
CoSIGN: A Parallel Algorithm for Coordinated
Traffic Signal Control

Shih-Fen Cheng, Marina A. Epelman, and Robert L. Smith

Abstract— The problem of finding optimal coordinated signal
timing plans for a large number of traffic signals is a challenging
problem because of the exponential growth in the number of
joint timing plans that need to be explored as the network size
grows. In this paper, we employ the game-theoretic paradigm
of fictitious play to iteratively search for a coordinated signal
timing plan that improves a system-wide performance criterion
for a traffic network. The algorithm is robustly scalable to
realistic-size networks modelled with high fidelity simulations.
We report results of a case study for the the city of Troy,
Michigan, where there are 75 signalized intersections. Under
normal traffic conditions, savings in average travel time of more
than 20 percent are experienced against a static timing plan, and
even against an aggressively tuned automatic signal re-timing
algorithm, savings of more than 10 percent are achieved. The
efficiency of the algorithm stems from its parallel nature. With a
thousand parallel CPUs available, our algorithm finds the plan
above in under 10 minutes, while a version of a hill-climbing
algorithm makes virtually no progress in the same amount of
wall-clock computational time.

Index Terms— Coordinated traffic signal control, optimization,
area traffic control

I. I NTRODUCTION

Since Webster and Cobbe [1] first published their research
on pre-timed isolated traffic signal control, significant progress
in traffic signal control has been made. With the introduction
of advanced computer, control, and communication technolo-
gies in traffic networks, signal control systems are now able
to receive more network-related information and respond in a
more congestion-adaptive manner. From past research, we can
see that, in general, the more information a signal controller
uses, the better performance it can achieve. However, the
complexity of algorithms for designing signal timing plans
correspondingly grows as more information is being utilized.
Another factor that complicates the problem is the number
of signalized intersections considered. In the general case,
with non-periodic signal timing plans allowed, the size of
the problem grows exponentially as the number of considered
signals increases. Therefore in practice, the tradeoff between
the accuracy of the algorithm, the amount of traffic-related
information used, and the size of the network remains an issue.

Based upon amount of information used in the control
schemes, we can classify related research into the following
categories:

Manuscript received.
S.-F. Cheng is with School of Information Systems, Singapore Management

University, Singapore (e-mail: sfcheng@smu.edu.sg)
M. A. Epelman and R. L. Smith are with Department of Industrial and

Operations Engineering, University of Michigan, Ann Arbor, Michigan, USA
(e-mail: mepelman@umich.edu; rlsmith@umich.edu)

1) Offline: Pre-timed signal control schemes for both iso-
lated and coordinated signal control belong to this cate-
gory. Since pre-timed signal timing plans are computed
in an offline manner, they can only use information
related to historical flow statistics and network con-
figuration. Webster’s method [1] and its extensions,
SIGSET [2], and SIGCAP [3] are examples of isolated
control methods (only a single signalized intersection
is considered). MAXBAND [4], [5] and its extensions,
and TRANSYT [6] are notable examples of coordinated
control methods (a group of signalized intersections is
considered simultaneously).

2) Online: The use of sophisticated surveillance technolo-
gies, including inductive loop detectors and surveillance
cameras at signalized intersections, enables traffic signal
controllers to make use of real-time traffic information.
This information, including, but not limited to, vehicle
counts, link volume and link occupancy, proved to be
very useful in computing real-time signal timing plans
for both isolated and coordinated signal control. Most
modern traffic signal control technologies belong to this
category. For the isolated control case, it was Miller
[7] who first proposed a control strategy based on
online traffic information. Other more recent methods
include SCATS [8], PRODYN [9], [10], OPAC [11],
[12], UTOPIA [13], SPPORT [14], COP [15]. It should
be noted that although many of the above control
strategies (e.g., OPAC, PRODYN and SCATS) are also
used in coordinated control, the coordinations are mostly
done heuristically due to the combinatorial complexity
of the problem. Other notable research that focuses on
the coordinated control problem includes SCOOT [16],
CRONOS [17], REALBAND [18], Lin and Wang [19],
and Heung et al. [20].

3) Predictive: Based on offline and online information, the
next promising extension is to come up with predic-
tions of future network congestion, and compute the
signal timing plans in anticipation of predicted future
traffic conditions. An example of such an approach is
RHODES [21], [22]. It uses a combination of current
real-time information and planned timing plans from
upstream signals to predict future arrivals.

Among these three categories, the control schemes with
offline and online information are well-studied and are widely
implemented. In comparison, control schemes that are capable
of using predictive information are still mostly experimental
and researchers are just beginning to explore the benefits of

1



using such information.
The method we propose in this paper does make use of

such predictive information. We rely on information on time-
dependent origin-destination flows, which can be used to pre-
dict link congestion in the future. We believe that high quality
predictive information will become more and more accessible
due to the following two important technological advances.
The first important advance is high quality estimation of
dynamic origin-destination trip flows [23], [24]. The second
is the use of vehicle-based GPS systems and other vehicle
tracking technology in vehicle routing. With such equipment,
we can precisely collect the origin-destination information
for the “smart” vehicles (i.e., vehicles outfitted with such
equipment). Also, by using these vehicles as traffic probes,
we can get better estimates of current link congestions. By
combining the above two branches of research, high quality
predictive information required by our method should become
available. The first goal of the paper is thus to introduce
an algorithm that is capable of incorporating this predictive
information in computing adaptive traffic signal timing plans.

Another goal of this paper is to address the difficulty of
finding solutions to the combinatorial problem that arises in
general coordinated traffic signal control. The size of the set
of solutions that need to be considered grows exponentially
as the number of intersections and/or the length of the time
horizon considered increases. Moreover, functions typically
used to measure performance of the network, such as, for
example, average trip time experienced by the drivers, have to
be evaluated via computationally intensive traffic simulators.
These functions also lack structural properties that traditional
optimization algorithms rely upon, calling for novel methods
for searching the solution space. Our algorithm allows for par-
allel execution, which makes real-time signal control possible
even in a large network. The applicability of our approach
(calledCoSIGN, for “Coordinated SIGNals”) is demonstrated
by a test case study based on the real traffic network of Troy,
Michigan.

The paper is organized as follows. In section 2, the problem
formulation is stated. In section 3, we motivate the use of
a game-theoretic approach to this problem. In section 4, the
necessary technical background is provided and the algorithm
is stated. In section 5, we restate the coordinated traffic signal
control problem in game theoretic terms, and explain the
details of the algorithm’s implementation. In section 6, the test
case and results of experiments are discussed. Future work is
proposed in section 7.

II. T RAFFIC SIGNAL CONTROL PROBLEM FORMULATION

We consider the problem of finding an optimal coordinated
traffic signal plan for a group of signalized intersections over
a given time horizon. A problem instance is defined by spec-
ifying the topology of the traffic network, the time horizon,
as well as the time-dependent origin-destination flows over
this time horizon. In particular, for every origin-destination
pair in the network, the timing of vehicles’ departures from
the origin for the destination and the route they take are
presumed to be known. The goal is to minimize the average

travel time experienced by all drivers in the network during the
given time horizon (we use the terms “driver” and “vehicle”
interchangeably).

We formulate this coordinated traffic signal control prob-
lem as a discrete optimization problem, where the planning
horizon is divided intoN time periods of equal length of
δ seconds, and the decision variables are thesignal phases1

prevailing during each of theN time periods, at each of theI
signalized intersections2. The following notation will be used
in describing the coordinated traffic signal control problem:
• I = {1, 2, . . . , I}: set of signalized intersections;
• N = {1, 2, . . . , N}: set of time periods (each time period

is δ seconds long);
• Si = {1, 2, ..., Si}: set of permissible signal phases for

intersectioni, i ∈ I ;
• si,n ∈ Si: a decision variable representing the signal

phase at intersectioni during time periodn.
The problem can be formally written as:

min AVERAGETRAVELTIME({si,n, i ∈ I , n ∈ N})
s.t.

si,n ∈ Si,∀i ∈ I , ∀n ∈ N
(1)

where the mapping from the vector of decision variables,
{si,n}, to the objective value is represented by the function
AVERAGETRAVELTIME(·), which reflects the performance
measure we discussed above. The dependence of this function
on the decisions made in the problem, i.e., the signal timing
plans over the planning horizon, is inherently complex and
possesses neither analytical representation nor known struc-
tural properties (such as monotonicity or subadditivity). In
effect, we are faced with a problem of optimizing a “black-
box” function. In particular, in our research, all function
evaluations are provided by a traffic simulation program, as
described in subsection V-B.

One immediate concern resulting from this formulation is
the exponential explosion of possible joint decisions as N
and I get larger. In the worst case, all joint decisions, with
number bounded by(maxi{Si})N ·I , have to be enumerated
and evaluated in order to find an optimal solution to assure
global optimality. For a practical size problem, this is impos-
sible. Therefore, we take the approach of searching for a high-
quality locally optimal solution instead. Still, considering the
complexity and scale of the problem, it is not obvious how
even this can be achieved within reasonable time.

In the next section, we will propose the use of a game-
theoretic approach to resolve our dilemma.

III. M OTIVATION FOR A GAME-THEORETIC APPROACH

In this section we briefly describe the motivation and the
intuition behind usinggame theoryin solving coordinated
traffic signal control problems (see [25] for an early ap-
plication to dynamic route guidance). Although some game

1A signal phase is a collection of traffic movements that receive right-
of-way simultaneously. Therefore, all movements within a phase must be
non-conflicting.

2By defining decision variables this way, we allow acyclic signal timing
plans. In the absence of cyclic parameters, we assume that a fixed amount of
yellow time is incurred if two consecutive decisions at a signal is different.

2



theory-related terms are mentioned throughout this section,
their formal definitions are deferred to the next section. The
intuition behind our approach is emphasized here.

Recall that the decision variables in our problem are the
signal phases prevailing during each of theN time periods
at each of theI signalized intersections. The number of joint
decisions is thus bounded by(maxi{Si})N ·I . The problem
quickly becomes intractable as we increaseN and/orI. How-
ever, if we decompose the problem into smaller subproblems,
we may be able to find a sufficiently good solution in a
reasonable amount of time.

The decomposition of the problem can be accomplished by
assuming that each signal in each period is an independent de-
cision maker. By adopting this decomposition, the centralized
decision problem, with(maxi{Si})N ·I possible decisions, can
then be transformed into(N · I) subproblems, each with at
most maxi{Si} possible decision alternatives. The effect is
to reduce an exponential to a linear number of alternatives
to consider. However, if we decompose the problem without
considering the interactions among these independent decision
makers, we are just solving(N · I) isolated signal control
problems over very short time horizons, and there is no
coordination among traffic signals.

In order to effectively incorporate coordination of a large
number of decision makers, we turn to game theory, which
originates from economics. Modern game theory was created
after von Neumann and Morgenstern [26] in 1944 and quickly
became a popular tool in explaining and predicting behavior
of groups of rational decision makers (playersin game theory
terminology) when their well-beings are associated with the
joint actions of all decision makers (players). If each decision
maker who controls a time period for a signal is viewed as a
player in the game, and the average travel time of all vehicles
in the traffic network is viewed as acommon payofffor every
player, the coordinated traffic signal control problem can then
be represented as agame of identical interests. The notion
of a solution to a game is that of aNash equilibrium(a
similar, but more transportation-specific result is Wardrop’s
principle [27]), which for a game of identical interests can
be viewed as a coordinate-wise local optimum. Intuitively, a
joint decision is a Nash equilibrium if no individual player can
improve its payoff by unilaterally deviating from the original
joint decision. Note that in a game of identical interests, Nash
equilibrium is not necessarily a global optimum.

It is well-known that finding Nash equilibria is a hard
problem [28]. One of the earliest algorithms used to find Nash
equilibria is an iterative process calledfictitious play[29], [30].
The primary pitfall of fictitious play (FP) is that in general
it does not converge to an equilibrium. However, Monderer
and Shapley [31] showed that for a special class of games,
namely games of identical interests, FP will converge to equi-
librium. Since virually all unconstrained discrete optimization
problems can be represented as games of identical interests,
this result has recently inspired researchers in optimization
to introduce FP as an optimization tool [32], [25]. In this
paper, after we model the traffic signal control problem as
a game of identical interests, we will apply a variation of the
FP algorithm to find a solution.

IV. GAME THEORY AND THE FP ALGORITHM

In this section, we formally define a game and the solution
concept of a Nash equilibrium, and discuss how one can use
FP to find a Nash equilibrium of a game.

A. Game theory fundamentals

Game theory studies how independent decision makers
would act under the assumption that an individual’s payoff will
be determined by actions of all participants. We now define
the components of a game.

• Players: Each independent decision maker in the game
is defined as a player. Every player has a finite set of
decisions calledstrategies(or pure strategies) that it can
choose from (or “play,” in game theory terminology). A
mixed strategyis a probability distribution over the set of
the player’s strategies. Ajoint strategy is a specification
of (mixed) strategies for all players.

• Payoff function: For every player, its associated payoff
function is defined as a mapping from joint strategies
to the corresponding payoff this player will get were
these joint strategies played (or expected payoff, if mixed
strategies were played). In general, players may have dif-
ferent payoff functions. However, in this paper, all players
will be assumed to have identical payoff functions.

• Best reply function: Given an arbitrary joint strategy,
a player’s best reply function will return a strategy that
gives this player its highest payoff value, assuming that
all other players use the strategies specified in this joint
strategy. As we will see later, this is the critical operation
in our approach.

• Nash equilibrium: A joint strategy is a Nash equi-
librium if no individual player can improve its payoff
by unilaterally deviating from the play of the original
joint strategy. More precisely, a joint decision is a Nash
equilibrium if for every player, its current decision is its
best reply against this joint strategy. In other words, Nash
equilibrium is a fixed point of the best reply function.

The first important existence theorem, proved by Nash [33],
stated that every finite game in strategic form3 has a mixed
strategy equilibrium.

For a complete treatment of these introductory terms and
concepts, we refer to Fudenburg and Tirole [34].

B. FP and SFP algorithms

Computing Nash equilibria can be a difficult task. McK-
elvey and Mclennan’s work on GAMBIT [28] is an excellent
reference for various computational methods for finding Nash
equilibria. In this research, we will use a simple-to-implement
iterative algorithm which is a variation of Fictitious Play (FP).
Convergence results for the FP algorithm and its variants are
stated in [31], [32]. Since in this paper we are mainly interested
in solving the traffic signal control problem, most technical

3A game is said to be in strategic form if it has a finite set of players,
each player has a nonempty strategy set, and each player’s payoff functions
are properly defined for all joint strategies. A strategic game is finite if the
number of players and all players’ strategy sets are finite.

3



details are omitted here. We refer interested readers to [32]
for a complete treatment.

The intuition behind FP lies in the theory of learning in
games. In a classical FP process (see, for example, [29]),
every player assumes that other players are playing unknown
stationary mixed strategies, and tries to learn them iteratively.
The estimates of the unknown stationary mixed strategies are
represented asbelief distributions, or beliefs, and are shared
among all players. The belief distribution for playeri is a
mixed strategy calculated by finding the relative frequency
of all strategies from the history of its past plays. During
each iteration, each player finds itsbest reply against the
belief distribution of other players (i.e., its belief of how
they will play). These best replies are then included in the
history of past plays and the beliefs are updated accordingly.
To start the FP process, an arbitrary joint strategy is used.
The FP algorithm doesn’t converge to equilibrium in general.
However, for games of identical interests, as in our case,
the sequence of beliefs generated by the FP algorithm are
guaranteed to converge to equilibrium [31].

The best reply operation of the classical FP algorithm
outlined above is too computationally expensive to implement
in practice. Lambert et al. [32] thus suggested a variant they
called sampled fictitious play(SFP) that is computationally
practical. SFP is very similar to FP except the best reply evalu-
ation in each iteration is done against samples randomly drawn
from the belief distribution instead of the belief distribution
itself. A convergence result for SFP with gradually increasing
sample sizes is proved in [32]. In practice, however, samples
of size one are often used at each iteration.

The SFP algorithm, with sample size one, is described
below:

1) Initialization: An initial joint strategy is chosen arbi-
trarily. It is then stored in the history.

2) Sample: A strategy is independently drawn from the
history of each player (i.e., for each player, each past
play is selected with equal probability).

3) Best Reply:For every player, the best reply is computed
by assuming that all other players play the strategies
drawn in step 2.

4) Update: The best replies obtained in step 3 are stored
in the history.

5) Stop? Check if the stopping criterion is met; if not, go
to step 2, otherwise stop.

The pseudo-code for the SFP algorithm and the sampling
subroutine is listed in Algorithm 1 below. This pseudo-code
is specified for a game withP players. Here,D and B are
P -dimensional vectors whose components contain individual
strategies of the players, and(·)T denotes the transpose oper-
ation.H is a “history” matrix, whereH(k, j) represents player
j’s best reply in thekth iteration. NotationH(k, :) represents
thekth row of matrixH, while H(:, j) is the column containing
the history of past plays of playerj. This representation of
the history allows convenient access to relevant information
for sampling in step 2.

Algorithm 1 implements the SFP algorithm in a straightfor-
ward way. Line 1 generates an initial solution (joint strategy)
by calling functionINITIAL SOLUTION, thus populating the0th

Algorithm 1 Sampled Fictitious Play (sample size 1).
SFP()
1: H(0, :) ← INITIAL SOLUTION()
2: k ← 0
3: while STOPCRITERION() is false do
4: D ← SAMPLE(H, k)
5: B ← BESTREPLY(D)
6: H(k + 1, :) ← BT

7: k ← k + 1
8: end while

D = SAMPLE(H, k)
1: for j = 1 to P do
2: u ← DISCRETEUNIFORM(0, k − 1)
3: D(j) ← H(u, j)
4: end for
5: return D

row of history matrixH. Line 4 performs uniform sampling
from each player’s history independently. Line 5 computes
a best replyB to the sampled decisionD. Line 6 appends
B at the end of the history matrixH. Note that except for
k = 0, each rowk of matrix H stores best replies computed
in iteration k. The above three lines are then repeated until
STOPCRITERION returnstrue. SinceBESTREPLY subroutine
simply solves a collection ofP one-dimensional optimization
problems whose input is the sampled decisionD, it can be
executed in parallel. As we will see later, the parallelization
of the best reply computation is the most important feature
that makes SFP algorithm efficient.

Although this is not explicitly specified in the general
pseudo-code, we will keep track of the “incumbent” solution,
i.e., the pure strategy with best performance observed so far,
throughout the algorithm. At termination, the SFP algorithm
returns the current and therefore best incumbent solution.

The SFP algorithm was first implemented and used as an
optimization scheme by Garcia et al. [25], who applied it
to a dynamic traffic assignment problem. When compared to
previously established methods, the SFP algorithm was able
to obtain solutions of the same quality significantly faster.
Lambert and Wang [35] further demonstrated the effectiveness
of the SFP algorithm as compared to simulated annealing for
a communication protocol design problem.

V. COSIGN: SFPALGORITHM FOR THE TRAFFIC SIGNAL

CONTROL PROBLEM

As mentioned above, traffic signal control problems are
usually solved by either restricting the space of solutions
by searching for parameters of predetermined cyclic patterns,
or by limiting the number of signals considerably. Instead,
our approach will be to search for solutions to the full-
scale coordinated signal planning problem by using the SFP
algorithm.

To solve a problem with the SFP algorithm, we must first
formulate it as a game. In the following sections, we will
describe how to construct a game-theoretic model for the
traffic signal optimization problem. Based on this formulation,
we can then specify the performance measure used to evaluate
signal timing plans and describe the best reply subroutine
using this performance measure.

4



A. Formulating coordinated traffic signal control problem as
a game

With the same notation as defined in section II, we can
formulate the problem as a game:
• Player: each tuple(i, n), i ∈ I , n ∈ N, is a player. LetP

be the set of all players, andP = I ·N , be the number
of players.

• Strategy Space:for each player(i, n) ∈ P, its strategy
space is the setSi. Player(i, n)’s decision is denoted by
D(i, n).

• Payoff function: by collecting decisionsD(i, n) from all
players, a signal timing plan for the planning horizon is
formed. By sending this plan to the traffic simulator, we
can find the average travel time experienced by all drivers,
which is the payoff function value for all players.

B. Simulation by INTEGRATION-UM

Accurate evaluation of the average travel time can be
accomplished by invoking a computer traffic simulator. In our
experiment, the simulation is done by INTEGRATION-UM,
developed by Van Aerde [36] and modified by researchers
at the Intelligent Transportation Systems Research Center of
Excellence at the University of Michigan. INTEGRATION-
UM is an event-based, mesoscopic deterministic traffic sim-
ulator. In order to perform a simulation, we need to provide
INTEGRATION-UM with following inputs:
• Network topology definitions: the transportation net-

work is modelled as a directed graph in INTEGRATION-
UM. To fully specify the network topology, we first define
intersections and connection points as the nodes in the
graph. There are two types of nodes in INTEGRATION-
UM: zone centroids, which can be used as origins and
destinations for the vehicle trips, and normal nodes,
which can be used as intersections or connecting points.
The roads are then defined as directed links connecting
these nodes. Important physical properties of each link,
including length, capacity, free-flow travelling speed4,
and the signal timing plan and the phase controlling this
link (if any), must also be provided.

• Traffic signal settings: signal timing plans in the original
version of INTEGRATION-UM were assumed to be
cyclic. Cyclic plans were specified by parameters that
define cyclic patterns, i.e., cycle length, green split, offset,
and lost (yellow) time. We modified INTEGRATION-UM
in order to take players’ joint strategy as input. Note that
with a short enough time periodδ, the player model can
emulate any cyclic pattern. Unlike cyclic plans, the signal
timing plans specified by players’ joint decisions incur
lost time at intersectioni only when players(i, n) and
(i, n + 1) in two consecutive periodsn and n + 1 have
different decisions.

• Traffic flows: INTEGRATION-UM assumes that the
network is empty at the start of the simulation and all
the traffic entering the network is generated by mul-
tiple “flows.” Each flow, implicitly assumed to consist

4Free-flow travelling speed of certain link is the speed driver experiences
when he/she is the only user of that link.

of only homogeneous motorized vehicles, is defined by
specifying origin, destination, flow rate (in number of
vehicles per hour), and flow starting and ending times.
As mentioned in section I, this information is usually not
directly available, therefore we must combine data from
several sources, including survey, real time adjustments,
and predictions, in order to come up with reasonable
estimates. This is where accurate predictive information
can really help us. With better predictive information,
the simulation will better describe real traffic congestion,
and this implies that CoSIGN will be optimizing a more
realistic traffic simulation. As a result, for the signal
timing plan generated by CoSIGN, the gap between its
performance in the simulation and in the real traffic
network should also become smaller.

A detailed description of specifications of INTEGRATION-
UM can be found in Wunderlich’s PhD dissertation [37].

We selected INTEGRATION-UM as our traffic simulator
purely on the basis of convenience of implementation, since
its source code was readily available to us. We would like to
emphasize that since our system architecture is flexible with
regard to the type of simulator used, any traffic simulator
could have been used here. The only requirement is that it
must be able to accept the signal timing plan generated by
our algorithm as input, and output necessary information to
our solver, as described below.

C. SFP with simulation-based best reply computation

A crucial step in implementing SFP is the computation of
best replies in line 5 of Algorithm 1. Since for the coordinated
signal control problem the objective function can only be
evaluated through the execution of the traffic simulator, the
only way to accurately compute each player’s best reply is by
pure enumeration of all player’s strategies. In a problem withI
intersections andN time periods, best reply computations for
all players would generally require(N

∑I
i=1 Si) simulations.

In practice the number of simulations can be decreased
somewhat by observing the following facts:

1) In line 4 of Algorithm 1, a joint strategyD is sampled.
One can evaluate this strategy (using the simulator)
and pass the resulting objective function value as a
parameter to the best reply function. Recall that, for
each player, best reply is obtained by comparing the
objective function values of the sampled joint strategy
and the joint strategies obtained by substituting this
player’s strategy with other elements of its strategy set.
Since the value of the former is provided to the best
reply subroutine,(N · I) simulations can be saved.

2) Given a sampled joint strategyD, there may exist some
intersections/time periods when there is only light traffic
waiting to pass through. Since the performances of all
strategies of the corresponding players are likely to be
very close, best reply computations (and hence calls
to the simulator) can be skipped for those players. We
can define a thresholdα, and calculate a best reply for
a player by invoking the simulator only if combined
traffic volume in the time period is greater thanα.

5



(In our experiments, we usedα = 0, skipping best
reply computations only when no traffic was traveling
through the intersection in a time period.) When the
traffic volume is less than or equal toα, the best reply
of this player can be essentially selected arbitrarily. To
increase the exploration of the joint strategy space, we
drew a random strategy uniformly from the player’s
strategy set in this case.

To take advantage of the second observation, in addition
to the objective function value (i.e., average travel time), we
need information on the traffic volume at each intersection
during each time period, obtained from time-dependent traffic
statistics for the sampled strategy. Since this information only
needs to be obtained in the beginning of each iteration, we
distinguish between executing INTEGRATION-UM in two
different modes: mode MAX, where both average travel time
and the time-dependent traffic statistics are outputted, and
mode MIN, where only average travel time is outputted. (The
latter mode is much less time consuming than the former.)

SFP algorithm for the coordinated signal control problem
with simulation-based best reply computation scheme de-
scribed as above will be calledCoSIGN and used throughout
the paper. The stopping criterion used inCoSIGN is the
number of SFP iterations.

Algorithm 2 Simulation-based best reply function.
B=BESTREPLY(D)
1: (v, F) ← INTEGRATION-UMMAX (D)
2: for all i ∈ I do
3: for all n ∈ N do
4: if F(i, n) ≥ α then
5: vmin ← v
6: B(i, n) ← D(i, n)
7: D′ ← D
8: for all s ∈ Si, s 6= D(i, n) do
9: D′(i, n) ← s

10: vs ← INTEGRATION-UMMIN (D′)
11: if vs < vmin then
12: vmin ← vs

13: B(i, n) ← s
14: end if
15: end for
16: else
17: B(i, n) ←RANDOM(Si)
18: end if
19: end for
20: end for
21: return B

The pseudo-code for the simulation-based best reply func-
tion is listed in Algorithm 2. Below is the list of functions
used in Algorithm 2 (hereD denotes a joint strategy):

• INTEGRATION-UMMIN (D): the function runs the simu-
lation and returns the objective function value.

• INTEGRATION-UMMAX (D): the function runs the simu-
lation and returns the objective function value and time-
dependent traffic statistics. The objective function value
is stored inv, while the time-dependent traffic statistics
data are stored inF, a matrix whereF(i, n) represents
traffic volume at intersectioni during time periodn.

• RANDOM(Si): the function uniformly picks an element
from Si and returns it.

The pseudo-code in Algorithm 2 implements the ideas
discussed earlier. A common evaluation of the simulator in
MAX mode is performed in line 1. For each player, if the
traffic volume is below the thresholdα (as checked in line 4),
a phase of the corresponding signal is randomly selected in
line 17. Otherwise, the algorithm loops through and evaluates
all phases of the signal (except the phase used inD, which is
already evaluated), starting in line 8.

Notice that whenever the simulator is executed in either
MIN or MAX modes, we will be able to read the performance
measures and therefore update the incumbent pure strategy.
This best pure strategy will be delivered as the solution at the
end of the algorithm execution, as described in section IV-B.

VI. CASE STUDY: TROY, M ICHIGAN , NETWORK

In order to test performance of the CoSIGN algorithm, we
used a realistic traffic network model built by Wunderlich [38],
[39], [37]. This case study model has been constructed based
on the real traffic network of Troy, Michigan, and, to ensure
fidelity, carefully calibrated against empirical measurements.
To maintain this fidelity, we did not modify the model in any
way except to insert the signal timing plans we generated. A
map snapshot of the Troy network is shown in Fig. 1. The
corresponding model of the network topology is shown in
Fig. 2. Here are the parameters used in our experiments:

Fig. 1. The snapshot of Troy’s area map.

Fig. 2. The Troy network topology model, composed of 529 links, 200 nodes
and 72 zone centroids that can serve as origins or destinations.

6



• Length of the time period:δ = 10 seconds
• Number of time periods:N = 720
• Number of signalized intersections:I = 75
• Number of players:P = N · I = 54,000
• Stopping criterion: 20 iterations of CoSIGN are executed

The original cyclic pattern of traffic signals embedded in the
model was used as the initial solution. We assumed that all
vehicles will follow fastest free-flow paths5 from their origins
to destinations.

A. Competing Timing Plans and Algorithms

The goals of this section are twofold: to demonstrate the
potential benefits of coordinated traffic signal control using
predictive traffic information (as discussed in the Introduc-
tion), as well as evaluate the effectiveness of our algorithmic
approach, the CoSIGN algorithm, for this task. Towards these
goals, we compared CoSIGN to the following alternatives:

• Static: fixed cyclic signal timing plans were supplied by
the city of Troy and embedded in the original model.
When implemented, these signal timing plans were de-
fined by cycle time, offsets, and phase splits. Since real-
time signal plan optimization was not available in Troy at
the time the model was built, these plans are kept constant
throughout the planning horizon.

• Automatic Signal Re-timing (ASR): although real-time
signal timing plan optimization was not available in Troy
when the model was constructed, the INTEGRATION-
UM simulator provides an automatic cycle and phase
split optimization tool, which can be used to evaluate
the potential impact of such schemes. When the tool is
turned on, cycle lengths and green splits at all signals
are recalculated at user-specified intervals, using current
traffic volume information. For detailed description of this
algorithm, refer to Appendix.

Since static and ASR timing plans control each signal in
isolation, the benefits of coordinated signal control can be
demonstrated by comparing CoSIGN to static and ASR control
schemes. This comparison is conducted in section VI-B.

• Coordinate Descent (CD): a straightforward way to
solve a discrete optimization problem of the form (1) is to
start with some initial solution, loop through all variables
(i.e., coordinates) one by one, and solve each single-
variable problem while keeping the values of all other
variables fixed. The result from the single-coordinate
optimization is used to update the current solution. The
process stops when a solution cannot be further improved
after looping through all variables. In our setting, CD can
be formally implemented as follows (hereDk denotes the
joint strategy at iterationk, (sp, Dk

−p) denotes the same
joint strategy with the strategy of playerp replaced by
sp, and the subroutineBESTREPLYp evaluates the best
reply strategy for playerp only):
The stopping criterion in line 3 of CD is based on the
number of consecutive non-improving iterations,u. If

5The fastest free-flow paths are computed with the assumption that free-
flow speeds prevail on all links over the planning horizon.

Algorithm 3 Coordinate Decent (CD) algorithm.
CD()
1: D0 ← INITIAL SOLUTION()
2: k ← 0, p ← 1, u ← 1
3: while u < P do
4: ŝp ← BESTREPLYp(Dk)
5: Dk+1 ← (ŝp, Dk

−p)

6: if Dk+1 = Dk then
7: u = u + 1
8: else
9: u = 1

10: end if
11: k ← k + 1, p ← (p mod P ) + 1
12: end while

u = P (recall that P is the number of variables in
this problem), the objective function value cannot be
improved after looping through allP variables, and thus
we stop.

The CD algorithm by construction considers coordinated
signal timing plans, thus we also expect it to enjoy the benefits
of coordination, as CoSIGN does. However, CD is a “serial”
algorithm in that it considers the variables sequentially, with
the output of one single-variable optimization serving as an
input into the next one. In a real traffic network (like the Troy
network), where the number of variables is large and the time
required to invoke a single simulation is non-negligible, the
time required to obtain any significant improvement through
running CD algorithm may be prohibitively long. To demon-
strate the benefits of parallelization, we will explore the
possibility of parallel execution of CoSIGN and compare it
to CD in subsections VI-C and VI-D.

B. Benefits of signal coordination and predictive information

Results of experiments comparing CoSIGN to the static and
ASR signal timing plans can be seen in Table I. The perfor-
mance measure is the average travel time experienced by all
drivers in the traffic network, evaluated by INTEGRATION-
UM. For thenormal-flow casetaken from Wunderlich’s model,
around 26,000 vehicles were allowed to flow into the network
from the beginning of the simulation to the24th minute mark.
This traffic volume, as well as the flow patters used in our
experiments, are consistent with the traffic patterns observed
in Troy at the time the model was constructed. After the
inflow was stopped, the simulator was allowed to run an
additional 96 minutes in order to clear all traffic. To evaluate
performance under different traffic conditions, we created two
similar scenarios,light-flow caseand heavy-flow case, where
the same traffic flow pattern and time horizon were used,
but the flow rate was decreased (increased) by50%, so that
approximately 13,000 (39,000) vehicles were allowed to flow
into the network.

Note that as depicted in line 4 of Algorithm 1, a random
sample is drawn from the history during the beginning of
each iteration. This randomness makes CoSIGN a stochastic
algorithm. Therefore, to assess performance of CoSIGN, we
report summary statistics (mean, best and worst values) of
solutions found by 15 independent runs of CoSIGN on each
problem instance. Although there is some variability in quality

7



TABLE I

PERFORMANCE OF THREE COMPETING ALGORITHMSa

Avg. travel time (min.)
Light flow Normal flow Heavy flow

Static 10.1 (+13%) 19.4 (+29%)c 43.8 (+58%)
Best ASR 9.4 (+5%) 17.2 (+14%) 38.2 (+38%)

Best 8.8 14.9 25.9
CoSIGN b Mean 8.9 15.1 27.6

Worst 9.0 15.3 29.8
a Average travel times are used for performance comparison purpose.
b Fifteen independent CoSIGN runs are executed in all flow scenarios,

and best, mean and worst times are obtained accordingly.
c The number in each cell is corresponding average travel time (in

minutes) for that case. The percentages listed in row “Static” and
“Best ASR” are margins computed with “CoSIGN — Mean” as base.
For example, +29% in Static-Normal flow cell means that the average
travel time of static timing plan, under normal flow, is 29% more than
that of CoSIGN on average.

of obtained solutions, stemming from the stochastic nature of
the algorithm, CoSIGN finds a signal plan that significantly
improves on the starting solution in each instance.

Table I compares average travel times of signal plans found
by multiple CoSIGN executions to that of a static signal plan
and the one found by ASR. From Table I we can see that
the plans found by CoSIGN (both on average and even in
the worst case) perform better than the other two, under all
flow conditions, and the margin of advantage increases as flow
gets heavier. Since the static signal timing plan is not adaptive
to traffic conditions, this result is to be expected. As for the
ASR algorithm, although it is responsive to the real-time traffic
condition, its underlying assumption is that the network is
undersaturated, and this condition is more likely to be violated
in the heavy-flow case than in the light-flow and normal-flow
case. This leads to relative deterioration of performance of the
ASR approach in the heavy-flow case.

0 2 4 6 8 10 12 14 16 18 20
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Iterations

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Fig. 3. The evolution of best values as a function of iteration count for the
normal-flow case.

It should also be noted that in the ASR implementation
within INTEGRATION-UM, the interval between signal re-
timings is a user-specified parameter. Our experiments with
various settings of this parameter demonstrated its critical
importance to the performance of ASR. Results reported in
Table I reflect the performance of ASR with the re-timing
interval that was empirically found to be the best for each
experiment. (These “best” intervals had different lengths under
different traffic conditions, and we found no discernible pattern
of dependence of the method’s performance on the interval

length; e.g., more frequent re-timings did not necessarily lead
to improvements.) In other words, the reported margin of
CoSIGN over ASR is a conservative bound, and in practice,
with re-timing intervals determined mostly ad hoc, this margin
will be much larger. In Fig. 3, we plot the evolutions of

0 2 4 6 8 10 12 14 16 18 20
8.8

9

9.2

9.4

9.6

9.8

10

10.2

Iterations

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Fig. 4. The evolution of best values as a function of iteration count for the
light-flow case.

0 2 4 6 8 10 12 14 16 18 20
26

28

30

32

34

36

38

40

42

44

Iterations

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Fig. 5. The evolution of best values as a function of iteration count for the
heavy-flow case.

mean best value (average travel time of current incumbent
solution) versus iteration number for the normal-flow case.
Similar evolutions are drawn for the light-flow and heavy-flow
cases in Fig. 4 and Fig. 5 respectively. Fig. 3, 4 and 5 motivate
our choice of terminating CoSIGN after 20 iterations: most of
the improvements were achieved within the first 10 iterations,
and improvements around20th iteration were small.

Another interesting statistic we observe in these computa-
tional experiments is the average travel time experienced by
drivers leaving their origins at different times. For all three
flow scenarios, we consider 24 groups of vehicles, grouped
according to their departure times, where theith group contains
vehicles departing within theith minute. For each such group,
the average travel time of all vehicles in the group is then
plotted as a data point. In Figs. 6, 7, and 8, average travel times
of each group for each control scheme are plotted against all
possible departure minutes (1, 2, . . . , 24). From these figures
we can conclude that as flow grows heavier, CoSIGN performs
relatively better than the two alternatives.

8



0 2 4 6 8 10 12 14 16 18 20 22 24
6.5

7.5

8.5

9.5

10.5

11.5

Departure time (min.)

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Static
ASR
CoSIGN

Fig. 6. Average travel time as a function of vehicles’ departure times, for
the light-flow case.

0 2 4 6 8 10 12 14 16 18 20 22 24
7.5

10

12.5

15

17.5

20

22.5

25

Departure time (min.)

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Static
ASR
CoSIGN

Fig. 7. Average travel time as a function of vehicles’ departure times, for
the normal-flow case.

C. Parallelized implementation of CoSIGN

We have demonstrated the benefits of a coordinated signal
control algorithm that takes into account predictive traffic
information in the previous subsection. However, another
important consideration is the time required to execute such
an algorithm. In a straightforward serial implementation on
a Pentium-4 2.8GHz PC with 1GB RAM, running RedHat
Linux, 20 iterations of CoSIGN took 169.04 hours for the
normal-flow case, and 397.6 hours for the heavy-flow case.

Since CoSIGN is expected to be responsive to current traffic
conditions and forecasts, its execution time should be short
enough to fit into the desired update interval. One way to

0 2 4 6 8 10 12 14 16 18 20 22 24
10

15

20

25

30

35

40

45

50

55

60

Departure time (min.)

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

Static
ASR
CoSIGN

Fig. 8. Average travel time as a function of vehicles’ departure times, for
the heavy-flow case.

significantly reduce the “wall-clock” running time without
sacrificing the precision or scope of the solution is through
parallelization. In this subsection we will describe how to
parallelize CoSIGN and discuss the impact that degree of
parallelization has on the running time of the algorithm.

As mentioned earlier, computation between line 2 and line
17 in Algorithm 2 can be parallelized. WithK identical CPUs
available, we can divide the best reply evaluations for all
players intoK tasks, and assign each task to a CPU. Each task
will take the sampled joint strategy,D, its associated objective
value,v, and the set of players,Pj , as input parameters. The
output of each task will be the best replies,Bj , for players
in Pj . Note that since

⋃K
j=1 Pj = P, we have

⋃K
j=1 Bj = B.

Regardless of the degree of parallelization, as long as samples
drawn in line 4 of Algorithm 1 and in line 17 of Algorithm 2
remain the same, CoSIGN will evaluate the same set of
solutions and return the same output.

In order to asses the impact of parallelization without resort-
ing to repeatedly re-running CoSIGN on clusters of CPUs of
various sizes, we instead analytically relate the running time of
CoSIGN to the degree of parallelization, and rely on a single
run of CoSIGN to make performances estimates.

We will use the following notation:

SMAX : time required to execute INTEGRATION-UMMAX (·)
SMIN : time required to execute INTEGRATION-UMMIN (·)
P : number of players
NCoSIGN: number of CoSIGN iterations executed

(NCoSIGN = 20 in our implementation)
K: number of available CPUs

In our calculations we neglect time spent on communica-
tions between CPUs and samplings in the implementation of
CoSIGN since the time spent on simulations dominates total
execution time. Also, we assume that at every iteration,K
tasks for best reply evaluation are created in a balanced man-
ner, i.e., they require approximately equal time for execution.

In BESTREPLY function, one call to INTEGRATION-
UMMAX (·) and at most (N

∑I
i=1(Si − 1)) calls to

INTEGRATION-UMMIN (·) will be made. Let PT be the
number of calls made to INTEGRATION-UMMIN (·) in one
iteration. The wall-clock running time ofBESTREPLY function
with K CPUs utilized as described above is bounded above
by

TBR ≤ SMAX +
⌈

PT

K

⌉
SMIN (2)

(this is an upper bound since, as discussed in section V-C,
best reply computations are skipped for some of the players).
Therefore, the total wall-clock running time ofNCoSIGN itera-
tions of CoSIGN will be

T (K) = NCoSIGN · TBR

≤ NCoSIGN

(
SMAX +

⌈
PT

K

⌉
SMIN

)
. (3)

To obtain a tighter bound, letPs be the average number of
simulations actually used per iteration, after we consider the
savings described in subsection V-C; we can then replace (3)

9



with

T (K) = NCoSIGN

(
SMAX +

⌈
Ps

K

⌉
SMIN

)

≈ NCoSIGN

⌈
Ps

K

⌉
SMIN . (4)

In the Troy test case with normal traffic flows, we observed
during a typical run of CoSIGN (withNCoSIGN = 20) SMIN =
1.3 seconds andPs = 21,582 (note that this is about a60%
reduction in the number of simulations). Hence (4) becomes:

T (K) ≤ 20
⌈

21,582
K

⌉
1.3 sec.= 20

⌈
21,582

K

⌉
1.3
60

min. (5)

For instance, forK = 134, 70 minutes of wall-clock

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

10

20

30

40

50

60

70

80

90

100

K (number of CPUs)

T
 (

m
in

ut
es

)

Fig. 9. Running time of CoSIGN versus degree of parallelizationK.

computation time will be needed to execute CoSIGN. For
K = 256, the required time is 37 minutes, and forK = 1024
— just 9 minutes. We chose these illustrative values ofK
since such computational facilities are readily available at
educational institutions such as the University of Michigan
and University of Texas. To give the reader a broader sense of
the impact that different degrees of parallelization have on the
wall-clock time required by CoSIGN, we plotted (5) in Fig. 9.

To demonstrate that parallelization is indeed feasible, we
implemented a parallel version of CoSIGN on cluster systems
managed by the Center for Advanced Computing6 at the Uni-
versity of Michigan. The specifications of the cluster systems
are as follows:
• morpheus: the 208 processor Athlon cluster is composed

of 17 nodes of dual Athlon 1600MP CPUs, 29 nodes of
dual Athlon 2400MP CPUs, and 58 nodes of dual Athlon
2600MP CPUs.

• nyx: the 450 processor Opteron cluster is composed of
225 nodes of dual Opterons, ranging from Opteron 240s
(@ 1400 MHz) to Opteron 244s (@ 1800 MHz).

In our experiments, the typical number of processors used
was either 8, 16, or 32, due to the job scheduling policy at the
Center.

Note that these systems are equipped with CPUs slower than
the one we have run our serial experiment on, therefore the
curve in Fig. 9 is not directly applicable. However, a corre-
sponding plot for running time versus degree of parallelization
can be easily reconstructed by measuringSMIN on each system.

6http://cac.engin.umich.edu

One of the main assumptions in our derivation is that
the time spent on communication can be neglected. We
verified this assumption by looking at the timing analysis
from our parallel experiments. We observed that in all cases,
the percentage of time spent on communication is less than
0.005%. Therefore, at least in our current experiments, the
communication time is indeed negligible.

D. Relative performance of parallelized CoSIGN vs. Coordi-
nate Descent

As noted in prior sections, CoSIGN is a heuristic that
searches for an optimal solution to the coordinated traffic
signal control problem. Although we have empirically shown
the algorithm’s benefits based on a realistic test case, the
solution found in 20 iterations is not guaranteed to be an
optimal solution to the problem, even in the local sense.
In fact, while the average vehicle travel time in the normal
flow case was 15.60 minutes under the signal plan found by
CoSIGN, the Coordinate Descent (CD) algorithm described
in subsection VI-A, given sufficient time, found a plan with
average time of 13.13 minutes. It should be noted, however,
that it took CD 362,500 iterations over several days of running
time to identify this solution.

A meaningful way to compare practical performance of
any two heuristic algorithms, such as CoSIGN and CD, on
a problem is to compare the objective values of solutions
they find given the same amount of wall-clock time. As we
demonstrate in this section, as the number of processors made
available to CoSIGN increases, its wall-clock running time
decreases, and the quality of solutions found by CD in the
same time deteriorates dramatically.

As in the previous subsection, we do not resort to multiple
algorithm runs, but rather use analytical estimates of running
times of CD and CoSIGN to perform the comparison.

Recall that the CD algorithm is initialized with some initial
solution, and in each step afterwards, uses a simulation to
evaluate the current player’s alternative decision. In each of
these steps, the solution will be modified if the current player’s
alternative decision improves the solution. As this process
suggests, the CD algorithm cannot be parallelized and must
be executed serially. Therefore, the wall-clock time required
to executeNCD iterations of CD is

(NCD + 1)SMIN . (6)

(We did not invoke the threshold test to bypass potentially
unnecessary simulations in CD since that would require run-
ning INTEGRATION-UMMAX at every iteration. SinceSMAX

exceedsSMIN by 50% to 150%, depending on the number of
vehicles in the network, the added computational effort would
outweigh potential savings.)

Let NCD(K) denote the number of iterations CD would
be able to perform if it were allowed the same amount of
wall-clock time as it takes to executeNCoSIGN iterations of
the parallelized CoSIGN algorithm running on a cluster ofK
processors, i.e.,T (K). Setting(NCD(K) + 1)SMIN = T (K)

10



and using the formulas above, we obtain:

NCD(K) ≤ NCoSIGN(SMAX + dPT /Ke · SMIN )
SMIN

− 1

= NCoSIGN

(
SMAX

SMIN
+

⌈
PT

K

⌉)
− 1. (7)

(Recall thatPT = N
∑I

i=1(Si − 1).) Once again, ifPs is
the actual average number of simulations used per iteration
by CoSIGN, we can obtain a tighter bound:

NCD(K) ≤ NCoSIGN

(
SMAX

SMIN
+

⌈
Ps

K

⌉)
− 1. (8)

In the Troy test case with normal traffic flows,NCoSIGN =
20, Ps = 21,582, and the numeric form of (8) becomes:

NCD(K) ≤ 20
(

SMAX

SMIN
+

⌈
21,582

K

⌉)
− 1

≈ 20
⌈

21,582
K

⌉
. (9)

The number of iterations CD will be able to complete in
the same amount of wall-clock time as CoSIGN is inversely
proportional to the number of processors available to CoSIGN.

As mentioned in the beginning of the section, we did
perform one multi-day run of CD for the normal flow scenario
in the Troy network. We can now compare the performance
of the algorithms as follows: for a particular value ofK, we
estimateNCD(K) based on (9) and consult the output of the
CD run to obtain the average travel time for the signal plan
found by CD inNCD(K) iterations. The resulting comparison
is presented in Fig. 10, where we plot the average travel time
of solutions found by CD inNCD(K) iterations versusK
for the normal-flow case. A similar graph for the heavy-flow
case is plotted in Fig. 11. (These graphs may appear a bit
counterintuitive at first, as the increase in the number of CPUs
results in worse objective function values found. To interpret
these graphs, recall that addition of CPUs decreases the
amount of wall-clock time allotted to CD, allowing for fewer
iterations and less progress.) For comparison, the average
travel times of 15.08 minutes (for the normal flow case) and
27.62 minutes (for the heavy flow case) obtained by CoSIGN
are also plotted on the same graph. (Recall that these are the
mean performance measures of solutions found by several runs
of CoSIGN on each problem instance.)

As Fig. 10 indicates, CD underperforms CoSIGN in this
comparison if the latter is allowed 26 CPUs or more. More-
over, if CPUs number in the hundreds, CD makes almost no
progress from the initial solution in the time it takes CoSIGN
to complete its run. Similar result can be observed in Fig. 11,
where CD underperforms CoSIGN in this comparison if the
latter is allowed 16 CPUs or more.

Even though in the long (very long!) run CD found a better
solution than CoSIGN, since wall-clock times available in
practice are limited, the parallelized CoSIGN algorithm will
always be superior to CD in practice. Since CD is an inherently
sequential algorithm, multiple available CPUs can be utilized
by running CD for the specified number of iterations starting at
different initial solutions on each CPU and reporting the best
solution found. However, based on our empirical experience,

0 100 200 300 400 500 600 700 800 900
13

14

15

16

17

18

19

20

K (number of CPUs available to CoSIGN)

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(m
in

.)

CD
CoSIGN

Fig. 10. Average travel time of solution found by CD when given the same
wall-clock time as the parallel execution of CoSIGN withK processors, vs.
K: for the normal-flow case.

0 100 200 300 400 500 600 700
22

24

26

28

30

32

34

36

38

40

K (number of CPUs available to CoSIGN)
A

ve
ra

ge
 tr

av
el

 ti
m

e 
(m

in
.)

CD
CoSIGN

Fig. 11. Average travel time of solution found by CD when given the same
wall-clock time as the parallel execution of CoSIGN withK processors, vs.
K: for the heavy-flow case.

CD makes very slow progress in each iteration. Therefore,
it will not in fact achieve significant improvement over the
starting points it is provided.

VII. F UTURE WORK

A natural extension of the paper is to test CoSIGN on other
even larger and more detailed traffic networks. The use of more
advanced traffic simulators may also be desirable in modeling
more complicated traffic characteristics. Also, in some cases,
we may want to reduce the length of control intervals in order
to better emulate real-world scenarios. All these factors, when
combined together, will make an already challenging problem
even more so. To reduce computational requirement, we can
replace the full-blown simulations with simplified ones (e.g.,
see [40]) in best reply evaluations. Since, in evaluating best
replies, what we really care about is the relative superiority of a
single player’s strategy selections; a simplified simulation that
can accurately provide this relative performance comparison
will be good enough. Of course, in order to design good ap-
proximated best replies, a deep understanding of the problem
structure is required (as demonstrated in [25]). This issue is
critical, since being able to complete best reply evaluations
quickly is key to the implementation of real-time control.

Another interesting extension is to evaluate the robustness
of the signal timing plans obtained by CoSIGN in the presence
of stochastic traffic flows. For a small traffic network, the relia-
bility of traffic signal timing plans can be derived analytically,

11



e.g., see [41]. In our case, analytical derivation is not possible
due to the size of the problem, therefore we should seek other
indicators, e.g., the variance of vehicle travel times. This type
of analysis will be very useful in determining the effectiveness
of our approach in the face of stochasticity.

Another way to deal with the stochasticity in traffic flows
is to adopt a rolling-horizon type of implementation (e.g., see
[21], [42]). Each time we observe a change in the traffic flow
pattern (either measured directly, or inferred indirectly), we
can use the latest information to update the model and rerun
the CoSIGN algorithm.

Finally, to more accurately capture the operating conditions
of real traffic networks, we should introduce feasibility con-
straints to our model (e.g., minimal or maximal green time
continuously given to a phase). However, if constraints are
introduced to our model, some sampled joint decisions may
become infeasible, and this requires special treatment. Our
current conjecture is that such difficulty can be handled by
defining proper repair rules.

Our ultimate goal is to design an algorithm that is capable
of finding a robust, scalable, and responsive coordinated
traffic signal timing plan in a large-scale traffic network. The
framework introduced in this paper provides the foundations
for developing such a system. However, to move closer to
our ultimate goal, we should incrementally incorporate the
improvements discussed here.

VIII. A CKNOWLEDGEMENTS

This work was partially supported by the National Science
Foundation under Grants DMI-0217283 and DMI-0422752.
The authors gratefully acknowledge Karl Wunderlich’s valu-
able suggestions and advice. Also, the authors would like
to thank Michael Wellman and anonymous referees for their
detailed comments and suggestions.

APPENDIX

AUTOMATIC SIGNAL RE-TIMING

Automatic signal re-timing in INTEGRATION-UM is an
online cycle time and phase-split optimization heuristic, as
described in Wunderlich [37]. The underlying theory for
this approach is based on Webster and Cobbe’s model [1].
Underlying analysis will not be explained in detail here;
instead, the implementation of the algorithm as embedded in
INTEGRATION-UM is presented.

The automatic signal re-timing algorithm determines signal
timing plans based on current flows on the approaches7 leading
to the signalized intersections. (In this appendix we use the
term “flow” to represent the volume of traffic on a link or
approach.) The re-timing algorithm in INTEGRATION-UM
is invoked repeatedly at user-specified intervals, and proceeds
in three steps:

1) Estimating link flows: for each signalized intersection,
the equivalent flow for each link is estimated by combing

7If a signal timing plan is used at more than one intersection within the
traffic network, the approach is defined as the set of links coming into these
controlled intersections during the same phase.

average incoming flow and average size of the standing
queue. The following formula is used for this purpose:

va = fa + 4qa, (10)

where va is the estimated flow on linka, fa is the
exponentially smoothed average flow on linka, andqa is
the exponentially smoothed average size of the standing
queue on linka.
Both average incoming flow (fa) and average size of the
standing queue (qa) of link a are obtained by periodi-
cally performing the following exponential smoothing
updates:

fa := 0.75fa + 0.25fa
in (11)

qa := 0.9qa + 0.1q̂a, (12)

wherefa
in is the number of vehicles flowing into linka

during the interval between smoothing updates, andq̂a

is the size of standing queue on linka during the same
interval.

2) Computing critical values: based on the above flow
data, the procedure will compute a measure (i.e., critical
value) that represents the relative congestion of each
link. By using this measure, the procedure then com-
putes cycle length and the allocation of green times.
For each linka leading to the intersections controlled
by the signal timing plan, a critical value (measure
of congestion)ya is computed as the ratio between
estimated link flow and link’s saturation flow:

ya =
va

sa
, (13)

wheresa is link a’s saturation flow rate (as defined in
the network topology definition).
Let the setAp consist of all the links that have the right
of way during phasep of the signal under consideration.
The critical value for phasep is then the maximalya of
all links in Ap:

yp = max
{

max
a∈Ap

{ya}, ymin

}
, (14)

whereymin is a predefined minimal critical value.
The combined critical value for the signal timing plan,
denoted byY , is then the sum of values ofyp over all
its phases:

Y =
∑

p

yp. (15)

3) Computing cycle time and green time for each phase:
the new cycle time for each signal timing plan,Co, is
computed from its corresponding critical value,Y , and
the sum of lost time (i.e., yellow time) for all phases,
L. For Y ≤ 0.95,

Co = max{min{ (1.5L + 5)
(1− Y )

, Cmax}, Cmin} (16)

Otherwise,Co = Cmax. Cmin andCmax are the specified
minimal and maximal cycle times, respectively.

12



After Co is obtained, the length of green time for all
phases can be computed accordingly.gp, the length of
green time assigned to phasep, is determined by

gp =
yp

Y
(Co − L). (17)

REFERENCES

[1] F. V. Webster and B. M. Cobbe,Traffic Signals, Road Research Technical
Report 39, Her Majesty’s Stationery Office, London, 1958.

[2] R. Allsop, “SIGSET: A computer program for calculating traffic capacity
of signal-controlled road junctions,”Traffic Eng. & Control, vol. 13, pp.
58–60, 1971.

[3] ——, “SIGCAP: A computer program for assessing the traffic capacity
of signal-controlled road junctions,”Traffic Eng. & Control, vol. 17, pp.
338–341, 1976.

[4] J. D. C. Little, “The synchronization of traffic signals by mixed-integer
linear programming,”Oper. Res., vol. 14, no. 4, pp. 568–594, 1966.

[5] J. D. C. Little, M. D. Kelson, and N. H. Gartner, “MAXBAND:
A program for setting signals on arteries and triangular networks,”
Transportation Research Record, vol. 795, 1981.

[6] D. I. Robertson, “TRANSYT method for area traffic control,”Traffic
Eng. & Control, vol. 10, pp. 276–281, 1969.

[7] A. J. Miller, “A computer control system for traffic networks,” in2nd Int.
Symp. on the Theory of Road Traffic Flow, London, 1965, pp. 200–220.

[8] A. G. Sims, “The Sydney coordinated adaptive traffic system,” inUrban
Transport Division of ASCE Proc., New York, NY, 1979, pp. 12–27.

[9] J. J. Henry, J. L. Farges, and J. Tuffal, “The PRODYN real time
traffic algorithm,” in4th IFAC/IFIP/IFORS Conf. on Control in Transp.
Systems, 1983, pp. 305–310.

[10] J. J. Henry and J. L. Farges, “PRODYN,” in6th IFAC/IFIP/IFORS Symp.
on Control, Computers and Comm. in Transp., 1989, pp. 253–255.

[11] N. H. Gartner, “OPAC: A demand-responsive strategy for traffic signal
control,” Transportation Research Record, vol. 906, pp. 75–81, 1983.

[12] N. H. Gartner, F. J. Pooran, and C. M. Andrews, “Implementation of
the opac adaptive control strategy in a traffic signal network,” inProc.
IEEE Intell. Transport. Syst. Conf., 2001, pp. 195–200.

[13] V. Mauro and D. DiTaranto, “UTOPIA,” in6th IFAC/IFIP/IFORS Symp.
on Control, Computers and Comm. in Transp., 1989, pp. 245–252.

[14] S. Yagar and B. Han, “A procedure for real-time signal control that
considers transit interference and priority,”Transp. Res. B, vol. 28, no. 4,
pp. 315–331, 1994.

[15] S. Sen and K. L. Head, “Controlled optimization of phases at an
intersection,”Transp. Science, vol. 31, pp. 5–17, 1997.

[16] P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. I. Winton, “SCOOT
- a traffic responsive method for coordinating signals,” inLaboratory
Report no. LP 1014. Crowthorne, Berkshire, England: Transportation
and Road Research, 1981.

[17] F. Boillot, J. Blosseville, J. Lesort, V. Motyka, M. Papageorgiou, and
S. Sellam, “Optimal signal control of urban traffic networks,” in6th Int.
Conf. on Road Traffic Monitoring and Control. London, England: IEE,
1992, pp. 75–79.

[18] P. Dell’Olmo and P. B. Mirchandani, “REALBAND: An approach for
real-time coordination of traffic flows on a network,”Transportation
Research Record, vol. 1494, pp. 106–116, 1995.

[19] W.-H. Lin and C. Wang, “An enhanced 0-1 mixed-integer LP formulation
for traffic signal control,”IEEE Trans. Intell. Transport. Syst., vol. 5,
no. 4, pp. 238–245, December 2004.

[20] T. H. Heung, T. K. Ho, and Y. F. Fung, “Coordinated road-junction traffic
control by dynamic programming,”IEEE Trans. Intell. Transport. Syst.,
vol. 6, no. 3, pp. 341–350, September 2005.

[21] P. B. Mirchandani and L. Head, “A real-time traffic signal control
system: Architecture, algorithms, and analysis,”Transp. Res. C, vol. 9,
no. 6, pp. 415–432, 2001.

[22] P. B. Mirchandani and F.-Y. Wang, “RHODES to intelligent transporta-
tion systems,”IEEE Intell. Syst., vol. 20, no. 1, pp. 10–15, 2005.

[23] K. Ashok and M. E. Ben-Akiva, “Alternative approaches for real-time
estimation and prediction of time-dependent origin-destination flows,”
Transp. Science, vol. 34, no. 1, pp. 21–36, 2000.

[24] ——, “Estimation and prediction of time-dependent origin-destination
flows a stockhastic mapping to path flows and link flows,”Transp.
Science, vol. 36, no. 2, pp. 184–198, 2002.

[25] A. Garcia, D. Reaume, and R. L. Smith, “Fictitious play for finding
system optimal routings in dynamic traffic networks,”Transp. Res. B,
vol. 34, no. 2, pp. 146–157, February 2000.

[26] J. von Neumann and O. Morgenstern,Theory of Games and Economic
Behavior, 2nd ed. Princeton University Press, 1947.

[27] J. G. Wardrop, “Some theoretical aspects of road traffic research,” in
Proc. of Institute of Civil Engineers, Part II, vol. 1, 1952, pp. 325–378.

[28] R. D. McKelvey and A. McLennan, “Computation of equilibria in finite
games,” inHandbook of Computational Economics. Elsevier, 1996,
vol. 1.

[29] G. W. Brown, “Iterative solution of games by fictitious play,” inActivity
Analysis of Production and Allocation. John Wiley, New York, 1951,
pp. 374–376.

[30] J. Robinson, “An iterative method of solving a game,”Annals of
Mathematics, vol. 54, pp. 296–301, 1951.

[31] D. Monderer and L. S. Shapley, “Fictitious play property for games
with identical interests,”J. Econom. Theory, vol. 68, no. 1, pp. 258–
265, 1996.

[32] T. J. Lambert, M. A. Epelman, and R. L. Smith, “A fictitious play
approach to large-scale optimization,”Oper. Res., vol. 53, no. 3, pp.
477–489, May-June 2005.

[33] J. F. Nash, “Equilibrium points in n-person games,” inProc. National
Academy of Sciences, vol. 36, 1950, pp. 48–49.

[34] D. Fudenberg and J. Tirole,Game Theory. MIT Press, 1991.
[35] T. J. Lambert and H. Wang, “Fictitious play approach to a mobile unit

situation awareness problem,” Univ. Michigan, Tech. Rep., 2003.
[36] M. Van Aerde, J. Voss, and G. McKinnon,INTEGRATION Simulation

Model User’s Guide, Queen’s Univ., 1989.
[37] K. E. Wunderlich, “Link travel time prediction for dynamic route guid-

ance in vehicular traffic networks,” Ph.D. dissertation, Univ. Michigan,
1994.

[38] K. E. Wunderlich, D. E. Kaufman, and R. L. Smith, “Link travel time
prediction for decentralized route guidance architectures,”IEEE Trans.
Intell. Transport. Syst., vol. 1, no. 1, pp. 4–14, March 2000.

[39] K. E. Wunderlich and R. L. Smith., “Large scale traffic modeling
for route guidance evaluation: A case study,” Univ. Michigan, IVHS
Program Technical Report 92-08, 1992.

[40] P. Dell’Olmo and P. B. Mirchandani, “A model for real-time traffic
coordination using simulation based optimization,” inAdvanced Methods
in Transportation Analysis, L. Bianco and P. Toth, Eds. Springer, 1996,
pp. 525–546.

[41] H. K. Lo, “A reliability framework for traffic signal control,”IEEE
Trans. Intell. Transport. Syst., vol. 7, no. 2, pp. 250–260, June 2006.

[42] F. Busch and G. Kruse, “MOTION for SITRAFFIC - a modern approach
to urban traffic control,” inProc. IEEE Intell. Transport. Syst. Conf.,
2001, pp. 61–64.

13


