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Abstract 
We consider the problem of resource allocation and 
scheduling where information and decisions are 
decentralized, and our goal is to propose a market 
mechanism that allows resources from a central 
resource pool to be allocated to distributed decision 
makers (agents) that seek to optimize their respective 
scheduling goals.  We propose a generic combinatorial 
auction mechanism that allows agents to competitively 
bid for the resources needed in a multi-period setting, 
regardless of the respective scheduling problem faced 
by the agent, and show how agents can design optimal 
bidding strategies to respond to price adjustment 
strategies from the auctioneer. We apply our approach 
to handle real-time large-scale dynamic resource 
coordination in a mega-scale container terminal.    

1. Introduction 
In a classical scheduling problem (such as the job-shop 

scheduling problem), the goal is to schedule a set of jobs 
on a set of machines (resources), subject to resource 
capacity and other scheduling-specific constraints. In this 
paper, we consider the problem of resource allocation and 
scheduling where information and optimization decisions 
are decentralized, and our goal is to propose a 
coordination mechanism that allows resources from a 
central resource pool to be allocated to distributed 
decision makers that seek to optimize their respective 
optimization goals.  More precisely, we are concerned 
with the following decentralized scheduling scenario: 
a. there is a central pool of limited renewable resources 

that comprises multiple units of resources for each 
machine type; 

b. there are multiple selfish agents, each having a job list 
and is responsible to service its job list by solving its 
respective scheduling problem; without loss of 
generality, we will assume that each agent is interested 
in minimizing a performance function (such as 
makespan, tardiness or combinations thereof). 
One example of such problem can be found in the 

allocation of resources for loading and discharging 
vessels in a container terminal. Each job, comprising a 
container that needs to be moved from/to a vessel, 
requires three different types of machines – a Quay Crane 
(QC), a Prime Mover (PM) and a Yard Crane (YC). In 

practice, each QC is endowed with a job list and it has to 
acquire multiple units of different resources (PMs and 
YCs) over time to complete its given job list. All PMs 
have a common processing time, and so do YCs and QCs. 
The goal is to decide an optimal resource allocation for 
time-overlapping job lists in a distributed manner (since 
each QC works independently without considering other 
QCs’ job lists).   

To coordinate the resource usage by all selfish QC 
agents over time, we propose to design a market 
mechanism that allows agents to act as price takers and 
acquire the rights to utilize resources from the pool to 
solve their respective scheduling problems. In other words, 
each agent is expected to pay for the utilization of 
resources from the central pool defined by a price 
function. Hence, in our approach, each agent seeks to 
minimize its total cost function, which is the sum of the 
performance and price functions. 

Solving the above decentralized scheduling problem 
with market mechanisms can provide several advantages 
(as described in Wellman et al., 2001): 
a. Market mechanisms are naturally decentralized. 

Agents compute bids independently and submit them 
to the market mechanism. 

b. Communication overhead for the market mechanisms 
is low. The only information required to be exchanged 
between markets and agents are bids and prices. 
Previous works on market-based decentralized 

scheduling [Wellman et al. (2001), Thomas et al. (2002)] 
have provided encouraging empirical results. As a result, 
over the past decade, significant amount of efforts have 
been devoted to the building of a general framework for 
using market-based approaches in various resource 
allocation problems (including scheduling).  

The primary contribution of this paper is to propose a 
market-based approach that can be used in solving large-
scale decentralized scheduling problems where each agent 
is given a pre-determined job-list. The market mechanism 
we propose is a combinatorial auction. While there have 
been similar proposals in the literature (see Section 2 
below), most of them are targeted at solving small and 
specific scheduling problems, and computational 
efficiency is usually not a primary concern.  



 

2. Literature Review 
Distributed scheduling has attracted much attention in 

recent years. One line of research is market-based 
distributed problem solving. In the market-based 
paradigm, auctions are introduced to coordinate resource 
usage among selfish agents who seek to maximize their 
respective objectives. Wellman et al (2001) introduced 
auction mechanisms which used prices derived through 
distributed bidding protocols to determine schedules. The 
existence of equilibrium prices for some general classes 
of scheduling problems was investigated. Not only 
ascending auction but also combinatorial auction’s 
bidding behaviors and protocols were investigated. 
Dewan and Joshi (2002) used Lagrangean relaxation to 
decompose and solve the distributed scheduling in 
dynamic job shop environment. The jobs constructed their 
bids from subproblems obtained by Lagrangean relaxation 
which relaxes the capacity constraint. A central auctioneer 
was used for coordinating among job agents by adjusting 
prices for all the resources. Attanasio et al. (2006) applied 
a similar approach for decentralized parallel machine 
scheduling problem. In these studies, the price adjustment 
process was based on tatonnement process which was 
originally proposed by Walras (1954) and improved by 
many other studies (e.g. Joyce (1984), Cheng and 
Wellman (1998)). The tatonnement process resolves 
resource conflicts by updating the price based on excess 
demand iteratively. Several price adjustment processes 
has been proposed in different studies. Fisher (1985) 
proposed price adjustment process based on subgradient 
search method. Joyce (1984) set the step parameter based 
on the level of difference between demand and supply. He 
set higher value on step parameter when the difference 
between demand and supply is large and vice versa. 
Dewan and Joshi (2002) and Attanasio et al. (2006) used 
Fisher (1985)’s approach.  

In general scheduling problems, a job agent may 
demand a combination of time slots from multiple 
machines to process its operations. Hence, we must 
consider auctions in which agents bid for multiple items 
that have inter-dependent valuations. This property of 
scheduling problem motivates us to adopt a combinatorial 
auction mechanism that allows bidders to submit a 
combination of items with a single bid. Kutanoglu and 
Wu (1999) noted the equivalence of the combinatorial 
auction approach to the Lagrangean relaxation and use the 
shadow prices as transfer pricing to link decomposed 
subproblems. They also used tatonnement process to 
resolve conflicts among agents. Jung and Kim (2006) 
considered the problem of load scheduling for multiple 
quay cranes in port container terminals.   

3. Notations and Problem Formulation 
We assume that a central pool of resources is owned 

by a central server (who is the auctioneer).  Each job list 

is represented by a bidder agent who bids for resources to 
service all the jobs in its job list. Clearly, since each agent 
chooses to minimize total cost, it will be encouraged to 
bid for more resources when the prices are low and vice 
versa. We therefore seek to achieve a conflict-free 
resource allocation through a market mechanism of 
demand, supply and price adjustments.   

Note that as opposed to conventional auctions, our 
auction mechanism seeks to achieve a minimum cost 
resource conflict-free resolution rather than revenue 
maximization. Our approach is based on the tatonnement 
process which resolves resource conflicts by iteratively 
updating the prices of resources based on excess demand. 
This approach has been applied similarly in different 
scheduling contexts such as [Dewan and Joshi 2002, 
Attanasio et al. 2006].  In our approach, the auctioneer 
iteratively updates the prices of resources starting from 
initial price. Based on current price of items, each bidder 
needs to find the best bid in order to maximize its own 
utility function. The auctioneer then evaluates bids from 
all bidders and updates the prices in response to excess 
demand. The new prices will be used in the next round of 
bidding, and this process repeats until a conflict-free 
allocation is found.  

In our problem, there are K resources, and the entire 
time horizon is divided into T discrete time periods. Since 
each job list may span across multiple time periods, this 
gives rise to a multi-period combinatorial auction 
problem.  A bid is hence composed of a combination of 
resources over multiple periods. Note that the bid may 
specify varying units of resources for different periods.   
• Let Xr

ikt denote the demand quantity bidded by agent i 
for resource k in time period t during iteration r.  

• Let Pr
kt denote the price for resource k in time period 

t during iteration r.  
• Let Ck denote the total supply (capacity) for resource 

k across all time periods. 
• Let Dr

kt denote the aggregate demand (of all agents) 
for resource k in time period t in iteration r. 

4. Solution Approach 
 There are two key components that need to be 
designed: (a) bid generation strategies for individual 
agents, and (b) price adjustment strategy for the 
auctioneer. The bid generation strategies are based on the 
prices, while the prices are computed based on the 
submitted bids. In such a system where the decisions of 
two individual components depend on each other, what 
constitutes a solution is the pair of bids and prices such 
that the new bids computed from the current prices are 
identical to the current bids, and vice versa. In economics, 
this solution is called general equilibrium since it 
achieves equilibrium (supply equals demand) for all 
resources simultaneously. An intuitive way to approach 
such solution is through an iterative process, where in 



 

each iteration every agent generates a combinatorial bid 
using the bid generation strategy and upon receiving all 
the bids, the auctioneer adjusts the prices according to the 
excess demand (non-zero excess demand implies that the 
equilibrium is not reached yet). The process is repeated 
until we reach the general equilibrium (or the stopping 
criterion is satisfied). In the reminder of the section, we 
will discuss the detail of these two critical components. 

4.1. Bid Generation Strategy 
The bidder’s objective is to maximize its utility. In our 

context, utility is the net value from job completions 
minus the payment for additional resources sold by the 
auctioneer. It can be shown that maximizing this utility 
function is equivalent to minimizing the total cost 
function. For job shop scheduling for instance, this is the 
sum of total makespan cost, tardiness penalty cost, and 
resource cost. The total resource usage cost is simply the 
sum of current price of each resource in each period 
multiplied by the amount requested for that period.  

Hence, each bidder agent is confronted with an 
optimization problem that is concerned with the tradeoff 
between makespan/tardiness and resource usage. This 
optimization problem can be formulated as follows: for 
each agent i in any iteration r, given the current price 
defined by [Pr

kt] and i’s job list, find a bid [Xr
ikt] that 

minimizes agent i’s total cost.  
Although this optimization is smaller compared to the 

centralized optimization problem, it is still an extremely 
challenging problem that cannot be solved efficiently. 
Therefore, we propose the following 2-step heuristic bid 
generation strategy which we term as Relax and Repair: 

Step 1. Relax the multi-period problem to a single 
period problem, i.e. decide on an initial common resource 
level for each resource across all periods. By eliminating 
the time dimension, the problem can be reduced to a 
classical resource allocation problem.  

Step 2. (Repair) Improve the quality of the solution by 
local search – by increasing or decreasing the resource 
level in each period. Note that for each period, we need to 
consider either an increase or decrease in resource level 
but not both. Hence, the neighborhood of each local 
search iteration is O(T).  Note that while the resulting bid 
might not be optimal, our experimental study (see Section 
5) shows that the performance difference is reasonably 
small, with considerable savings in execution time.  

4.2. Price Adjustment Strategy 
Within each iteration, the auctioneer collects bids from 

all agents and updates prices in order to resolve resource 
conflicts. A proper design of the price adjustment strategy 
is essential for fast convergence, since the tatonnement 
process is known to converge slowly especially in a 
market with large number of resources that violates 
competitive assumptions [Cheng & Wellman (1998)].  

The price adjustment from one iteration to the next is 
essentially based on excess demand.  For example, from 
iteration r to r+1, the updated price for a resource k at 
period t is defined by Pr+1

kt = Pr
kt + S (Dr

kt – Ck)/Ck. If the 
step parameter S is constant between iterations, we have a 
non-adaptive tatonnement. In contrast, adaptive 
tatonnement means that larger price adjustment is 
permitted in early iterations to allow quick move to 
promising region, and as the step size diminishes, the 
auctioneer could fine-tune the prices to find the 
equilibrium. More involved discussion on the price 
adjustment can be seen in [Fisher 1985, Joyce 1984]. 

From the economic standpoint, the price adjustment 
process will proceed until the general equilibrium is 
reached. However, this may not be possible from the 
resource allocation point of view.  Based on the stopping 
rules defined in [Rockafellar 1993], we propose the 
following stopping criteria: 
1. Equilibrium solution: All the following conditions 

must be satisfied: 
• The minimum number of iterations has been 

performed. 
• X number of feasible solutions (i.e. conflict-free 

allocations where supplies meet demands for all 
resources in all time periods) have been found. 
Notice that in these solutions, supplies may exceed 
demands.  

• The change in the performance function or price 
vector does not exceed some prescribed thresholds 
in the last Y (predefined constant) number of 
iterations subsequent to finding a feasible solution. 
This condition essentially allows the auction 
process to continue after the feasible solution has 
been found, with the hope to improve the 
performance function further, but capped at a limit 
when the improvement becomes trivially small.  

2. Best solution among feasible solutions: If an 
equilibrium solution cannot be found after the 
maximum number of iterations, stop and return the 
best feasible solution. 

3. Manually adjusted feasible solution: If no feasible 
solution has been found, repair the solution from the 
last iteration by manually resolving resource 
conflicts. 

 

5. Application to Vessel Loading/Unloading  
In this section, we discuss how we apply our approach 

to solve the resource coordination problem for vessel 
loading and unloading described in Section 1. Recall that 
each agent represents a QC with an endowed job list, and 
it wants to complete the jobs on the list with minimal cost, 
which is defined as the sum of makespan and total 
tardiness penalty. Essentially, this entails solving a job 
scheduling problem where each job comprises a sequence 



 

of 3 tasks executed contiguously: for a load job, the tasks 
require the use of 1 YC, 1 PM and the designated QC; and 
for a discharge job, the sequence is reversed.  

It is assumed that each agent is assigned a fixed 
number of PM and YC initially (denoted N0 and M0 
respectively). Unassigned PM and YC are managed by an 
auctioneer, and agents can acquire additional PM and YC 
from the auctioneer through bidding. 

5.1. Bid Generation Strategy 
To generate a bid, each QC agent solves a scheduling 

problem that, given the current unit prices of PM and YC, 
seeks the cost-optimal resource vector:                                                             

                                                                             , 
where Nt and Mt respectively denote the number of PM 
and YC required for period t. 

The bid generation strategy is a relax-and-repair 
approach (as presented in Section 4): 

Step 1. Relax the multi-period problem to a single 
period problem. Search for the common resource level 
(N*, M*) that minimizes total cost (i.e. among different 
resource combinations ranging from the baseload (N0, M0) 
to the upper bound (Nmax, Mmax)1; if we set (N*, M*) as the 
resource capacity across all periods, we will obtain a 
schedule with minimal total cost). This search procedure 
is simply hill-climbing in the landscape bordered by (N0, 
M0) to (Nmax, Mmax). Note that a by-product of this hill-
climbing search is a makespan matrix that contains the 
makespan value for each (N, M) resource combination, 
regardless of resource prices. Each entry in the matrix 
need only to be computed once, and looked up 
subsequently when prices change between iterations.  

Step 2. Improve the quality of the solution by local 
search – by changing the resource level in each period.  

As noted earlier, this bid generation process does not 
optimally solve the bidder’s problem. In fact, for the 
problem instances we studied in this section, our bid 
generation heuristics on average generates bids that are 
worse than the optimal bids (in the sense of the objective 
function values) by about 14%. However, while the 
heuristics on average takes less than 2 seconds to finish, 
solving for the optimal bids needs nearly one hour. This 
huge difference in the execution time is the primary 
motivation for choosing this bid generation heuristics 
over the optimal bid generation procedure. 

5.2. Price Adjustment Strategies 
In this paper, we propose to adopt Fisher’s subgradient 

search method [Fisher 1985] for our problem, which has 
proven effective in practice (Kutanoglu and Wu, 1999). 

Given the price in iteration r as pr
kt, price adjustment is 

to calculate the new price regarding to the resource 
demand and resource capacity. 

                                                
1 One such bound can be obtained by assuming infinite resources, which 
can be computed via a greedy algorithm.  

where α is constant over iterations and is in [0 ,2]. 
Compared to the original formula of Fisher (1985), we 

removed difference between upper bound and lower 
bound in a numerator term. Furthermore, we multiplied 
with the average resource price term, which has been 
shown to produce better convergence. The reason why it 
would accelerate convergence is intuitive: when the 
average price is high, the price step will be higher, thus 
allows the auctioneer to balance excess demand faster, 
and when the price is low, smaller step will let auctioneer 
to adjust price in a finer manner.  

5.3. Experiments 
5.3.1. Experiment Setup 

In this section, we evaluate the performance of our 
proposed combinatorial auction approach.  All 
experiments are performed on a Pentium-4 1.5GHz 
processor with 1 GB RAM, and implemented in Matlab.  

Recall that each agent can bid for the rights to use 
certain resource in time periods it desires. The length of 
each time period is set to one hour in our experiment. To 
model the scheduling of jobs more precisely, we further 
divide each time period into 12 time units, each with 
length of 5 minutes. In our experiment, we assume that 
the processing times of QC and YC are 1 and 2 time-units 
respectively for all agents. The processing time for PM 
follows a uniform distribution where both upper and 
lower bounds are uniform random variables within [7, 15] 
and [15, 23] respectively. These numbers are based on 
real operations scenarios obtained from an industry 
partner. In all instances we study, there are 4 QC agents, 
each of them initially endowed with 1 PM and 1 YC. The 
due time to complete all the jobs is 5 hours and the 
tardiness penalty cost is 300 per hour. The initial unit 
price for PM and YC are set as 30 and 50 per hour 
respectively. The number of resource units in the common 
pool is identical across all time periods. The price 
adjustment parameter, α, is set to be 1.5. For the stopping 
criteria, we set X to 6, Y to 3, and δ to 10. These values 
are proved effective through many experiments. 

 
5.3.2. Decentralized v.s. Centralized Approaches 

To determine the loss in optimality due to 
decentralization, we compare our market-based approach 
against the state-of-the-art integer programming (IP) 
solver (we use CPLEX in our experiments). For each 
instance we solve, a corresponding IP model is also 
created and solved by CPLEX. The difference in 
performance is not what we focus on here, since solving 
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the problem with an IP model ignores the decentralization 
consideration, instead, what we are interested in from 
these comparisons, is to obtain an upper bound on the 
performance loss due to the decentralized formulation. 

The IP formulation of our problem is an extension of 
the classical scheduling formation proposed by Pritsker et 
al. (1969). In the interest of space, the model is not 
presented here. Interested readers can refer to Pritsker et 
al. (1969) for detail. 

Although our approach is quite scalable to large 
examples, the sizes of IP models in those cases are quite 
intractable. Therefore, in order to make meaningful 
comparisons, we have to limit the size of our test 
instances. The test instances used here all have 40 
discharge jobs and 40 load jobs, equally divided among 
four QC agents (in other words, each agent is given a list 
of 10 discharge jobs and 10 load jobs). The number of 
available PM and YC is 24 and 16 respectively. We 
compare the performance of our solution approach 
(loaded with different configurations) against the one 
obtained by CPLEX after running for one hour (we have 
to limit the execution time to one hour otherwise CPLEX 
would run for days before termination).  

To estimate the performance of these two solution 
methodologies realistically, we have carefully crafted 11 
test cases that reflect typical container terminal operations. 
In these 11 test cases, the solutions obtained by CPLEX 
on average perform 22% better than the ones obtained by 
the market-based approach (in terms of the schedule 
quality, which is defined as the sum of tardiness cost and 
makespan cost). However, the market-based approach 
takes only roughly 9 minutes to finish. Please refer to 
Figure 1 for the performance comparison in all instances. 

For larger instances we study, e.g., the cases with 200 
discharge jobs and 200 load jobs, solving the IP model is 
intractable. Even the linear relaxation of the problem 
cannot be solved within 48 hours. However, the market-
based approach we used can solve each of these instances 
in 80 minutes. 
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Figure 1: The performance breakdown. 
Note that we do not intend to claim that the market-

based approach we used is superior to the centralized 
approach in large problem instances, since there are many 

approximate centralized approaches in the scheduling 
literatures that can solve very large-scale scheduling 
problems efficiently. What we really want to emphasize is 
the capability of our approach in handling decentralized 
decision making paradigm in a large-scale problem, 
which is overlooked by many past research. This does not 
mean advances in large-scale scheduling are irrelevant to 
the further development of our solution approach; on the 
contrary, any such advance will be extremely useful in 
solving single-agent problem, and help deliver better 
solution quality and efficiency.  

6. Conclusion 
Future works arising from this research are wide-

ranging. They include analytical works such as how 
different bidding behaviors of agents affect the rate of 
convergence of the tatonnement process and applied 
research of utilizing our approach to derive efficient 
solutions to other decentralized, self-interested planning 
and scheduling problems.  
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