitrary profile and let i be an arbitrary voter.

Consider a possible manipulation by i at P via P̄ i. It follows from the definition of a

generalized random dictatorship that the value of ϕg at any profile depends only on the

maximal alternatives of voters at the profile. Let τ(P i) = a and τ(P̄ i) = b where bQ 6= aQ

and aM−Q = bM−Q for some non-empty subset Q of M .

Pick an arbitrary i ≡ (i1, . . . , im) ∈ Im. If ij 6= i for any j ∈ Q then probability γ(i) is

assigned to the same alternative under profiles P and (P̄ i, P−i). If ij = i for all j ∈ T for some

T ⊆ Q, then probability γ(i) is shifted from alternative (aT , xM−T ) for some xM−T ∈ AM−T

in profile P to (bT , xM−T ) in profile (P̄ i, P−i). However ajP
i
j bj for all j ∈ T by assumption

so that (aT , xM−T )P i(bT , xM−T ) by separability. Therefore the distribution ϕg(P̄ i, P−i) is

obtained from ϕg(P ) by transferring probabilities from higher-ranked alternatives to lower-

ranked alternatives according to P i. Clearly ϕg(P ) stochastically dominates ϕg(P̄ i, P−i)

according to P i and ϕg is strategy-proof.

(Necessity) We proceed as follows. The proof consists of three steps. In Step 1, we establish

an important “conditional unanimity” property; in Step 2 we establish generalized random

dictatorship in the case of two voters and in Step 3 we extend the result to an arbitrary

number of voters using induction on the number of voters.

We begin with a Lemma which holds for arbitrary domains and is a straightforward

adaptation of a result in Gibbard (1977).

Let D be an arbitrary domain. Let P i ∈ D and let x, y ∈ A and assume that xP iy. We

say x and y are contiguous in P i if there does not exist z ∈ A distinct from x and y such

that xP izP iy. We say that the ordering P̄i is a feasible local switch of x and y in P i if (i) x

and y are contiguous (ii) xP iy and yP̄ ix (iii)B(x, P i) ∪ {y} = B(y, P̄ i) ∪ {x} (iv) P̄ i ∈ D.

Lemma 1 Let ϕ : DN → L(A) be strategy-proof. Let i be an arbitrary voter and let P̄ i be a

feasible local switch of x and y in P i. Then

(i) ϕy(P̄
i, P−i) ≥ ϕy(P ).

(ii) ϕx(P̄
i, P−i) + ϕy(P̄

i, P−i) = ϕx(P ) + ϕy(P ).

We omit the proof of this Lemma which is an implication of the definition of strategy-

proofness.

Consider an arbitrary strategy-proof RSCF ϕ : [DL]N → L(A) satisfying unanimity. We

will show that ϕ is a generalized random dictatorship. Recall that every P i ∈ DL induces an

ordering P i
Q over AQ for every Q ⊂ M .
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We establish some preliminary lemmas. Let Â be an ordering over the set M and let

j ∈ M . Then E(Â, j) = {i ∈ M : i Â j}. Thus E(Â, j) is the set of components which

lexicographically dominate j.

Lemma 2 Let P ∈ [DL]N and i ∈ I. Let P i and P̄ i be lexicographic with respect to Â and

Â′ and let j be a component such that (i) E(Â, j) = E(Â′, j) = Q and (ii) P i
Q∪{j} = P̄ i

Q∪{j}.
Then

(a) ϕk(P ) = ϕk(P̄
i, P−i) for all k ∈ Q ∪ {j}.

(b) Let aQ ∈ AQ. Then ϕQ∪{j},aQ∪{j}(P ) = ϕQ∪{j},aQ∪{j}(P̄
i, P−i).

Before proving the Lemma, we provide an intermediate Proposition.

Proposition 1 For all P i, P̄ i ∈ DL, P−i ∈ [DL]N−1 and T ⊂ M (T 6= ∅), if ϕT (P i, P−i) =

ϕT (P̄ i, P−i), then ϕT̂ (P i, P−i) = ϕT̂ (P̄ i, P−i) for all T̂ ⊂ T where T̂ 6= ∅.

Proof : For all aT̂ ∈ AT̂ , we have the following:

ϕT̂ ,aT̂
(P i, P−i) =

∑
xM−T̂∈AM−T̂

ϕ(aT̂ ,xM−T̂ )(P
i, P−i)

=
∑

xT−T̂∈AT−T̂

∑
xM−T∈AM−T

ϕ(aT̂ ,xT−T̂ ,xM−T )(P
i, P−i)

=
∑

xT−T̂∈AT−T̂

ϕT,(aT̂ ,xT−T̂ )(P
i, P−i)

=
∑

xT−T̂∈AT−T̂

ϕT,(aT̂ ,xT−T̂ )(P̄
i, P−i)

=
∑

xT−T̂∈AT−T̂

∑
xM−T∈AM−T

ϕ(aT̂ ,xT−T̂ ,xM−T )(P̄
i, P−i)

=
∑

xM−T̂∈AM−T̂

ϕ(aT̂ ,xM−T̂ )(P̄
i, P−i)

= ϕT̂ ,aT̂
(P̄ i, P−i)

¥

We now return to the proof of the Lemma.

Proof : In view of Lemma 1, in order to show (a), it suffices to show (b).

To simplify the notation, let Q̄ = Q ∪ {j}. Now, suppose ϕQ̄(P ) 6= ϕQ̄(P̄ i, P−i). Let

cQ̄ be the P i
Q̄
−maximal alternative such that ϕQ̄,cQ̄

(P i, P−i) 6= ϕQ̄,cQ̄
(P̄ i, P−i). Therefore,

11



for all xQ̄ ∈ AQ̄ with xQ̄P i
Q̄

cQ̄, we have ϕQ̄,xQ̄
(P ) = ϕQ̄,xQ̄

(P̄ i, P−i). Then, we consider the

following 2 cases.

Case 1: ϕQ̄,cQ̄
(P ) < ϕQ̄,cQ̄

(P̄ i, P−i).

Let wM−Q̄ denote the P i
M−Q̄

− minimal alternative. Consider (cQ̄, wM−Q̄) and B̄ =

B
(
(cQ̄, wM−Q̄), P i

)
. Since all components in Q̄ lexicographically dominate all components

in M − Q̄, we know that B̄ = {x ∈ A : either xQ̄P i
Q̄

cQ̄, or xQ̄ = cQ̄}. Then,

∑

x∈B̄

ϕx(P
i, P−i) =

∑

xQ̄P i
Q̄

cQ̄

∑
xM−Q̄∈AM−Q̄

ϕ(xQ̄,xM−Q̄)(P
i, P−i) +

∑
xM−Q̄∈AM−Q̄

ϕ(cQ̄,xM−Q̄)(P
i, P−i)

=
∑

xQ̄P i
Q̄

cQ̄

ϕQ̄,xQ̄
(P i, P−i) + ϕQ̄,cQ̄

(P i, P−i)

<
∑

xQ̄P i
Q̄

cQ̄

ϕQ̄,xQ̄
(P̄ i, P−i) + ϕQ̄,cQ̄

(P̄ i, P−i)

=
∑

x∈B̄

ϕx(P̄
i, P−i)

Therefore, voter i manipulates at (P i, P−i) via P̄ i.

Case 2: ϕQ̄,cQ̄
(P ) > ϕQ̄,cQ̄

(P̄ i, P−i).

Let w̄Q̄ denote P̄ i
M−Q̄

− minimal alternative. We claim that cQ̄ is the P̄ i
Q̄
− maximal

alternative such that ϕQ̄,cQ̄
(P̄ i, P−i) 6= ϕQ̄,cQ̄

(P i, P−i).

Suppose not. Then there exists dQ̄ ∈ AQ̄ such that dQ̄P̄ i
Q̄

cQ̄ and ϕQ̄,dQ̄
(P̄ i, P−i) 6=

ϕQ̄,dQ̄
(P i, P−i). Since P i

Q̄
= P̄ i

Q̄
, we have that dQ̄P i

Q̄
cQ̄ and ϕQ̄,dQ̄

(P̄ i, P−i) 6= ϕQ̄,dQ̄
(P i, P−i),

which is a contradiction to the definition of cQ̄. Therefore, for all xQ̄ ∈ AQ̄ with xQ̄P̄ i
Q̄

cQ̄,

we have ϕQ̄,xQ̄
(P̄ i, P−i) = ϕQ̄,xQ̄

(P i, P−i).

Now, consider (cQ̄, w̄M−Q̄) and B̂ = B
(
(cQ̄, w̄M−Q̄), P̄ i

)
. Since all components in Q̄ lexi-

cographically dominate all components in M−Q̄, we know B̂ = {x ∈ A : either xQ̄P̄ i
Q̄

cQ̄, or xQ̄ =

cQ̄}. Then,

∑

x∈B̂

ϕx(P̄
i, P−i) =

∑

xQ̄P̄ i
Q̄

cQ̄

∑
xM−Q̄∈AM−Q̄

ϕ(xQ̄,xM−Q̄)(P̄
i, P−i) +

∑
xM−Q̄∈AM−Q̄

ϕ(cQ̄,xM−Q̄)(P̄
i, P−i)

=
∑

xQ̄P̄ i
Q̄

cQ̄

ϕQ̄,xQ̄
(P̄ i, P−i) + ϕQ̄,cQ̄

(P̄ i, P−i)

<
∑

xQ̄P̄ i
Q̄

cQ̄

ϕQ̄,xQ̄
(P i, P−i) + ϕQ̄,cQ̄

(P i, P−i)

=
∑

x∈B̂

ϕx(P
i, P−i)

12



Hence, voter i manipulates at (P̄ i, P−i) via P i. Therefore ϕQ̄(P i, P−i) = ϕQ̄(P̄ i, P−i). ¥

We say that orderings P i, P̄ i ∈ [DL] are marginally equivalent if P i
j = P̄ i

j for all j ∈ M .

Similarly, we will say that profiles P, P̄ ∈ [DL]N are marginally equivalent if P i and P̄ i are

marginally equivalent for all i ∈ I.

Lemma 3 Let P ∈ [DL]N , i ∈ I and P̄ i ∈ DL be such that (i) P i and P̄ i are marginally

equivalent and (ii) if P i and P̄ i are lexicographic with respect to the orderings Â and Â̄ over

M respectively, then Â and Â̄ agree over all components except j and k where j and k are

contiguous in Â. If ϕ(P ) 6= ϕ(P̄ i, P−i) then ϕj(P ) 6= ϕj(P̄
i, P−i) and ϕk(P ) 6= ϕk(P̄

i, P−i).

Proof : Suppose the Lemma is false. In view of Lemma 2, we can assume that j and k are

the lexicographic best and second best components respectively in P i and the lexicographic

second and best components in P̄ i respectively. We have therefore assumed that ϕ(P i, P−i) 6=
ϕ(P̄ i, P−i) but ϕl(P

i, P−i) = ϕl(P̄
i, P−i) for all components l. Let a be the highest ranked

alternative in P i such that ϕa(P
i, P−i) 6= ϕa(P̄

i, P−i). Since ϕ is strategy-proof, it must be

the case that ϕa(P
i, P−i) > ϕa(P̄

i, P−i). Let Y = {x ∈ A : xkP̄
i
kak} = {x ∈ A : xkP

i
kak}

(since P̄ i
k = P i

k). Let Z = {x ∈ A : xk = ak and xP̄ i
ka}. Note that Z = {x ∈ A : xk =

ak and xP ia} since P i and P̄ i are marginally equivalent orderings and the lexicographic

ordering of components in M \ k in the two orderings is also the same. Note the following

(i) B(a, P̄ i) = Y ∪ Z ∪ {a}
(ii) ϕz(P̄

i, P−i) = ϕz(P
i, P−i) for all z ∈ Z since z ∈ Z implies that zP ia and a is the

highest-ranked alternative P i such that ϕa(P
i, P−i) 6= ϕa(P̄

i, P−i) and

(iii)
∑

{xk:xkP̄ i
kak} ϕk,xk

(P̄ i, P−i) =
∑

{xk:xkP̄ i
kak} ϕk,xk

(P i, P−i) by virtue of our assumption

that the ϕ yields the same marginal probability distribution all over components.

Hence,

∑

x∈B(a,P̄ i)

ϕx(P
i, P−i) =

∑
x∈Y

ϕx(P
i, P−i) +

∑
x∈Z

ϕx(P
i, P−i) + ϕa(P

i, P−i)

=
∑

{xk:xkP i
kak}

ϕk,xk
(P i, P−i) +

∑
x∈Z

ϕx(P
i, P−i) + ϕa(P

i, P−i)

>
∑

{xk:xkP̄ i
kak}

ϕk,xk
(P̄ i, P−i) +

∑
x∈Z

ϕx(P̄
i, P−i) + ϕa(P̄

i, P−i)

=
∑
x∈Y

ϕk,xk
(P̄ i, P−i) +

∑
x∈Z

ϕx(P̄
i, P−i) + ϕa(P̄

i, P−i)

=
∑

x∈B(a,P̄ i)

ϕx(P̄
i, P−i)

13



Consequently voter i manipulates at (P̄ i, P−i) via P i contradicting the strategy-proofness

of ϕ. ¥

STEP 1: The goal of this Step is to show the following. Pick an arbitrary non-empty subset

Q ⊂ M . Then there exists a unanimous, strategy-proof RSCF ϕQ : [DL
Q]N → L(AQ) such

that for all profiles P ∈ [DL]N satisfying τ(P i
M−Q, AM−Q) = aM−Q for all i ∈ I, we have

1. [ϕx(P ) > 0] ⇒ [xM−Q = aM−Q] and

2. ϕ(xQ,aM−Q)(P ) = ϕQ
xQ

(PQ) for all xQ ∈ AQ.

Thus, there exists a strategy-proof RSCF ϕQ defined for every non-empty set of com-

ponents Q with the property that whenever all voters are unanimous with respect to say

aM−Q ∈ AM−Q, then ϕ (i) puts strictly positive probability only on those alternatives whose

M −Q are given by aM−Q and (ii) the probability of an alternative (aQ, aM−Q) in the profile

P is the probability given to aQ in the RSCF ϕQ in the component Q induced profile PQ.

Moreover ϕQ satisfies unanimity.

The arguments involved in Step 1 are generalizations of counterparts in LeBreton and Sen

(1999).

The first lemma asserts that ϕ satisfies a conditional unanimity property.

Lemma 4 Let Q ⊂ M , P ∈ [DL]N and a ∈ A be such that τ(P i
M−Q, AM−Q) = aM−Q for all

i ∈ I. Then [ϕb(P ) > 0] ⇒ [bM−Q = aM−Q].

Proof : Suppose that the Lemma is false. Assume that τ(P i
M−Q, AM−Q) = aM−Q for all i ∈ I

but ϕb(P ) > 0 where bM−Q 6= aM−Q. For all i ∈ I, let P̄ i ∈ DL be such that (i) P̄ i
k = P i

k for

all k ∈ M −Q (ii) τ(P̄ i
Q, AQ) = bQ and (iii) all components in Q lexicographically dominate

all components in M −Q.

Pick an arbitrary voter i and suppose ϕx(P̄
i, P−i) = 0 whenever xQ = bQ. For any

k ∈ M − Q, let dk ∈ Ak be the worst ranked element in Ak according to P̄ i
k (and P i

k). Let

B̄ = B((bQ, dM−Q), P̄ i). Since components in Q lexicographically dominate those in M −Q

in P̄ i, it follows that c ∈ B̄ ⇒ [cQ = bQ]. Therefore

∑

x∈B̄

ϕx(P
i, P−i) ≥ ϕb(P ) > 0 =

∑

x∈B̄

ϕx(P̄
i, P−i).

Hence i manipulates ϕ at (P̄ i, P−i) via P i. Therefore, ϕ(bQ,cM−Q)(P̄
i, P−i) > 0 for some

cM−Q ∈ AM−Q.

Now suppose ϕ(bQ,aM−Q)(P̄
i, P−i) = 1. Let B̂ = B((bQ, aM−Q), P i). Note that

(bQ, aM−Q)P ib since aM−Q = τ(P i, AM−Q). Since
∑

x∈B̂

ϕx(P
i, P−i) <

∑

x∈B̂

ϕx(P̄
i, P−i) = 1

14



voter i will manipulate at P via P̄ i. Therefore ϕ(bQ,aM−Q)(P̄
i, P−i) < 1.

We can conclude from the arguments in the two previous paragraphs that there exists

cM−Q ∈ AM−Q \ {aM−Q} such that ϕ(bQ,cM−Q)(P̄
i, P−i) > 0. Now pick a voter i′ 6= i and

replace P i′ in the profile (P̄ i, P−i) by P̄ i′ . Replicating the arguments above, we can conclude

that there exists dM−Q ∈ AM−Q \ {aM−Q} such that ϕ(bQ,dM−Q)(P̄
i, P̄ i′ , P̄−i,i′) > 0. Proceed-

ing in this manner, it follows that ϕ(bQ,xM−Q)(P̄ ) > 0 where xM−Q ∈ AM−Q \ {aM−Q}. But

all voters have (bQ, aM−Q) as their first-ranked alternative in the profile P̄ . Hence ϕ violates

unanimity completing the proof of the Lemma. ¥

For every Q ⊂ M and a ∈ A, let [DL(a, Q)]N ⊂ [DL]N be the set of lexicographic profiles

P with the property that τ(P i
M−Q, AM−Q) = aM−Q for all i ∈ I.

Lemma 5 Let Q ⊂ M and a ∈ A. Let P̂ , P̄ ∈ [DL(a,Q)]N be such that P̂Q = P̄Q. Then

ϕ(P̂ ) = ϕ(P̄ ).

Proof : It follows from Lemma 4 that [ϕb(P̂ ) > 0] ⇒ [bM−Q = aM−Q] and [ϕb(P̄ ) > 0] ⇒
[bM−Q = aM−Q]. We first claim that ϕ(P̄ i, P̂−i) = ϕ(P̂ ) for an arbitrary voter i. Suppose

this is false. Let cQ be the best-alternative in AQ according to P̂ i
Q = P̄ i

Q such that

ϕ(cQ,aM−Q)(P̄
i, P̂−i) 6= ϕ(cQ,aM−Q)(P̄

i, P̂−i).

Such an alternative cQ must exist. If

ϕ(cQ,aM−Q)(P̄
i, P̂−i) > ϕ(cQ,aM−Q)(P̂ )

then ∑

x∈B((cQ,aM−Q),P̂ i)

ϕx(P̄
i, P̂−i) >

∑

x∈B((cQ,aM−Q),P̂ i)

ϕx(P̂ )

contradicting the strategy-proofness of ϕ. If

ϕ(cQ,aM−Q)(P̄
i, P̂−i) < ϕ(cQ,aM−Q)(P̂ )

then ∑

x∈B((bQ,aM−Q),P̄ i)

ϕx(P̂ ) >
∑

x∈B((cQ,aM−Q),P̄ i)

ϕx(P̄
i, P̂−i)

again contradicting the strategy-proofness of ϕ. Therefore ϕ(P̄ i, P̂−i) = ϕ(P̂ ). Progres-

sively switching preferences of voters from P̂ i to P̄ i and repeatedly applying these arguments

above yields ϕ(P̂ ) = ϕ(P̄ ) as required. ¥

Let a ∈ A and Q ⊂ M . We define the function ϕa,Q : [DL
Q]N → L(AQ) as follows: for

all P ∈ [DL(a,Q)]N and xQ ∈ AQ, ϕa,Q
xQ

(PQ) = ϕ(xQ,aM−Q)(P ), where PQ is the induced
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profile of preferences of P . Thus we obtain ϕa,Q by considering a profile P ∈ [DL(a,Q)]N

and equating the probability that ϕa,Q(PQ) gives to every bQ ∈ AQ with ϕ(bj ,aM−Q)(P ). A

critical observation is that Lemma 5 implies that ϕa,Q is well-defined. The next Lemma

demonstrates that it is strategy-proof.

Lemma 6 ϕa,Q is strategy-proof and satisfies unanimity.

Proof : Suppose ϕa,Q is not strategy-proof. Then there must exist i ∈ I, PQ ∈ [DL(a,Q)]N ,

P̄ i
Q ∈ [DL(a,Q)] and bQ ∈ AQ such that

∑

xQ∈B(bQ,P i
Q)

ϕa,Q
xQ

(P̄ i
Q, P−i

Q ) >
∑

xQ∈B(bQ,P i
Q)

ϕa,Q
xQ

(PQ).

Let P̂ ∈ [DL]N be a profile and P̃ i ∈ DL be an ordering such that (i) P̂Q = PQ (ii)

τ(P̂ t
M−Q, AM−Q) = aM−Q for all voters t ∈ I (iii) all components in Q are lexicographically

dominated by those in M −Q in P̂ t for all t ∈ I (iv) P̃ i
Q = P̄ i

Q (v) τ(P̃ i
M−Q, AM−Q) = aM−Q

and (vi) all components in Q are lexicographically dominated by those in M −Q in P̃ i.

By construction, the profiles P̂ , (P̃ i, P̂−i) ∈ [DS(a, Q)]N . Hence Lemma 4 implies that

[ϕb(P̂ ) > 0] ⇒ [bM−Q = aM−Q] and [ϕb(P̃
i, P̂−i) > 0] ⇒ [bM−Q = aM−Q]. Since com-

ponents in Q are lexicographically dominated by those in M − Q in both P̂ i and P̃ i and

τ(P̂ i
M−Q, AM−Q) = aM−Q we must have B((bQ, aM−Q), P̂ i) = {(xQ, aM−Q) : xQ ∈ B(bQ, P̂ i

Q)}.
Consequently

∑

x∈B((bQ,aM−Q),P̂ i)

ϕx(P̃
i, P̂−i) =

∑

xQ∈B(bQ,P̂ i
Q)

ϕa,Q
xQ

(P̃ i
Q, P̂−i

Q )

=
∑

xQ∈B(bQ,P i
Q)

ϕa,Q
xQ

(P̃ i
Q, P̂−i

Q )

>
∑

xQ∈B(bQ,P i
Q)

ϕa,Q
xQ

(PQ)

=
∑

x∈B((bQ,aM−Q),P̂ i)

ϕx(P̂ ).

contradicting the strategy-proofness of ϕ. Therefore ϕa,Q is strategy-proof.

Now let P be a profile such that PQ ∈ [DL(a,Q)]N be a profile such that all voters are

unanimous with respect to components in Q, i.e. suppose τ(P i
Q, AQ) = bQ for some bQ ∈ AQ.

Clearly τ(P i, A) = (bQ, aM−Q). Since ϕ satisfies unanimity, ϕ(P ) = (bQ, aM−Q) which implies

that ϕa,Q(PQ) = bQ. Therefore ϕa,Q satisfies unanimity. ¥

Lemma 7 ϕa,Q does not depend on a i.e. ϕa,Q = ϕb,Q for all b ∈ A.
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Proof : Given any a, b ∈ A, Q ⊂ M and PQ ∈ [DL
Q]N , consider following two profiles

P̄ ∈ [DL(a,Q)]N and P̂ ∈ [DL(b,Q)]N such that (i) P̄Q = P̂Q = PQ, (ii) Q lexicographically

dominates M − Q in P̄ i for all i ∈ I and (iii) Q lexicographically dominates M − Q in P̂ i

for all i ∈ I. Then, by Lemma 4, we have that for all xQ ∈ AQ,

ϕQ,xQ
(P̄ i, P̄−i) ≡

∑
xM−Q∈AM−Q

ϕ(xQ,xM−Q)(P̄
i, P̄−i) = ϕ(xQ,aM−Q)(P̄

i, P̄−i)

ϕQ,xQ
(P̂ i, P̂−i) ≡

∑
xM−Q∈AM−Q

ϕ(xQ,xM−Q)(P̂
i, P̂−i) = ϕ(xQ,bM−Q)(P̂

i, P̂−i)

Since P̄ ∈ [DL(a, Q)]N and P̂ ∈ [DL(b,Q)]N we know that ϕa,Q
xQ

(PQ) = ϕ(xQ,aM−Q)(P̄
i, P̄−i)

and ϕb,Q
xQ

(PQ) = ϕ(xQ,bM−Q)(P̂
i, P̂−i) for all xQ ∈ AQ. Hence, ϕa,Q

xQ
(PQ) = ϕQ,xQ

(P̄ i, P̄−i) and

ϕb,Q
xQ

(PQ) = ϕQ,xQ
(P̂ i, P̂−i) for all xQ ∈ AQ.

Since P̄ i
Q = P̂ i

Q, and Q lexicographically dominates M − Q in both P̄ i
Q and P̂ i

Q, we can

apply Lemma 2 to obtain the following conclusion: ϕQ(P̄ i, P̄−i) = ϕQ(P̂ i, P̄−i). Applying the

same argument to all other voters, we have that ϕQ(P̄ i, P̄−i) = ϕQ(P̂ i, P̂−i). Consequently,

ϕa,Q
xQ

(PQ) = ϕb,Q
xQ

(PQ) for all xQ ∈ AQ. ¥

This concludes Step 1.

Step 2: The goal of this step is to show the following: Let I = {1, 2} and let ϕ :

[DL]2 → L(A) be a strategy-proof RSCF satisfying unanimity. Then ϕ is a generalized

random dictatorship. Throughout Step 2, we assume that ϕ is a two-voter RSCF defined on

the domain of lexicographic preferences that is strategy-proof and satisfies unanimity.

For any P ∈ [DL]2, the Top Product Set at P or TPS(P ) is defined as follows:

TPS(P ) ≡ [{τ(P 1
1 , A1)} ∪ {τ(P 2

1 , A1)}]× . . .× [{τ(P 1
m, Am)} ∪ {τ(P 2

m, Am)}].

We say that ϕ satisfies the TPS Property if

∑

a∈TPS(P )

ϕa(P ) = 1 for all P ∈ [DL]2.

Lemma 8 ϕ satisfies the TPS Property.

Proof : Suppose the Lemma is false. Then there exists P ∈ [DL]2, a, b, c ∈ A and j ∈ M

such that ϕc(P ) > 0 and τ(P 1, A) = a, τ(P 2, A) = b and cj /∈ {aj, bj}. We consider two

mutually exhaustive cases.

Case 1: Component j is the lexicographically worst component in P 1 and P 2.
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Claim 1: If ϕj,xj
(P ) > 0 where xj /∈ {aj, bj}, then ajP

1
j xjP

1
j bj and bjP

2
j xjP

2
j aj.

Suppose that the Claim is false. Assume without loss of generality that bjP
1
j xj and

ϕj,xj
(P ) > 0. Consider P̄ 1 ∈ DL such that (i) P̄ 1

M−j = P 1
M−j (ii) τ(P̄ 1

j , Aj) = bj and

(iii) component j is lexicographically worst in P̄ 1. By Lemmas 2 and 4, we have that∑
zj∈Aj

ϕ(yM−j ,zj)(P
1, P 2) =

∑
zj∈Aj

ϕ(yM−j ,zj)(P̄
1, P 2) = ϕ(yM−j ,bj)(P̄

1, P 2).

Since ϕ(yM−j ,xj)(P
1, P 2) > 0, it must be the case that

∑

zjP 1
j xj

ϕ(yM−j ,zj)(P
1, P 2) <

∑
zj∈Aj

ϕ(yM−j ,zj)(P
1, P 2)

= ϕ(yM−j ,bj)(P̄
1, P 2).

Since bjP
1
j xj, Lemma 4 implies that

∑
zjP 1

j xj
ϕ(yM−j ,zj)(P̄

1, P 2) = ϕ(yM−j ,bj)(P̄
1, P 2). There-

fore,
∑

zjP 1
j xj

ϕ(yM−j ,zj)(P
1, P 2) <

∑
zjP 1

j xj
ϕ(yM−j ,zj)(P̄

1, P 2).

By virtue of the fact that component j is lexicographically worst in P 1, it follows that

B̄ = B
(
(yM−j, xj), P

1
)
\{(yM−j, xj)} = {z ∈ A : zM−jP

1
M−jyM−j or zM−j = yM−j and zjP

1
j xj}.

An application of Lemma 2 yields
∑

z∈B̄

ϕz(P
1, P 2) =

∑

zM−jP 1
M−jyM−j

∑
zj∈Aj

ϕ(zM−j ,zj)(P
1, P 2) +

∑

zjP 1
j xj

ϕ(yM−j ,zj)(P
1, P 2)

=
∑

zM−jP 1
M−jyM−j

∑
zj∈Aj

ϕ(zM−j ,zj)(P̄
1, P 2) +

∑

zjP 1
j xj

ϕ(yM−j ,zj)(P
1, P 2)

<
∑

zM−jP 1
M−jyM−j

∑
zj∈Aj

ϕ(zM−j ,zj)(P̄
1, P 2) +

∑

zjP 1
j xj

ϕ(yM−j ,zj)(P̄
1, P 2)

=
∑

z∈B̄

ϕz(P̄
1, P 2)

Therefore, voter 1 will manipulate at (P 1, P 2) via P̄ 1. This proves Claim 1.

In view of Claim 1, we can assume that ajP
1
j cjP

1
j bj and bjP

2
j cjP

2
j aj. Let P̄ 1 ∈ DL be

such that (i) P̄ 1
M−j = P 1

M−j (ii) τ(P̄ 1
j , Aj) = aj and bj is ranked second in Aj according to

P̄ 1
j and (iii) j is lexicographically worst in P̄ i. We claim that ϕj,aj

(P ) = ϕj,aj
(P̄ 1, P 2). If

ϕj,aj
(P ) < ϕj,aj

(P̄ 1, P 2), then we can construct an argument analogous to the one above to

show that 1 manipulates at P via P̄ 1. If the reverse is true, 1 manipulates at (P̄ 1, P 2) via

P 1. It follows from our earlier arguments that ϕj,zj
(P̄ 1, P 2) = 0 for all zj 6= aj, bj. Since

ϕj,cj
(P ) > 0 and ϕj,aj

(P ) = ϕj,aj
(P̄ 1, P 2), we must have ϕj,bj

(P ) < ϕj,bj
(P̄ 1, P 2).

Now construct P̄ 2 ∈ DL be such that (i) P̄ 2
M−j = P 2

M−j (ii) τ(P̄ 2
j , Aj) = bj and aj is

ranked second in Aj according to P̄ 2
j and (iii) component j is lexicographically worst in P̄ 2.

From our earlier arguments ϕj,zj
(P̄ ) = 0 for all zj 6= aj, bj and ϕj,bj

(P̄ ) = ϕj,bj
(P̄ 1, P 2).

Therefore ϕj,aj
(P̄ ) = ϕj,aj

(P̄ 1, P 2). Hence ϕj,bj
(P̄ ) > ϕj,bj

(P ).
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Now consider ϕj(P
1, P̄ 2). Using the same arguments as before, we can deduce that

ϕj,bj
(P ) = ϕj,bj

(P 1, P̄ 2), ϕj,aj
(P ) < ϕj,aj

(P 1, P̄ 2) and ϕj,zj
(P 1, P̄ 2) = 0 for all zj 6= aj, bj.

Furthermore ϕj,bj
(P̄ ) = ϕj,bj

(P 1, P̄ 2), ϕj,aj
(P̄ ) = ϕj,aj

(P 1, P̄ 2) and ϕj,zj
(P̄ ) = 0 for all zj 6=

aj, bj. Hence ϕj,bj
(P̄ ) = ϕj,bj

(P ) contradicting our earlier conclusion that ϕj,bj
(P̄ ) > ϕj,bj

(P ).

This completes Case 1.

Case 2: Case 1 does not hold. Assume without loss of generality that j is not the lexicograph-

ically worst component in P 1. Let S and T denote the set of components lexicographically

worse than j and lexicographically better than j respectively. Let P̄ 1 ∈ DL such that (i)

P̄ 1
T∪{j} = P 1

T∪{j}, (ii) the set of components lexicographically better than j in P̄ 1 is T and

(iii) τ(P̄ 1
S , AS) = bs.

Suppose ϕj(P̄
1, P 2) 6= ϕj(P̂

1, P 2). Since j ∈ T ∪ {j}, it must be true that

ϕT∪{j}(P̄ 1, P 2) 6= ϕT∪{j}(P̂ 1, P 2). Let (xT , xj) be P̄ 1
T∪{j}-maximal such that

ϕT∪{j},(xT ,xj)(P̄
1, P 2) 6= ϕT∪{j},(xT ,xj)(P̂

1, P 2). Since τ(P̄ 1
S , AS) = τ(P̂ 1

S , AS) = τ(P 2
S , AS) =

bS, we can apply Lemma 4, we know that ϕT∪{j},(xT ,xj)(P̄
1, P 2) = ϕ(xT ,xj ,bS)(P̄

1, P 2) and

ϕT∪{j},(xT ,xj)(P̂
1, P 2) = ϕ(xT ,xj ,bS)(P̂

1, P 2). Hence, ϕ(xT ,xj ,bS)(P̄
1, P 2) 6= ϕ(xT ,xj ,bS)(P̂

1, P 2).

Assume first that ϕ(xT ,xj ,bS)(P̄
1, P 2) < ϕ(xT ,xj ,bS)(P̂

1, P 2). Since in P̄ 1, T lexicographically

dominates j and j lexicographically dominates S, we know that B̄ = B
(
(xT , xj, bS), P̄ 1

)
=

{z ∈ A : (zT , zj)P̄
1
T∪{j}(xT , xj)} ∪ {(xT , xj, bS)}. Then,

∑

z∈B̄

ϕz(P̄
1, P 2) =

∑

(zT ,zj)P̄ 1
T∪{j}(xT ,xj)

∑
zS∈AS

ϕ(zT ,zj ,zS)(P̄
1, P 2) + ϕ(xT ,xj ,bS)(P̄

1, P 2)

<
∑

(zT ,zj)P̄ 1
T∪{j}(xT ,xj)

∑
zS∈AS

ϕ(zT ,zj ,zS)(P̂
1, P 2) + ϕ(xT ,xj ,bS)(P̂

1, P 2)

=
∑

z∈B̄

ϕz(P̂
1, P 2)

Therefore, voter 1 will manipulate at (P̄ 1, P 2) via P̂ 1.

Next, assume that ϕ(xT ,xj ,bS)(P̄
1, P 2) > ϕ(xT ,xj ,bS)(P̂

1, P 2). Since T lexicographically

dominates S and S lexicographically dominates j in P̂ 1, we know that

B̂ = B
(
(xT , xj, bS), P̂ 1

)
= {z ∈ A : zT P̂ 1

T xT , or zT = xT , zS = bS and zjP̂
1
j xj} ∪

{(xT , xj, bS)}.
Since P̂ 1 and P̄ 1 agree on the lexicographic order over T , T lexicographically dominates

M − T in both P̂ 1 and P̄ 1 and P̂ 1
k = P̄ 1

k for all k ∈ M , we can conclude that P̂ 1
T = P̄ 1

T . Fur-

thermore, since T lexicographically dominates M − T in both P̂ 1 and P̄ 1, Lemma 2 implies

ϕT (P̂ 1, P 2) = ϕT (P̄ 1, P 2) and hence
∑

zT P̂ 1
T xT

ϕT,zT
(P̂ 1, P 2) =

∑
zT P̂ 1

T xT
ϕT,zT

(P̄ 1, P 2). Also,

for any zj ∈ Aj with zjP̂
1
j xj, we know that zjP̄

1
j xj since P̄j = P̂ 1

j . Hence (xT , zj)P̄
1
T∪{j}(xT , xj).

Therefore, according to the definition of (xT , xj) in P̄ 1, we have ϕT∪{j},(xT ,zj)(P̄
1, P 2) =
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ϕT∪{j},(xT ,zj)(P̂
1, P 2) for all zjP̂

1
j xj. Furthermore, since τ(P̄ 1

S , AS) = τ(P̂ 1
S , AS) = τ(P 2

S , AS) =

bS, Lemma 4 implies that ϕ(xT ,zj ,bS)(P̄
1, P 2) = ϕT∪{j},(xT ,zj)(P̄

1, P 2) = ϕT∪{j},(xT ,zj)(P̂
1, P 2) =

ϕ(xT ,zj ,bS)(P̂
1, P 2) for all zjP̂

1
j xj.

Hence

∑

z∈B̂

ϕz(P̂
1, P 2)

=
∑

zT P̂ 1
T xT

∑
zM−T∈AM−T

ϕ(zT ,zM−T )(P̂
1, P 2) +

∑

zj P̂ 1
j xj

ϕ(xT ,zj ,bS)(P̂
1, P 2) + ϕ(xT ,xj ,bS)(P̂

1, P 2)

<
∑

zT P̂ 1
T xT

∑
zM−T∈AM−T

ϕ(zT ,zM−T )(P̄
1, P 2) +

∑

zj P̂ 1
j xj

ϕ(xT ,zj ,bS)(P̄
1, P 2) + ϕ(xT ,xj ,bS)(P̄

1, P 2)

=
∑

z∈B̂

ϕz(P̄
1, P 2).

Therefore, voter 1 will manipulate at (P̂ 1, P 2) via P̄ 1. In conclusion, ϕj(P̄
1, P 2) =

ϕj(P̂
1, P 2) which establishes the claim.

Similarly we can find P̂ 2 ∈ DL where j is lexicographically worst and ϕj(P̂ ) = ϕj(P ).

Therefore ϕj,cj
(P̂ ) > 0. Note that τ(P̂ i

j , Aj) 6= cj for i = 1, 2. Hence we are in the situation

described in Case 1 and we can use the same arguments to show that ϕj,cj
(P̂ ) > 0 is not

possible. ¥

According to our next lemma, the outcome of a strategy-proof RSCF in the two-voter

case is identical across marginally equivalent profiles.

Lemma 9 Let P, P̄ ∈ [DL]2 be marginally equivalent profiles. Then ϕ(P ) = ϕ(P̄ ).

Proof : Let P, P̄ ∈ [DS]2 be marginally equivalent profiles. Suppose τ(P 1) = a and τ(P 2) =

b. Since P and P̄ are marginally equivalent it follows that τ(P̄ 1) = a and τ(P̄ 2) = b.

Moreover ajP
1
j bj, ajP̄

1
j bj and bjP

2
j aj, bjP̄

2
j aj for all j ∈ M whenever aj and bj are distinct.

According to Lemma 8, the support of the lotteries ϕ(P ) and ϕ(P̄ ) are the same and equal

to the set {a1, b1} × . . . × {am, bm}. We will show that these lotteries are in fact, equal to

each other. We prove this by induction on the number of components.

The result follows from the Gibbard random dictatorship result in the case where m = 1.

Assume now that the following is true.

Induction Hypothesis (IH): Suppose there are t ≥ 2 components. Let P, P̄ ∈ [DL]2 be

marginally equivalent profiles. Then ϕ(P ) = ϕ(P̄ ) for all unanimous and strategy-proof

RSCFs ϕ[DL]2 → L(A).

We will show that Lemma 9 holds in the case of t + 1 components. We will prove this in

two steps.
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Claim 2: Suppose that there are t + 1 components. Let P, P̄ ∈ [DL]2 be two profiles such

that there exists a component assumed without loss of generality to be component t + 1 and

1. τ(P 1
t+1) = τ(P 2

t+1) = xt+1 and τ(P̄ 1
t+1) = τ(P̄ 2

t+1) = yt+1

2. P i
k = P̄ i

k for i = 1, 2 and all components k = 1, . . . t.

Then ϕ(a,xt+1)(P ) = ϕ(a,yt+1)(P̄ ) for all t-component alternatives a.

Let P−(t+1) and P̄−(t+1) denote the profiles of preferences induced over all components

other than t + 1 by the profiles P and P̄ respectively. Observe that P−(t+1) and P̄−(t+1) are

marginally equivalent over all components other than t + 1 by 2 above. Applying Lemma 7,

we know that there exists a t component strategy-proof RSCF ϕ′ such that

(i) [ϕ(a,at+1)(P ) > 0] ⇒ [at+1 = xt+1]

(ii) [ϕ(a,at+1)(P̄ ) > 0] ⇒ [at+1 = yt+1]

(iii) ϕ(a,xt+1)(P ) = ϕ′a(P−(t+1))

(iv) ϕ(a,yt+1)(P̄ ) = ϕ′a(P̄−(t+1))

Note that IH implies that ϕ′a(P−(t+1)) = ϕ′a(P̄−(t+1)). Therefore ϕ(a,xt+1)(P ) = ϕ(a,yt+1)(P̄ ).

This completes Claim 2.

We now complete the proof of the induction step. In view of Claim 2 the only case

that needs to be considered is the one where τ(P 1) = a and τ(P 2) = b and aj 6= bj for all

j = 1, . . . t+1. Suppose that ϕ(P 1, P 2) 6= ϕ(P̄ 1, P 2). (Recall that P 1 and P̄ 1 are marginally

equivalent.) There must exist x, y ∈ TPS(P ) = TPS(P̄ ) such that xP 1y and yP̄ 1x. We

claim that there must exist at least two components say j and k such that xj 6= yj and

xk 6= yk. Of course, at least one such component is required; otherwise x = y. Suppose there

exists exactly one such component, say j. Then separability of preference orderings would

imply that the marginal preferences over component j have switched between P 1 and P̄ 1

contradicting our hypothesis that P 1 and P̄ 1 are marginally equivalent.

From Lemma 3 we know that there exist j, k ∈ M , aj ∈ Aj and ak ∈ Ak such that

ϕj,aj
(P̄ 1, P 2) > ϕj,aj

(P ) and ϕk,ak
(P̄ 1, P 2) < ϕk,ak

(P ). 4

Consider the second ranked alternative x in P 2. There must exist a unique component

say l such that xl 6= bl and xj = bj for all j 6= l. In fact, we can assume w.l.o.g that xl = al.

We consider two cases.

Case 1: j 6= l. Let P̃ 1 be an ordering such that (i) component j is lexicographically best

and (ii) τ(P̃ 1, A) = a. If ϕj,aj
(P̃ 1, P 2) < ϕj,aj

(P̄ 1, P 2), then voter 1 will manipulate at

4The proof of this claim requires consideration of several cases. These are routine and we omit the details.
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(P̃ 1, P 2) via P̄ 1. Therefore ϕj,aj
(P̃ 1, P 2) ≥ ϕj,aj

(P̄ 1, P 2). Let P̂ 1 be an ordering where (i) j

is the lexicographic best component (ii) τ(P̂ 1
l , Al) = bl and (iii) P̂ 1

M−l = P 1
M−l. By strategy-

proofness, ϕj,aj
(P̂ 1, P2) = ϕj,aj

(P̃ 1, P2). Hence ϕj,aj
(P̂ 1, P2) > ϕj,aj

(P ). Observe that at the

profile (P̂ 1, P 2), both voters have a common maximal alternative bl for component l.

Let P̃ 2 be a lexicographic ordering where j and l are the best and the worst components

respectively and τ(P̃ 2, A) = b. Using the same argument as before, ϕj,bj
(P 1, P̃ 2) ≥ ϕj,bj

(P )

i.e. by Lemma 4, ϕj,aj
(P 1, P̃ 2) ≤ ϕj,aj

(P ). Let P̂ 2 be a lexicographic ordering such that (i)

components j and l are the best and worst respectively (ii) τ(P̂ 2
l , Al) = al and (iii) P̂ 2

M−l =

P 2
M−l. As before, ϕj,bj

(P 1, P̃ 2) = ϕj,bj
(P 1, P̂ 2). Then Lemma 8 implies ϕj,aj

(P 1, P̃ 2) =

ϕj,aj
(P 1, P̂ 2) so that ϕj,aj

(P 1, P̂ 2) ≤ ϕj,aj
(P ).

Observe that at the profile (P 1, P̂ 2), both voters have a common maximal alternative al

for component l. By Lemma 4 and Claim 2 above (in the proof of this Lemma), we must

have ϕj,aj
(P̂ 1, P 2) = ϕj,aj

(P 1, P̂ 2). However, we have shown that ϕj,aj
(P̂ 1, P2) > ϕj,aj

(P ) ≥
ϕaj

(P 1, P̂ 2). We have a contradiction.

Case 2: j = l. Let P̃ 2 be a lexicographic ordering where component k is lexicographically

best. Using a similar argument as before we have ϕk,ak
(P̄ 1, P̃ 2) ≤ ϕk,ak

(P̄ 1, P 2). Let P̂ 2

be a lexicographic ordering where k is the best and τ(P̂ 2
l , Al) = al. By strategy-proofness,

ϕk,ak
(P 1, P̂ 2) = ϕk,ak

(P 1, P̃ 2). Hence ϕk,ak
(P 1, P̂ 2) < ϕk,ak

(P ). Observe that at the profile

(P 1, P̂ 2), both voters have a common maximal alternative al for component l.

Let P̃ 1 be a lexicographic ordering where k and l are the best and the worst components

respectively. Using the same argument as before, ϕk,ak
(P̃ 1, P 2) ≥ ϕk,ak

(P ). Let P̂ 1 be a

lexicographic ordering such that component k and l are the best and worst respectively and

τ(P̂ 1
l , Al) = bl. As before, ϕk,ak

(P̃ 1, P 2) = ϕk,ak
(P̂ 1, P 2) so that ϕk,ak

(P̂ 1, P 2) ≥ ϕk,ak
(P ).

Observe that at the profile (P̂ 1, P 2), both voters have a common maximal alternative bl for

component l. By the same argument as at the end of Case 1, it follows that ϕk,ak
(P̂ 1, P 2) =

ϕk,ak
(P 1, P̂ 2). However, we have shown that ϕk,ak

(P̂ 1, P 2) > ϕk,ak
(P ) ≥ ϕk,ak

(P 1, P̂ 2). We

have a contradiction. ¥

The next Lemma establishes the following: the probability distribution on the top product

set of the two voters depends on the maximal alternatives of the voters.

Lemma 10 For all P, P̄ ∈ [DL]2 such that τ(P i
k, Ak) = τ(P̄ i

k, Ak) for all k ∈ M and i ∈ I,

we have ϕ(P ) = ϕ(P̄ ).

Proof : Let Q ⊆ M be such that for all j ∈ Q, τ(P 1
j , Aj) 6= τ(P 2

j , Aj) and for all k ∈
M − Q, τ(P 1

k , Ak) = τ(P 2
k , Ak). (It is possible that M − Q = ∅.) Assume w.l.o.g that

(i) τ(P 1
j , Aj) = τ(P̄ 1

j , Aj) = xj and τ(P 2
j , Aj) = yj for all j ∈ Q and (ii) τ(P 1

k , Ak) =

τ(P̄ 1
k , Ak) = τ(P 2

k , Ak) = zk for all k ∈ M − Q. Therefore, TPS(P 1, P 2) = TPS(P̄ 1, P 2) =∏
j∈Q{xj, yj} ×

∏
k∈M−Q{zk}.
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We claim that P 1 and P̄ 2 agree on TPS(P 1, P 2). By Lemma 9, we can assume that P 1

and P̄ 1 have a common lexicographic ordering over components which has the property that

Q lexicographically dominates M −Q. Given a, b ∈ TPS(P 1, P 2), let k be lexicographically

maximal component such that ak 6= bk. Then, it is evident that k ∈ Q. Since ak, bk ∈
{xk, yk}, xkP

1
k yk and xkP̄

1
k yk, if akP

1
k bk, it must be the case that aP 1b, ak = xk and bk = yk.

Hence, akP̄
1
k bk. Furthermore, since P 1 and P̄ 1 agree on the lexicographic order, it is true

that aP̄ 1b. Symmetrically, we also show that [aP̄ 1b] ⇒ [aP 1b] for all a, b ∈ TPS(P 1, P 2).

Next, to simplify the notation, we assume that TPS(P 1, P 2) = {ak}T
k=1 for some integer

T > 0 such that akP 1ak+1, k = 1, . . . , T − 1. Hence, akP̄ 1ak+1, k = 1, . . . , T − 1. By Lemma

8, we know that for all x ∈ A− TPS(P 1, P 2), ϕx(P
1, P 2) = ϕx(P̄

1, P 2) = 0. Therefore, for

all k = 2, . . . , T ,
∑

x∈B(ak,P 1) ϕx(P
1, P 2) =

∑k
s=1 ϕas(P 1, P 2) and

∑
x∈B(ak,P̄ 1) ϕx(P̄

1, P 2) =∑k
s=1 ϕas(P̄ 1, P 2). Meanwhile, since P 1 and P̄ 2 agree on TPS(P 1, P 2), we also have that for

all k = 2, . . . , T ,
∑

x∈B(ak,P̄ 1) ϕx(P
1, P 2) =

∑k
s=1 ϕas(P 1, P 2) and

∑
x∈B(ak,P 1) ϕx(P̄

1, P 2) =∑k
s=1 ϕas(P̄ 1, P 2). Therefore, by strategy-proofness, we have that for all k = 2, . . . , T ,∑k
s=1 ϕas(P 1, P 2) =

∑k
s=1 ϕas(P̄ 1, P 2). Furthermore, strategy-proofness also implies that

ϕa1(P 1, P 2) = ϕa1(P̄ 1, P 2). Therefore, ϕak(P 1, P 2) = ϕak(P̄ 1, P 2) for all k = 1, . . . , T .

Now, we conclude that for all x ∈ TPS(P 1, P 2), ϕx(P
1, P 2) = ϕx(P̄

1, P 2) and for all x ∈
A− TPS(P 1, P 2), ϕx(P

1, P 2) = ϕx(P̄
1, P 2) = 0. Consequently, ϕ(P 1, P 2) = ϕ(P̄ 1, P 2).

Applying the same argument to voter 2, we can show that ϕ(P̄ 1, P 2) = ϕ(P̄ 1, P̄ 2). There-

fore, ϕ(P 1, P 2) = ϕ(P̄ 1, P̄ 2). ¥

Lemma 11 Let j ∈ M , P ∈ [DL]2, P̄ i ∈ DL and (xj, zM−j), (yj, zM−j) ∈ A be such that

(i) τ(P i
k, Ak) = τ(P̄ i

k, Ak) for all k 6= j (ii) τ(P i
j , Aj) = xj and τ(P̄ i

j , Aj) = yj and (iii)

(xj, zM−j) ∈ TPS(P ). Then

ϕ(xj ,zM−j)(P̄
i, P−i) + ϕ(yj ,zM−j)(P̄

i, P−i) = ϕ(xj ,zM−j)(P ) + ϕ(yj ,zM−j)(P ).

Moreover

ϕ(dj ,zM−j)(P̄
i, P−i) = ϕ(dj ,zM−j)(P ) for all dj /∈ {xj, yj}.

Proof : In view of Lemmas 8, 9 and 10 we can assume without loss of generality that (i) j

is the lexicographically worst component in P i and P̄ i (ii) P i
M−j = P̄ i

M−j for all k 6= j and

(iii) (xj, zM−j) and (yj, zM−j) are contiguous in P i. Suppose (aj, zM−j)P
i(xj, zM−j) where

aj 6= yj. Since j is the lexicographically worst component and (xj, zM−j) and (yj, zM−j)

are contiguous it follows that (aj, zM−j)P̄
i(yj, zM−j). Similarly (aj, zM−j)P̄

i(yj, zM−j) ⇒
(aj, zM−j)P

i(xj, zM−j). Now suppose (aj, bM−j)P
i(xj, zM−j) where bM−j 6= zM−j. From our

assumptions, bM−jP
i
M−jzM−j. Hence bM−jP̄

i
M−jzM−j and (aj, bM−j)P̄

i(yj, zM−j). Similarly,

(aj, bM−j)P̄
i(yj, zM−j) implies (aj, bM−j)P

i(xj, zM−j). Hence P̄ i is a feasible local switch of

(xj, zM−j) and (yj, zM−j). The result now follows from Lemma 1.
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To show the second part of the Lemma, note that ϕ(dj ,zM−j)(P̄
i, P−i) = ϕ(dj ,zM−j)(P ) = 0

if dj 6= τ(P−i
j , Aj). Suppose dj = τ(P−i

j , Aj). Again, using Lemmas 8 and 9, we can

assume that dj is ranked third in both P i
j and P̄ i

j . This implies that B((dj, zM−j), P
i) =

B((dj, zM−j), P̄
i). Now strategy-proofness implies that ϕ(dj ,zM−j)(P̄

i, P−i) = ϕ(dj ,zM−j)(P ).

¥

We now complete the proof of Step 2. Let P ∈ [DL]2 be such that τ(P 1) = a and

τ(P 2) = b where aj 6= bj for all j ∈ M . Pick an arbitrary i ∈ Im and let γ(i) = ϕx(P )

where χ(x, P ) = i. Since the maximal alternatives of the two voters for each component

are distinct, there exists a unique i ∈ Im for every x ∈ TPS(P ) such that χ(x, P ) = {i}.
Therefore

∑
i∈Im

γ(i) =
∑

x∈TPS(P )

ϕx(P ) = 1

where the second equality follows from the fact that ϕ satisfies the TPS property (Lemma

8).

Now consider j ∈ M and P̄ 1 ∈ D such that τ(P̄ 1
j , Aj) = cj 6= bj and τ(P̄ 1

k , Ak) = ak for all

k 6= j. Let x ∈ TPS(P ). Observe that [i ∈ χ((aj, xM−j), P )] ⇔ [i ∈ χ((cj, xM−j), (P̄
1, P 2)].

Now applying Lemma 11 and the fact that (cj, xM−j) /∈ TPS(P ) and (aj, xM−j) /∈ TPS(P̄ 1, P 2),

we conclude that ϕ(aj ,xM−j)(P ) = ϕ(cj ,xM−j)(P̄
1, P 2). Using this and the second part of

Lemma 11, it follows that ϕx(P̄
1, P 2) =

∑
i∈χ(x,(P̄ 1,P 2)) γ(i).

Now consider the case where τ(P̄ 1
j , Aj) = bj. Let x ∈ TPS(P ). Observe that [i ∈

χ((aj, xM−j), P )∪ χ((bj, xM−j), P )] ⇔ [i ∈ χ((bj, xM−j), (P̄
1, P 2)]. Now applying Lemma 11

and noting the fact that (aj, xM−j) /∈ TPS(P̄ 1, P 2), we have

ϕ(bj ,xM−j)(P̄
1, P 2) = ϕ(aj ,xM−j)(P ) + ϕ(bj ,xM−j)(P ).

Once again, we have ϕx(P̄
1, P 2) =

∑
i∈χ(x,(P̄ 1,P 2)) γ(i) for all x ∈ A. Progressively re-

placing the maximal alternative of each component in voter 1 and voter 2’s preferences and

noting that the previous expression holds at all profiles along the sequence, we conclude that

the expression holds for all profiles P . This establishes generalized random dictatorship for

the case N = 2 and completes Step 2.

Step 3: Let N > 2 be an integer. We assume the following:

Induction Hypothesis (IH*). For all integers K < N , if ϕ : [DL]K → L(A) is strategy-proof

and satisfies unanimity, then it is a generalized random dictatorship.

Let ϕ : [DL]N → L(A) be a strategy-proof RSCF satisfying unanimity. We will show that

it is a generalized random dictatorship.
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Let I ′ = {1′, 3, . . . , N} be a set of N −1 voters where voters 3, . . . , N are the same voters

as in the set I. Voter 1′ is a voter obtained by “cloning” voters 1 and 2 in I. Define a RSCF

over the voter set I ′, g : [DL]N−1 → L(A) as follows:

g(P 1′ , P 3 . . . , PN) = ϕ(P 1, P 1, P 3, . . . , PN) for all P 1, P 3, . . . , PN ∈ DL

It is clear that g satisfies unanimity.

Claim 3: g is strategy-proof.

Fix an arbitrary voter profile in I ′, (P 1′ , P 3, . . . , PN) ∈ [DL]N−1 and let P̄ 1 ∈ DL. Let

a ∈ A. Since ϕ is strategy-proof

∑

x∈B(a,P 1′ )

gx(P
1′ , P 3, . . . , PN) =

∑

x∈B(a,P 1′ )

ϕx(P
1, P 1, . . . , PN)

≥
∑

x∈B(a,P 1′ )

ϕx(P̄
1, P 1, . . . , PN) (1)

≥
∑

x∈B(a,P 1′ )

ϕx(P̄
1, P̄ 1, . . . , PN) (2)

=
∑

x∈B(a,P 1′ )

gx(P̄
1′ , P 3, . . . , PN).

Note that inequalities 1 and 2 follow from the strategy-proofness of ϕ.

Since a was arbitrary, voter 1′ cannot manipulate in g. If voters 3, . . . , N can manipulate

g, they can also manipulate ϕ. Hence g is strategy-proof establishing Claim 3.

It follows from Induction Hypothesis* that g is a generalized random dictatorship. Let

γg be the function associated with g. We will write ig ∈ I ′m for a voter sequence where

igj ∈ I ′ for all j ∈ M . Hence

gx(P
1′ , P 2, . . . , PN) =

∑

ig∈χ(x,(P 1′ ,P 3...P N ))

γg(ig)

for all x ∈ A.

Let T ⊂ M . Let î−T be an assignment of voters in {3, . . . , n} to components in M − T .

In particular î−T (k) is the voter in {3, . . . , n} assigned to component k ∈ M − T .

We shall let î(T ) denote the voter sequence where voter 1′ is assigned to all components

in T and î−T (k) is assigned to components k ∈ M − T . Thus î(T ) assigns 1′ to components

in T and agrees with î−T on M − T .

An extra piece of notation will be useful. Let b ∈ A and P ∈ [DL]N . Let

Z(b, P, T ) = {i ∈ χ(b, P ) and ik /∈ {1, 2} for some k ∈ T}
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In other words, Z(b, P, T ) is the set of voter sequences in Im consistent with outcome b

and profile P such that neither voter 1 nor 2 appear for some component in the set T .

Fix T and î(T ). Pick an arbitrary x−T ∈ AM−T . We say that P ∈ [DL]N is an (̂i(T ), x−T )

extension of (P 1
T , P 2

T ) if

(i) P induces (P 1
T , P 2

T ) for voters 1 and 2 and component set T .

(ii) xk = τ(P
î(T )k

k ) 6= τ(P r
k ) for all r 6= î(T )k and k ∈ M − T .

(iii) τ(P 1
k ) = τ(P 2

k ) for all k ∈ M − T .

We proceed in two steps.

Step α: For all î(T ) such that γg (̂i(T )) = 0, we let γ(i(T ), î(T )−T ) = 0 for all i(T ) such that

i(T )k ∈ {1, 2} for all k ∈ T .

Step β: We consider î(T ) such that γg (̂i(T )) 6= 0, i.e. the î(T )’s remaining after Step α has

been completed. Our strategy here is to define a two-voter RSCF h for voters 1 and 2 over

component set T depending on î(T ). We do so inductively on the size of T .

Consider T such that |T | = 1 Fix x−T ∈ AM−T . Define a two-voter, one-component

probabilistic rule hT as follows: for all profiles (P 1
T , P 2

T ),

hî(T )
aT

(P 1
T , P 2

T ) =
1

γg (̂i(T ))
[ϕ(aT ,x−T )(P )−

∑

i∈Z((aT ,x−T ),P,T )

γg(i)] (3)

where P is an (̂i(T ), x−T ) extension of (P 1
T , P 2

T ).

We will show that hî(T ) is a RSCF, i.e. all the relevant probabilities are non-negative

and add up to one. Moreover, it is strategy-proof and satisfies unanimity. Using Step 2 for

two-person, one-component RSCFs, we will deduce that hî(T ) is a random dictatorship with

probability weights, γî(T )(1) and γî(T )(2). Next, we let γ(1T , î(T )−T ) = γg (̂i(T )).γî(T )(1) and

γ(2T , î(T )−T ) = γg (̂i(T )).γî(T )(2). Here (1T , î(T )−T ) refers to a voter sequence where voter

1 appears for component T while the rest of the components agree with î(T )−T . A similar

interpretation holds for (2T , î(T )−T ). For all i ∈ Im such that ik /∈ {1, 2} for all k ∈ M ,

let γ(i) = γg(i). We conduct this procedure with respect to all î(T ) such that |T | = 1 and

obtain the corresponding γ’s.

In the next step, we consider î(T ) such that |T | = 2. Once again, we define a two-voter,

two-component probabilistic rule hT as follows: for all profiles (P 1
T , P 2

T ),

hî(T )
aT

(P 1
T , P 2

T ) =
1

γg (̂i(T ))
[ϕ(aT ,x−T )(P )−

∑

i∈Z((aT ,x−T ),P,T )

γ(i)] (4)

where P is an (̂i(T ), x−T ) extension of (P 1
T , P 2

T ).
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Note that we are only using the γ’s that we have constructed in the earlier step. We

will again show that hî(T ) is a RSCF, is strategy-proof and satisfies unanimity. Appeal-

ing to Step 2, we deduce that hî(T ) is a generalized random dictatorship with associated

weights γî(T )(i(T )) where i(T )k ∈ {1, 2} for all k ∈ T . Thus, i(T ) is a voter sequence

for the components in set T where each element of the sequence is either 1 or 2. We let

γ(i(T ), î(T )−T ) = γg (̂i(T )).γî(T )(i(T )). Once again, we conduct this procedure with respect

to all î(T ) such that |T | = 2 and obtain the corresponding γ’s.

It is clear that we can continue this process till |T | = m. In the general step, we consider

î(T ) with |T | = k + 1 after having applied the procedure for all î(T ) with |T | ≤ k and

obtained the corresponding γ’s. The probabilistic rule hî(T ) is obtained as follows: for all

profiles (P 1
T , P 2

T ),

hî(T )
aT

(P 1
T , P 2

T ) =
1

γg (̂i(T ))
[ϕ(aT ,x−T )(P )−

∑

i∈Z((aT ,x−T ),P,T )

γ(i)] (5)

where P is an (̂i(T ), x−T ) extension of (P 1
T , P 2

T ).

Note once again that the γ’s in the bracketed term in the RHS of the equation above only

uses the γ’s obtained in the previous steps. Eventually, we will obtain γ(i) for all i ∈ Im.

We will proceed in two steps.

Step A. Consider T such that |T | = 1. We show that hîg(T ) as defined in Equation 3 is an RSCF.

In addition, it is strategy-proof and satisfies unanimity. By virtue of Step 2, hîg(T ) is a

random dictatorship. Finally we show that this random dictatorship is (appropriately)

independent of the extension.

Step B. Suppose that for all T such that |T | < k, hî(T ) as defined in Equation 5 is an RSCF

which is strategy-proof, satisfies unanimity and (appropriately) independent of the

extension. Then, we show that the same is true for hî(T ) for |T | = k + 1.

Step A: Let T = {j}. Note that hîg(T ) is a one-component rule (on component j) because

all components other than j are fixed by the extension procedure. The claim that hîg({j}) is

a RSCF follows immediately from Lemmas 4 and 5 in Sen (2011). Moreover, it is strategy-

proof and satisfies unanimity. It follows from Step 2 that hî({j}) is a j-component random

dictatorship for players 1 and 2. Denote these probability weights by γîg({j})(1) and γîg({j})(2).

Note that these weights depend (amongst other things) on x−{M−j} chosen for the extension.

Lemma 12 The probability weights γîg({j})(1) and γîg({j})(2) do not depend on the x−{M−j}
chosen for the extension.
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Proof : Suppose that the lemma is false, i.e. suppose that there exists x−{j}, y−{j} ∈ AM−{j}
with associated probability weights γ(1), γ(2) and γ′(1), γ′(2) where γ(1) 6= γ′(1). 5 Assume

without loss of generality that γ(1) > γ(2). Assume further that xM−{j} and yM−{j} differ

over a single component, say k. For convenience, let voter îg({j})k be denoted as voter s. In

other words, voter s, s 6= 1′ is the voter corresponding to component k in the voter sequence

îg. Let P ∈ [DL]N such that

(i) τ(P s
k , Ak) = xk.

(ii) The second-ranked alternative in the k-th component ranking P s
k is yk.

(iii) k is the lexicographic worst component in P s.

(iv) τ(P 1
j , Aj) = τ(P s

j , Aj) = aj 6= bj = τ(P 2
j , Aj).

(v) P is an (̂ig({j}), xM−j) extension of (P 1
j , P 2

j ).

Let τ(P s, A) = (aj, xk, dM−{j,k}) for some dM−{j,k} ∈ AM−{j,k}. From (ii) and (iii)

above, it is clear that the second ranked alternative in P s is (aj, yk, dM−{j,k}). (Note that

xM−{j} = (xk, dM−{j,k}) and yM−{j} = (yk, dM−{j,k})). Since P is an (̂ig({j}), xM−j) extension

of (P 1
j , P 2

j ), it follows from straightforward algebraic manipulation and strategy-proofness of

ϕ (for details, see Sen (2011)) that the total probability on the first and second ranked

alternatives in P s in the profile P is

γ(1).γg (̂ig) +
∑

i∈Z((aj ,xk,dM−{j,k}),P,{j})
γg(i) +

∑

i∈Z((aj ,yk,dM−{j,k})),P,{j})
γg(i). (6)

Now suppose s changes her announcement to P̄ s where the first and second ranked

alternatives are interchanged. This is feasible because k is the lexicographic worst component.

If (P̄ s, P−s) is not an extension of (P 1
j , P 2

j ), there is nothing to be proved. Suppose, on the

other hand that it is an extension. By virtue of earlier arguments, the total probability on

the first and second ranked alternatives in P s in the profile P is

γ′(1).γg (̂ig) +
∑

i∈Z((aj ,xk,dM−{j,k}),P,{j})
γg(i) +

∑

i∈Z((aj ,yk,dM−{j,k})),P,{j})
γg(i). (7)

Since γ(1) 6= γ′(1) by assumption, it follows that expression 6 6= expression 7 contradicting

the strategy-proofness of ϕ. Progressively changing the components of xM−j to yM−j and

applying the argument at every stage completes the proof. ¥

REMARK: Note that the argument in the Lemma above also works for the case where voter

s in the construction above, is one of the voters 1 or 2. The only case that remains is when

5We drop the subscripts and superscripts for convenience.
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voter s 6= 1, 2 and the maximal alternative in a component k other than j for either voter 1

or 2 coincides with the maximal element in component k for s. We do not have to deal with

this situation in Steps A or B - we therefore address it in the final step of the proof.

Step B: Fix T ⊂ M and î(T ) such that |T | = k + 1. Following the procedure outlined

previously, we have obtained probability weights γ(i(T ), î(T )−T ), for all T such that |T | ≤ k.

As described earlier, i(T ) is a voter sequence over components in T where element of the

sequence is either 1 or 2. Thus, (i(T ), î(T )−T ) is a voter sequence that is either 1 or 2 for

all components in T and agrees with î(T ) in M − T (i.e. consists of voters from 3 through

N). Moreover, the γ’s so obtained are appropriately independent of the extensions used to

generate them.

Consider the probabilistic rule hî(T ) in the general step (Equation 5). Observe that hî(T )

is well-defined, i.e. all the terms in the summation on the RHS of Equation 5 are known. We

will show that it is a strategy-proof RSCF satisfying unanimity. We begin with a preliminary

Lemma.

Lemma 13 Suppose τ(P 1
T ) = τ(P 2

T ) = aT . Let P be an (̂i(T ), xT ) extension of (P 1
T , P 2

T ).

Then

ϕ(bT ,x−T )(P ) =
∑

ig∈χ((bT ,x−T ),P )

γg(ig)

for all bT ∈ AT . 6

Proof : In view of the definition of an extension, we can assume w.l.o.g τ(P 1) = τ(P 2) = a.

We know from IH* that

ϕ(bT ,x−T )(P
1, P 1, P 3, . . . , PN) =

∑

ig∈χ((bT ,x−T ),P )

γg(ig)

where (P 1, P 3, . . . , PN) are obtained from the extension P . Pick k ∈ M − T and c =

(xk, aM−k). Assume w.l.o.g. that ϕc(P
1, P 2, P 3, . . . , PN) > ϕc(P

1, P 1, P 3, . . . , PN) (clearly,

such a c must exist). Pick P̄ 2 ∈ DL such that a and c are the first and second ranked

alternatives in P̄ 2 respectively. This is possible by making k the lexicographically worst

component. By strategy-proofness

6We are abusing notation slightly here. In the term
∑

ig∈χ((bT ,x−T ),P ) γg(ig) in the expression above,

the P in χ((bT , x−T ), P ) refers to the N − 1 profile (P 1′ , P 3, . . . , PN ) where P 1′ = P 1. We freely use this
notation in the rest of the proof - the interpretation should be evident from the context.
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ϕa(P
1, P̄ 2, P 3, . . . , PN) = ϕa(P

1, P 2, P 3, . . . , PN)

⇒ ϕc(P
1, P̄ 2, P 3, . . . , PN) ≥ ϕc(P

1, P 2, P 3, . . . , PN)

⇒ ϕc(P
1, P̄ 2, P 3, . . . , PN) > ϕc(P

1, P 1, P 3, . . . , PN)

= ϕc(P̄
2, P̄ 2, P 3, . . . , PN)

Also, ϕa(P
1, P̄ 2, P 3, . . . , PN) = ϕa(P̄

2, P̄ 2, P 3, . . . , PN). Hence voter 1 manipulates at

(P̄ 2, P̄ 2, P 3, . . . , PN) via P 1.

Now pick k, l ∈ M−T and consider d = (dk, dl, aM−{k,l}) such that ϕd(P
1, P 2, P 3, . . . , PN) >

ϕd(P
1, P 1, P 3, . . . , PN). We know from the preceding argument that ϕc(P

1, P 2, . . . , PN) =∑
ig∈χ(c,P ) γg(ig) for all c = (cj, aM−j) and all j ∈ M−T . Now consider P̄ 2 ∈ DL where k and

l are the lexicographically worst components. Moreover P̄ 2 such that a = τ(P̄ 2) and all al-

ternatives better than d differ from a in exactly one component. We can replicate the earlier

argument to show that ϕd(P
1, P 2, . . . , PN) =

∑
ig∈χ(d,P ) γg(ig). Moreover, applying the argu-

ment repeatedly, we can conclude that ϕ(aT ,x−T )(P
1, P 2, . . . , PN) =

∑
ig∈χ((aT ,x−T ),P ) γg(ig).

In the same way, we can progressively switch single components in T from aT to some arbi-

trary bT to show that ϕ(bT ,x−T )(P
1, P 2, . . . , PN) =

∑
ig∈χ((bT ,x−T ,P ) γg(ig). ¥

Our next Lemma establishes that the probabilistic rule hî(T ) is an RSCF.

Lemma 14 For all (P 1
T , P 2

T ),

(i)
∑

aT∈AT
h

î(T )
aT (P 1

T , P 2
T ) = 1,

(ii) h
î(T )
aT (P 1

T , P 2
T ) ≥ 0 for all aT ∈ AT .

Proof : We begin with (i). Consider first the situation where τ(P 1
T ) = τ(P 2

T ) = aT . In view

of Lemma 13, we can assume w.l.o.g. that P 1
T = P 2

T . Moreover, our extension rule implies

that P 1 = P 2. We know from Induction Hypothesis* and the definition of g that

ϕ(aT ,x−T )(P
1, P 2, P 3, . . . , PN) = gaT

(P 1′ , P 3, . . . , PN)

=
∑

ig∈χ(aT ,x−T ),(P 1′ ,P 3,...,P N ))

γg(ig)

= γg (̂i(T )) +
∑

i∈Z((aT ,x−T ),(P 1′ ,P 3,...,P N ),T )

γ(i) (8)

The last step in Equation 8 holds for the following reasons. Since τ(P 1
k ) = τ(P 2

k ) 6= xk

for all k ∈ M − T , it follows that if ig ∈ χ(aT , x−T ), (P 1′ , P 3, . . . , PN)), 1′ can appear only
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for components in T . Therefore χ((aT , x−T ), (P 1′ , P 3, . . . , PN)) can be partitioned into two

components, one being î(T ) and the other being Z((aT , x−T ), (P 1′ , P 3, . . . , PN)).

Now using Equation 5, it follows that h
î(T )
aT (P 1

T , P 2
T ) = 1. Consider bT 6= aT . Note

that î(T ) /∈ χ((bT , x−T ), (P 1′ , P 3, . . . , PN)). Using Equation 5 once again, we infer that

h
î(T )
bT

(P 1
T , P 2

T ) = 0.

Consider an arbitrary profile (P 1
T , P 2

T ). We can start with the profile (P 2
T , P 2

T ) and reach

(P 1
T , P 2

T ) by switching adjacent “blocks” of alternatives in P 1
T . The total probability on two

adjacent blocks is conserved under switching of these blocks by the strategy-proofness of ϕ.

It follows that the sum of the probabilities of the maximal elements of P 1
T and P 2

T in hî(T )

remains unchanged at the RHS of Equation 8. This implies that the total probability of all

alternatives in the domain of hî(T ) is one.

We now consider (ii). We have already shown in (i) that in the case where τ(P 1
T ) =

τ(P 2
T ) = aT , h

î(T )
aT (P 1

T , P 2
T ) = 1 and h

î(T )
bT

(P 1
T , P 2

T ) = 0 for all bT 6= aT . Therefore h
î(T )
cT (P 1

T , P 2
T ) ≥

0.

Suppose that aT = τ(P 1
T ) 6= τ(P 2

T ) = bT . Consider an arbitrary alternative cT ∈ AT . Our

strategy is to construct another profile by“lowering” (cT , x−T ) as far as possible while making

the maximal alternatives of voters 1 and 2 (in the set T ) agree on at least one component

in T . We can then use the induction step the probability rule hî(T ′) defined over component

set |T ′| < k + 1, is an RSCF to conclude that probability of cT in this profile (under hî(T ) or

(cT , c−T ) under ϕ), is non-negative. Now strategy-proofness of ϕ implies that the probability

of (cT , x−T ) in the original profile is no lower than its probability in the constructed profile

which we have argued to be non-negative.

In the special case where cT differs from aT and bT for all components in T , note that in

the domain of hî(T ), cT can be made last and both voters made to have a common maximal

alternative in AT (either bT or aT ).

Suppose that cT agrees with aT for some component k ∈ T . If ck = bk, then ak = bk and

the non-negativity of h
î(T )
cT follows immediately from the induction step. Assume therefore

that ck 6= bk. Construct a preference ordering P̄ 1
T for voter 1 such that

(i) bk and ak are the best and worst elements in Ak according to P̄ 1
k .

(ii) k is the lexicographically worst component in M .

(iii) P̄ 1
T−k = P 1

T−k (this has been defined earlier).

It follows from our construction that B(cT , P 1
T ) ⊂ B(cT , P̄ 1

T ) (in the domain of hî(T ); for

ϕ, we append x−T to cT everywhere.) By strategy-proofness of ϕ, the probability of (cT , x−T )

under ϕ in the profile (P 1, P 2, . . . , PN) is at least as great as the probability of the same

alternative in (P̄ 1, P 2, . . . , PN). However, we know the induction step on the |T | that the
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probability of the latter (P̄ 1, P 2) under hî(T ) is non-negative. This concludes our argument.

¥

Observe that we have already shown that hî(T ) satisfies unanimity. The strategy-proofness

of hî(T ) follows straightforwardly from its construction and the strategy-proofness of ϕ (we

omit the details of the argument). It now follows from Step 1 that hî(T ) is a generalized

random dictatorship. Let the weights associated with this generalized random dictatorships

be denoted by γh(i(T )). Once again i(T ) is a voter sequence over components in T with

every element of the sequence being either voter 1 or 2. As before let,

γ(i(T ), î(T )−T ) = γg (̂i(T )).γh
î(T )

(i(T ))

This procedure allows us to obtain the probability weights γ for all voter sequences where

the cloned voter appears over a set of components of size k + 1. Note that these probability

weights obtained at this Step depend on the extension xT . In order to complete Step B, we

need to show that these weights are, in fact, independent of the x−T chosen. this generalized

random dictatorship is appropriately extension-independent.

Lemma 15 Let γ = γ(i(T ), î(T )−T ) and γ′ = γ′(i(T ), î(T )−T ) be the probability weights

associated with the extensions x−T and y−T respectively. Then γ = γ′.

Proof : We shall follow the arguments in Lemma 12 closely. As before, assume further that

x−T and y−T differs over a single component, say k. For convenience, let the voter in the kth

component of the voter sequence (i(T ), î(T )−T ) be denoted by s. Pick a profile P ∈ [Dl]N

such that

(i) τ(P s
k , Ak) = xk.

(ii) The second-ranked alternative in the k-th component ranking P s
k is yk.

(iii) k is the lexicographic worst component in P s.

(iv) τ(P 1
j , Aj) = τ(P s

j , Aj) = aj 6= bj = τ(P 2
j , Aj) for all j ∈ T .

(v) P is a (̂i(T ), x−T ) extension of (P 1
T , P 2

T ).

Let (aT , xk, dM−T−k) be the first-ranked alternative in P s. By construction, the second-

ranked alternative in this ordering is (aT , yk, dM−T−k). Using the definition of a generalized

random dictatorship, the total probability on these alternatives in in the profile P under ϕ,

is given by

γ.γg (̂i(T )) +
∑

i∈Z((aT ,xk,dM−T−k),P,T )

γ(i) +
∑

i∈Z((aT ,yk,dM−T−k)),P,T )

γ(i). (9)
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Now suppose s changes her announcement to P̄ s where the first and second ranked

alternatives are interchanged. This is feasible because k is the lexicographic worst component.

If (P̄ s, P−s) is not an extension of (P 1
j , P 2

j ), there is nothing to be proved. Suppose, on the

other hand that it is an extension. By virtue of earlier arguments, the total probability on

the first and second ranked alternatives in P s in the profile P is

γ′.γg (̂i(T )) +
∑

i∈Z((aT ,xk,dM−T−k),P,T )

γ(i) +
∑

i∈Z((aT ,yk,dM−T−k)),P,T )

γ(i). (10)

Note that the γ terms in the summation terms in the RHS of both expressions 9 and 10

are obtained from the earlier steps with cardinality of T ≤ k. By the induction hypothesis,

these γ’s are independent of the extensions x−T and y−T . This justifies the use of the same

γ’s in the summation terms in the RHS of expressions 9 and 10. If γ 6= γ′, the two expressions

are different contradicting the strategy-proofness of ϕ. ¥

Our arguments thus far can be summarized as follows. We have constructed probability

weights γ(i) for every voter sequence i ∈ Im with the following property:

For any P ∈ [DL]N and a ∈ A such that there does not exist voters i, j ∈ I \ {1, 2} and

k ∈ M with τ(P i
k, Ak) = τ(P j

k , Ak) = ak, we have

ϕa(P ) =
∑

i∈χ(a,P )

γ(i) (11)

Equation 11 is obtained by rearranging terms in Equation 5 and using our definition for

γ. In order to complete the proof of the Theorem, we will show that Equation 11 holds for

all profiles and alternatives.

Consider a profile P and an alternative a such that there exists exactly one component,

say k and exactly two voters i, j ∈ I \ {1, 2} such that τ(P i
k, Ak) = τ(P j

k , Ak) = ak and

τ(P 1
k , Ak), τ(P 2

k , Ak) 6= ak, i.e. for all voters other than 1 and 2, their maximal alternatives

over components l 6= k differs from al. Moreover, all voters than i and j have maximal

alternatives in Ak different from ak. We will show that Equation 11 holds for this P .

Let ck ∈ Ak be such that it differs from the maximal alternative in Ak for all voters (such

an alternative exists because Ak has at least three alternatives). Assume w.l.o.g that k is

the lexicographically worst component and bk is second-ranked alternative in Ak (after ak)

for voter i. Now consider an ordering P̄ i where the top two alternatives in P i
k are switched

(this is feasible by assumption). Observe that Equation 5 holds for the profile (P̄ i, P−i) for

the alternatives a and (bk, a−k). Therefore,
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ϕa(P̄
i, P−i) + ϕ(bk,a−k)(P̄

i, P−i) =
∑

i∈χ(a,(P̄ i,P−i))

γ(i) +
∑

i∈χ((bk,a−k),(P̄ i,P−i))

γ(i)

=
∑

i∈χ(a,P )

γ(i) (12)

Note that the second step in 12 follows because χ(a, P ) = χ(a, (P̄ i, P−i))∪χ((bk, a−k)(P̄
i, P−i)).

We will show that the LHS of Equation 12 in ϕa(P ).

Suppose that the claim above is false, i.e. ϕ(bk,a−k)(P̄
i, P−i) > 0. We can assume w.l.o.g

that (bk, a−k) is the worst element in P 2 (the only restrictions on P 2 require its maximal

elements to be different from those of the others). If voter 2 matches its maximal alternative

with that of voter 1, the probability on (bk, a−k) can be made to equal zero. This will be a

manipulation by voter 2. Therefore ϕa(P ) =
∑

i∈χ(a,P ) γ(i) as required.

We can apply this argument repeatedly to show that Equation 11 holds for any profile P

and any alternative a. This completes the proof of the Theorem. ¥

We have proved our result for lexicographically separable preferences. An important open

question is whether the result generalizes to separable supersets of this domain.

4 Conclusion

We have generalized the random dictatorship result of Gibbard (1977) to a multi-dimensional

setting where voter preferences are lexicographically separable. In particular we have shown

that strategy-proof random social choice functions satisfying unanimity are generalized ran-

dom dictatorships. These are induced by a fixed probability distribution on voter sequences

of length equal to the number of components. Although the joint distribution on outcomes

is not the product of strategy-proof component random social functions, we have shown that

the marginal probability distribution on each component at a preference profile depends

only on component preferences. Moreover the marginal random social choice functions are

in fact, strategy-proof and therefore random dictatorships. An important question for future

research is whether the decomposability of the marginal random social choice functions holds

more generally, for instance, for “rich domains” as defined in LeBreton and Sen (1999).
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Barberà, S., F. Gul, and E. Stachetti (1993): “Generalized Median Voter Schemes

and Committees,” Journal of Economic Theory, 61, 262–289.
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