
DSWindows 2.2 Macros

User Guide

Issue 1

March 1997

NOTICE

© Datastream International Limited, 1997

All rights reserved. No part of this publication may be reproduced without the prior written consent of
Datastream International Limited, Monmouth House, 58-64 City Road, London EC1Y 2AL.

The associated help file (DSWIN.HLP) is Portions Copyright © 1994-1995 Blue Sky Software
Corporation. All rights reserved. The contents of the help file are copyright Datastream International
Limited.

Datastream International Limited is the owner of the following Trade Marks and Service Marks:

BONDVIEW, Business Research Services, CGT, Code Lookup, CompanyWatch, D8XTEC, Data Channel,
DataSheet, DATASTREAM, dataSTREAM, DATASTREAM FUNDLINE, DATASTREAM ICON, Datastream
Investment Management Services, DATASTREAM MARKSMAN, DATASTREAM PERFORM, DATASTREAM
REVEAL, DCTO123, DIMS, DLIVE, DSAT, DSCOM, DSDDE, DSGATE, DSGC, DSLASER, DSNET,
DSTODTP, DSPLOT, DSTERM, DSTOPIC, DSWindows, Easystream, EconoView, Fixed Income Service,
FundBase, Gainline, Global Custodian Interface, INLINE, Local I/A, Local Soft Dealing, Money Market Ledger,
MoneyWatch, Portfolio Performance, PREVIEW, Private Clients Valuations Service, REALISE, Datastream
Research Services, REVEDIT, ShareView, SIGNAL, Soft Dealing System, TrustWatch, VARIANCE,
WORLDVIEW.

Windows is a trademark of the Microsoft Corporation.

Notice

All Datastream’s services, databases (including the data contained therein), programs, facilities,
publications, manuals and user guides ("Proprietary Information"), are proprietary and confidential and
may not be reproduced, re-published, redistributed, resold or loaded on to a commercial network (e.g.
Internet) without the prior written permission of Datastream International Limited ("Datastream").

Data contained in Datastream’s databases has been compiled by Datastream in good faith from sources
believed to be reliable, but no representation or warranty express or implied is made as to its accuracy,
completeness or correctness. All data obtained from Datastream’s databases is for the assistance of
users but is not to be relied upon as authoritative or taken in substitution for the exercise of judgement
or financial skills by users. Neither Datastream nor such other party who may be the owner of the
Proprietary Information accepts any liability whatsoever for any direct, indirect or consequential loss
arising from any use of such Proprietary Information.

CONTENTS

Alphabetic Index to Commands and Instructions vii

 About this guide ix

What’s new in DSWindows 2.2 ix
Who should use this guide xi
What you need to know . xi
How to use this guide . xii
Conventions . xiii
Further information . xiv

 Introduction 1

What are Datastream macros? 2
Commands . 2
Instructions . 4
Labels . 4
Constants and variables 4
Functions and expressions 5
Data files . 5

Creating macros . 8
Using the macro recorder 9

Editing macros . 10
Running macros . 10
Scheduling your macros using DSAGENDA 11
Summary of general macro rules 15
Tips on writing and editing macros 16

Contents

Issue 1 i

 Macro commands and instructions 17

Conventions used in this section 18
Sending data to Datastream 19
Printing . 25
Paging . 26
Instructions (commands which control the flow of a macro) 27
Graphics . 41
Graphic annotations . 52

Coordinates . 53
Using quotes . 53
Selecting/deselecting 55
Amending items . 59
Creating new items . 63
Redrawing . 69

Data Channel/Fundline . 70
Capturing text . 74
Arranging windows . 76

Activating windows . 76
Closing windows . 76
Minimizing windows . 76
Maximizing windows 77
Restoring windows . 77

Connecting to Datastream 78
Error recovery, logging errors, writing to file 82
Miscellaneous . 85

Contents

ii DSWindows 2.2 Macros User Guide

 Constants and variables 87

Introduction . 87
Constants . 87

Variables . 92
Local and global variables 92
System variables . 93

 Functions and expressions 99

Functions . 99
Manipulating strings . 99
Converting strings . 102

Expressions . 105

How to make your macros more robust 107

Introduction . 107
Techniques for making your macros more robust 108

&CONNECTSTATE 109
LOGERRORSTOFILE 109
Writing Trace information 111
&ATPROMPT . 112
&AtOutput . 113
&RECOVERYATTEMPTS 113
Adding a Waiting period 114
Ending recovery using the RECOVERSTOP and
 ENDALLMACROS commands 114
Potential problems with the SEND command 115
Starting recovery by calling a recovery macro 116
Failures in the recovery macro 117

Template recovery macro, RECOVER.MAC 117

Contents

Issue 1 iii

 Example macros 125

Example 1: DEMOGLST.MAC 125
Example 2: DEMO900.MAC 126
Example 3: DEMOGRPH.MAC 127
Example 4: DEMOLIST.MAC 127
Example 5: DEMOSAVE.MAC 128
Example 6: DEMOPSS.MAC 129
Example 7: DEMODATE.MAC 130
Example 8: DEMOSITA.MAC 131
Example 9: EX_PRNT.MAC 134
Example 10: EX_SAVE.MAC 135
Example 11: EX_LIST.MAC 136
Example 12: EX_SET.MAC 138
Example 13: EX_STRNG.MAC 139
Example 14: EX_SYSTM.MAC 140
Example 15: EX_MASTR.MAC 141
Example 16: EX_401X.MAC 142
Example 17: EX_GLIST.MAC 144
Example 18: EX_GSTYL.MAC 147
Example 19: EX_GANT.MAC 150
Example 20: EX_300C . 153
Example 21: EX_GANT1.MAC 160
Example 22: EX_CSV.MAC 163
Example 23: EX_CLIP.MAC 165
Example 24: EX_EXCEL.MAC 167
Example 25: STARTUP.MAC 170
Example 26: LOGON.MAC 171
Example 27: EX_PSS.MAC 172
Example 28: EX_WRITE 174
Example 29: RECOVER.MAC 176
Example 30: EX_TIMES.MAC 176
Example 31: EX_DATEF.MAC 177
Example 32: EX_PROMT.MAC 178
Example 33: EX_CLOSE.MAC 179
Example 34: EX_900CO.MAC 179
Example 35: EX_CONN.MAC 180

Contents

iv DSWindows 2.2 Macros User Guide

Appendix A 181

Converting control files into macros 181
Introduction . 181
The conversion program 181

INDEX 189

Contents

Issue 1 v

Contents

vi DSWindows 2.2 Macros User Guide

ACTIVATEBACKPAGES 76
ACTIVATEGRAPHICS 76
ACTIVATESAVEFILES 76
ACTIVATETERMINAL 76
ADDTOSELECTITEMS 57
ALLOWDUPLICATETIMESERIES 73
AUTOPAGE 26
AUTOPRINT 25
AUTOSAVE 43

BEEP 86

CALL 27
CAPTURE 74
CHANGEITEMS 61
CLOSEBACKPAGES 76
CLOSEDSWINDOWS 76
CLOSEGRAPHICS 76
CLOSESAVEFILES 76
CLOSETERMINAL 76
COMMENT 36
CONFIGUREDC 70
CONNECT 78
CONNECTNOQUEUE 79
CONNECTNOWAIT 79
CONSTTIMESERIES 72
COPYITEMS 60

DATA 32
DELETEITEMS 60
DESELECTGRAPH 51
DESELECTITEMS 58
DISCONNECT 81
DISPLAYLAYOUT 41
DISPLAYSINGLEGRAPH 41

END 31
ENDALLMACROS 83
ENDAUTOSAVE 44
ENDCAPTURE 75
ENDDATA 33
ENDDC 72

ENDPAGE 26
ENDPRINT 25
EXPORTGRAPHICS 44

GOTO 30
GRAPHDRAWOFF 69
GRAPHDRAWON 69
GRAPHPAGESETUP 47

IF 28
INPUT 33

LOADFILLSTYLES 49
LOADGRAPHFILE 46
LOADLAYOUT 48
LOADLAYOUTFILE 46
LOADLINESTYLES 48
LOADTEXTSTYLES 49
LOGERRORSTOFILE 83
LOGON 80

MAXIMIZEBACKPAGES 77
MAXIMIZEDSWINDOWS 77
MAXIMIZEGRAPHICS 77
MAXIMIZESAVEFILES 77
MAXIMIZETERMINAL 77
MESSAGE 86
MINIMIZEBACKPAGES 76
MINIMIZEDSWINDOWS 76
MINIMIZEGRAPHICS 76
MINIMIZESAVEFILES 76
MINIMIZETERMINAL 76
MOVEITEMS 59

NEWBOX 63
NEWLINE 68
NEWRECT 65
NEWTEXT 67

ONERROR 85
OPENDATA 32
OPENSAVEFILE 75

PRINTGRAPHFILE 45
PRINTGRAPHICS 44
PRINTLAYOUTFILE 45
PRINTSAVEFILE 25

RECOVERSTOP 83
RECOVERUSING 82
REFINESELECTITEMS 58
RESTOREBACKPAGES 77
RESTOREDSWINDOWS 77
RESTOREGRAPHICS 77
RESTORESAVEFILES 77
RESTORETERMINAL 77

SAVEGRAPHICS 42
SAVEWMF 43
SELECTGRAPH 51
SELECTITEMS 55
SENDANDCHECK 24
SET...TO 39
SETDATEEXPORTFORMAT 86
SETGLOBAL 40
SETGRAPHNAME 50
STARTDC 71
STARTPROGRAM 27

USERINPUT 37

WAIT 38
WRITETOFILE 84

 Alphabetic Index to Commands and Instructions

Contents

Issue 1 vii

Contents

viii DSWindows 2.2 Macros User Guide

 About this guide

This user guide accompanies the DSWindows 2.2 User Guide and describes the
DSWindows macro language.

It begins with an introduction to DSWindows macros, lists all the macro commands,
variables, constants, functions and expressions. It includes a large number of sample
macros, with explanations of what they do and how they work.

What’s new in DSWindows 2.2

This section briefly outlines the main changes made to the DSWindows macros
language and which collectively comprise the new features in version 2.2.

Macro recovery q One of the prime objectives in 2.2 is to improve the robustness and recovery
capability of DSWindows macros. A template recovery macro, RECOVER.MAC,
has been added which includes a number of new macro commands, instructions
and variables. For example:

a new command, LOGERRORSTOFILE, enables you to send error messages
to a log file rather than the screen. This helps you to build self-reporting
macros which do not require user interaction if an error occurs during
execution of the macro.

a new instruction, RECOVERUSING, enables you to specify the name of the
recovery macro which will be automatically triggered by a failed SEND or
UPDATELOCALCODE command.

a new command, RECOVERSTOP, allows you to switch the recovery
process off and revert to the normal macro behaviour - this is useful if you
want to return control to the calling macro at the end of recovery.

a new system variable, RecoveryAttempts, allows you to control the number
of times a recovery macro will attempt to resolve a problem (such as a failed
SEND command), and also the way in which recovery is attempted.

About this guide What’s new in DSWindows 2.2

Issue 1 ix

a new macro command, ENDALLMACROS, provides an alternative way of
terminating the recovery process by simply killing all active macros.

a new system variable, &ATPROMPT, enables you to test whether you are
sitting at the Datastream prompt (Program Finder). This is especially useful
in recovery macros where one of the main objectives is to recover the state
of being at the prompt before returning control to the calling macro.

To support the introduction of these new elements, a new chapter has been
added to this guide called How to make your macros more robust. This
chapter provides a full explanation of all these new techniques and includes the
complete RECOVER.MAC, together with some general explanation of how the
macro works.

Date Macro commands

q a new macro command, SetDateExportFormat, allows you to set the
DSWindows Export date format. The command takes a single input parameter as
a date format string. This should match the date format strings listed in the short
date styles options in the Windows control panel.

Data Channel Macro commands

q a new macro command, ConstTImeSeries, when executed after starting Data
Channel translation, allows a constant value to be inserted in the next
row/column.

q a new macro command, AllowDuplicateTimeSeries, enables you to control
merging of requests for the same data but with different start/end dates.

Code Lookup q Updates now repeat until all outstanding Code Lookup updates have been
processed. The total duration of the update can be limited by setting a timeout
parameter:

to control how long a PC is connected to the Datastream host for code
updates, the StartUpdate command can now take a new parameter which
specifies the number of minutes a code update can run for before being timed
out.

Connect macros q To support the release of DSGATE 3.0 and increase the range of connection
options, the CONNECT, CONNECTNOWAIT and CONNECTNOQUEUE
commands can now take either session or gateway name and queue name
parameters.

What’s new in DSWindows 2.2 About this guide

x DSWindows Macros User Guide

Scheduling unattended running of macros

q DSWindows 2.2 includes a new default scheduler application (DSAGENDA)
which enables users to create schedules for macros. The Introduction chapter
now includes details of how to use DSAGENDA.

Macro variables q A new macro constant, &OS, tells you what operating system DSWindows was
built for - useful for writing a macro intended for use on multiple platforms.

Who should use this guide

This guide is for DSWindows users who want to use macros to automate the
functions provided by DSWindows. It is assumed that users have the DSWindows
User Guide.

What you need to know

In this guide, we assume that you know how to use your PC, and its keyboard. If
not, please refer to the manufacturer’s instructions. We assume also that you have
used Microsoft Windows and that you are familiar with Windows concepts and
procedures. It is also assumed that you have used DSWindows and have some
familiarity with what it does.

This guide does not tell you how to use Datastream programs, or how to use
DSWindows. DSWindows provides an interface to Datastream’s programs. The
DSWindows macro language enables you to automate DSWindows functionality. If
you need information on Datstream programs, please refer to the relevant user guide
or codes manual. For information on how to use DSWindows interactively, please
refer to the DSWindows User Guide.

If you are completely new to Datastream, please ask your Customer Services
Executive or Client Liaison Executive for help with training and the provision of
appropriate documentation.

About this guide Who should use this guide

Issue 1 xi

How to use this guide

This guide provides a reference source for the DSWindows macro language.

It is split into seven sections:

q About this guide (this section)

Tells you how to use the guide and how it is structured. It gives information on
important keys and conventions used in the guide. It also tells you what you
need to know and where to find further information.

q Introduction

Explains what macros are, introduces the concepts used, describes how to create,
edit and record macros, and how to create schedules for running them.

q Macro instructions and commands

Lists all of the instructions and commands in the macro language, with detailed
information on when to use them, the syntax, etc.

q Constants and variables

Lists all of the constants and variables used in macros, with detailed information
on when to use them, the syntax, etc.

q Functions and expressions

Lists all of the functions and expressions used in macros, with detailed
information on when to use them, the syntax, etc.

q How to make your macros more robust

Details all the techniques available for writing self-reporting macros with inbuilt
error handling and recovery capabilities. This section also includes
documentation of the template recovery macro, RECOVER.MAC.

q Sample macros

Gives a number of macros with explanations of what they do, and how they are
written. You can use these macros as they are, or copy them and edit them to
suit your own purposes.

How to use this guide About this guide

xii DSWindows Macros User Guide

q Appendix A

This section is for users who have previously been using DSCOM or
DSTERM . It provides information on the program which converts
DSCOM/DSTERM control files to macros.

NOTE If the concept of macros is new to you, or if you have not written a DSWindows macro
before, it is recommended that you read the Introduction before you start.

Conventions

Keys In Datastream user guides and online help, the names of keys
are shown in small capital letters; for example, the function
keys are F1 to F12 and keys identified on the keyboard with
words are shown as, for example, ALT or ESC.

Keystrokes When two or more keys need to be pressed simultaneously,
the plus character is used to indicate simultaneous
keystrokes; for example, holding down the CTRL key while
pressing the ‘t’ key is shown as CTRL+t.

Enter key We use ENTER to refer to the key you press to transmit
instructions to the computer. This may be marked on your
keyboard as, for example, Return, Carriage Return, Enter or
↵ .

Input When describing other keyboard input, we show what you
must type using a slightly different bold typeface; for
example ‘...type BMAH and press ENTER’.

Screen displays All screen messages and menu options referred to in the text
are shown in bold type; for example ‘...select the Print
command...’.

About this guide Conventions

Issue 1 xiii

Further information

Other publications For information on using DSWindows, please refer to the DSWindows User Guide.

For information on using the Datastream programs, please refer to the relevant user
guide or manual:

q Summary of programs

q Time Series Analysis User Guide

q Company Accounts Definitions Manual

q Company Accounts User Guide

q Data Channel User Guide

q Economics User Guide

q Graphics User Guide

q Economics Codes Manual (Vols. 1 - 4)

q Datastream Definitions Manual

q Indices, Interest and Exchange Rates Manual

Online help Online help is incorporated into all Datastream interface software and includes
context sensitive help on menu commands and dialog boxes as well as a more
general help system containing information on creating, editing and running macros.
Online help now also includes a very large and comprehensive set of definitions
covering terms used for all types of security, datatypes definitions (including I/B/E/S
and MSCI), Datastream terminology and data sources and updating procedures. To
access online help, click on the Help menu and select an appropriate option.

Telephone support Datastream provides Helpline support for queries on programs, data, communications
problems and so on. For an up-to-date list of telephone numbers you can use, refer to
the back cover of this guide.

Training Datastream provides a full range of hands-on training workshops, tailored to give you
the knowledge, practice and confidence to make full use of the Datastream system.
The workshops are constantly reviewed to meet changing market needs and to suit
the differing requirements of each country in which the Datastream service is
available. Contact your local Account Manager for complete and up to date
information.

Further information About this guide

xiv DSWindows Macros User Guide

 Introduction

This section introduces you to the Datastream macro language. If the concept of
macros is new to you, or you have not created or edited macros before, it is
recommended that you read this section before moving on to the detailed
explanations of individual elements of the macro language which are given in the
subsequent sections.

The Introduction includes:

q What are macros ?
Introduces the main elements of the macro language (commands, instructions,
labels, constants and variables, functions and expressions, data files).

q Using macros
A short tutorial on creating, editing and running macros, using the macro
recorder and scheduling your macros using DSAGENDA.

q General macro rules
A brief list of the general rules which must be followed when creating or editing
a macro.

q Tips
A few suggested tips on writing good macros.

q Examples
Examples of typical macros showing their structure and usage are given within
each section.

 Introduction

Issue 1 1

What are Datastream macros?

Macros are short programs which enable you to automate Datastream functions. The
Datastream macro language is an interpretive language which runs on your PC or
workstation. It is loosely based on the Basic programming language, but has its own
easy-to-use syntax. Users familiar with any simple programming or macro language
you will find that the concepts used in Datastream macros are very similar.

You can create a macro in a suitable editor, such as the Windows Notepad, and then
run it from the Terminal window in DSWindows. DSWindows also provides a macro
recorder which enables you to create macros by recording the sequence of keystrokes
required to achieve a particular task.

NOTE The recorder only records the information sent to Datastream; commands such as
PRINTGRAPHICS must be added manually (for an example, see page 142).

The macro language consists of the following main programming elements:

q commands

q instructions

q labels

q constants and variables

q functions and expressions

q data files

Commands

You can use macro commands to perform a wide range of functions. For example:

q connecting to Datastream

q arranging windows

q sending data requests to Datastream

q paging

q capturing, saving and printing data

q downloading and exporting data

 Introduction What are Datastream macros?

2 DSWindows 2.2 Macros User Guide

Examples 1. A simple macro command might run the Datastream 190A program. You can do
this with the SEND command. For example, to retrieve company accounts data
for ICI and BP, you could write a macro as follows, and run it from the
Terminal window:

SEND ("190A ICI")
SEND ("190A BP")

2. Since you are likely to use the SEND command frequently, it has an abbreviated
form in which the word ‘SEND’ is replaced by the character ‘>’ and no quotes
are required around the input characters. The abbreviated form of the above
macro is:

>190A ICI
>190A BP

3. To print the data you are receiving, you can include the AUTOPRINT and
ENDPRINT commands in the macro, as follows:

AUTOPRINT
>190A ICI
>190A BP
ENDPRINT

4. You can include a command to save the program output to a save file, and print the
contents of the save file. The command to start saving data is CAPTURE, and
the command to print the contents of a save file is PRINTSAVEFILE. The
name given to the save file here is "example1". The macro would then be:

CAPTURE ("example1")
>190A ICI
>190A BP
ENDCAPTURE
PRINTSAVEFILE ("example1")

This macro saves the text output from the two programs into the file called
"example1", appends the default extension (.dst), and prints out the file.

Full descriptions of the macro commands are included in the section entitled ‘Macro
commands and instructions’.

What are Datastream macros? Introduction

Issue 1 3

Instructions

Instructions are a specific type of command which control the flow of the macro. For
example, they are used to:

q assign variables

q make conditional evaluations

q input data from a data file

q include comments in a macro

Full descriptions of the macro instructions are included in the chapter entitled
‘Commands and instructions’.

Labels

A label identifies a place within a macro which is referred to from elsewhere in the
macro. For example, you might use the label loop: to identify the start of a loop, and
refer to it in a GOTO instruction; or you might use the label codes: and refer to it
using an INPUT instruction.

NOTE A label must be immediately followed by a colon (:).

Constants and variables

Constants and variables are generally used in macros as mechanisms for testing for
various conditions; for example, to test whether or not all the codes in a data file
have been input, or a message has been sent.

Constants A constant is a string with a fixed value in the macro. For example, a constant might
consist of the number 125, or the text, "This is an example".

Variables A variable is a placeholder for a value which can change while the macro is running.
A system variable is a variable which has a specific meaning in a macro, such as
identifying an ‘end of data’ state, or a day in the week. System variables can be
changed by DSWindows, but not by a user’s macro.

For detailed information, please refer to the chapter ‘Constants and Variables’.

 Introduction What are Datastream macros?

4 DSWindows 2.2 Macros User Guide

Functions and expressions

Functions Functions enable you to find required character strings by searching for them in
relation either to their position within another character string, or their position on
the screen. You can then manipulate these strings by, for example, extracting
character(s) from within other strings and writing the extracted strings out to a file.
Functions also allow you to convert strings into integers and vice-versa.

Expressions Expressions are formed by combining mathematical and logical operators with
constants and variables.

For a detailed explanation of strings, integers, functions and expressions, please refer
to the chapter ‘Functions and Expressions’.

Data files

A list of Datastream codes or mnemonics which you want to use in a macro can be
stored in one of two ways, either as part of the macro, or as a separate data file. In
either case, the start of the data list is indicated by the instruction DATA and the end
is indicated by the instruction ENDDATA.

NOTE The advantage of storing such a list as a separate data file is that you can place
references to it in any number of macros.

Example 1 A list of company codes is included at the end of the macro, marked by the label
codes: and bounded by the instructions DATA and ENDDATA. Each code in the
data list becomes a variable which is accessed by an INPUT instruction when
required.

The data file is opened using the OPENDATA instruction to reference the codes:
label, and a save file ("example1") is opened using the CAPTURE instruction. A
loop is used to test for the end of the data list and to repeat the data request until all
the codes have been used. When the last code has been used, the ENDDATA
instruction causes the system variable &ENDOFDATA to be set to TRUE. This
causes the macro to exit the loop, close the save file (ENDCAPTURE) and stop the
macro (END). The output is saved into the file "example1".

What are Datastream macros? Introduction

Issue 1 5

OPENDATA codes
CAPTURE ("example1")

Loop:
IF &ENDOFDATA = FALSE THEN

INPUT code
SEND ("190A " + code)
GOTO Loop

ENDIF

ENDCAPTURE
END

codes:
DATA

"ICI"
"BP"
"BOOT"
"BMAH"

ENDDATA

Example 2 This example shows how to download data on the companies in the FTSE 100 using
program 190A. The macro is the same as the one in the previous example, except
that the list of codes is kept in a separate data file. (The example macro ex_strng
shows how to generate such a list.)

The required data file (ftse.lst) is called using the OPENDATA instruction. As in
Example 1, a save file is opened using the CAPTURE instruction. Each code
becomes a variable which is accessed by the INPUT instruction when required, and a
loop is used to reiterate the data request until all the codes have been used. The
output is saved into a file called "ftsecos.dst".

OPENDATA "ftse.lst":
CAPTURE ("ftsecos.dst")

Loop:
IF &ENDOFDATA = FALSE THEN

INPUT code
SEND ("190A " + code)

 Introduction What are Datastream macros?

6 DSWindows 2.2 Macros User Guide

GOTO Loop
ENDIF

ENDCAPTURE
END

The data file (named ftse.lst) consists of the following (i.e. all the Datastream
mnemonics for the companies in the FTSE 100):

DATA
"ANL"
"ALLD"
"AW"
etc...
"WILM"

ENDDATA

NOTES If you refer to a list of items contained in another file:

1. the filename in the OPENDATA command must be in quotes

2. the filename must also be followed by a colon (:), for example,
OPENDATA "/dswindow/myfiles/ftse.lst":

3. if the file is in a directory other than your default working directory, you must
include the full path name.

What are Datastream macros? Introduction

Issue 1 7

Creating macros

The commands for creating, recording, running and editing macros are all available
through the Macro menu on the Terminal window menu bar.

The last five macros run are listed in the macro menu. You can select them either by
typing their number, or by clicking on the macro name.

Tool bar buttons are available for: starting the macro recorder

 running a macro

You can create a macro in two ways

q open a file and type in the relevant text for the macro

q use the macro recorder to record the keystrokes you make when requesting data
and using various functions

♦ To open a macro file

1. In the Terminal window, select Macro>Edit macro...

2. In the Edit Macro File dialog box, type the name of the new macro in the
Selection field. By default, macros are held in the \dswindow\files directory.

3. Click on OK.

Notepad is opened.

 Introduction Creating macros

8 DSWindows 2.2 Macros User Guide

4. Type the text of the macro.

5. Save the macro. Make sure that you save the file with a .mac file extension.

Using the macro recorder

The Macro Recorder records the keystrokes you make when requesting data from
Datastream. It records, for example, all the characters you type into fields in a
program input screen, and strokes of the TAB key you make to move between the
fields.

NOTE The macro recorder recognises all keys but we recommend that you use TAB, rather
than the mouse, to position the cursor at the start of a field.

The keystrokes are recorded into a macro file (.mac), either a new one, or an
existing one. If you record to an existing file, you can choose whether to append the
keystrokes to the existing file, or to overwrite the file completely.

♦ To start recording

1. Select Macro>Record Macro... on the menu in the Terminal window (or click on
the Macro Recorder icon)

2. In the Record Macro dialog box, either type a file name for the new macro in the
Filter field, or select an existing file.

If you select an existing file, a dialog box asks you to Overwrite or Append.
Select as appropriate.

3. Click on OK.

From now until you stop recording, all keystrokes, apart from local functions such as
mouse movements and menu or icon selections, are recorded into the file you
specify. Remember to stop the macro recorder when you have finished building the
macro.

♦ To stop recording

q Select Macro>Stop Recording or click on the Macro Recorder
button again. Note that while the macro recorder is active the button is
highlighted.

Creating macros Introduction

Issue 1 9

Editing macros

♦ To edit a macro

1. In the Terminal window, select Macro>Edit macro...

2. In the Save Macro File dialog box, type the name of the macro you want to edit in
the Selection text box, or select it from the list of file names.

3. Click on OK.

Notepad is opened with the text of the selected macro displayed.

4. Make the required changes to the macro, save the file and exit from the text editor.

Running macros

♦ To run a macro

1. In the Terminal window, select Macro>Run Macro... (or click on the Run Macro
icon)

2. In the Run Macro dialog box, type the name of the macro you want to run in the
Selection text box, or select it from the list of file names.

3. Click on OK to run the macro.

NOTE When you click on the Macro menu option, the last five macros you have run are listed.
You can select one of these macros by clicking on the macro name, or typing its
number (1 - 5).

 Introduction Editing macros

10 DSWindows 2.2 Macros User Guide

Scheduling your macros using DSAGENDA

DSWindows 2.2 includes a new default update Scheduler utility called DSAGENDA
which enables you to create a schedule for running macros.

NOTES 1. If you set a macro to run when you are not there (overnight for example), you must
leave Agenda open (iconised if you prefer) and your PC switched on. You do not
have to have Code Lookup or DSWindows running at the same time.

2. The first time you run Agenda a Welcome dialog will be displayed asking you to
specify the location of the DSWindows executable and the Agenda control file
(dsagenda.dsa). If no control file exists, one will be automatically created.

♦ To start Agenda as a standalone application

q Double-click on the Agenda icon

The Agenda interface is shown in the following screenshot:

NOTE This screenshot shows three scheduled items. Item 3 is a code update schedule, but
notice that items 1 and 2 show the details of schedules for running macros.

Scheduling your macros using DSAGENDA Introduction

Issue 1 11

♦ To set a Schedule

Agenda enables you to set the day, the time and the frequency of the at which to run
the macro. The day can be any day of the week; the time can be any time of the day
or night - note that Agenda uses the 24-hour clock; the frequency can be once only,
daily, every monday/tuesday/wednesday etc, monthly, that start of the month or
quarterly.

Example This example shows how to set a schedule so that a macro is run every Wednesday
at 7.30 a.m.

1. In the main window, click on the on the Add... button (or select Schedule>Add..) to
display the Add to Schedule dialog

2. In Schedule type click on the Macro... button and select the name of the macro you
wish to schedule

3. In the Frequency drop-down box, select Every Wednesday at....

4. In the Date and Time (dd/mm/yy) fields, leave the date as set by default - when you
set the Frequency in the previous step, Agenda automatically sets the Date field
to the date of the next Wednesday. In the Time field, position the cursor in the
first box and either type the required hour or use the Up/Down arrow to select it.
Repeat this process to set the minutes in the second box.

 Introduction Scheduling your macros using DSAGENDA

12 DSWindows 2.2 Macros User Guide

5. Click on OK.

The main window will now display showing the details of the schedule you have just
set, with a status of ’Waiting to Start’:

♦ To edit a scheduled task

q In the main window highlight the schedule entry you want to change.

q Click on Edit... (or select Schedule>Edit...) or double-click on the schedule entry.

The Add to schedule dialog is opened with the details of the scheduled task
displayed.

q Make the required changes and click on OK.

♦ To delete a scheduled task

q In the main window highlight the schedule entry you want to delete.

q Click on Remove (or select Schedule>Remove...)

q At the prompt, ’Are you sure you want to remove this scheduled item’, click on
Yes to confirm or No to cancel.

♦ To see a log of previous updates

You can check the status of completed jobs using the History log file.

Scheduling your macros using DSAGENDA Introduction

Issue 1 13

q In the main window click on the History button (or select Schedule>History...)

The Log of completed jobs window is displayed with a complete list of all items
which Agenda has processed. The possible values in the Status field are as
follows:

"Aborted, status uncertain"
"Code Update succeeded"
"Code Update succeeded and rescheduled"
"Failed"
"Failed, Job Rescheduled"
"Job Submitted"
"Job Submitted and Rescheduled"
"Missed"
"Missed, Job Rescheduled"

The Log of completed jobs also provides an option to view the update log generated
by Code Lookup providing the full details of an update. This log file is used for fault
diagnosis and can be displayed in Notepad by clicking the View Update Log button.

General notes on Agenda operation and maintenance

q You can schedule more than one job to run at the same time, frequency and date
- DSAgenda processes the jobs in the order they are listed and will complete
each job before starting the next one.

q The status of each job is shown on both the main window and the Log of
completed jobs.

q The details of all scheduled jobs remain displayed on the main Agenda window,
even after they have been processed. The same details are also available using
the Log of completed jobs. As a general principle, it is good practice to remove
’one-off’ jobs from the Agenda list once they have been processed. Completed
one-off jobs are displayed as ’Finished’ in the Time field of their record. See the
following point for further maintenance information.

q There is an upper limit of 100 scheduled jobs on Agenda at any one time. The
limit on the Log of completed jobs is approx. 65,000.

 Introduction Scheduling your macros using DSAGENDA

14 DSWindows 2.2 Macros User Guide

Roger
Note
total number of jobs is 100

Summary of general macro rules

The general rules you must adhere to when you write or edit a macro are:

q write one statement per line, or use \ as the last character before the return to
indicate that the following line should be treated as part of the current line

q use spaces or tabs to separate key words and variable names

q enclose filenames in double quotes (for example, "logon.mac")

q use a semi-colon (;) to prefix a comment. All text to the right of a semi-colon up
to the end of the line is treated as comment. Use comments to document your
macros for future reference

q labels must be immediately followed by a colon (:)

q type Datastream input (such as codes or mnemonics) in upper case

q you can type instructions and commands in upper or lower case, or any mixture
of the two

q you can use tabs to indent lines to make your macros more readable - the layout
does not, however, effect the way in which the macro works

Summary of general macro rules Introduction

Issue 1 15

Tips on writing and editing macros

1. To simplify the process of understanding what a macro does and how it works, and
to make debugging a macro easier, it is always good practice to:

q document the macro using short statements which explain the overall
objective of the macro and what each section of the macro does.

q use indentation to group elements of a macro; for example, all statements
inside an IF...THEN...ENDIF construction should be indented:

IF &ENDOFDATA=FALSE THEN
INPUT CODE
SEND ("900A "+CODE)
SEND [CLEAR]

ENDIF

2. Always start a macro with the >[CLEAR] command to clear the screen before the
macro is executed.

3. Get into the habit of testing the result of each command during the execution of the
macro. This practise will help you to quickly identify errors, either in the macro
itself or in the data.

 Introduction Tips on writing and editing macros

16 DSWindows 2.2 Macros User Guide

 Macro commands and instructions

NOTE Please note that the Alphabetic index to commands and instructions (which was
included at the start of this section in the previous version of this manual) can now be
found as the last page of the Table of Contents on page vii.

This section provides detailed information about Datastream macro commands and
instructions. The commands and instructions are arranged in groups according to
their functions and appear in the following order:

q Sending data to Datastream

q Printing

q Paging

q Instructions (commands which control the flow of the macro)

q Graphics

q Graphic annotations

q Data Channel

q Capturing text

q Arranging windows

q Connecting

q Error recovery, logging errors, writing to a file

q Code Lookup

q Miscellaneous

 Macro commands and instructions

Issue 1 17

Conventions used in this section

Please note that, as an aid to reading and understanding the content of this section,
the following typographic conventions have been adopted to illustrate the syntax of
the Datastream macro language:

q command names and instructions are in upper case and bold font

q all parameters are in lower case italics

q mandatory parameters are in bold italics

Example SAVEGRAPHICS(file:filename,graph:graphname,append:flag)

SAVEGRAPHICS is the command name

file:filename,graph:graphname and append:flag are parameters. filename is a
required parameter. The others are optional.

Most parameters do not have names, but in a command in which the parameters do
have names, such as the one above, the parameter names are usually optional. You
need to use them only if one or more parameters are omitted, so that the parameters
which are used can be identified. For example:

SAVEGRAPHICS(file:"test",append:overwrite)

The brackets around the parameters are always required.

Note also, that when you include a filename in a macro, it must always be
surrounded by double quotes. (Double quotes are not included in the syntax, although
they are included in the examples.)

 Macro commands and instructions

18 DSWindows 2.2 Macros User Guide

Sending data to Datastream

SEND
Function Sends the result of an expression to Datastream. This command can be used for a

number of different functions, such as requesting a report or graph, connecting to
Datastream via packet switching, or checking for a returned character or timeout
period. Note that you can use the ‘>’ character as an abbreviated form of the SEND
command.

µ SEND can be used with two different parameter structures according to the intended
function. These are explained and exemplified in Syntax 1 and Syntax 2 below.

Syntax 1 SEND (expression)

expression The data to be sent; for example, a program number and a
code in expert mode. Please refer to the section ‘Functions
and Expressions’ for details on the mathematical and
logical operators you can use in building expressions. Two
examples are given below.

Remarks DSWindows automatically appends an ENTER to the string before it is sent, unless
the parameter ends in [ENTER], [NOENTER], [CLEAR], [PAn] or [PFn] keys.

In a SEND instruction, you can use special keys in quoted sequences, for example
"[CLEAR]". These sequences represent single key-strokes.

Special keys are:

[BACKSPACE] (remove last character)

[BACKTAB] (return to last input field)

[BREAK] (send a break signal)

[CLEAR] (return to Datastream prompt)

[DELETE] (delete current character)

[DOWN] (cursor down)

[END] (move cursor to last field)

 Macro commands and instructions

Issue 1 19

[ENTER] (send input to Datastream)

[ERASE_EOF] (erase to end of field)

[ERASE_INPUT] (erase all input fields)

[HOME] (move cursor to first field)

[INSERT] (insert characters before the current one)

[LEFT] (cursor left)

[MOVETO col, row] (moves the cursor to the column and row position specified.
col can be between 1 and 80. row can be between 1 and 24.
NB: It is preferable to use [TAB]s.) They are easier to use
and they will still be effective if the positions of fields on
the screen change.

[NEWLINE] (cursor to next input line)

[NOENTER] (no automatic <Enter>)

[PA1] - [PA3] (the effect is program-specific)

[PF1] - [PF10] (<Alt_1> to <Alt_0>)

[PF11] and [PF12] (the effect is program-specific)

[QUOTE] (sends a quote character without terminating the string)

[RESET] (reset keyboard)

[RIGHT] (cursor right)

[TAB] (tab to next line)

[TTY] (change to teletype mode)

[UP] (cursor up)

Example 1 SEND ("401A BP")

Requests a 401A graph for BP using expert mode.

Example 2 SEND ("D:VW[TAB]DAXINDX[DOWN][DOWN][DOWN][TAB][TAB]2")

 Macro commands and instructions

20 DSWindows 2.2 Macros User Guide

On a 401A input screen, requests a graph comparing Volkswagen with the DAX
Index, with all values shown in index form starting at 100.

SEND continued - syntax 2

Syntax 2 SEND (text1, WAITFOR: text2, TIMEOUT: n)

Example 1 This is the first part of the example macro EX_PSS.MAC which is documented in
full in the section ‘Example Macros’. It illustrates how to use the SEND command
to connect to Datastream via UK PSS. Note that the three SEND commands show
variations on how to use the command parameters.

CONNECT Open the port connecting DSWindows
and Datastream.

start:

SEND("ATZ", "OK", TIMEOUT:3) Connect to the modem.

SEND(Text:"ATE1", "OK") Turn echo off from the modem, and wait
for the modem to respond with "OK".

SEND("ATDxxxxxxxx", WaitFor:"CONNECT", 45)
After receiving "OK" from the modem,
dial the phone no: ATDxxxxxxxx, and
wait for the response: "CONNECT".

IF &sendComplete <> TEXTFOUND THEN
If the PAD does not respond with
"CONNECT", display the message:
"DID NOT FIND ‘CONNECT’", and
start again.

MESSAGE("DID NOT FIND ’CONNECT’ ", "EX_PSS.MAC")
GOTO start

ELSE
.....

 Macro commands and instructions

Issue 1 21

Example 2 Illustrates how to use SEND with an expression requesting a report and a timeout
control. The macro checks whether the request has been completed within the
timeout period and, if not, disconnects from the Datastream mainframe, waits for 10
seconds, runs the LOGON macro and repeats the SEND request.

retry:

SEND ("900B ASDA,-10Y,,D", TIMEOUT:90)

IF &sendcomplete=TIMEOUT THEN

DISCONNECT

WAIT(10)

LOGON

GOTO retry

ENDIF

µ In this form of the SEND command, if the second parameter - WAITFOR:text2 - is not
used in the command, you must include the word TIMEOUT: in any timeout
declaration. However, if the second parameter is used, you can abbreviate the timeout
declaration by omitting the word TIMEOUT. For example:

SEND ("ATZ", "OK", 45)

µ If you use the SEND ("ATZ") command in a macro which uses RECOVERUSING to
call a recovery macro, ensure that you issue the SEND ("ATZ") before recovery is
enabled. When ATZ is issued to some modems a line drop occurs (DSR momentarily
goes low) which triggers the recovery macro. Line drops are normally considered an
error but in this case the user has effectively requested it. Please refer to
RECOVERUSING for further information.

Related commands >, SENDANDCHECK

 Macro commands and instructions

22 DSWindows 2.2 Macros User Guide

>
Function Use as an abbreviated form of the SEND command.

Syntax > expression

expression The data to be sent; for example, a program number and a
code in expert mode. Please refer to the section ‘Functions
and Expressions’ for details on the mathematical and
logical operators you can use in building expressions.

With the > command, the expression must not be
surrounded by quotes: data is taken verbatim from the first
to the last non-space character. This means that you cannot
use string or variable operators, or quotes, colons or
semi-colons within the data.

Remarks If you are using strings and variables/constants, use the SEND command rather than
this abbreviated version.

Example > 401A BP

Requests a 401A graph, as in the example above.

Related commands SEND, SENDANDCHECK

 Macro commands and instructions

Issue 1 23

SENDANDCHECK
Function Sends the text labelled TextToSend to Datastream, and awaits a response.

Syntax SENDANDCHECK (TextToSend, TextToLookFor)

TextToSend A data request

TextToLookFor The text string you want to find within the retrieved data.

Remarks If the text labelled TextToLookFor is found in the results, the variable
&TEXTFOUND is set to TRUE. Otherwise it is set to FALSE. If autopaging is ON
then the TextToLookFor may appear on any of the pages of the report. Since the
keyboard must be unlocked before TextToLookFor can be found, this command is
only suitable for VT100 - not TTY (while dialling up).

Example 1 SENDANDCHECK("900B "+code+",1/1/79,,D","$$"+CHR$(34)+"H0")
IF &TEXTFOUND <> TRUE THEN

MESSAGE ("Data Channel header not found")
ENDIF

In this example, A 900B request is sent. If the text $$"HO is not returned, the error
message is displayed.

NOTES 1. $$"HO always appears at the start of any Data Channel output and can therefore be
used to check for receipt of data

2. CHR$(34) is the ASCII value for a double quotation mark - use this function when
checking for a quote character

Example 2 SENDANDCHECK("XABC999PASSWD","LOGON REJECTED")
IF &TEXTFOUND = TRUE THEN

SEND("XABC100PASSWD")
ENDIF

An attempt is made to logon using the ID XABC999 and the password PASSWD. If
the text "LOGON REJECTED" is found, an alternative ID is used.

Related commands SEND, >

 Macro commands and instructions

24 DSWindows 2.2 Macros User Guide

Printing

AUTOPRINT
Function Starts autoprinting (output text and graphics is printed as it is received).

Remarks Graphs are printed as they are received. If you want to annotate a graph or graphs,
first make the annotations, and then use the PRINTGRAPHICS command.

Example AUTOPRINT
>190A D:VW
>401B D:WV
ENDPRINT

In this example, AUTOPRINT is switched on, and profit and loss accounts for
Volkswagen and a graph are requested. They are printed as they are recieved.
ENDPRINT switches off the autoprinting.

Related commands ENDPRINT, PRINTGRAPHICS, PRINTGRAPHFILE, PRINTSAVEFILE,
PRINTLAYOUT

ENDPRINT
Function Ends autoprinting.

Example See above.

Related command AUTOPRINT, PRINTGRAPHFILE, PRINTSAVEFILE, PRINTLAYOUT,
PRINTGRAPHICS

PRINTSAVEFILE
Function Prints the specified text file. This must be a DSWindows (.DST) file.

Syntax PRINTSAVEFILE (filename)

filename The name of the file to be printed. It must be a .DST file.
If you do not specify a filename, a dialog box will prompt
you for the filename.

 Macro commands and instructions

Issue 1 25

Example PRINTSAVEFILE ("file10")

Prints a save file called ‘file10.dst’. If you do not specify a path, save files are
assumed to be in your configured save file directory.

Related commands PRINTGRAPHFILE, PRINTLAYOUTFILE, PRINTGRAPHICS, CAPTURE,
ENDCAPTURE

Paging

AUTOPAGE
Function Starts the autopaging function so that all output pages are displayed sequentially and

moved to backpages. [ENTER] is sent automatically after each page is received.
AUTOPAGE is on by default when a macro runs. Use ENDPAGE and
AUTOPAGE together if you want to interrupt the autopaging.

Example See ENDPAGE

Related command ENDPAGE

ENDPAGE
Function Ends autopaging.

Example ENDPAGE
> 99Z
>
> [CLEAR]
AUTOPAGE

In this example, ENDPAGE switches off autopaging, program 99Z is run and only
the first two pages are displayed. AUTOPAGE switches on autopaging again.

Related command AUTOPAGE

 Macro commands and instructions

26 DSWindows 2.2 Macros User Guide

Instructions (commands which control the flow of a macro)

CALL
Function Executes a child macro. When this has completed execution, control returns to the

parent macro, at the statement following the CALL.

Syntax CALL file:

file The name of the macro.

Example CALL "EX_PRNT.MAC":
CALL "EX_CLIP.MAC":

In this example, two macros are run, first EX_PRNT.MAC followed by
EX_CLIP.MAC. If you do not specify a path, macros files are assumed to be in
your configured macro directory (by default dswindow\files).

Related command GOTO

STARTPROGRAM
Function Starts up another Windows application.

Syntax STARTPROGRAM (commandline, show)

commandline The program to be started, with or without the extension
or directory path. If no extension is specified, .EXE is
assumed. If no directory path is specified, Windows will
search for the program in each of the following places (in
the order listed):

1. the current directory
2. the Windows directory (containing win.com)
3. the Windows system directory
4. the directory listed in your PATH environment variable
5. the list of directories mapped in a network

 Macro commands and instructions

Issue 1 27

show Defines the size of the window for the program.

show can be: SHOW_NORMAL
SHOW_MAX
SHOW_MIN

If no SHOW is specified, the default is
SHOW_NORMAL. Sets the value of &RESULT on
completion. If the value of &RESULT is greater than 32,
then the command was successful. If the value is less than
32, then an error occurred. Error values are:

0 Out of memory
2 File not found
3 Path not found
5 Attempt to dynamically link to a task
6 Library requires separate data segments for each task
10 Incorrect Windows version
11 Invalid .EXE file
12 OS/2 application
13 DOS 4.0 application
14 Unknown .EXE type
15 Attempt in protected mode to launch an .EXE created

for an earlier version of Windows
16 Attempt to load a second instance of an .EXE

containing multiple, writeable data segments

Example STARTPROGRAM ("clock")

Starts the Clock application.

Related commands CALL

IF...THEN...ELSE...ENDIF
Function Makes a conditional evaluation; if the condition is true, then the first action is

performed (the one following THEN); if the condition is not true, then the second
action is performed (the one following ELSE). ENDIF signifies the end of the
condition.

 Macro commands and instructions

28 DSWindows 2.2 Macros User Guide

Syntax IF (e) THEN
s1

ELSE
s2

ENDIF

e An expression - if it is true, the first statement will be
executed.

s1 The statement to be executed if the expression is true.

s2 The statement to be executed if the expression is not true.

Remarks 1. IF...THEN...ENDIF are compulsory. The ELSE clause is optional.

2. IF...THEN must be on one line.

3. ENDIF must be on a line by itself.

4. The logical operators AND, OR and NOT can also be used.

5. You can nest conditional evaluations, as follows:

IF (e) THEN
IF (e1) THEN

s1
ELSE

s2
ENDIF

ELSE
s3

ENDIF

Example 1 IF &DAYOFMONTH = 1 THEN
;Get last month’s figures
SEND ("401A ICI,,,-1M")

ENDIF

In this example, the IF condition tests whether it is the first day of the month. If it is,
the SEND command runs a 401A program to chart the share price for ICI over the
last month. ENDIF marks the end of the condition.

 Macro commands and instructions

Issue 1 29

Example 2 IF &DAYOFMONTH = 1 AND &MONTH = 1 OR &MONTH = 4\
OR &MONTH = 7 OR &MONTH = 10 THEN
MESSAGE ("GET LAST QUARTER’S DATA", "QUARTER END")

ELSE
MESSAGE ("GET LAST MONTH’S DATA", "MONTH")

ENDIF

In this example, the IF condition tests whether the quarter has just ended. If so, it
prompts the user to get the last three months’ data. If not, it prompts the user to get
the last month’s data.

GOTO
Function Continues execution at a named file, or a labelled line in a file. If you specify a file

name, but no label, then execution starts at the first executable line in the named file.
If you specify a label, but no filename, then execution continues at that label within
the current file.

Syntax GOTO filename:label

filename The name of the file which the macro will jump to.

label The point in that file (or the current file) which the macro
needs to go to.

You must specify either a filename or a label, or both. If no filename is given, the
label must be in the current file.

Remarks 1. A label must be on a line by itself, and it must be followed by a colon (:).

2. A label can be positioned above or below the GOTO statement.

3. Avoid using the same label more than once, but, if there are multiple lines with the
same label, then the last one previously used is executed. If none has been used
before, the first one in the file is executed.

Example 1 GOTO "C:\DSWINDOW\DATA\COMP":

In this example, GOTO directs the execution of the macro to the named file.

 Macro commands and instructions

30 DSWindows 2.2 Macros User Guide

Example 2 GOTO LOOP
...
...
LOOP:

In this example, GOTO directs the execution of the macro to the place (in the
current file) labelled LOOP:

Related commands CALL

END
Function Terminates execution of the macro, and marks the end of the main body of the macro.

Example OPENDATA "companies"
loop:
IF &ENDOFDATA = FALSE THEN

INPUT code
SEND("101A " + code)

GOTO loop
ENDIF
END

1. In this example, companies is a data file, containing a number of company codes.

2. loop is a label. IF tests whether there is more data in the data file. If there is more
data, INPUT inputs the next line of data (variable code).

3. SEND sends a 101A request to Datastream, for the company whose code has
replaced code in the macro.

4. GOTO returns the execution of the macro to the label loop:. This will continue to
happen until all the data has been input (that is, until &ENDOFDATA is not
FALSE).

5. ENDIF marks the end of the condition.

6. END marks the end of the macro.

 Macro commands and instructions

Issue 1 31

DATA
Function Defines the start of a set of data items which can be read by an INPUT instruction.

The data items must be enclosed in quotes.

Example demolist:
DATA

"BP", "FTSE100"
"F:PGT", "FRCAC40"
"J:RH@N", "JAPDOWA"

ENDDATA

Related commands OPENDATA, ENDDATA, INPUT

OPENDATA
Function Opens a data file, or a data list in the current macro, or a list in another named

macro, for input of data.

Syntax OPENDATA filename: label

filename: The name of the file to be opened.

label The point in that file (or the current file) which the macro
needs to go to.

You must specify either a filename or a label, or both. If no filename is given, the
label must be in the current file.

Remarks 1. A label must be on a line by itself and must be followed by a colon (:).

2. If you omit the filename then you must also omit the colon. The macro assumes
that the label is in the current macro, and that it defines the data statement to be
used for the next INPUT statement.

3. A label can be positioned before or after the GOTO statement.

4. Only one such file can be open at any time.

5. An error occurs if the file or label requested does not exist.

 Macro commands and instructions

32 DSWindows 2.2 Macros User Guide

6. OPENDATA is normally used in conjuction with an IF...THEN...ELSE
construction to determine when the end of the data list has been reached. This
test sets the system variable &ENDOFDATA to TRUE or FALSE.

µ You must specify the directory in which files are held, unless they are held in the
directory you have specified as the default. To check or change your default directory,
select Options>Configure>Macros>Macro directory.

Example 1 OPENDATA demolist

In this example, the data file demolist, located in the current macro, is opened.

Example 2 OPENDATA "C:\WORKLIST":

In this example, the data file WORKLIST, held in the C: directory, is opened.

Example 3 OPENDATA "C:\DSWINDOW\MACROS\ATEST.MAC":list

In this example, the data file list, held in the file "ATEST.MAC" in the
C:\DSWINDOW\MACROS\ directory, is opened.

Related commands DATA, ENDDATA, INPUT

ENDDATA
Function Defines the end of a set of data items.

Example See DATA.

Related command DATA, OPENDATA, INPUT

INPUT
Function Inputs a line of data into named variables.

Syntax INPUT v1,v2,...

v1,v2 Successive data items

Remarks 1. One input statement reads one line of data, starting with the first, and reading each
line successively until all the data has been read. If there are not enough data

 Macro commands and instructions

Issue 1 33

items then an error occurs. If there is too much data then the remainder is
ignored. Up to 20 items can be input on one line.

2. You can input more than one type of variable per line. They must be separated by
commas, and each data item must be enclosed in quotes.

3. When the last item of data has been input the system variable &ENDOFDATA is
set to TRUE and the next use of INPUT would generate an error.

Example 1 OPENDATA companies
loop:
IF &ENDOFDATA = FALSE THEN

INPUT code
SEND ("401A " + code)
GOTO loop

ENDIF

companies:
DATA

"BP"
"BMAH"
"ENTO"
"UMAR"

ENDDATA

In this example:

q OPENDATA opens the data list companies at the end of the macro.

q loop: is a label which marks the start of the loop.

q The IF instruction tests whether the end of the data file has been reached. If it
has not, then the INPUT instruction goes to the data file for the next variable.

q The SEND command sends a 401A request with the latest variable - Note that
there must be a space between 401A and the closing quote (so that the statement
will read 401A BP. Datastream will not accept 401ABP.)

q After each SEND command, the GOTO instruction causes the macro to loop
back to the label loop:, to test the IF condition again.

q After all the data items have been input, the &ENDOFDATA variable is set to
TRUE and the IF condition no longer applies. ENDIF marks the end of the
condition.

 Macro commands and instructions

34 DSWindows 2.2 Macros User Guide

q DATA marks the start of the data.

q companies: is the label referred to by the OPENDATA command at the start of
the macro.

q ENDDATA marks the end of the data.

Example 2 OPENDATA companies
loop:
IF &ENDOFDATA = FALSE THEN

INPUT code, index
SEND ("401B ")
SEND (code + "[TAB]" + index + "-3Y")
GOTO loop

ENDIF

companies:
DATA
"BP", "FTAOILS"
"SBRY", "FTASTOR"
"D:BMW", "MOTGPBD"
"J:SO@N", "ELTNCJP"
ENDDATA

q OPENDATA opens the data list companies at the end of the macro.

q loop: is a label which marks the start of the loop.

q The IF instruction tests whether the end of the data file has been reached. If it
has not, then the INPUT instruction goes to the data file for the next variable.

q The first SEND command sends a 401B request

q The second SEND command sends the latest input variables: a code and an
index.

q After each SEND command, the GOTO instruction causes the macro to loop
back to the label loop:, to test the IF condition again.

q After all the data items have been input, the &ENDOFDATA variable is set to
TRUE and the IF condition no longer applies. ENDIF marks the end of the
condition.

q DATA marks the start of the data.

 Macro commands and instructions

Issue 1 35

q companies: is the label referred to by the OPENDATA command at the start of
the macro.

q ENDDATA marks the end of the data.

q The input data may be held in a separate file (for example, a file named
TEST.LST and held in the C:\DSWINDOW\DATA directory). In this case, the
first line of the macro should read:

OPENDATA "C:\DSWINDOW\DATA\TEST.LST":companies

NOTE You must specify the directory in which files are held, unless they are held in the
directory you have specified as the default. Select the Macro Directory sub-command
of the Configure command on the Options menu to check or change your default
directory.

Related commands DATA, ENDDATA, OPENDATA

;
Function Defines the start of a comment. The comment is assumed to end at the end of the

line. You can include comments anywhere in a macro (the macro processor ignores
any text following ; up to the end of the line).

Example AUTOPAGE
; request profit and loss accounts
>190A D:VW
ENDPAGE

Remarks If you want to use the ; character as a semi-colon, enclose it in quotes. For example,
SEND ("This is the title;")

 Macro commands and instructions

36 DSWindows 2.2 Macros User Guide

USERINPUT
Function Instructs the macro to wait for the user to provide input. A dialog box is opened,

providing an edit line for the user to type the input.

Syntax USERINPUT title, prompt, variable

title The title for the dialog box.

prompt The prompt in the dialog box.

variable A string - the name of the variable which will be replaced
by the user’s input.

Example USERINPUT "Graphics request", "Please type a code", x
SEND ("401A " + x)

q USERINPUT opens a dialog box with the title "Graphics request", prompting
the user to type in a code.

q The SEND command requests a 401A chart of the instrument whose code the
user has typed in. (The code replaces variable x in the macro.)

Related commands MESSAGE, INPUT

 Macro commands and instructions

Issue 1 37

WAIT
Function Instructs the macro to wait until the specified time and date, or for a specified

number of seconds, before continuing.

Syntax WAIT (time, date) / WAIT (forSeconds)

time The time of day to wait until. It must be in the format:
hh:mm:ss and be surrounded by quotes.

date The date to wait until. It must be in the configured format
and be surrounded by quotes. If the date is the next day, or
a particular number of days in the future, you can specify
it in the format "+1D", etc. If this is a Saturday, the macro
will adjust and run on the following Monday.

forSeconds The number of seconds to wait.

Example 1 WAIT ("16:42:0", "06/12/93")

In this example, WAIT instructs the macro to wait until 16:42 on the 6th December
1993.

Example 2 WAIT (10)

In this example, WAIT instructs the macro to wait for 10 seconds.

Example 3: WAIT ("01:15:0", "+1D")

In this example, WAIT instructs the macro to wait until 01:15 on the following day.

 Macro commands and instructions

38 DSWindows 2.2 Macros User Guide

SET...TO...
Function Assigns a value to a variable; the value can be a constant, expression, or another

variable.

Syntax SET v1 TO v2

v1 The variable to which you want to assign a value.

v2 The value to be assigned.

Remarks Use mathematical operators to form expressions. Refer to "Functions and
Expressions" for details.

Example LOADLAYOUT ("four")
SET count TO 0
OPENDATA list
Loop:
IF &ENDOFDATA = FALSE THEN

INPUT code
SEND ("401A" +" code")
SET count TO count + 1
IF count = 4 THEN

PRINTGRAPHICS
SET count TO 0

ENDIF
GOTO Loop

ENDIF

q A layout of four slots is loaded.

q ‘count’ is set to a value of 0.

q Company codes are requested from a data file called ‘list’.

q Each time a chart is drawn, the value of ‘count’ increments by one.

q When the value of ‘count’ reaches 4 (i.e. the layout is full), the layout is printed,
and the value of ‘count’ is set to 0 again.

Related commands SETGLOBAL...TO

 Macro commands and instructions

Issue 1 39

SETGLOBAL...TO...
Function Assigns a value to a global variable; the value can be a constant, expression, or

another variable. See the chapter ’Constants and variables’ for further information.

Syntax SETGLOBAL v1 TO v2

v1 The variable to which you want to assign a value.

v2 The value to be assigned.

Example SETGLOBAL x TO 10

In this example, x becomes 10. In this and any CALLed macros, x will have the
value 10.

Related commands SET...TO, CALL

 Macro commands and instructions

40 DSWindows 2.2 Macros User Guide

Graphics

NOTE This section assumes that you know how to generate, display, configure and annotate
graphs within DSWindows, and that you understand the concepts of slots and layouts.
For details on these subjects, please refer to the DSWindows 2.1 User Guide.

DISPLAYSINGLEGRAPH
Function Sets the mode of the Graphics window to display a single graph.

Example LOADLAYOUTFILE ("C:\DSWINDOW\FILES\5LAY","5 GRAPH LAYOUT")
DISPLAYSINGLEGRAPH

q LOADLAYOUTFILE loads the file ‘5LAY’ and the layout ‘5 GRAPH
LAYOUT’.

q DISPLAYSINGLEGRAPH displays the first graph in the layout as a single
graph.

Related commands DISPLAYLAYOUT

DISPLAYLAYOUT
Function Sets the mode of the Graphics window to display a layout.

Example LOADGRAPHFILE\
 ("C:\DSWINDOW\FILES\RETAIL",2,"MARKS & SPENCER")
DISPLAYLAYOUT

q LOADGRAPHFILE loads the single graph ‘Marks & Spencer’ from the file
‘Retail’.

q DISPLAYLAYOUT displays it in slot 2 in a layout.

Related command DISPLAYSINGLEGRAPH

 Macro commands and instructions

Issue 1 41

SAVEGRAPHICS
Function Saves a single graph..

SAVEGRAPHICS(file: filename, graph: graphname,append:flag)

filename The name of the save file. (It may be relative or a full path
name). If you not provide an extension, the default
extension (.DSG) is provided. If no filename is specified,
the command is ignored.

graphname The name for the graph. This is optional. If a graph of this
name already exists in the file then an alphabetic character
is added to the name. If no name is specified the existing
graph name is used, or the first piece of text in the graph.

flag OVERWRITE or APPEND (Default = APPEND)

OVERWRITE = a new file is created
APPEND = the graph is appended to the specified file.

µ Use this command if you are saving annotations. Do not use AUTOSAVE if you want to
save annotations.

Example 1 Saves a graph with the name "DEMO GRAPH" to the file "DEMO401.DSG",
overwriting the previous contents of the file.

SAVEGRAPHICS ("DEMO401.DSG", "DEMO GRAPH",OVERWRITE)
DISPLAYGRAPH

Example 2 Saves a layout with the name "DEMO LAYOUT" to the file named
"DEMO401.DSG", overwriting the previous contents of the file.

SAVEGRAPHICS ("DEMO401.DSG","DEMO LAYOUT",OVERWRITE)
DISPLAYLAYOUT

Related commands SAVEWMF, AUTOSAVE, EXPORTGRAPHICS, PRINTGRAPHFILE,
PRINTLAYOUTFILE, LOADGRAPHFILE, LOADLAYOUTFILE

 Macro commands and instructions

42 DSWindows 2.2 Macros User Guide

SAVEWMF
Function Saves a single graph or layout in Windows Metafile format (.WMF).

Syntax SAVEWMF(filename)

filename The name of the save file. It may be relative or a full path
name. If you not provide an extension, the default
extension (.WMF) is provided. If no filename is specified,
the command is ignored.

Example SAVEWMF ("DEMO401.WMF")

q The current graph is saved into a Windows Metafile named "DEMO401.WMF".
By default, any file of the same name will be overwritten.

Related commands SAVEGRAPHICS, AUTOSAVE, EXPORTGRAPHICS

AUTOSAVE
Function Starts autosaving: all graphs received following this command will be saved to the

specified file. Any annotations made using the Graphics annotation commands will
not be saved using this command - use the SAVEGRAPHICS command to save
these.

Syntax AUTOSAVE (file: filename,append:flag)

filename The name of the save file.

If no filename is specified, the command is ignored.

flag OVERWRITE or APPEND (Default = APPEND.)

OVERWRITE = a new file is created
APPEND = the graph is appended to the specified file.

Example AUTOSAVE ("DEMO401.DSG")
ENDAUTOSAVE

q All graphs received from now will be saved into the file "DEMO401.DSG",
until the ENDAUTOSAVE command is given.

 Macro commands and instructions

Issue 1 43

Related commands SAVEGRAPHICS, SAVEWMF, ENDAUTOSAVE

ENDAUTOSAVE
Function Ends autosaving.

Example See above.

Related command AUTOSAVE

EXPORTGRAPHICS
Function Exports the currently displayed graphics (a single graph or a layout) to a file in a

format specified by the filter. Encapsulated Postcript (EPS) and Computer Graphics
Metafile (CGM) are currently supported.

Syntax EXPORTGRAPHICS (filtername,filename)

filtername The name of the export filter (for example, DSCGM.DLL
or DSEPS.DLL). If it is not on the same path as
DSWindows, you must specify the full path name.

filename The file into which the graph or layout is to be saved. The
extension is added by the export filter (for example,
.CGM).

Remarks If DSWindows fails to load the filter (for example, because it cannot find it on the
specified or default path), then the command is ignored.

Example EXPORTGRAPHICS ("dscgm.dll","BTJAN93.CGM")

q The currently displayed graph is exported as a .CGM file called
‘BTJAN93.CGM’.

Related commands SAVEGRAPHICS, AUTOSAVE, SAVEWMF

PRINTGRAPHICS
Function Prints the currently displayed graphic (a single graph or a layout).

 Macro commands and instructions

44 DSWindows 2.2 Macros User Guide

Example > 401H BT
PRINTGRAPHICS

q Requests a high/low/close chart for BT and prints it.

Related commands PRINTGRAPHFILE, PRINTLAYOUTFILE, AUTOPRINT

PRINTGRAPHFILE
Function Prints graphs from the file specified.

Syntax PRINTGRAPHFILE (filename,GraphName1,GraphName2,.......)

filename The name of the file in which the graphs are stored.

GraphName1,
GraphName2 The names of the graphs to be printed.

You can specify any number of graph names. If no graph names are specified then
all the graphs in the file are printed.

Example PRINTGRAPHFILE ("BP401.DSG","JAN","FEB","MAR")

q Three graphs named "JAN", "FEB" and "MAR", stored in the file
"BP401.DSG", are printed.

Related commands PRINTGRAPHICS, PRINTLAYOUTFILE, AUTOPRINT

PRINTLAYOUTFILE
Function Prints layouts from the file specified.

Syntax: PRINTLAYOUTFILE (filename,Layout1,Layout2,.......)

filename The name of the file in which the layouts are stored.

Layout1,Layout2 The names of the layouts to be printed.

You can specify any number of layout names. If no layout names are specified then
all the layouts in the file are printed.

 Macro commands and instructions

Issue 1 45

Example PRINTLAYOUTFILE ("BP401.DSG","BPMAR")

q The layout named "BPMAR", stored in the file "BP401.DSG", is printed.

LOADGRAPHFILE
Function Loads graphs from the specified file into the main Graphics window.

Syntax LOADGRAPHFILE (filename,Slotnumber,GraphName1,GraphName2,...)

filename The name of the file in which the graphs are stored.

Slotnumber The number of the first slot into which the graphs are to
be loaded.

If no slot number is specified then the graphs are loaded
into slot zero and if a second graph is specified, the first is
moved up to slot -1, and so on.

GraphName1
GraphName2 The names of the graphs to be loaded.

You can specify any number of graph names. If no graph names are specified, all
graphs in the file are loaded.

Example LOADGRAPHFILE ("BP401.DSG",5,"JAN","FEB","MAR")

Three graphs named "Jan", "Feb" and "Mar", stored in the file "BP401.DSG", are
loaded into slots 5, 6 and 7.

Related command LOADLAYOUTFILE

LOADLAYOUTFILE
Function Loads a layout from the file specified.

Syntax LOADLAYOUTFILE (filename,LayoutName)

filename The name of the file in which the layout is stored.

LayoutName The name of the layout to be loaded.

 Macro commands and instructions

46 DSWindows 2.2 Macros User Guide

If no layout is specified then the last layout in the file is loaded.

Example LOADLAYOUTFILE ("BP401.DSG","BPMAR")

q The layout named "BPMAR", stored in the file "BP401.DSG", is loaded.

Related command LOADGRAPHFILE

GRAPHPAGESETUP
Function Sets up the Graphics printer page.

Syntax GRAPHPAGESETUP (left:l,right:r,top:t,bottom:b,maptoblack:m,orientation:o)

left:l The left margin setting, in 1/100 inches.
l can be any number from 1 to 32,767.

right:r The right margin setting, in 1/100 inches.
r can be any number from 1 to 32,767.

top:t The top margin setting, in 1/100 inches.
t can be any number from 1 to 32,767.

bottom:b The bottom margin setting, in 1/100 inches.
b can be any number from 1 to 32,767.

maptoblack:m Specifies whether colours are to be mapped to black.

m can be: 0 do not map to black. Dithering is used.
1 for map to black.

orientation:o Defines the orientation of the printout.

o can be: "portrait"
"landscape"

All parameters are optional; if you omit any, the previously specified settings will
apply. Parameter names must be included.

Example GRAPHPAGESETUP\
(left:50,right:50,top:70,bottom:100,maptoblack:1,orientation:"landscape")

 Macro commands and instructions

Issue 1 47

q The graphics printer page is set up to print:

left and right margins of 0.5"
top margin of 0.7"
bottom margin of 1"
colours mapped to black
landscape format.

Related commands PRINTGRAPHICS, AUTOPRINT, PRINTGRAPHFILE

LOADLAYOUT
Function Loads a layout (that is, an arrangement of slots saved with a layout name).

Syntax LOADLAYOUT (layoutname)

layoutname The name of the layout to be loaded.

If no name is specified, then the default layout is loaded.

Remarks This command does not change which graphs are displayed; it changes the position
of the slots according to the layout named.

Example LOADLAYOUT ("3equal slots")

q Loads a layout stored under the name "3equal slots".

Related commands LOADFILLSTYLES, LOADTEXTSTYLES, LOADLINESTYLES

LOADLINESTYLES
Function Loads a line style.

Syntax LOADLINESTYLES (stylename)

stylename The name of the set of line styles to be loaded.

If no style name is specified, then the default set of line styles is loaded.

Example LOADLINESTYLES ("Daily-Report")

q A user-defined line style called "Daily-Report" is loaded.

 Macro commands and instructions

48 DSWindows 2.2 Macros User Guide

Related commands LOADFILLSTYLES, LOADTEXTSTYLES

LOADFILLSTYLES
Function Loads a set of fill styles.

Syntax LOADFILLSTYLES (stylename)

stylename The name of the fill styles are loaded.

If no style name is specified, then the default fill style is loaded.

Example LOADFILLSTYLES ("Daily-Report")

q the set of user-defined fill styles called "Daily-Report" is loaded.

Related commands LOADLINESTYLES, LOADTEXTSTYLES

LOADTEXTSTYLES
Function Loads a set of text styles.

Syntax: LOADTEXTSTYLES (stylename)

stylename The name of the text style to be loaded.

If no style name is specified, then the default text styles are loaded.

Example: LOADTEXTSTYLES ("Daily-Report")

q a set of user-defined text styles called "Daily-Report" is loaded.

Related commands LOADLINESTYLES, LOADFILLSTYLES

 Macro commands and instructions

Issue 1 49

SETGRAPHNAME
Function Sets the name for the current graph (not the name of the file in which the graph is

stored). This applies only to single graphs.

Syntax SETGRAPHNAME (name)

name The new name for the current graph. It must be enclosed
in quotes.

Remarks Once set, the graph name can be used to select / deselect a graphics slot using
SELECT / DESELECT, specify which graph to load using LOADGRAPHICS, or
which graph to print using PRINTGRAPHICS.

If the name of a graph is not set using SETGRAPHNAME, the graph title is used. If
there is no graph title, the first piece of text in the graph (usually the legend) is used.

Example Requests a graph using the code for British Telecom, sets the name of the graph (BT
11/93 - 11/96) and saves the graph in a file called ‘BT’.

> 401A BT
SETGRAPHNAME ("BT 11/93 - 11/96")
SAVEGRAPHICS ("C:\DSWINDOW\FILES\BT","BT 11/93 - 11/96")

Related commands SELECTGRAPH, DESELECTGRAPH, LOADGRAPHICS, PRINTGRAPHICS

 Macro commands and instructions

50 DSWindows 2.2 Macros User Guide

SELECTGRAPH
Function Selects a graph for display in single graph mode, or adds a slot to a layout.

Syntax SELECTGRAPH (GRAPH:name) Or SELECTGRAPH (GRAPH:number)

name The name of the graph to be loaded. It must be enclosed
in quotes. For details on how graph names are set, refer to
SETGRAPHNAME.

number The number (0 to -7) of the graph to be displayed.

Example 1 SELECTGRAPH (GRAPH: "CONSTRUCTION1992")

Example 2 SELECTGRAPH (GRAPH:-5)

Related commands DESELECTGRAPH, SETGRAPHNAME

DESELECTGRAPH
Function Hides a selected graph in a layout.

DESELECTGRAPH (GRAPH:name) Or (GRAPH:number)

name The name of the graph to be removed. It must be enclosed
in quotes. For details on how graph names are set, refer to
SETGRAPHNAME.

number The number (0 to -7) of the graph to be removed.

Example 1 DESELECTGRAPH (GRAPH: "CONSTRUCTION1992")

Example 2 DESELECTGRAPH (GRAPH:-5)

Related commands SELECTGRAPH, SETGRAPHNAME

 Macro commands and instructions

Issue 1 51

Graphic annotations

The commands used to annotate graphs are organised in four functional groups:

q Selecting/deselecting: select the items to be modified, deleted, moved or copied.
(An item on a graph can be a segment of text, a line, a box, a pie chart, etc.)

q Amending: change the attributes of items, delete, move or copy items

q Creating new items: you can create items which apply to a whole layout, for
example, the title of the layout in a box.

q Redrawing: suspend redrawing, so that a number of amendments are redrawn in
one operation.

µ 1 Annotations apply to the currently selected graph; you can apply any annotation
command to a single graph.

2 Only commands which create new items can be applied to a layout. In layout mode,
any items you create belong to the layout, not to an individual graph in the layout.

♦ To load a single graph for annotation

q Use the LOADGRAPHFILE command.

♦ To load a layout for annotation

q Use the LOADLAYOUTFILE command.

Items Each of the following elements on a graph is considered to be an "item":

q The title

q The sub-title

q The X axis

q The Y axis

q The grid

q Each segment of text on the X axis

q Each segment of text on the Y axis

 Macro commands and instructions

52 DSWindows 2.2 Macros User Guide

q Each line in a line chart

q Each bar in a bar chart

q Each legend

q Each segment of a pie

The annotation commands enable you to identify these items by their coordinate
position in the window, or by their type, contents or style, and to change their
position, contents or styles.

The following introductory paragraphs describe general features which apply to the
annotation commands.

Coordinates

Every item on a graph is positioned by default in a certain location in the Graphics
window. The locations are defined by a coordinate system, in which the window
consists of 1,065 points (0 - 1064) on the horizontal (X) axis, and 782 points
(0 - 781) on the vertical (Y) axis.

The position of any item is defined by the coordinate positions of the left, top, right
and bottom sides of the item. When you move an item, its recorded position in the
window is changed.

Using quotes

When you identify or change text items you must enclose the text in quotes.
Similarly, when you identify an item by its style, the style name must be enclosed in
quotes.

 Macro commands and instructions

Issue 1 53

Y

X

781

400

100

0 350 700 1064

top

bottom

left right

Graphic coordinate system

 Macro commands and instructions

54 DSWindows 2.2 Macros User Guide

Selecting/deselecting

SELECTITEMS
Function Selects and highlights one or more items in the current graph. A number of optional

parameters enable you to select different kinds of item, either by location on the
graph, by the type of item, by the style (fill, line or text), or by the whole or part of
the text in text items. If no items match the specifications, then none are selected.

Syntax SELECTITEMS (AT:x,y, IN:l,t,r,b, TYPE:string, STYLE:string, TEXT:string,
STARTS: string, CONTAINS: string)

AT:x,y Identifies the coordinate position of an item.

x and y are the coordinates.

x can be between 0 and 1064, the left and right margins
respectively.

y can be between 0 and 781, the bottom and top margins
respectively.

The item closest to this position is selected. Alternatively
use IN to select one or more items within a rectangle.

IN:l, t, r, b Identifies a rectangle.

l, t, b, and t are the left, right, bottom and top positions of
a rectangle

l and r are coordinate positions between 0 and 1064.

b and t are coordinate positions between 0 and 781

TYPE:string Identifies a type of item.

String can be any of the following:

 Macro commands and instructions

Issue 1 55

polygon (e.g. the shading below a line or pie segments).
line
text
arc
rectangle
box
vertical text

STYLE:string Identifies items by fill, line or text style, where string is
the new style, enclosed in quotes.

The style name must be as shown in the annotation list
boxes. You can use only one style per command.

TEXT:string Identifies complete text items where string is the text,
enclosed in quotes. Capital and lower case characters must
match.

STARTS:string Identifies items by a text string at the start of the item,
where string is the text, enclosed in quotes. Capital and
lower case characters must match.

CONTAINS:string Identifies items by a text string within the item, where
string is the text, enclosed in quotes. Capital and lower
case characters must match.

Remarks q Use one or more parameters to define the item(s) to be selected.

q In any one use of the command, most parameters are optional. Defaults are
assumed for missing parameters as necessary.

q IN is an alternative to AT.

q Inappropriate parameters are ignored.

q Commands fail only if mandatory parameters are missing.

q All items matching the definition are selected. Equally, any items you want to
select must match the parameter(s) you specify. Any previously selected item is
deselected.

q If you specify no parameters, all items are selected.

 Macro commands and instructions

56 DSWindows 2.2 Macros User Guide

Example 1 SELECTITEMS (TYPE:"LINE",IN:100,200,100,200)

q All lines within the rectangle defined by the coordinates 100, 200, 100, 200 are
selected.

Example 1 SELECTITEMS (CONTAINS:"FTSE")

q Any text string which contains the characters "FTSE" is selected.

Related commands ADDTOSELECTITEMS, REFINESELECTITEMS, DESELECTITEMS

ADDTOSELECTITEMS
Function Adds specified item(s) to currently selected items, i.e. any previous selection is

maintained.

Syntax ADDTOSELECTITEMS (AT:x,y, IN:l,t,r,b, TYPE:string, STYLE:string, TEXT:
string, STARTS: string, CONTAINS: string)

(Parameters) As for SELECTITEMS

Remarks As for SELECTITEMS

Example 1 ADDTOSELECTITEMS (TYPE: "POLYGON")

q All pie charts are added to the current selection.

Example 2 SELECTITEMS (STYLE: "Title")
CHANGEITEMS (TEXT: "FTSE")
ADDTOSELECTITEMS (STYLE: "Sub-title")
NEWBOX

q The title is selected, the text of the title is changed, the sub-title is selected also,
and a box is drawn round the two items.

Related commands SELECTITEMS, REFINESELECTITEMS, DESELECTITEMS

 Macro commands and instructions

Issue 1 57

REFINESELECTITEMS
Function Refine the currently selected items, i.e. only those items which match the parameters

specified remain selected.

Syntax REFINESELECTITEMS (AT:x,y, IN:l,t,r,b, TYPE:string, STYLE:string, TEXT:
string, STARTS: string, CONTAINS: string)

Parameters As for SELECTITEMS.

Remarks As for SELECTITEMS.

Example SELECTITEMS (TYPE:"LINE")
REFINESELECTITEMS (STYLE:"Line Style 1")

q SELECTITEMS selects all lines.

q REFINESELECTITEMS selects from those all lines with "Line Style 1".

Related commands SELECTITEMS, ADDTOSELECTITEMS, DESELECTITEMS

DESELECTITEMS
Function Deselects any currently selected item which matches the parameters specified.

Syntax DESELECTITEMS (AT:x,y, IN:l,t,r,b, TYPE:string, STYLE:string, TEXT:
string, STARTS: string, CONTAINS: string)

Parameters As for SELECTITEMS.

If no parameters are specified all items are deselected.

Remarks As for SELECTITEMS.

Example DESELECTITEMS

Deselects all items.

Related commands SELECTITEMS, ADDTOSELECTITEMS, REFINESELECTITEMS

 Macro commands and instructions

58 DSWindows 2.2 Macros User Guide

Amending items

MOVEITEMS
Function Moves currently selected items.

Syntax MOVEITEMS (TO:x,y)

TO:x,y Defines a new coordinate position for the top left corner of
the selected items. (The other coordinates follow
accordingly.)

x and y are the coordinates

x can be between 0 and 1064, the left and right margins
respectively

y can be between 0 and 781, the bottom and top margins
respectively

OR:

MOVEITEMS (BY:dx,dy)

BY:dx,dy Defines the number of points by which the selected items
are to move.

dx and dy are the coordinates

dx can be between -1064 and 1064

dy can be between -781 and 781

Remarks q If you specify no parameters, nothing is moved.

q You can use negative coordinates.

q You can move items off the visible area of the screen (and move them back
again.)

q Items remain selected after moving.

 Macro commands and instructions

Issue 1 59

Example 1 MOVEITEMS (TO:500,500)

q All the selected items are moved to the coordinate position 500:500.

Example 2 MOVEITEMS (BY:100,100)

q All the selected items are moved 100 coordinate points up and 100 coordinate
points right towards the top right corner of the screen.

Related commands COPYITEMS

COPYITEMS
Function Copies the currently selected items to the position specified.

Syntax COPYITEMS (TO:x,y) Or COPYITEMS (BY:dx,dy)

Parameters As for MOVEITEMS.

Remarks q As for MOVEITEMS.

q If you specify no parameters, the new items are positioned on top of the original
ones.

q The new items remain selected.

Example SELECTITEMS (AT:100,100,TYPE:"LINE")
COPYITEMS (TO:500,500)

q SELECTITEMS selects the line closest to the coordinate position 100,100.

q COPYITEMS copies the line to the position 500,500.

Related commands MOVEITEMS

DELETEITEMS
Function Deletes the currently selected items.

Example 1 SELECTITEMS (STYLE: "Sub-title")
DELETEITEMS

q SELECTITEMS selects the sub-title.

q DELETEITEMS deletes it.

 Macro commands and instructions

60 DSWindows 2.2 Macros User Guide

Example 2 SELECTITEMS
DELETEITEMS

q SELECTITEMS selects all items.

q DELETEITEMS deletes all items (that is, the whole graph).

Related commands SELECTITEMS

CHANGEITEMS
Function Changes the attributes of the currently selected items.

Syntax CHANGEITEMS (TEXT:text,STYLE:style,FILL:fill,SHADOW:shadowstyle,
POSITION:textposition,SHADOWBORDER:linestyle,BORDER:linestyle,
BORDERGAP:gap,SHADOWOFFSET:offset,WIDTH:textitemlength)

TEXT:text Defines a new text string, where text is the new string,
enclosed in quotes.

STYLE:style Defines a new fill, line or text style, where style is the
new style, enclosed in quotes.

The style name must be as shown in the annotation list
boxes. You can use only one style per command.

FILL:fill Defines a new fill style where fill is the new style,
enclosed in quotes.

The style name must be as shown in the annotation list
boxes. You can use only one style per command.

SHADOW:shadowstyle Defines a new fill style for shadows around boxes and
rectangles, where shadowstyle is the new style, enclosed
in quotes.

The style name must be as shown in the annotation list
boxes. You can use only one style per command.

POSITION:textposition Defines the alignment of text.

 Macro commands and instructions

Issue 1 61

textposition can be: r, l or c for right, left or centre, enclosed in quotes.

SHADOWBORDER:
linestyle Defines the linestyle for the edge of boxes and rectangles,

where linestyle is the new style, enclosed in quotes. The
style name must be as shown in the annotation list boxes.
You can use only one style per command.

BORDER:linestyle Defines the linestyle for the edge of boxes and rectangles,
where linestyle is the new style, enclosed in quotes.

The style name must be as shown in the annotation list
boxes. You can use only one style per comma

BORDERGAP:gap Defines the gap between the contents and the borders of
boxes and rectangles.

SHADOWOFFSET:
offset Defines the distance between boxes and rectangles and

their shadows.

WIDTH:width Defines the length of a text item.

Remarks q The styles you specify must be as listed in the annotation list boxes.

q The selected items adopt any of the attributes which are applicable to them, even
if the command includes other attributes which do not apply.

q A FILL: parameter overrides a fill style specified by the STYLE: parameter Use
FILL as well as STYLE when a new box or a new rectangle has been created.
The FILL applies to them.

q If you want to change the positions of items, use the MOVEITEMS command.

q Items remain selected, whether or not they have been changed.

Example SELECTITEMS (TYPE:"RECTANGLE")
CHANGEITEMS (SHADOW:"Fill Style 4")

q SELECTITEMS selects all rectangles.

q CHANGEITEMS changes the fill style to Fill Style 4.

Related commands MOVEITEMS, COPYITEMS

 Macro commands and instructions

62 DSWindows 2.2 Macros User Guide

Creating new items

NEWBOX
Function Creates new boxes to enclose the currently selected items. The boxes are sized

automatically to surround the items.

Syntax NEWBOX(FILL:fillstyle,BORDER:linestyle,SHADOW:fillstyle,
SHADOWBORDER:linestyle,SHADOWOFFSET:offset,BORDERGAP:gap)

FILL:fillstyle Defines a fill style, where FILL is the fill style, enclosed
in quotes. The style name must be as shown in the Fill
Style Configuration list box. You can use only one style
per command. To specify no fill for the box, use "No Fill".

BORDER:linestyle Defines the line style for the edge, where linestyle is the
style, enclosed in quotes. The style name must be as
shown in the Line Style Configuration list box. You can
use only one style per command. To specify no border for
the box, use "No Style".

SHADOW:
shadowstyle Defines a fill style for shadows, where shadowstyle is the

style, enclosed in quotes. The style name must be as
shown in the Fill Style Configuration list box.You can use
only one style per command. To specify no fill for the
box, use "No Fill".

SHADOWBORDER:
linestyle Defines the linestyle for the shadow border, where

linestyle is the style, enclosed in quotes. The style name
must be as shown in the Line Style Configuration list box.
You can use only one style per command. To specify no
border for the box, use "No Style".

SHADOWOFFSET:
offset Defines the distance between the shadow and the rectangle.

 Macro commands and instructions

Issue 1 63

BORDERGAP:gap Defines the gap between the contents and the borders. The
size of the gap affects the size of the box.

Remarks q The styles you specify must be as listed in the annotation list boxes.

q All parameters are optional.

q Default values are taken from the current system default, i.e. the last settings
used for a box or rectangle.

q Default settings are updated every time you specify new parameters.

Example 1 SELECTITEMS (STYLE:"Legend",TYPE:"TEXT")
NEWBOX (FILL:"Fill Style 3",BORDERGAP:30)

q SELECTITEMS selects text items with the style "Legend".

q NEWBOX boxes it in a box with Fill Style 3 and a border gap of 30 points.

Example 2 SELECTITEMS (IN:0,0,600,70)
NEWBOX(FILL:"No Fill",BORDER:"Axis",SHADOW:"No Fill",\
SHADOWBORDER:"Axis",SHADOWOFFSET:5)

q SELECTITEMS command is used to select all the item(s) in the area which has
a lefthand co-ordinate (l) = 0, top (t) = 70, righthand (r) = 600 and bottom (b) =
0 - the legend in this instance

q NEWBOX boxes in the items with an unfilled (transparent) bordered box and an
offset unfilled shadow box.

Related commands SELECTITEMS

 Macro commands and instructions

64 DSWindows 2.2 Macros User Guide

NEWRECT
Function Creates a new fixed-size rectangle.

Syntax NEWRECT
(FROM:x1,y1,TO:x2,y2,FILL:fillstyle,BORDER:linestyle,SHADOW:fillstyle,
SHADOWBORDER:linestyle,SHADOWOFFSET:offset)

FROM:x1,y1 Defines the first-drawn coordinate point of the rectangle
(for example, the top left-hand corner).

x1 and y1 are the coordinates.

x1 can be between 0 and 1064.

y1 can be between 0 and 781.

TO:x2,y2 Defines the last-drawn coordinates of the rectangle (for
example, the bottom right-hand corner).

x2 and y2 are the coordinates.

x2 can be between 0 and 1064.

y2 can be between 0 and 781.

FILL:fill Defines a fill style, where fill is the fill style, enclosed in
quotes. The style name must be as shown in the Fill Style
Configuration list box. You can use only one style per
command. To specify no fill for the box, use "No Fill".

BORDER:linestyle Defines the linestyle for the edge, where linestyle is the
style, enclosed in quotes. The style name must be as
shown in the Line Style Configuration list box. You can
use only one style per command. To specify no border for
the box, use "No Style".

 Macro commands and instructions

Issue 1 65

SHADOW:
shadowstyle Defines a fill style for shadows, where shadowstyle is the

fill style, enclosed in quotes. The style name must be as
shown in the Fill Style Configuration list box. You can
use only one style per command. To specify no fill for the
box, use "No Fill".

SHADOWBORDER:
linestyle Defines the linestyle for the shadow border, where

linestyle is the style, enclosed in quotes. The style name
must be as shown in the Line Style Configuration list box.
You can use only one style per command. To specify no
border for the box, use "No Style".

SHADOWOFFSET:
offset Defines the distance between the shadow and the rectangle.

Remarks q The styles you specify must be as listed in the annotation list boxes.

q All parameters are optional, except FROM and TO.

q Default values are taken from the current system default, i.e. the last settings
used for a box or rectangle.

q Default settings are updated every time you specify new parameters.

Example NEWRECT (FROM:10,10, TO:100,100)

q NEWRECT creates a new rectangle using the current default settings at the
position specified.

Related commands NEWBOX

 Macro commands and instructions

66 DSWindows 2.2 Macros User Guide

NEWTEXT
Function Creates a new text string.

Syntax NEWTEXT (TEXT:newtext,AT:x,y,STYLE:textstyle,POSITION:textposition)

TEXT:newtext Defines the new text string where newtext is the new
string, enclosed in quotes.

AT:x,y Defines the coordinate position at which the start of the
new text item is positioned.

x can be between 0 and 1064 and defines the left margin
position of the text on the screen.

y can be between 0 and 781 and defines the height
coordinate at which the text is positioned on the screen.

STYLE:textstyle Defines the text style for the new text item, where
textstyle is the name of the text style. It must be the name
of a style in the annotation list box.

POSITION:textposition Defines the alignment of text

textposition can be:

r, l or c for right, left or centre, enclosed in quotes.

Example NEWTEXT (TEXT:"Annual prices",POSITION:"r",AT:100,300)

q The text "Annual prices" is added, right-aligned, at the coordinate point 100, 300.

Related commands NEWBOX, NEWRECT, NEWLINE

 Macro commands and instructions

Issue 1 67

NEWLINE
Function Creates a new straight line defined by two points.

Syntax NEWLINE (FROM:x1,y1,TO:x2,y2,STYLE:linestyle)

FROM:x1,y1 Defines the start point coordinates of the line:

x1 can be between 0 and 1064
y1 can be between 0 and 781

TO:x2,y2 Defines the end point coordinates of the line:

x2 can be between 0 and 1064
y2 can be between 0 and 781

STYLE:linestyle Defines the linestyle for the new line, where linestyle is
the style, enclosed in quotes.

The style name must be as shown in the annotation list
boxes. You can use only one style per command

"Line style 1" is the default, if none is specified.

Example NEWLINE (FROM:10,10,TO:100,100,STYLE:"Arrow 1")

q In this example, a line is drawn, starting at position 10,10 and ending at position
100,100, with the line style "Arrow 1".

Related commands NEWBOX, NEWRECT, NEWTEXT

 Macro commands and instructions

68 DSWindows 2.2 Macros User Guide

Redrawing

GRAPHDRAWOFF
Function Suspends all re-drawing of the current graph. This is useful before a large number of

annotation commands, because it speeds up the macro.

Remarks q All redraws, including mouse-driven highlights, are suspended.

q The annotation commands must be followed by GRAPHDRAWON. The
drawing is suspended until until this command has been processed.

Example GRAPHDRAWOFF
SELECTITEMS
MOVEITEMS (BY:100,100)
CHANGEITEMS (STYLE:"Fill Style 4")
REFINESELECTITEMS (TYPE:"TEXT")
CHANGEITEMS (TEXT:"Something New")
GRAPHDRAWON

q GRAPHDRAWOFF suspends re-drawing.

q SELECTITEMS selects all items on the graph.

q MOVEITEMS moves all items by 100 coordinate points to the right and 100 up.

q CHANGEITEMS sets all fill styles to Fill style 4.

q REFINESELECTITEMS selects all text items.

q CHANGEITEMS changes all text items to the string "Something New".

q GRAPHDRAWON redraws the results of these changes.

Related command GRAPHDRAWON

GRAPHDRAWON
Function Starts re-drawing of the current graph (after a GRAPHDRAWOFF).

Example See GRAPHDRAWOFF

Related command GRAPHDRAWOFF

 Macro commands and instructions

Issue 1 69

Data Channel/Fundline

Use the commands in this section to automate 900 (Data Channel) and 907
(Fundline) requests.

NOTE The Data Channel display options, such as transposing column/row headings, are
manually configured in the Configure Data Channel Translation dialog box
(Options>Configure>Data Channel/Fundline Translator....).

CONFIGUREDC
Function Sets the various configurable options for the Data Channel programs.

Syntax CONFIGUREDC (Merge900A: n, 1 = merge output into one table, 0 = dont
 Transpose900A:n, 1 = transpose ON, 0 = transpose OFF
 Titles900A: n, 1 = put date as title, 0 = don’t
 ColHeadings900A: n, 1 = put col headings in output, 0 = don’t
 RowHeadings900A: n, 1 = put row headings in output, 0 = don’t
 Merge900B: n, 1 = merge output into one table, 0 = dont
 Transpose900B: n, 1 = transpose ON, 0 = transpose OFF
 Titles900B: n, 1 = put start date, end date, frequency, 0 = don’t
 ColHeadings900B: n, 1 = put col headings in output, 0 = don’t
 RowHeadings900B: n, 1 = put row headings in output, 0 = don’t
 Codes900C: n, 1 = code/mnemonic for each co., 0 = name only
 QuoteText: n, 1 = quotes around output text items, 0 = don’t
 QuoteNumbers: n, 1 = quotes around output numbers, 0 = don’t
 Prompt: n, 1 = display DC config dialog every time DC

 translation turned on, 0 = don’t
 Separator: "text" character(s) used to separate items
 EndOfLine: "text" character(s) to be output at end of each line
 DecimalSep: "text" character used to separate units from tenths
 NotAvailable: "text" string to output if no value is available
 QuoteChar: "text") character to output as quote character

NOTE: Options for n: 1 or 0 as listed above
Options for text: Separator: usually one of [SPACE] [TAB] , ;

 EndOfLine usually one of [CR][LF] [LF] [CR]
 DecimalSep usually one of , .

NotAvailable usually #n/a
QuoteChar usually one of: " ’

 Macro commands and instructions

70 DSWindows 2.2 Macros User Guide

1. A string must be inside double quotes. Characters which are not quoted are
keywords or identifiers for variables.

2. To embed a non-printable character or double quote in a string, CHR$ function
should be used. For example, myStringWithQuote = "any" + CHR$(34), where 34 is
the ASCII code for a double quote.

3. [SPACE], [ENTER] etc can be embedded inside the string for SEND-related
commands only. No other commands, such as ConfigureDC, understand the
embedded characters.

4. If the decimal separator is the same as the separator then semi-colons (;) will be used
as the separator between items

5. Squared brackets are only used around [TAB], [SPACE], [CR] and [LF] - and only
for the Separator and EndOfLine parameters.

Example CONFIGUREDC (Merge900B: 1, 0, 0, 1, 0)

q This example changes the setting for Merge900B and the four items which
follow it. Note that if items are listed in the order specified above, the parameter
labels can be omitted. This macro therefore sets 5 900B options:

Merge900B output is merged into one rectangular table
Transpose900B row of data for each series
Titles900B don’t output start date, end date and frequency
ColHeadings900B include column headings in output
RowHeadings900B don’t include row headings in output

Remarks q Any settings that you do not wish to change can be omitted.

q Refer to the DSWindows 2.1 User Guide for an explanation of the various
settings - they are the parameters set via the Configure Data Channel Translator
dialog box.

STARTDC
Function Starts saving Data Channel/Fundline data.

Syntax STARTDC(destination, filename,flag)

destination The destination of the data. Options are:

 Macro commands and instructions

Issue 1 71

CSVFILE A .CSV file with comma separated values
CLIPBOARD No filename is required
LISTFILE A data or list file, to be used later with an

INPUT statement. You can specify this
format only when running program 900A.

filename A text string which defines the name of the file where the
data is to be stored. You must give a filename if the
destination is a CSVFILE or LISTFILE.

flag OVERWRITE (Default) The specified file, if it already
exists, is automatically overwritten

APPEND Add new data to an existing file

Example STARTDC (LISTFILE, "FTSE.LST")
SEND ("900A FTSE,MNEM")
ENDDC

q In this example, the macro opens a list file called "FTSE.LST". The mnemonics
of the companies in the FTSE are downloaded into the file. ENDDC closes the
Data Channel.

Related commands ENDDC

ENDDC
Function Ends saving Data Channel/Fundline data.

Example See STARTDC

Related commands STARTDC

ConstTimeSeries
Function When executed after starting Data Channel translation, this command allows a

constant value to be inserted in the next row/column.

Syntax ConstTimeSeries ("value", "start date", "end date", "frequency")

Value Any valid string, including spaces and separators. If not
specified, defaults to a blank column/row.

 Macro commands and instructions

72 DSWindows 2.2 Macros User Guide

Start date/End date/
frequency If not specified, default to the the values used in the last

successful 900B request following STARTDC. This is the
preferred method of using ConstTimeSeries as it ensures a
correct match with the previous number of downloaded
Data Channel items.
If there is no previous 900B request the defaults are:
"-1D", "" ,"D",

Example ConstTimeSeries ("MyLabel", "-1Y", "-6M", "W")

See EX_TIMES.MAC for an example macro.

AllowDuplicateTimeSeries
Function The AllowDuplicateTimeSeries macro command is used to control the merging of

900B requests using the same datatype (e.g. ICI(P)).

AllowDuplicateTimeSeries takes one parameter, either True or False. When set to
True, these time series will NOT be merged into a single column. By default, 900B
requests using the same datatype are merged (AllowDuplicateTimeSeries set to False)
in order to maintain backwards compatibility with earlier versions of DSWindows,
EXCEPT where the start and end dates are also the same - it is assumed that two
exactly identical requests are intentional and they are therefore both displayed.

Use of this macro command is illustrated in the example, EX_TIMES.MAC.

Example AllowDuplicateTimeSeries (True)

 Macro commands and instructions

Issue 1 73

Capturing text

CAPTURE
Function Saves text output to disk, either in a format for viewing within DSWindows, or in

ASCII text format for importing into other packages.

Syntax CAPTURE(filename,filetype,page,flag)

filename A text string which defines the name of the file where the
data is to be stored. If you are saving data to a
drive/directory other than the default save file directory,
then you must include the full path.

filetype Numeric, 0 or 1

0 = a file which you want to review within DSWindows.
The default extension is .DST

1 = an ASCII text file which you want to use in another
package. The default extension is .TXT

If none is specified, 0 is the default.

page Numeric, 0,1 or 2.

0 = Saves only output pages for a plain ASCII text file.
Saves both input and output pages for a DSWindows
save file

1 = Saves only output pages

2 = Saves both input and output pages

flag QUERY, OVERWRITE or APPEND

QUERY = you are prompted, if the specified filename
exists, whether to overwrite or append

 Macro commands and instructions

74 DSWindows 2.2 Macros User Guide

OVERWRITE the specified file, if it already exists, is
 automatically overwritten

APPEND the saved pages are automatically
 appended to the file, if it already exists.

Example 1 CAPTURE("A:\testfile",1,1,overwrite)
> 301A BT,ICI
ENDCAPTURE

q A plain text file called a:\testfile.txt is created, and the output pages from the
request for recent values and ranges for BT and ICI are saved into it. Any file of
the same name will be overwritten. ENDCAPTURE closes the file.

Example 2 CAPTURE

q With no parameters, the macro stops, and you are prompted to supply a filename
(an ASCII text file with a .TXT extension). The macro then continues.

Remarks If you want to capture Data Channel output please see STARTDC and ENDDC. If
you want to capture Graphics output please see AUTOSAVE/ENDAUTOSAVE and
SAVEGRAPHICS.

Related commands ENDCAPTURE, PRINTSAVEFILE, ACTIVATESAVEFILES, OPENSAVEFILE

ENDCAPTURE
Function Stops saving data.

Example See CAPTURE.

Related commands CAPTURE

OPENSAVEFILE
Function Opens the specified save file for viewing in the Save File window.

Syntax OPENSAVEFILE (filename)

filename The name of the file to be opened.

 Macro commands and instructions

Issue 1 75

Example ACTIVATESAVEFILES
OPENSAVEFILE ("file10.dst")

q The Save File window is opened and a file named "file10.dst" is loaded.

Related commands CAPTURE

Arranging windows

Activating windows

The following commands activate the windows. If the window has not been opened,
then it is opened.

ACTIVATETERMINAL
ACTIVATEGRAPHICS
ACTIVATEBACKPAGES
ACTIVATESAVEFILES

Closing windows

The following commands close the windows and leave DSWindows.

CLOSEDSWINDOWS
CLOSETERMINAL
CLOSEGRAPHICS
CLOSEBACKPAGES
CLOSESAVEFILES

Minimizing windows

The following commands minimize the windows.

MINIMIZEDSWINDOWS
MINIMIZETERMINAL
MINIMIZEGRAPHICS
MINIMIZEBACKPAGES
MINIMIZESAVEFILES

 Macro commands and instructions

76 DSWindows 2.2 Macros User Guide

Maximizing windows

The following commands maximize the windows.

MAXIMIZEDSWINDOWS
MAXIMIZETERMINAL
MAXIMIZEGRAPHICS
MAXIMIZEBACKPAGES
MAXIMIZESAVEFILES

Restoring windows

The following commands restore the windows to their normal size.

RESTOREDSWINDOWS
RESTORETERMINAL
RESTOREGRAPHICS
RESTOREBACKPAGES
RESTORESAVEFILES

TILE
Function Tiles all child windows.

Related command CASCADE

CASCADE
Function Cascades all child windows.

Related command TILE

ARRANGEICONS
Function Arranges all child window icons at the foot of the main window.

 Macro commands and instructions

Issue 1 77

Connecting to Datastream

CONNECT
Function Connects to Datastream.

Syntax CONNECT ("Sessionx")

CONNECT ("Gatewayname")

CONNECT ("Gateway,Queue")

Sessionx Use Sessionx, where x is a number in the range 1 to 8, to
specify a previously configured session. It must be
enclosed in quotes.

Gateway The name of the gateway. It must be enclosed in quotes.

Gateway,Queue These parameters are specifically to support connection via
DSGATE 3.0, where Gateway is the name of the gateway
and Queue is the name of the queue which the connecting
workstation will use. The parameters must be enclosed in
quotes.

Example CONNECT ("DATASTREAM, ABC1111")

q The PC connects to Datastream via the queue named ABC1111 on the gateway
named DATASTREAM, where the gateway PC is running DSGATE3.0.

NOTE If connecting to a gateway via a modem, use the CONNECTNOWAIT command

Related commands DISCONNECT, CONNECTNOWAIT, CONNECTNOQUEUE

 Macro commands and instructions

78 DSWindows 2.2 Macros User Guide

CONNECTNOWAIT
Function Special form of the CONNECT command for use when connecting to a modem.

Syntax CONNECTNOWAIT ("Sessionx")

CONNECTNOWAIT ("Gatewayname")

CONNECTNOWAIT ("Gateway,Queue")

Sessionx Use Sessionx, where x is a number in the range 1 to 8, to
specify a previously configured session. It must be
enclosed in quotes.

Gateway The name of the gateway. It must be enclosed in quotes.

Gateway,Queue These parameters are specifically to support connection via
DSGATE 3.0, where Gateway is the name of the gateway
and Queue is the name of the queue which the connecting
workstation will use. The parameters must be enclosed in
quotes.

Example CONNECTNOWAIT ("DS-GATE-1")

Related commands CONNECT, DISCONNECT, CONNECTNOQUEUE

CONNECTNOQUEUE
Function This is a special form of the CONNECT command. It connects to Datastream, via

the specified gateway, but will not wait in a queue. It allows the program to seek
another gateway if the first one is busy. If no gateway is specified, then the one
specified in the Configure Communication dialog is the default.

Syntax CONNECTNOQUEUE ("Sessionx")

CONNECTNOQUEUE ("Gatewayname")

CONNECTNOQUEUE ("Gateway,Queue")

 Macro commands and instructions

Issue 1 79

Sessionx Use Sessionx, where x is a number in the range 1 to 8, to
specify a previously configured session. It must be
enclosed in quotes.

Gateway The name of the gateway. It must be enclosed in quotes.

Gateway,Queue These parameters are specifically to support connection via
DSGATE 3.0, where Gateway is the name of the gateway
and Queue is the name of the queue which the connecting
workstation will use. The parameters must be enclosed in
quotes.

Example CONNECTNOQUEUE ("DS-GATE-1")
IF &connectState = QUEUEING THEN

DISCONNECT
CONNECT ("DS-GATE-2")

ENDIF

q CONNECTNOQUEUE tries to connect via DS-GATE-1, but it will not wait if
there is a queue.

q IF checks if there is a queue.

q If there is a queue, the macro disconnects.

q CONNECT tries to connect via another gateway (DS-GATE-2), queueing if
necessary.

Related commands CONNECT, DISCONNECT, CONNECTNOWAIT

LOGON
Function Runs the default logon macro.

Example ActivateBackpages
ActivateTerminal
MaximizeTerminal
LOGON

q The first two lines open the Backpages and Terminal windows.

q The third line maximizes the Terminal window.

 Macro commands and instructions

80 DSWindows 2.2 Macros User Guide

q LOGON calls the default logon macro. This is LOGON.MAC, unless you have
specified another one (by selecting Options>Configure>Macros>Select logon
macro).

DISCONNECT
Function Disconnects from Datastream.

Remarks You can still use DSWindows, but you cannot request data.

Example See CONNECTNOQUEUE.

Related commands CONNECT, CONNECTNOWAIT, CONNECTNOQUEUE,
CLOSEDSWINDOWS

 Macro commands and instructions

Issue 1 81

Error recovery, logging errors, writing to file

RECOVERUSING
Function Used with LOGERRORSTOFILE, this command enables you to specify how a macro

will recover from an error state such as a communications problem. The command
specifies the name of a recovery macro which will be triggered by an error condition
(a failed SEND command). The recovery macro will typically attempt to perform a
reconnect, return the user to the Datastream prompt and the calling macro will restart
at the beginning of the line in which the original error occurred.

Syntax RECOVERUSING ("filename")

filename Name and path of the recover macro. If no path is specified, it
defaults to the \dswindow\files\ directory.

RECOVERUSING ("recover.mac")

Example See the example macro, EX_900CO.MAC

Related commands RECOVERSTOP, LOGERRORSTOFILE, ENDALLMACROS

NOTES 1. RECOVERUSING only works when LOGERRORSTOFILE is active.

2. An example recover macro, RECOVER.MAC, is included on the installation disks and
can be found in the \dswindow\files directory. This is a fully working macro and
has been created as a template which you can edit to suit your own requirements.

3. When the recovery macro successfully restarts the calling macro, processing of the
macro will recommence at the start of the line in which the original error
occurred: users should be aware that, depending on how their original macro was
structured, this can have an impact upon the running of the macro.

4. For detailed information and advice on writing robust macros and on creating a
recovery macro, please refer to the Chapter, ’How to make your macros more
robust’.

5. If no file name extension is specified it defaults to *.mac.

 Macro commands and instructions

82 DSWindows 2.2 Macros User Guide

RECOVERSTOP
Function Use the RECOVERSTOP command to switch recovery off.

Syntax RECOVERSTOP

Related commands ENDALLMACROS, RECOVERUSING

ENDALLMACROS
Function Kills all running macros. Use this command, for example, to stop both a recover

macro and the calling macro.

Syntax ENDALLMACROS

Related commands RECOVERSTOP

LOGERRORSTOFILE
Function Sends error messages to a log file rather than the screen. This ensures that normal

dialogs are not displayed and macro execution is not interrupted when an error
occurs. Used with RecoverUsing, this command prevents the situation in which a
macro sits waiting for a user to click on OK before the processing of the macro can
continue.

Syntax LOGERRORSTOFILE (filename,flag)

filename Name and path of the log file. If no path is specified it
defaults to the configured save file directory with a .LOG
file extension.

flag APPEND Add new data to an existing file
OVERWRITE The specified file, if it already exists, is

automatically overwritten.

 Macro commands and instructions

Issue 1 83

NOTES 1 To start logging errors to a file, use LOGERRORSTOFILE with the file name as a
parameter
To switch the log process off and revert to normal display mode, use the command
without the parameter.

2 Unless you switch LOGERRORSTOFILE off, the log process stays active for the
duration of the complete macro.

3 If LOGERRORSTOFILE is not switched off, any MESSAGE command, for example
will also be sent to the log file - care must therefore be taken in how the command
is used, particularly if the macro is being used in interactive mode (ie not
unattended).

WRITETOFILE
Function Writes text to a specified file

Syntax WRITETOFILE (text,filename,flag)

text text string to be written

filename name of the file to write text to

flag APPEND Add new data to an existing file
OVERWRITE The specified file, if it already exists, is

automatically overwritten

Example WRITETOFILE ("Hello" + CHR$(13) + CHR$(10), "c:\dswindow\files\test.txt")

q This example writes the text string "Hello", together with a line feed character,
to the file test.txt in the specified path.

 Macro commands and instructions

84 DSWindows 2.2 Macros User Guide

ONERROR
Function Defines the error status for the macro, when an error is found in a SEND or

CONNECT command.

Syntax: ONERROR (status)

status The error status. It can be 0 or 1:

0 = If an error has been found, the macro will stop
running. This is the default.

1 = If an error has been found, the macro will continue
running. The user should be aware that errors may have
occurred during processing which may affect the result.

Example ONERROR (0)

Miscellaneous

MESSAGE
Function Displays a message box with the specified message and title. Both message and

title are strings.

Syntax MESSAGE (message, title)

message A text string - the message to be displayed.

title A text string - the title for the message box.

Example MESSAGE ("Requested text not found","Text search")

q The macro is stopped until the message is acknowledged (by clicking on OK).

Related commands USERINPUT

 Macro commands and instructions

Issue 1 85

BEEP
Function Generates a beep at the PC’s speaker.

Syntax BEEP (beeps)

beeps A number specifying the number of beeps to generate. If
no number is specified, the default is one.

Example BEEP(3)

q Three beeps are generated.

Related commands MESSAGE, WAIT

SetDateExportFormat
Function This command is used to set the DSWindows Export Date format. The date format

should be the same as the date format strings listed in the short date styles options in
the Windows Control Panel.

Syntax/Example SetDateExportFormat ("DD/MM/YY")

Please refer to the EX_DATEF.MAC example macro to see the SetDateExportFormat
command in use.

 Macro commands and instructions

86 DSWindows 2.2 Macros User Guide

 Constants and variables

This section includes:

q an introduction to the concepts of constants and variables in the Datastream
Macro language

q a list of the available system constants and variables, instructions on how to use
them and some examples

Introduction

System constants and variables are normally used in macros to test for a number of
conditions. Constants are also used in certain commands as parameters to define
output destinations and window sizes.

Experienced macro users can define their own constants and variables.

Constants

Constants are text strings, numbers or dates whose values are fixed in the macro and
do not change. System constants are constants given meaningful names for
commonly used values in Datastream macros. Note that you can use system constants
only with certain instructions, commands and variables.

The available system constants are listed below with notes on when to use them
together with examples.

 Constants and variables

Issue 1 87

TRUE
Usage Use with the system variables &ENDOFDATA and &TEXTFOUND.

Example IF &ENDOFDATA = TRUE THEN
GOTO FINISH

ENDIF
FINISH:

FALSE
Usage Use with the system variables &ENDOFDATA and &TEXTFOUND.

Example LOOP:
IF &ENDOFDATA = FALSE THEN

INPUT NEXTVALUE
SEND (NEXTVALUE)
GOTO LOOP

ENDIF

CONNECTED
Usage Use with the system variable &CONNECTSTATE.

Example CONNECT ("DSGATE-1")
IF &CONNECTSTATE <>CONNECTED THEN

CONNECT
ENDIF

NOT_CONNECTED
Usage Use with the system variable &CONNECTSTATE.

Example CONNECT ("DSGATE-1")
IF &CONNECTSTATE = NOT_CONNECTED THEN

CONNECT
ENDIF

 Constants and variables

88 DSWindows 2.2 Macros User Guide

QUEUEING
Usage Use with the system variable &CONNECTSTATE.

Example CONNECTNOQUEUE ("DSGATE-1")
IF &CONNECTSTATE = QUEUEING THEN

DISCONNECT
CONNECT("DSGATE-2")

ENDIF

UNLOCK
Usage Use with the system variable &SENDCOMPLETE.

Example SEND ("A212301202",TIMEOUT:30)
IF &SENDCOMPLETE<>UNLOCK THEN

MESSAGE ("DATASTREAM did not send logon screen","Connect Error")
ENDIF

TEXTFOUND
Usage Use with the system variable &SENDCOMPLETE.

Example SEND ("A212301202",WAITFOR:"ADD",TIMEOUT:10)
IF &SENDCOMPLETE <> TEXTFOUND THEN

MESSAGE ("The PAD did not send the ’ADD’ prompt","Connect Error (5)")
ENDIF

TIMEOUT
Usage Use with the system variable &SENDCOMPLETE.

Example SEND ("A212301202",TIMEOUT:10)
IF &SENDCOMPLETE = TIMEOUT THEN

MESSAGE ("We Timed Out","TIMEOUT")
ENDIF

 Constants and variables

Issue 1 89

QUERY
Usage Use as a variable in the CAPTURE command, to display a prompt requesting

whether you want to overwrite an existing save file.

Example CAPTURE ("atest.txt",1,0,QUERY)
> [CLEAR]
> 99Z
ENDCAPTURE

OVERWRITE
Usage Use as a variable, (e.g.with the CAPTURE command), to overwrite an existing save

file.

Example CAPTURE ("atest.txt",1,0,OVERWRITE)
> [CLEAR]
> 99Z
ENDCAPTURE

APPEND
Usage Use as a variable, (e.g with the CAPTURE command), to append the new data to an

existing file.

Example CAPTURE ("atest.txt",1,0,APPEND)
> [CLEAR]
> 99Z
ENDCAPTURE

CSVFILE
Usage Use as a variable in the STARTDC command, to save Data Channel data to a .CSV

file.

Example STARTDC (CSVFILE,"DEMO.CSV")

 Constants and variables

90 DSWindows 2.2 Macros User Guide

CLIPBOARD
Usage Use as a variable in the STARTDC command, to save Data Channel data to the

Clipboard.

Example STARTDC (CLIPBOARD)

LISTFILE
Usage Use as a variable in the STARTDC command, to save Data Channel data to a list

file for later use.

Example STARTDC (LISTFILE, "DEMO.LST")

SHOW_MIN
Usage Use as a variable in the STARTPROGRAM command, to display the program

window as minimized.

Example STARTPROGRAM ("NOTEPAD.EXE",SHOW_MIN)

SHOW_MAX
Usage Use as a variable in the STARTPROGRAM command, to display the program

window as maximized.

Example STARTPROGRAM ("NOTEPAD.EXE",SHOW_MAX)

SHOW_NORMAL
Usage Use as a variable in the STARTPROGRAM command, to display the program

window as normal sized.

Example STARTPROGRAM ("NOTEPAD.EXE",SHOW_NORMAL)

 Constants and variables

Issue 1 91

Variables

Variables are named fields and act as placeholders for values to be determined during
the operation of the macro. You must assign the value of a variable using a SET or
INPUT instruction. The value of a variable can change as the macro is executed. For
example, in the statement:

SET a TO (b + c)

a is a variable, its value determined by the result of the expression "b + c".

Variable names can start with a letter or an underscore (_) and continue with letters,
digits or underscores. They can be in upper or lower case, and there is no limit to
their length.

Local and global variables

NOTE The following applies where variables are used in ‘child macros’ (i.e. macros which
are called and activated from within another macro).

By default, variables are local; in other words, they only apply in the macro in which
they are set. However, you can set a variable as global so that it applies not only in
the macro in which it is set, but also in any other macro which that macro references
using the CALL command.

q To set a global variable, use the SETGLOBAL...TO... command. For example,

SETGLOBAL x TO 1

When the variable x is subsequently used in the macro in which it is set, or in
any CALLed macro, it refers to the global variable x. If a variable has already
been used before a SETGLOBAL command has set it, then this will be reported
as an error.

q To prevent a variable being assigned as local and then changed to global by
another macro:

SET x TO 1
SETGLOBAL x TO 10

 Constants and variables

92 DSWindows 2.2 Macros User Guide

q To use a global variable in an INPUT command in a child macro, the
SETGLOBAL command must precede the INPUT command; for example,

SETGLOBAL name TO ""
INPUT name

In this example, the variable name is set first to an arbitrary value ("" in this
case) as it will be overwritten by the INPUT statement.

System variables

System variables are variables which are reserved for specific purposes. Their values
are read-only (that is, the user cannot assign them), but they may be referenced from
within a macro and the values may change according to the state of DSWindows.

A list of the system variables is given below.

&ENDOFDATA
Usage Use with the INPUT instruction. It has one of two values: TRUE and FALSE. The

value is set to TRUE when an INPUT instruction reaches the end of a data list.

Example OPENDATA arglist
LOOP:
IF &ENDOFDATA = FALSE THEN

INPUT arg
SEND ("101B "+arg)
SEND [CLEAR]
GOTO LOOP

ENDIF

&SCREEN
Usage Represents the screen as a large text string. Use this variable to check if a sub-string

is embedded in it.

Example IF MID$(&SCREEN, 1151, 12) = "PLEASE LOGON" THEN
SEND ("DS")

ENDIF

 Constants and variables

Issue 1 93

q In this example, 1151 = 80*(row-1) + column where row contains the
search-text, and column is the column where the text starts. 12 is the length of
the string: "PLEASE LOGON".

&CONNECTSTATE
Usage Set by the CONNECT and CONNECTNOQUEUE commands.

&CONNECTSTATE has three possible values: CONNECTED,
NOT_CONNECTED and QUEUEING. QUEUEING applies only with
CONNECTNOQUEUE.

Example IF &CONNECTSTATE = NOT_CONNECTED THEN
CONNECT

ENDIF

&SENDCOMPLETE
Usage Set by the SEND command. &SENDCOMPLETE has three possible values:

TIMEOUT, TEXTFOUND and UNLOCK.

Example SEND ("A212301202",TIMEOUT:10)
IF &SENDCOMPLETE = TIMEOUT THEN

MESSAGE ("We Timed Out","TIMEOUT")
ENDIF

&TEXTFOUND
Usage Set by the SENDANDCHECK command.

Example: SENDANDCHECK ("99Z", "FRANCE")
IF &TEXTFOUND THEN

MESSAGE ("FRANCE was mentioned", "TEXTFOUND")
ENDIF

q In this example the text "France" is sought in the output from the news program
99Z. If it is found, a message is displayed.

 Constants and variables

94 DSWindows 2.2 Macros User Guide

&DAYOFWEEK
Usage &DAYOFWEEK can be used in any expression and has seven possible values

(0 - 6), representing the values of the days of the week (Sunday to Saturday).

Example IF &DAYOFWEEK = 2 THEN
MESSAGE ("It is Tuesday","Day Of Week")

ENDIF

&DAYOFMONTH
Usage &DAYOFMONTH can be used in any expression and has 31 possible values

(1 - 31), representing the values of the days of the month.

Example IF &DAYOFMONTH = 1 THEN
MESSAGE ("It is the first of the month")

ENDIF

&MONTH
Usage &MONTH can be used with any expression and has 12 possible values (1 - 12),

representing the values of the months of the year (January to December).

Example IF &MONTH = 3 THEN
MESSAGE ("2nd quarter starts next month")

ENDIF

&YEAR
Usage &YEAR can be used with any expression and is a 2-character number string,

representing a year.

Example SET today TO &DAYOFMONTH
SET this_month TO &MONTH
SET this_year TO &YEAR
SAVEGRAPHICS ("GR"+ STR$(today)+STR$(this_month) +
STR$(this_year), OVERWRITE)

q In this example a graph is saved to the file GRddmmyy.dsg where ddmmyy is
today’s date.

 Constants and variables

Issue 1 95

&RESULT
Usage Set by the STARTPROGRAM command. It has a number of possible values; please

refer to the section on STARTPROGRAM for the values and their meanings.

Example STARTPROGRAM ("TEST.EXE",SHOW_NORMAL)
IF &RESULT = 2 OR &RESULT = 3 THEN

MESSAGE ("Program Not Found","TEST.EXE")
ENDIF

&RECOVERYATTEMPTS
Usage Used within a recovery macro, this variable generates an incremental count of the

subsequent number of times a SEND or UPDATELOCALCODE command failed
and generated a recovery attempt. (Failures in the recovery process itself are not
included in the count.) This enables you to control the number of times a recovery
attempt is made and also to vary the way in which the macro tries to recover, for
example, by trying to connect to a different gateway on the third recovery attempt.

Example Set MaxRecoveryTries To 3;

If (&RecoveryAttempts > MaxRecoveryTries) Then
 Set Msg To "Max (" + Str$(MaxRecoveryTries) + ") recovery attempts
 exceeded."
 Message (Msg, TraceCaption)
EndIf

&OS
Usage Use to tell you what operating system DSWindows was built for. It can be one of:

WINDOWS, HPUX, SOLARIS, SOLARIS2. &OS might be useful for writing a
library macro intended for use on multiple plaftorms.

Example If &OS = WINDOWS
Set EOL To chr$(13) = chr$(10)

; carriage return and line feed
Else

Set EOL To chr$(10)
EndIf

 Constants and variables

96 DSWindows 2.2 Macros User Guide

&ATPROMPT
Usage Use this variable to test whether or not you are currently at the Datastream prompt

(Program Finder). It is set to TRUE if you are and FALSE if not. Typical usage
would be to test whether a recovery process has been successful in returning you to
the prompt (see example below).

Example IF (&ATPROMPT = FALSE) THEN
 WRITETOFILE ("recover.log", "Recovery failed")
ELSE
 WRITETOFILE ("recover.log", "Recovery succeeded")

 Constants and variables

Issue 1 97

 Constants and variables

98 DSWindows 2.2 Macros User Guide

 Functions and expressions

This section explains the purpose of functions and expressions in Datastream macros
and the rules governing their use. Lists of the available functions and the
mathematical and logical operators for use in expressions are given.

Functions

You can use functions to:

q manipulate strings

q convert strings into integers and vice-versa.

Manipulating strings

Use one of the following functions to extract a string from another string:

q left$(str, i)

q right$(str, i)

q mid$(str, i,,j)

q len(str)

q Instr (lookIn, lookFor)

These functions enable you to define the portion of the string which you want to
extract. The following section explains the use and syntax of each of the functions.
Examples showing how to use them are given at the end of the ‘Manipulating
strings’ section.

Functions Functions and expressions

Issue 1 99

left$
Usage Extracts a number of characters from a string, starting from the left of the string.

Syntax left$ (str,i)

str The name of the original string

i The number of characters in the new string

right$
Usage Extracts a number of characters from a string, starting from the right of the string.

Syntax right$ (str,i)

str The name of the original string

i The number of characters in the new string

mid$
Usage Extracts a number of characters from a string, starting from the position you specify.

Syntax mid$ (str,i,j)

str The name of the original string

i The character position, from the left, with which the new
string is to begin

j The number of characters in the new string.

len
Usage Returns the length of a string.

Syntax len (str)

str The name of the string

 Functions and expressions Functions

100 DSWindows 2.2 Macros User Guide

Instr
Usage Searches for a string within another string. The result of the expression is either the

position of the lookFor string within the lookIn string, or 0 if lookIn does not contain
lookFor.

Syntax Instr (lookIn, lookFor)

lookIn a string to search

lookFor a string to look for in the string lookIn

Examples

Example 1 This set of commands illustrates how to use the left$, right$ and mid$ functions to
extract characters from a string.

SET test TO "Now run List File demo"
SET tmp1 TO left$(test,8)
SET tmp2 TO right$(test,7)
SET tmp3 TO mid$(test,5,3)

q The value of the variable test is set to the string "Now run List File demo"

q The value of the variable tmp1 is set to the string "Now run " - the first 8
characters in the variable test.

q The value of the variable tmp2 is set to the string "le demo" - the last 7
characters in the variable test.

q The value of the variable tmp3 is set to the string "run" - three characters,
starting with the fifth, in the variable test.

Functions Functions and expressions

Issue 1 101

Example 2 This macro illustrates how to use the len(str) function, and how to convert integers
into strings.

SET test TO "Now run List File demo"
SET tmp4 TO len(test)
MESSAGE ("The length of the file ‘test’ = +str$(tmp4))

q The value of the variable test is set to the string "Now run List File demo"

q The value of the variable tmp4 is set to the integer 22 using the len(str)
function because the variable test contains a 22 characters string. Note that the
len(str) function has returned an integer value to the tmp4 variable.

q To display the value of the variable tmp4 (ie the integer 22), the MESSAGE
command is used to generate output. Because the MESSAGE command
parameters must be strings and the value of tmp4 is currently an integer value,
the str$ function is used to convert the value of tmp4 to a string value. Note
that the str$ function is explained in detail in the following section, ‘Converting
strings’.

Example 3 Set position To InStr (&screen, Hong Kong)

Converting strings

The conversion functions enable you to convert strings to integers and vice-versa,
and to convert characters into ASCII numbers and vice-versa.

The coversion functions are:

q str$(i)

q chr$(i)

q val(str)

q asc(str)

NOTE The result of functions with a $ (str$, chr$, mid$, left$, right$) is always a string,
and the result of functions without a $ (val, asc, len) is always an integer.

 Functions and expressions Functions

102 DSWindows 2.2 Macros User Guide

str$
Usage Converts an integer value to a string. For example, if a variable has an integer value

of 99, to display the value of the variable (using the MESSAGE command) you
must first convert it to a string using the str$ function. See the example at the end of
this section. To perform the reverse of this function, use val(i) (see below).

Syntax str$ (i)

i An integer, such as 99, or a variable with an integer value.

chr$
Usage Converts an integer value to the ASCII character represented by the integer. For

example, SET X TO CHR$(65) sets the value of the variable X to the letter "A"
where the ASCII code for an "A" = 65. To perform the reverse of this function, use
asc$ (i) (see below).

Syntax chr$ (i)

i An integer, such as 65, or a variable with an integer value

NOTE Useful examples of the chr$ function are:
chr$(10) line feed character
chr$(13) carriage return character
chr$(34) the double quote (") character

val
Usage Converts a character string to its integer value. For example, to convert the string

"99" to an integer value, you could use the command SET X TO VAL("99"). To
perform the reverse of this function, use str$(i) (see above).

Syntax val (i)

i A string, such as "99", or a variable with a string value.

NOTES 1. val(i) only recognises numeric characters in a string - it ignores everything else

2. val(i) only recognises integers (whole numbers). Numbers containing decimal points
are not understood and anything after a decimal point is ignored.

Functions Functions and expressions

Issue 1 103

3. The Datastream Macro language recognises integers in the range -32767 to 32767.

asc
Usage Converts the first character in a string to its ASCII value. For example, the command

SET X TO asc ("ABC") would set the value of the variable X to the ASCII value of
the character "A" (e.g. the integer 65).

Syntax asc (i)

i The characters in the string

Example 1 SET tmp1 TO 65
SET tmp2 TO str$(tmp1)
SET tmp2 TO chr$(tmp1)

q The value of the variable tmp1 is set to the integer 65.

q The value of the variable tmp2 is set to the string "65".

q The value of tmp2 is set to the string "A" where A is the character whose ASCII
value is 65 (the value of the variable tmp1)

Example 2 SET tmp1 TO "66"
SET tmp2 TO val(tmp1)
SET tmp2 TO asc(tmp1)

q The value of the variable tmp1 is set to the string "66".

q The value of the variable tmp2 is set to the integer 66.

q The value of the variable tmp2 is set to the ASCII value (an integer) of the first
6 in the string "66", which is 54.

Example 3 SET X TO "ABC"
SET Y TO asc(X)
MESSAGE ("The value of Y = " +str$(Y))

q The value of the variable X is set to the string "ABC".

q The value of the variable Y is set to the ASCII value (an integer) of the first
character in the variable X (the letter "A").

q The MESSAGE command displays the value of the variable Y after converting
it to a string value using the str$ function ("The value of Y = 65").

 Functions and expressions Functions

104 DSWindows 2.2 Macros User Guide

Expressions

You can use mathematical and logical operators with constants and variables to form
expressions in macros. The following are valid mathematical and logical operators:

SYMBOL MEANING SYMBOL MEANING

+ Add > Greater than

– Subtract >= Greater than or equal to

* Multiply <> Not equal to

/ Divide AND Logical "and"

% Remainder OR Logical "or"

< Less than NOT Logical "not"

<= Less than or equal to (Open parenthesis

= Equal to) Close parenthesis

NOTES 1. In the SET...TO... command you can use only +, -, *,/ and % in the SET...TO..
command.

2. When dealing with strings, the comparison operators you can use are =, <>, <
and >.

3. Use + to link two strings together (for example, a + b where a = "Good" and
b = " Morning" would result in "Good Morning"). Note that when you concatenate
two strings you must put in any spaces that are required; the operator + does not
do this automatically.

4. You can combine comparison operators and logical operators to form complex
expressions, for example:

IF v1 < v2 AND v2 < (v3 + v4)

5. Because the macro language does not recognise fractions or decimal points, when
you use the division symbol as an operator, you can show the remainder of the
calculation using the % symbol.

Expressions Functions and expressions

Issue 1 105

 Functions and expressions Expressions

106 DSWindows 2.2 Macros User Guide

How to make your macros more robust

Introduction

The DSWindows macro language has been extended in version 2.2 to enable you to
create macros with inbuilt error-handling and recovery capabilities. You can now
build macros, for example, that detect errors (such as communications problems
caused by modem or gateway faults), pass control to a recovery macro which
attempts to solve or route around the problem and which then hands control back to
the calling macro to continue its processing. A typical scenario in which this
technique will be most useful is a macro which is run unattended, such as an
overnight download, and which fails for a relatively trivial and predictable reason.
And, because there is nobody available to correct the fault and restart the macro, it
simply fails and leaves you to discover it in the morning.

This chapter is intended to help you to avoid this type of situation and to introduce a
number of more general techniques to make your macros more robust.

q Techniques for making your macros generally more robust

’Robust’, in the context of this chapter, is used to mean macros which are, for
example, self-reporting, require no human intervention, can detect a range of
error states and recover from them, and which don’t attempt to make a
Datastream connection where one already exists.

q A complete recovery macro (RECOVER.MAC)

The objective of this recovery macro is to take over when things are going
wrong, to try all means to get back to the Datastream prompt (the Program
Finder) and to return control to the original macro at the point where the
problems arose, allowing it to seamlessly continue. The recovery macro,
(RECOVER.MAC) is included on the installation disk and can be found in your
\dswindow\files directory; it is intended to provide a template which users can
customise according to their own specific requirements.

It is assumed that the reader has a good basic knowledge of DSWindows and the
DSWindows macro language.

Introduction How to make your macros more robust

Issue 1 107

Techniques for making your macros more robust

This section provides general tips which represent good practice in building robust
macros and ensuring that faults and errors can be effectively traced. All of the
techniques discussed can be found in RECOVER.MAC included in the second part of
this chapter and many of the examples given are also taken from this macro. The
section is divided into the following elements:

q &CONNECTSTATE

q LOGERRORSTOFILE

q Writing trace information

q &ATPROMPT

q &ATOUTPUT

q &RECOVERYATTEMPTS

q Adding a waiting period

q Ending recovery using RECOVERSTOP and ENDALLMACROS

q Calling a recovery macro (RECOVERUSING)

q Potential problems with the SEND command

q Failures in the recovery macro

NOTE All commands and variables discussed here are also described in the relevant section
of the manual.

How to make your macros more robust Techniques for making your macros more robust

108 DSWindows 2.2 Macros User Guide

&CONNECTSTATE

The &CONNECTSTATE variable is available at all times and is described in the
“Constants and Variables” section of this manual.

To protect your macro against the possibility that it experiences connection problems,
you can use the &CONNECTSTATE variable to try an alternative communication
mechanism or to give up the attempt to connect:

CONNECT()

IF (&CONNECTSTATE = NOT_CONNECTED) THEN
 CONNECT (“MyOtherGateway”)
ENDIF

IF (&CONNECTSTATE = NOT_CONNECTED) THEN
 END
ENDIF

SEND ("DS")
SEND ("ABCD123password")

LOGERRORSTOFILE

One of the problems with running macros unattended (e.g. overnight) is that if any
kind of message is displayed during its execution it requires user intervention (e.g.
someone to click on the OK button) to clear it before the macro can continue.
DSWindows 2.2 has a new macro command that allows you to divert everything that
would have appeared as a message on screen to a file instead.

This new command is called LOGERRORSTOFILE. For example, the follow macro:

DISCONNECT()
SEND (“99Z”)

would result in the error message, ("Send Macro Failed: Please connect
to Datastream first"), being displayed on the screen in a message box with a
Macro Error title caption).

However, if we divert the messages using LOGERRORSTOFILE,

LOGERRORSTOFILE (“recover.log”)
DISCONNECT()
SEND (“99Z”)

Techniques for making your macros more robust How to make your macros more robust

Issue 1 109

nothing at all appears on screen. Instead, the message appears in the log file :

 *** Message on Mon 10 Mar 1997 at 16:52:33 ***

Macro Error

Send Macro Failed: Please connect to Datastream first

Message on Tue 24 Sep 1996 at 16:41:40
 Macro Error
 Send Macro Failed: Please connect to Datastream first

The following macro will not work in unattended mode if the first CONNECT() fails
unless messages have been diverted to a file instead of the screen.

CONNECT()

;if above connect fails, then a message will appear now

IF (&CONNECTSTATE = NOT_CONNECTED) THEN
 CONNECT (“MyOtherGateway”)
ENDIF

Under normal operation, this would generate a message that the user would have to
manually clear before trying the second gateway. However, if error messages were
being diverted to a file, the macro would silently carry on after the first failure and
try the second gateway. We recommend then that, if a macro is intended to run in
unattended mode, you should use the LOGERRORSTOFILE command.

LOGERRORSTOFILE (“recover.log”)

IF (&CONNECTSTATE = NOT_CONNECTED) THEN
 CONNECT()
ENDIF

;no message appears now, even if above connect fails

IF (&CONNECTSTATE = NOT_CONNECTED) THEN
 CONNECT (“MyOtherGateway”)
ENDIF

NOTES 1. To switch LOGERRORSTOFILE off, use LOGERRORSTOFILE ("")

How to make your macros more robust Techniques for making your macros more robust

110 DSWindows 2.2 Macros User Guide

2. If LOGERRORSTOFILE is switched on, then all messages, including those created
using the MESSAGE command, are sent to the specified log file. Users running
macros in interactive mode should be aware that no messages will be displayed on
the screen until the command is switched off.

3. The LOGERRORSTOFILE command can take an OVERWRITE or APPEND
parameter

Writing to a log file also enables your macro to handle errors in a more robust way.
For example, you can divert output to any file that you choose and even change
which file during macro execution :

LOGERRROSTOFILE (“pete.txt”)
;Errors will go to file pete.txt

LOGERRROSTOFILE (“dave.txt”)
;Errors will now go to file dave.txt

LOGERRROSTOFILE (“”)
;Errors will appear back on screen again

LOGERRROSTOFILE (“pete.txt”)
;Errors will now go to file pete.txt

Using this method you could, for example, write to different log files for different
macros, or for different sections of the same macro. This can be useful for writing
trace information which can subsequently help you to examine the progress of the
macro (see next section).

Writing Trace information

One very important aspect of making your macros more robust is having the ability
to trace the exact progress of your macro by writing relevant information to a log file
at each stage of the macro’s processing. Making your macro self-reporting in this
way will be of great benefit when things start to go wrong; it will help you to isolate
where the problems arose and how much of the macro was successful.

The examples given throughout this chapter will all include suggested usage of this
technique.

There are various ways to record useful information. If LOGERRORSTOFILE is
switched on, you can take advantage of it to use the MESSAGE command to send,
for example, status-type information to the log file:

Techniques for making your macros more robust How to make your macros more robust

Issue 1 111

LOGERRROSTOFILE (“pete.txt”)
MESSAGE “Starting macro”
;some work

MESSAGE “Finished part one”
;some more work

MESSAGE “Finished part two”
MESSAGE “Ending”

Alternatively, you can use the WRITETOFILE command. For example:

IF (&CONNECTSTATE = NOT_CONNECTED) THEN
WRITETOFILE ("Default gateway is down","c:\dswindow\recover.log",APPEND)
CONNECT ("MyOtherGateway")

END

&ATPROMPT

One of the objectives of the recover macro is to get you back to the Datastream
prompt. To enable this, DSWindows 2.2 has a new system variable called
&ATPROMPT. This is set to TRUE if we are currently sitting at the Datastream
prompt (Program Finder), and FALSE if we are at any other screen. This can be used
to good effect in the recovery process :

IF (&ATPROMPT = FALSE) THEN
 SEND (“[CLEAR]”)
ENDIF

You can also use this variable to see whether or not the recovery process was
successful. Remember, the job of the recovery macro it to take us back to the
Datastream prompt. So the last few lines of such a macro may read :

IF (&ATPROMPT = FALSE) THEN
 WRITETOFILE (“recover.log”, “Recovery failed”)
ELSE
 WRITETOFILE (“recover.log”, “Recovery succeeded”)
ENDIF

How to make your macros more robust Techniques for making your macros more robust

112 DSWindows 2.2 Macros User Guide

&AtOutput

The system variable &ATOUTPUT provides another method for adding robustness by
testing whether a process has completed. For example, correct processing of the
command SEND 101A ICI results in requested information being displayed in an
output window. However, if the syntax of the command had been incorrect (for
example, an invalid code had been used), the result would be that the 101A input
screen is displayed with the cursor positioned in the field with the invalid entry.

NOTE This variable is not used in RECOVER.MAC.

&RECOVERYATTEMPTS

A new system variable in DSWindows 2.2, called &RECOVERYATTEMPTS, enables
you to control the number of times the recovery macro attempts to recover from a
failed command, on a ’per command’ basis. &RECOVERYATTEMPTS generates an
incremental count of the number of times a SEND or UPDATELOCALCODE
command has failed and generated a recovery attempt. Note that failures in the
recovery process itself are not included in the count.

Set MaxRecoveryTries To 3 ; Maximum number of times to try to recover.

If (&RecoveryAttempts > MaxRecoveryTries) Then
 If (ShowTrace) Then
 Set Msg To "Max (" + Str$(MaxRecoveryTries) + ") recovery attempts exceeded."
 Message (Msg, TraceCaption)
 EndIf
EndIf

You can also use the &RECOVERYATTEMPTS variable to vary the way in which the
macro tries to recover, for example by trying to connect to a different gateway on the
second recovery attempt.

Set SecondaryConnect To "DATASTREAM-GATE-2"

If (&RecoveryAttempts = 2) Then
 If (ShowTrace) Then
 Set Msg To "Connecting using : " + SecondaryConnect
 Message (Msg, TraceCaption)
 EndIf
 Connect (SecondaryConnect)
EndIf

Techniques for making your macros more robust How to make your macros more robust

Issue 1 113

Adding a Waiting period

It is always advisable to incorporate waiting periods at the start of an initial recovery,
for example, or before starting subsequent recovery attempts. This is necessary to
allow time for external events to change before a connection attempt or after a
disconnection. For example, the following macro sets up a 10 second delay before
making the first recovery attempt:

Set WaitInitialRecovery To 10 ; Secs to wait before recovering first time.

If (&RecoveryAttempts <= 1) Then
 If (ShowTrace) Then
 Set Msg To "Waiting for " + Str$(WaitInitialRecovery) + " seconds."
 Message (Msg, TraceCaption)
 EndIf
Wait (WaitInitialRecovery)
EndIf

Notice that in the RECOVER.MAC four waiting periods are defined:

Set WaitSendTimeOut To 30 ; Secs to wait before timing out sends.
Set WaitAfterDisconnect To 30 ; Secs to wait after a disconnection.
Set WaitInitialRecovery To 60 ; Secs to wait before recovering first time.
Set WaitSubsequentRecoverys To 120 ; Secs to wait before recovering subsequent
times.

Ending recovery using the RECOVERSTOP and ENDALLMACROS commands

The RECOVERSTOP and ENDALLMACROS commands are used to stop a macro in
different ways. RECOVERSTOP simply switches off recovery and instructs the
macro to make no further attempt to recover from any failed SEND command,
without actually stopping the macro itself. ENDALLMACROS is used simply to kill
all active macros.

RECOVER.MAC illustrates the use of these commands in the section which checks that
the number of recovery attempts has not been exceeded. It uses TERMINATEATEND
to enable you to specify how you want the process to react to this situation.

How to make your macros more robust Techniques for making your macros more robust

114 DSWindows 2.2 Macros User Guide

**
Set MaxRecoveryTries To 3 ; Maximum number of times to try to recover.
Set TerminateAtEnd To TRUE ; Whether to end all macros if recovery ultimatily fails.
**

If (&RecoveryAttempts > MaxRecoveryTries) Then
 If (ShowTrace) Then
 Set Msg To "Max (" + Str$(MaxRecoveryTries) + ") recovery attempts
exceeded."
 Message (Msg, TraceCaption)
 EndIf

 If (TerminateAtEnd) Then
 If (ShowTrace) Then
 Message ("Terminating recovery macro.", TraceCaption)
 EndIf
 EndAllMacros ()

 Else
 If (ShowTrace) Then
 Message ("Giving up recovery.", TraceCaption)
 EndIf

 RecoverStop
 Goto FINISH
 EndIf

EndIf

Note that, by default, RECOVER.MAC sets TERMINATEATEND to TRUE so that, in
the event that the number of recovery attempts is exceeded, ENDALLMACROS is
executed. If you prefer your recovery macro to use RECOVERSTOP, you must set
TERMINATEATEND to FALSE.

Potential problems with the SEND command

1. Remember that the final job of RECOVER.MAC is to return control to the calling
macro at the start of the line at which it failed. It is very important that users
understand the impact of this on the way in which the calling macro is structured.

Imagine a macro with SEND commands structured as follows:

 SEND 401A
 SEND BT
 ...

Techniques for making your macros more robust How to make your macros more robust

Issue 1 115

If the macro fails at the first line, perhaps due to a communications problem,
RECOVER.MAC will carry out its job and restart the macro with the SEND 401A
command being issued at the Datastream prompt. All of which is fine. However,
if the macro fails at the second line, RECOVER.MAC will again do its job and
restart the macro with the SEND BT command being issued at the Datastream
prompt. So it is very important that SEND commands are structured in an atomic
format which allow the recovery to start with a complete and correct command:

 SEND("401A BT")

2. If you use the SEND ("ATZ") command in a macro which uses RECOVERUSING to
call a recovery macro, ensure that you issue the SEND ("ATZ") before recovery is
enabled. When ATZ is issued to some modems a line drop occurs (DSR
momentarily goes low) which triggers the recovery macro. Line drops are
normally considered an error but in this case the user has effectively requested it.
Please refer to RECOVERUSING for further information.

3. To avoid the possibility that a SEND command never completes and the recovery
process is therefore never started, we recommend that a TIMEOUT period is
added to the SEND command. This can then be used with the
&SENDCOMPLETE variable to test whether the SEND has been executed: for
example:

 SEND ("900B MKS(P),-4M,,D",TIMEOUT:10)

 IF &SENDCOMPLETE = TIMEOUT THEN
IF (SHOWTRACE) THEN
MESSAGE ("SEND TIMED-OUT.", TRACECAPTION)
ENDIF

 ENDIF

Starting recovery by calling a recovery macro

The RECOVERUSING command has been introduced to enable you to start recovery
by specifying the name of a recovery macro which will be executed in the event of a
failed SEND or UPDATELOCALCODE command. Typically it is anticipated that
customers will use the RECOVER.MAC supplied on the installation disks as a template
for creating their own recovery macros. We recommend that the RECOVERUSING
command is paired with LOGERRORSTOFILE and placed at the top of your macro.

LOGERRORSTOFILE ("Pete")
RECOVERUSING ("recover.mac")

How to make your macros more robust Techniques for making your macros more robust

116 DSWindows 2.2 Macros User Guide

Failures in the recovery macro

All recovery macros should be written so that any failures within the recovery
process itself do not start a new recovery. RECOVER.MAC, for example, is written so
that errors are simply accepted, appropriate logging information is written to the log
file and control is returned to the calling macro.

Template recovery macro, RECOVER.MAC

These notes are intended simply to describe the basic structure and functions of
RECOVER.MAC. For detailed information on individual commands or variables, please
refer to the relevant passage earlier in this chapter, or to the appropriate definition
elsewhere in this manual. Note that the Section numbers shown in the following text
are purely for the purposes of this documentation - they are not part of the macro
itself.

RECOVER.MAC is structured as eight sections, each with a specific function.

SECTION 1
Includes explanatory remarks and defines a set of variable values used within the
macro. Please note that the variables are all configurable and have been set to typical
values for general use. The macro is structured to enable you to change these values
according to your own requirements without needing to amend the main body of the
macro; for example, you can change any of the WAIT or CONNECT options, switch
Tracing off, or change the behaviour of the macro when the maximum number of
recovery attempts has been reached.

;***

;* SECTION 1

;* Activate this recovery macro by placing the following two
;* lines at the top of the macro you want to make robust :
;*
;* LogErrorsToFile ("errors.log")
;* RecoverUsing "recover.mac":

;*

;* Feel free to alter any of the variables at the top of this
;* file to suit your specific set-up.

;*

Template recovery macro, RECOVER.MAC How to make your macros more robust

Issue 1 117

;* When specifying an alternative connect method you have a
;* number of choices :

;* (1) Use "" to stick to the default comms configuration. (This is
;* used for the first recovery attempt regardless).

;* (2) Use another gateway name. i.e. "DATASTREAM-GATE-2".

;* (3) Use "SESSIONx" (where x is a number) to specify a different
;* session that you have previously configured.

;* (4) Use "DEVICE=x" to specify a different device. See the file
;* DSADP.INI in your windows directory to see the format for x. For example :

;* "DEVICE=XTEC,S,COM1,9600,E,7,1,X,4000,2666,1333,C,D"

;*;***

Set SecondaryConnect To "" ; Alternative connect methods second time. (See
comment above).

Set SubsequentConnects To "" ; Alternative connect methods subsquent times.
(See comment above).

Set MaxRecoveryTries To 3 ; Maximum number of times to try to recover.

Set TerminateAtEnd To TRUE ; Whether to end all macros if recovery ultimatily fails.

Set WaitSendTimeOut To 30 ; Secs to wait before timing out sends.

Set WaitAfterDisconnect To 30 ; Secs to wait after a disconnection.

Set WaitInitialRecovery To 60 ; Secs to wait before recovering first time.

Set WaitSubsequentRecoverys To 120 ; Secs to wait before recovering subsequent
times.

Set ShowTrace To TRUE ; Whether to write trace information to your logging file.

How to make your macros more robust Template recovery macro, RECOVER.MAC

118 DSWindows 2.2 Macros User Guide

SECTION 2
Sets up the recovery logging process. This can be ’switched off’ by setting the
SHOWTRACE variable in SECTION 1 to FALSE.

;***

;*SECTION 2: Log recovery process to file.

;***

Set TraceCaption To "Recovery attempt No. " + Str$(&RecoveryAttempts)

If (ShowTrace) Then
 Message ("Starting recovery macro.", TraceCaption)
EndIf

SECTION 3
Checks the maximum number of times a recovery attempt has been made, on a ’per
command’ basis, and determines how the macro behaves if this exceeds the
maximum allowed. By default, with TerminateAtEnd set to TRUE, RECOVER.MAC
writes a ’Terminating recovery macro’ message to the log file and then kills both
recovery and calling macros. The alternative method (logging a ’Giving up recovery’
message and the end state, then stopping recovery and returning control to the calling
macro) can be set simply by changing the TerminateAtEnd variable to FALSE.

;***

;* SECTION 3: Check we’ve not tried too many times.

;***

If (&RecoveryAttempts > MaxRecoveryTries) Then

 If (ShowTrace) Then
 Set Msg To "Max (" + Str$(MaxRecoveryTries) + ") recovery attempts
 exceeded."
 Message (Msg, TraceCaption)

 EndIf

 If (TerminateAtEnd) Then
 If (ShowTrace) Then
 Message ("Terminating recovery macro.", TraceCaption)
 EndIf
 EndAllMacros ()

Template recovery macro, RECOVER.MAC How to make your macros more robust

Issue 1 119

 Else
 If (ShowTrace) Then
 Message ("Giving up recovery.", TraceCaption)
 EndIf
 RecoverStop
 Goto FINISH
 EndIf

EndIf

SECTION 4
Checks the number of the current recovery attempt, logs appropriate messages and
sets the relevant waiting period.

;***

;* SECTION 4: We will wait at the start of recovery to allow time for events to
change.

;***

If (&RecoveryAttempts <= 1) Then
 If (ShowTrace) Then
 Set Msg To "Waiting for " + Str$(WaitInitialRecovery) + " seconds."
 Message (Msg, TraceCaption)
 EndIf
 Wait (WaitInitialRecovery)

Else
 If (ShowTrace) Then
 Set Msg To "Waiting for " + Str$(WaitSubsequentRecoverys) + " seconds."
 Message (Msg, TraceCaption)
 EndIf
 Wait (WaitSubsequentRecoverys)

EndIf

How to make your macros more robust Template recovery macro, RECOVER.MAC

120 DSWindows 2.2 Macros User Guide

SECTION 5
Checks two things: are you connected to the Datastream host and are you at the
Datastream prompt (Program Finder). It then attemps to get you to the prompt if you
are not already there and, if that fails, logs suitable status information and
disconnects you. If both conditions are true, this status is logged and the recovery
ends.

;***

;* SECTION 5: Try to get to the Datastream prompt if already connected.

;***

If (&ConnectState = CONNECTED) Then
 If (&AtPrompt) Then
 If (ShowTrace) Then
 Message ("Datastream prompt found.", TraceCaption)
 EndIf
 Goto FINISH

 Else
 If (ShowTrace) Then
 Message ("Already connected. Sending [CLEAR].", TraceCaption)
 EndIf
 Send (Text:"[CLEAR]", Timeout:WaitSendTimeOut)

 If (&AtPrompt) Then
 If (ShowTrace) Then
 Message ("Datastream prompt found.", TraceCaption)
 EndIf
 Goto FINISH
 EndIf

 EndIf

 If (ShowTrace) Then
 Message ("Connected, but not responding. Disconnecting.", TraceCaption)
 EndIf
 Disconnect ()

 If (ShowTrace) Then
 Set Msg To "Waiting for " + Str$(WaitAfterDisconnect) + " seconds."
 Message (Msg, TraceCaption)
 EndIf
 Wait (WaitAfterDisconnect)

EndIf

Template recovery macro, RECOVER.MAC How to make your macros more robust

Issue 1 121

SECTION 6
Attempts a reconnection and logon. The method it uses to connect is determined by
the current recovery attempt count. Appropriate information is logged.

;***

;* SECTION 6: Try reconnecting.

;***

If (&RecoveryAttempts = 2) Then
 If (SecondaryConnect <> "") Then
 If (ShowTrace) Then
 Set Msg To "Connecting using : " + SecondaryConnect
 Message (Msg, TraceCaption)
 EndIf
 Connect (SecondaryConnect)
 EndIf

EndIf

If (&RecoveryAttempts > 2) Then
 If (SubsequentConnects <> "") Then
 If (ShowTrace) Then
 Set Msg To "Connecting using : " + SubsequentConnects
 Message (Msg, TraceCaption)
 EndIf
 Connect (SubsequentConnects)
 EndIf

EndIf

If (ShowTrace) Then
 Message ("Calling logon macro.", TraceCaption)
EndIf

Logon ()

How to make your macros more robust Template recovery macro, RECOVER.MAC

122 DSWindows 2.2 Macros User Guide

SECTION 7
Logs the end state of the recovery process, based on whether you are connected and
at the prompt.

;***

;* SECTION 7: Finish. Log end state to file.

;***

FINISH:

If (ShowTrace) Then
 Set Msg To "Recovery over."

 If (&ConnectState = CONNECTED) Then
 Set Msg To Msg + " Connected."
 Else
 Set Msg To Msg + " Disconnected."
 EndIf

 If (&AtPrompt) Then
 Set Msg To Msg + " At the prompt."
 Else
 Set Msg To Msg + " Not at the prompt."
 EndIf

 Message (Msg, TraceCaption)

EndIf

SECTION 8:
Ends the recovery macro.

;***

;* SECTION 8: The End.

;***

End

Template recovery macro, RECOVER.MAC How to make your macros more robust

Issue 1 123

How to make your macros more robust Template recovery macro, RECOVER.MAC

124 DSWindows 2.2 Macros User Guide

 Example macros

This section documents a set of example macros which are are provided with
DSWindows 2.2. The macros are intended to illustrate:

q the range of activities you can automate using Datastream macros

q how typical macros are constructed

The macros themselves reside in the \dswindow\files directory and you can edit them
for your own purposes, or copy them and edit the copies as you like. The names of
the macros indicate their function; for example, ex_prnt.mac illustrates a macro
which produces printed output, ex_save.mac illustrates a macro which creates a
save file.

Example 1: DEMOGLST.MAC

This macro runs program 401A three times, to download three graphs, each one
comparing a stock with its market index, from 1st January 1991. The indices are
rebased to the starting value of the stocks they are compared with. The list of stocks
and indices is at the end of the macro, at the point labelled DEMOLIST.

OPENDATA DEMOLIST

Loop:

IF &ENDOFDATA = FALSE THEN
INPUT STOCK, INDEX
SEND("401A "+ STOCK +","+ INDEX +",,1/1/91,,,3")
> [CLEAR]

GOTO Loop

ENDIF

 Example macros

Issue 1 125

DEMOLIST:

DATA
"BP", "FTSE100"
"F:PGT", "FRCAC40"
"J:RH@N", "JAPDOWA"

ENDDATA

Example 2: DEMO900.MAC

This macro runs the Data Channel programs 900A and 900B, saving the output in a
.CSV file named "DEMO900". (You can use a .CSV (Comma Separated Value) file
to export data to spreadsheets, such as Excel.)

The macro begins by opening this save file, then runs 900A to download information
(the number of shares in issue, NOSH and the beta coefficient, BETA) for two
stocks, British Telecom (BT) and Marks & Spencer (MKS). Then, using program
900B, it downloads recent daily values for a number of stocks.

STARTDC (CSVFILE,"DEMO900.CSV")

> 900A

> BT,MKS

> NOSH,BETA

SEND ("900B BT,-3M,,D")

SEND ("900B BT(MV),-3M,,D")

SEND ("900B MKS(P),-4M,,D")

SEND ("900B CTRP(P),-2M,,D")

SEND ("900B BP(P),-3M,,D")

ENDDC

 Example macros

126 DSWindows 2.2 Macros User Guide

Example 3: DEMOGRPH.MAC

This macro runs program 401A three times to download a series of graphs showing
values for the last two years for the FTSE 100 index, the Dow Jones Industrial index
(DJINDUS) and the share price of BP compared to the FTSE 100. Then it runs the
flexible format program 401X twice.

SEND ("401A FTSE100")
SEND ("DJINDUS")
SEND("BP[ERASE_EOF][TAB]FTSE100[DOWN][DOWN][DOWN][TAB][TAB]2"
SEND ("[CLEAR]")
SEND ("401X 001G")
SEND ("401X 002G")

The following macro (similar to the one above) uses the abbreviated form of the
SEND command:

> 401A JAPDOWA
> ICI[ERASE_EOF][TAB]FTSE100[DOWN][DOWN][DOWN][TAB][TAB]2
> [CLEAR]
> 401X 003G
> 401X 005G

Example 4: DEMOLIST.MAC

This macro creates a local list file, called DEMO.LST, consisting of codes for
equities in the German brewing sector. Then, for each of these equities, it runs
program 900B to download data into a .CSV file, called DEMO.CSV.

MESSAGE("Running 900A to create DEMO.LST","DEMOLIST.MAC")
STARTDC(LISTFILE,"DEMO.LST")
> 900A BREWSD
ENDDC
MESSAGE("Now run List File DEMO.LST", "DEMOLIST.MAC")
STARTDC (CSVFILE,"DEMO.CSV")

 Example macros

Issue 1 127

OPENDATA "DEMO.LST":LIST

Loop:

IF &ENDOFDATA = FALSE THEN
INPUT code
SEND ("900B " + code + ",1/1/91,30/1/91,D")
GOTO Loop

ENDIF

ENDDC

END

Example 5: DEMOSAVE.MAC

This macro contains 5 sections, which are concerned with capturing, saving and
printing data.

The first section downloads data from 99FX1 and saves it in DSWindows format.
When you run this, you will be prompted for a file name.

CAPTURE
> 99FX1
ENDCAPTURE

This section downloads data from 99FX2 and saves it as plain text for use in other
Windows applications. When you run this, you will be prompted for a file name.

CAPTURE (1)
> 99FX2
ENDCAPTURE

 Example macros

128 DSWindows 2.2 Macros User Guide

This section downloads data from 99FX3 and saves it in DSWindows format. The
data will be saved into the file specified ("DEMO.DST")

CAPTURE ("DEMO")
> 99FX3
ENDCAPTURE

This section downloads data from 99FX4 and saves it as plain text for export. The
data will be saved into a file specified and printed out as it is received.

CAPTURE ("DEMO",1)
AUTOPRINT
> 99FX4
ENDPRINT
ENDCAPTURE

This section prints out the data in the specified file.

PRINTSAVEFILE ("DEMO")

Example 6: DEMOPSS.MAC

Demo for connecting via UK PSS.

CONNECTNOWAIT()
START:
SEND("ATZ", "OK", TIMEOUT:3)
SEND(TEXT:"ATE1", "OK")

; DIAL YOUR LOCAL PAD
SEND("ATDXXXXXXXX", WAITFOR:"CONNECT", 45)
IF &SENDCOMPLETE <> TEXTFOUND THEN
MESSAGE("DID NOT FIND ’CONNECT’ ", "DEMOPSS.MAC")
GOTO START
ELSE

SEND("[ENTER][ENTER]SP[ENTER]", "LO")
 Send("[ENTER]", "NUI")

 Example macros

Issue 1 129

; enter your NUI
 Send("NUIXXXX", "ADD")
 Send("A212301202", "LOGON")
; enter your user id and password
 Send("UUUUUUUUPPPPPP")
EndIf

Example 7: DEMODATE.MAC

Demonstrates the use of AddToDate, CompareDates, EndOfPriorPeriod,
&dayOfMonth, &month, &year

; ****** Request data for every three working days ******
; You must specify the date in the format that you are configured for.
; See Options>Configure>Dates in the terminal window.

Set date To "1/1/95"
Set endDate To "31/1/95"

LOOP:

 Send("900A FTSE,P," + date)
 AddToDate(date, 3, "WEEKDAY")
 Set date To &result
 CompareDates(date, endDate)
 If &result > 0 Then
 Goto LOOP

 EndIf

;End of LOOP

; ****** Request data for the end of the last quarter ******

Set date To str$(&dayOfMonth) + "/" + str$(&month) +"/" + str$(&year)
EndOfPriorPeriod(date, "QUARTER")
Set endOfLastQuarter To &result
Send("900A FTSE,P," + endOfLastQuarter)

 Example macros

130 DSWindows 2.2 Macros User Guide

Example 8: DEMOSITA.MAC

Demo illustrating how to connect to Datastream via SITA dial-up

NOTE Before using this macro please set up the following 5 pieces of information. Put the
values between double quotes. For example:

Set sitadialPhoneNumber to "9 123 45678"

Set sitadialPadPhoneNumber To "xxxxxxxxxx"
Set sitadialNUI To "xxxxxxxx"
Set sitadialPassword To "xxxxxx"
Set datastreamLogonId To "xxxxxxx"
Set datastreamPassword To "xxxxxx"
Set error To ""
If &OS = "WINDOWS" Then
 Set EOL To chr$(13) + chr$(10)
Else

 Set EOL To chr$(10)
EndIf

ConnectNoWait()
Send("ATZ", "OK", 3)
Send("ATE1", "OK", 3)

Send("ATD" + sitadialPadPhoneNumber, "CONNECT", 45)

If &sendComplete <> TEXTFOUND Then

 Set errorNumber To "CMS1"
 Set error To "Could not connect to SITADIAL PAD - phone number "
 Set error To error + sitadialPadPhoneNumber + EOL
 Set error To "If the line is busy please try again."
 Goto DONE

EndIf

(continued...)

 Example macros

Issue 1 131

Wait(2)
Send("...[ENTER]", "SITA", 10)
If &sendComplete <> TEXTFOUND Then

 Set errorNumber To "CMS2"
 Set error To "Sita pad did not respond. Please try again."
 Goto DONE

EndIf

Send("NUI " + sitadialNUI, "XXXXXX", 10)
If &sendComplete <> TEXTFOUND Then

 Set errorNumber To "CMS3"
 Set error To "Your Sita NUI was not recognised. "
 Set error To error + "Please check the sitadialNUI in this macro."
 Goto DONE

EndIf

Send(sitadialPassword, "active", 10)
If &sendComplete <> TEXTFOUND Then

 Set errorNumber To "CMS4"
 Set error To "Your Sita password was not recognised. "
 Set error To error + "Please check the sitadialPassword in this macro."
 Goto DONE

EndIf

Send("9000132", "Dummy", 45)
If &sendComplete <> UNLOCK Then

 Set errorNumber To "CMS6"
 Set error To "Could not contact Datastream host. "
 Set error To error + "Please try again."
 Goto DONE

EndIf

(Continued...)

 Example macros

132 DSWindows 2.2 Macros User Guide

Send(datastreamLogonId + datastreamPassword)
DONE:
If error <> "" Then

 Set error To "Error " + errorNumber + EOL + EOL + error
 Set error To error + EOL + EOL
 Set error To error + "If the problem persists please check your "
 Set error To error + "modem configuration." + EOL
 Set error To error + "If this does not solve the problem please "
 Set error To error + "call your Datastream representative."
 Message(error, "Connection error whilst running demosita.mac")
 Disconnect()

EndIf

 Example macros

Issue 1 133

Example 9: EX_PRNT.MAC

This macro illustrates how to run simple Datastream programs and print the output.

SEND("401A JAPDOWA") To send a comment to Datastream either
use the SEND command,

SEND("[CLEAR]")

>401A FTSE100 or use the abbreviated form of the
SEND command, >.

>[CLEAR]

ACTIVATETERMINAL

AUTOPRINT Turn printing on.

>190A D:VW Print report on a company,

SEND ("401A") and a performance chart.

SEND("D:VW[TAB]DAXINDX[DOWN][DOWN][DOWN][TAB][TAB]2")

>[CLEAR]

ENDPRINT Turn off printing.

END End the macro.

 Example macros

134 DSWindows 2.2 Macros User Guide

Example 10: EX_SAVE.MAC

This macro demonstrates how to save text and graphics into separate files, and then
how to reload and print them.

CAPTURE("ex_demo.dst",0,1,OVERWRITE)

Open a save file named "ex_demo.dst" to
view again in DSWindows, containing
only output pages; overwrite anything
already in the file.

>301A ICI Retrieve data on ICI.

>[CLEAR]
>190E ICI
>[CLEAR]
ENDCAPTURE Close the text file.

ACTIVATEGRAPHICS Make the Graphics window active.

AUTOSAVE("ex_demo.dsg",OVERWRITE)

The AUTOSAVE command saves all
subsequent graphics (until the
ENDAUTOSAVE command). NB:
These charts are saved as they arrive
from Datastream, therefore subsequent
annotations will not be saved - to save
these use the SAVEGRAPHICS
command.

>401B ICI Retrieve data in graphics form on ICI.

>[CLEAR]
>401F ICI
>[CLEAR]
ENDAUTOSAVE Close the Graphics file.

PRINTSAVEFILE("ex_demo") Print the text file.

 Example macros

Issue 1 135

PRINTGRAPHFILE("ex_demo.dsg") Print the graphics file.

END End the macro.

Example 11: EX_LIST.MAC

This macro illustrates how a loop can be set up to print a number of charts (Global
Formats) whose format numbers are held in a list. This list is at the end of the macro
in this example - it could also be held in a separate file.

OPENDATA demolist The OPENDATA command identifies
the source for the data.

Loop: A label (Loop:) is placed at the start of
the loop for the macro to return to at the
end of the loop - using the GOTO
command.

IF &ENDOFDATA = FALSE THEN An IF statement is then used to test
whether the system variable
&ENDOFDATA has been set to TRUE.
This occurs when the end of the data list
is found, and the loop is ended after the
ENDIF statement.

INPUT format The first operation within the loop is to
input the next value from the data list.

SEND("401X " + format) The macro then requests the chart using
the INPUTed format from the data list,

> [CLEAR]

PRINTGRAPHICS prints,

GOTO Loop and returns to the start of the loop.

 Example macros

136 DSWindows 2.2 Macros User Guide

ENDIF

END

demolist:

A label (demolist:) identifies the start of
the data list and the data is held between
the DATA and ENDDATA commands.

DATA
"001G"
"002G"
"003G"
"004G"
"005G"
"006G"
"007G"
"008G"
"009G"
"010G"
"011G"
"012G"

ENDDATA

 Example macros

Issue 1 137

Example 12: EX_SET.MAC

This macro is similar to the EX_SAVE macro and EX_LIST macros, and illustrates
how to use the SET command to assign a value to a variable. In this example a
value for the APPEND/OVERWRITE indicator is set to OVERWRITE initially and
then changed to APPEND.

Note: The 101A program appears in the graphics window because /Y is appended to the
request:

SET app_over TO OVERWRITE

ACTIVATEGRAPHICS Note: the graphics window must be
active before any graphics-related macro
commands can be run.

OPENDATA demolist

Loop:

IF &ENDOFDATA = FALSE THEN
INPUT code
SEND("101A "+code+"/Y")
>[CLEAR]
SAVEGRAPHICS("ex_demo.dsg",APPEND:app_over)

To change the variable to APPEND
after the first new graph is saved.

SET app_over TO APPEND
GOTO Loop

ENDIF
PRINTGRAPHFILE("ex_demo.dsg")

END

demolist:

DATA
"J:KB@N"
"U:BUD"

 Example macros

138 DSWindows 2.2 Macros User Guide

"GMET"
"ALLD"
"BASS"
"J:ASBR"
"R:SABJ"
"H:HB"
"O:OBRA"

ENDDATA

Example 13: EX_STRNG.MAC

This macro demonstrates how string operators can be used to remove full stops from
mnemonics, which can then be used as file names for charts saved to disk.

STARTDC(LISTFILE,"ftse.lst") First, Data Channel is started and a file
called "ftse.lst" is opened.

> 900A FTSE,MNEM A local list of the mnemonics in the
FTSE is generated, and saved in the file
(see EX_LIST.MAC for more details on
using data lists).

ENDDC Data Channel is closed.

OPENDATA "ftse.lst":list NB It may be necessary to add the path
in the OPENDATA command.

Loop: Set up a loop.

IF &ENDOFDATA = FALSE THEN

INPUT code,mnem Take each mnemonic in turn and amend
the mnemonics, if necessary, by
replacing the full stop with an underline.

SET file TO mnem

 Example macros

Issue 1 139

SET I TO 1
loop1:
IF MID$(file,I,1)="." THEN

SET file TO LEFT$(file,I-1)+"_"+MID$(file,I+1,4)
ENDIF

SET I TO I+1
IF I <= 4 THEN

GOTO Loop1
ENDIF

SEND("401B "+ mnem + ",FTSE100,1/1/87")
SAVEWMF (file +".wmf") Generate the charts and save these to

.WMF files.

SEND("[CLEAR]")
GOTO Loop

ENDIF

END

Example 14: EX_SYSTM.MAC

This macro illustrates how you can use the system variables &MONTH and &YEAR
with the SEND command to fill in Datastream input fields.

The purpose of the macro is to graph the basic relationship between the near term
futures contract on the DAX index future and the index. This macro uses the IF and
OR commands to find the near term contract in the three month cycle.

IF &MONTH=3 OR &MONTH = 6 OR &MONTH = 9 OR &MONTH = 12
 THEN

SET near_mth TO &MONTH
ENDIF

IF &MONTH=2 OR &MONTH = 5 OR &MONTH = 8 OR &MONTH = 11
THEN

 Example macros

140 DSWindows 2.2 Macros User Guide

SET near_mth TO &MONTH + 1
ENDIF

IF &MONTH=1 OR &MONTH = 4 OR &MONTH = 7 OR &MONTH = 10
THEN

SET near_mth TO &MONTH + 2
ENDIF
SEND("401A ")

IF near_mth <=9 THEN
SEND("DAXINDX[TAB]GDX0"+STR$(near_mth)+STR$(&YEAR)+"[NOENTER]"
)
ELSE
SEND("DAXINDX[TAB]GDX"+STR$(near_mth)+STR$(&YEAR)+"[NOENTER]"
)

ENDIF
SEND("[TAB][TAB]-3M[TAB][TAB][TAB][TAB]CASH BASIS RELATIONSHIP")
SEND("[CLEAR]")
END

Example 15: EX_MASTR.MAC

This macro illustrates how you can set up a ‘master’ macro to run other (child)
macros. This technique enables you to keep your macro short and easy to maintain.

The CALL command is used to run the child macros, with control returning to the
master after each child has run.

NOTE All save files are closed after each child macro is executed.

CALL "EX_PRNT.MAC":
CALL "EX_SAVE.MAC":
CALL "EX_LIST.MAC":
CALL "EX_SET.MAC":
END

 Example macros

Issue 1 141

Example 16: EX_401X.MAC

This macro illustrates how the keystroke recorder can be used to record the
keystrokes used to fill in a 401X input screen.

The graph plots the share prices for the French company BIC and the CAC 40 index.
Data for 6 months is requested, at daily frequency, grids for both the X and Y axes,
daily tick marks on the X-axis and the second series rebased to the starting value of
the first. The equivalent input screen is shown opposite.

To start the keystroke recorder, click on the Recorder button or select this option
from the macro menu option on the terminal menu bar.

The [NOENTER] commands are supplied by the recording process - you do not
have to enter these.

Send("401X C ")

Send("F:BIC[TAB][TAB][TAB][TAB]FRCAC40[TAB][TAB][TAB][NOENTER]")

Send("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB]D[NOENTER]")

Send("-6M[TAB][TAB][TAB]BOTHD [TAB][TAB][TAB][TAB][TAB][NOENTER]")

Send("[TAB][TAB][TAB]S")

PRINTGRAPHICS The graph can then be printed by adding
a PRINTGRAPHICS command.

END

NOTE The keystroke recorder only records the information sent to Datastream. You have to
add the PRINTGRAPHICS command manually.

 Example macros

142 DSWindows 2.2 Macros User Guide

401X input screen

 Example macros

Issue 1 143

Example 17: EX_GLIST.MAC

This macro illustrates how you can generate a chart for each company in a list
(German Breweries with Market Value over 500M DM in this example) and load
them into a layout of four charts and then print the layout.

Note: A layout with four charts named "four" must be set up before this macro is run. The
layout is then loaded using the LOADLAYOUT command.

ACTIVATEGRAPHICS

LOADLAYOUT ("four")

SET grph_count TO 0 Next a counter (grph_count) is set to
keep track of the number of charts
loaded into each layout.

OPENDATA list

Loop: A loop is set up to generate the four
charts in the layout - see
EX_LIST.MAC for a detailed
explanation of loops and associated data
lists.

If &ENDOFDATA = FALSE THEN

INPUT company

>[CLEAR]

SELECTGRAPH (grph_count) The counter is used to specify which slot
in the layout to make visible, and is
incremented in each iteration of the loop.

SEND("401B " + company + ",BREWSSW")

SET grph_count TO grph_count+1

(Continued...)

 Example macros

144 DSWindows 2.2 Macros User Guide

IF grph_count = 4 THEN

PRINTGRAPHICS After four charts have been placed in the
layout, the layout is printed and the
counter is reset. The second, third and
fourth slots in the layout are de-selected
in case there are insuffucient companies
to fill these. (It is assumed there are at
least 4 companies in the list.)

SET grph_count TO 0

DESELECTGRAPH(1)

DESELECTGRAPH(2)

DESELECTGRAPH(3)

ENDIF

GOTO Loop

ENDIF

IF grph_count <> 4 THEN

PRINTGRAPHICS A final PRINTGRAPHICS command
may be required to print the final layout,
if the total number of graphs is not a
multiple of four.

ENDIF

END

list:

(Continued...)

 Example macros

Issue 1 145

DATA

"D:BBA"
"D:PSC"
"D:PTH"
"D:BIN"
"D:LBR"
"S:DWB"

ENDDATA

 Example macros

146 DSWindows 2.2 Macros User Guide

Example 18: EX_GSTYL.MAC

This macro illustrates how different text, line and fill styles can be loaded in a
macro. Examples of using ’special keys’ such [ERASE_EOF] to erase to end of field,
[QUOTE] to send an inverted comma and [NOENTER] to indicate that the input for
that screen is continued on the next line - are also incuded

ACTIVATEGRAPHICS

New line styles (called Daily_reports) and text styles (called Daily_reports) are
loaded (N.B. as with layouts these must be set up before this macro is run). For
example, the text styles could be set so that the titles are underlined and the sub
title and legends are in a smaller font, while the line and fill styles are set to
different colours

LOADTEXTSTYLES ("Daily_reports")

LOADLINESTYLES ("Daily_reports")

LOADFILLSTYLES ("Daily_reports")

A loop is used to generate the four charts in the layout see EX_LIST.MAC for
detailed explanation of loops and associated data lists

OPENDATA list

Loop:

If &ENDOFDATA = FALSE THEN

INPUT company, index, name

>[CLEAR]

Three charts are created in a 401X by amending the Global format 005G to
show the performane of large software companies in different markets

SEND("401X A 005G")

The first chart displays the share price

 Example macros

Issue 1 147

SEND("[ERASE_EOF]"+company+"[TAB][TAB][TAB][QUOTE][NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB] [NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB] [NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][ERASE_EOF][NOENTER]")

SEND("SHARE PRICE[TAB][TAB][TAB][TAB][TAB][ERASE_EOF]"+name)

The second chart displays the market value

SEND("[ERASE_EOF]"+company+"(MV)[TAB][TAB][TAB][QUOTE] [NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][ERASE_EOF]MARKET VALUE")

The third chart displays the index performance

SEND("[ERASE_EOF]"+index+"[TAB][TAB][TAB][ERASE_EOF][NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB]
[NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB]
[NOENTER]"

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][ERASE_EOF]")

The charts are saved to disk so that they can be displayed at a later date using
the Graphics Browse facility.

 Example macros

148 DSWindows 2.2 Macros User Guide

SAVEGRAPHICS ("softw.dsg",,APPEND)

GOTO Loop

ENDIF

END

list:

DATA

"@MSFT","S&PCOMP", "MICROSOFT"

"F:CGS", "PARCACG", "CAP GEMINI SOGETI"

"J:ZV@N", "JAPDOWA", "CSK CORP."

"MFCS", "FTALLSH", "MICRO FOCUS GP."

"C:SHKT","TTOCOMP", "SHL SYSTEMHOUSE"

ENDDATA

 Example macros

Issue 1 149

Example 19: EX_GANT.MAC

This macro illustrates how you can customise a Datastream chart using the graphics
annotation macro commands introduced in DSWindows 2.0. These charts are then
saved as .WMF files and in a DSWindows save file for display in the Browse facility.

The SAVEGRAPHICS command is used in this macro in preference to
AUTOSAVE, because AUTOSAVE does not save annotations.

Note: See EX_SYSTM.MAC for an example of how to use system variables.

SEND("[CLEAR]")

OPENDATA list

Loop:

IF &ENDOFDATA = FALSE THEN

INPUT mnemonic

Send("401X C") The tabs required to complete this 401X
screen can be recorded using the macro
keystroke recorder.

SEND(mnemonic + "[TAB][TAB][TAB][TAB]FTSE100[TAB][TAB][NOENTER]")

SEND("[TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][TAB][NOENTER]")

SEND("[TAB]D-1Y[TAB][TAB][TAB]BOTH[TAB][TAB][TAB][NOENTER]")

SEND("[TAB][TAB][TAB]1,75 [TAB][TAB][TAB]I[TAB][TAB][TAB][TAB]N")

SELECTITEMS (CONTAINS:"FTSE") The SELECTITEMS command is used
to select the item(s) containing the text
"FTSE".

(Continued.....)

 Example macros

150 DSWindows 2.2 Macros User Guide

CHANGEITEMS (TEXT:"FTSE 100")The CHANGEITEMS command is used
to change these item(s) to "FTSE 100".

SELECTITEMS (IN:0,0,600,70) The SELECTITEMS command is used
to select all the item(s) in the area which
has a lefthand co-ordinate (l) = 0, top
(t) = 70, righthand (r) = 600 and bottom
(b) = 0 - the legend in this instance.

MOVEITEMS (TO:780,450) The MOVEITEMS command is used to
move the selected items to the right of
the chart.

NEWBOX(BORDER:"Axis",SHADOW:"Fill Style 2",\
SHADOWBORDER:"Axis",SHADOWOFFSET:5)

The NEWBOX command is used to add
a box around these items.

DESELECTITEMS The DESELECTITEMS commands
de-select these items.

SAVEWMF (mnemonic+".wmf") Each graph is saved in a separate .WMF
file using the mnemonic to form the
name.

SAVEGRAPHICS("brw"+STR$(&DayOfMonth)+"_"+STR$(&Month), APPEND)

The graphs are also saved in a .DSG
file. The name of this file is determined
by the date. For example, if the date is
the 17th of May, the file will be called
BRW17_5.DSG.

SEND("[CLEAR]")

GOTO Loop

ENDIF

(Continued.....)

 Example macros

Issue 1 151

END

list: This is a list (abbreviated) of UK
brewery companies.

DATA
"ALLD"
"BASS"
"BODD"
...

"WOLV"
"YNGBA"
"YNGBNV"

ENDDATA

 Example macros

152 DSWindows 2.2 Macros User Guide

Example 20: EX_300C

This macro illustrates how time series data can be uploaded to the Datastream
mainframe using the 300C program.

NOTE This macro assumes that the series starts on a MONDAY (for daily data) and that
values are available for ALL subsequent WEEKDAYS

SEND("[CLEAR]")

USERINPUT "UPLOADING TO 300C","Enter series name - TSXXXXXX",seriesn

USERINPUT "UPLOADING TO 300C","Enter series title",title

USERINPUT "UPLOADING TO 300C","Enter management group",mgmt

USERINPUT "UPLOADING TO 300C","Enter frequency (D W or M)",freq

; Initialise the series counter

SET seriesc TO 0

SEND("300C")

; Enter series details and check if the mnemonic is already in use

SENDANDCHECK("1"+seriesn + mgmt,"ALREADY IN USE")

IF &TEXTFOUND=TRUE THEN

SEND ("[CLEAR]")

MESSAGE ("MNEMONIC ALREADY IN USE - ABORTING")

GOTO abort

ENDIF

 Example macros

Issue 1 153

; Open the text file and request the start date, Week day, Frequency and data.

OPENDATA LIST

INPUT st_date

INPUT W_day

INPUT freq

INPUT series

; Set the number of fields per input page according to the frequency

IF freq = "M" THEN

; Fix for monthly frequencies
; This checks the ’month’ value of the start date, and reduces the index
; number ’nof_fields’ so that the macro knows to expect the correct number
; of fields in the 300C input screen. A similar method exists for weekly
; frequencies, but the value for the day of the week is taken from the
; data list (at end of file)
; Additionally, another variable is introduced. The index ’nof_fields’ holds
; the number of fields on the first input screen, taking into account the
; starting month (as explained above). The index ’nos_fields’ holds the
; number of fields in the subsequent, standard 300C input screen for that
; frequency.

SET month TO MID$ (st_date,4,2)

SET monthv TO VAL(month) ;Get value of starting month

IF monthv > 1 THEN

SET nof_fields TO (4 * 12) - monthv + 1 ;Reduce nof_fields by the number
of months

ELSE

SET nof_fields TO 4 * 12

ENDIF

 Example macros

154 DSWindows 2.2 Macros User Guide

SET nos_fields TO 4 * 12

ELSE

IF freq ="W" THEN

SET nof_fields TO 3 * 16

SET nos_fields TO 3 * 16

ELSE

 SET nof_fields TO 5 * 16 + 2 - VAL(W_Day)

 SET nos_fields TO 5 * 16

ENDIF

ENDIF

; Enter start date and frequency

SEND("[TAB][TAB]"+freq+st_date)

; ENTER DECIMAL PLACES NEEDED IF DEFAULT IS NOT NEEDED

SEND(title+"[TAB][TAB][TAB]4")

; Enter series data

SET no_fields to nof_fields

Loop:

SEND (series + "[TAB][NOENTER]")

SET seriesc TO seriesc + 1

IF no_fields = seriesc THEN

SEND("[ENTER]")

SET seriesc TO 0

 Example macros

Issue 1 155

SET no_fields TO nos_fields

ENDIF

INPUT series

IF &ENDOFDATA = FALSE THEN

GOTO Loop

ENDIF

SEND (series + "[TAB][NOENTER]")

SEND("END")

Abort:

END

LIST:

DATA

"01/06/84"
"1"
"M"
"-5.6319"
"-7.2329"
"-8.6191"
"-9.4071"
"-10.537"
"-11.611"
"-12.796"
"-13.528"
"-14.076"
"-13.452"
"-12.589"
"-11.843"

 Example macros

156 DSWindows 2.2 Macros User Guide

"-11.093"
"-9.5674"
"-8.8451"
"-8.2106"
"-5.9607"
"-4.017"
"-3.096"
"-1.251"
"0.84922"
"1.78146"
"3.34402"
"5.49007"
"6.08029"
"7.20487"
"8.46825"
"9.26583"
"9.31617"
"10.7251"
"11.5098"
"12.325"
"14.2966"
"17.1919"
"18.8057"
"19.6419"
"19.3555"
"17.3954"
"14.062"
"11.4768"
"9.20832"
"7.06202"
"6.12312"
"5.74271"
"3.82016"
"1.4657"
"2.4531"
"1.86986"
"1.28188"
"2.05614"
"3.76479"
"2.67455"

 Example macros

Issue 1 157

"2.04128"
"1.53731"
"0.58442"
"-0.3153"
"-1.9787"
"-2.9644"
"-4.0972"
"-3.954"
"-3.0299"
"-0.9994"
"0.58839"
"2.2076"
"2.55317"
"2.84521"
"2.54214"
"2.25084"
"3.23574"
"4.6838"
"3.385"
"2.22372"
"0.97498"
"-2.9168"
"-6.0828"
"-8.0827"
"-9.2986"
"-10.72"
"-10.11"
"-11.171"
"-11.168"
"-11.795"
"-12.757"
"-13.543"
"-13.165"
"-11.428"
"-9.9368"
"-7.8014"
"-5.5606"
"-3.7873"
"-5.1211"
"-5.8271"

 Example macros

158 DSWindows 2.2 Macros User Guide

"-6.4294"
"-7.0471"
"-5.7303"
"-3.4643"
"-2.4217"
"-1.8796"
"-1.6259"
"-2.4321"
"-2.8379"
"-2.7359"
"-0.9785"
"0.29922"
"1.31007"
"1.03924"
"2.03509"
"2.03702"
"2.35086"
"3.23467"
"5.15004"
"6.48559"
"6.71982"
"7.15133"
"7.32432"
"7.80322"
"6.9294"
"7.99737"
"7.36332"
"5.73407"
"4.13655"
"2.92505"
"-0.3697"
"-1.6997"
"-1.7588"
"-1.7008"
"-1.7086"
"-0.4392"
"0.54434"
"0.79026"
"-0.3415"

ENDDATA

 Example macros

Issue 1 159

Example 21: EX_GANT1.MAC

This is a further example of how you can use the graphics annotation macro
commands to customise the look of a chart (and in this case to add page numbers).
The GRAPHPAGESETUP command is also used to change the printer
configuration.

DISPLAYSINGLEGRAPH NB The Graphics Window should be in
Single Graph mode.

SET count TO 0 Initialise a counter for the page numbers.

OPENDATA list

loop:

IF &ENDOFDATA=FALSE THEN

INPUT index

SEND ("401A "+ index)

GRAPHDRAWOFF The GRAPHDRAWOFF command
stops the screen being redrawn as the
chart is annotated.

SELECTITEMS(CONTAINS:"225",STYLE:"Title")

CHANGEITEMS(TEXT:"NIKKEI - PRICE INDEX")

SELECTITEMS(TYPE:"TEXT",STYLE:"Title")

The SELECTITEMS and
CHANGEITEMS commands are used to
change title text.

CHANGEITEMS(STYLE:"Style 1")

(Continued)

 Example macros

160 DSWindows 2.2 Macros User Guide

ADDTOSELECTITEMS(TYPE:"TEXT",STYLE:"Sub-Title")

The SELECTITEMS and
CHANGEITEMS commands are used to
change the title text style (font, size, etc).

NEWBOX(BORDER:"Line Style 1",SHADOW:"Fill Style 1", \
SHADOWBORDER:"Line Style 1",SHADOWOFFSET:5)

The NEWBOX command puts a box
around the title and the sub-title. Note
the \ at the end of the first line, to
indicate that the command continues on
the next line.

MOVEITEMS(BY:0,-30)

DESELECTITEMS

SELECTITEMS(TYPE:"TEXT",STYLE:"Sub-Title")

CHANGEITEMS(TEXT:"Daily over the last year")

DESELECTITEMS To add the page numbers at the top of
the chart:

SET count TO count + 1

NEWTEXT(TEXT:"PAGE " +STR$(COUNT), AT:500,755,STYLE:"Style 1")

DESELECTITEMS

GRAPHDRAWON The GRAPHDRAWON command
re-enables the graph display.

(Continued)

 Example macros

Issue 1 161

GRAPHPAGESETUP(LEFT:200,TOP:200,RIGHT:200,BOTTOM:200,\
ORIENTATION:"LANDSCAPE")

The GRAPHPAGESETUP command
sets the PAGE SETUP parameters. N.B.
The numbers are the margin sizes in
100ths of an inch (i.e. 50=1/2 inch)

PRINTGRAPHICS

>[CLEAR]

GOTO loop

ENDIF

END

list:

DATA
"DJINDUS"
"JAPDOWA"
"HNGKNGI"
"FTSE100"

ENDDATA

 Example macros

162 DSWindows 2.2 Macros User Guide

Example 22: EX_CSV.MAC

This macro illustrates how to convert the codes from a Datastream (mainframe) list
into a local list file, and then use it to download values for each of these series -
saving the output as a .CSV file.

To convert the Datastream list in a local list on your PC use the
STARTDC(LISTFILE, filename) and ENDDC commands, together with the 900A
program and the list name (French banks).

STARTDC(LISTFILE,"DEMO.LST")

>900A BANKSF,MNEM

ENDDC

STARTDC(CSVFILE,"EX_CSV.CSV") Use STARTDC(CSVFILE, filename),
to start saving and converting the
downloaded data. Use
STARTDC(CLIPBOARD) if you prefer
to transfer to the Clipboard.

OPENDATA "DEMO.LST":LIST

Loop: Set up a loop and open the data file as
illustrated in EX_LIST.MAC. NB it may
be necessary to add the path in the
OPENDATA command.

IF &ENDOFDATA = FALSE THEN

 INPUT code,mnem

>[CLEAR]

(Continued.....)

 Example macros

Issue 1 163

SENDANDCHECK("900B "+mnem+",1/1/86,,D","$$"+CHR$(34)+"H0")

A special form of the SEND command
(SENDANDCHECK) is used to check
that the requested data is available from
Datastream. (Note, as more than 15
years of daily data is required, two 900B
requests are made). Also a [CLEAR] is
sent to Datastream to ensure that it is
ready for the request and the CHR$(34)
denotes an inverted coma.

IF &TEXTFOUND=FALSE THEN After each request the data returned
from Datastream is checked to ensure
that the request was valid.

MESSAGE ("The data for this 900B request is not available")

ENDIF

>[CLEAR]

SENDANDCHECK("900B "+mnem+",1/1/76,31/12/86,D","$$"+CHR$(34)+"H0")

A second request is made for the rest of
the data.

IF &TEXTFOUND=FALSE THEN
MESSAGE ("There is no data for "+mnem+" prior to 1985")

ENDIF

GOTO Loop

ENDIF

ENDDC An ENDDC command is required to
close the file and convert the data to
CSV format. This file can then be loaded
into Excel, 123/W, etc.

END

 Example macros

164 DSWindows 2.2 Macros User Guide

Example 23: EX_CLIP.MAC

This macro uses the USERINPUT command to request input for the 900B Data
Channel program.

USERINPUT "DOWNLOAD TO CLIPBOARD",\
"ENTER CODES (COMMA SEPARATED)",codes

USERINPUT "DOWNLOAD TO CLIPBOARD",\
"ENTER START DATE (D/M/Y or -1M)",st_date

USERINPUT "DOWNLOAD TO CLIPBOARD",\
"ENTER FREQUENCY (D,W,M,Q,Y)",freq

STARTDC(CLIPBOARD)

SET L TO 1

SET codes TO codes + ",!" Add a terminator (!) to the string
containing the list of codes. This is used
later within the loop to test for the end
of the code string.

loop: A loop using the SET and string
manipulation commands is used to parse
the ‘codes’ string to make multiple
900B requests.

IF MID$(codes,L,1)="," THEN When a comma is found,

SET cd TO LEFT$(codes,L-1) cd is set to be the code to the left of it.

SET codes TO MID$(codes,L+1,60)The codes string is reset so that it
consists of everything to the right of the
comma.

>[CLEAR]

(Continued)

 Example macros

Issue 1 165

SENDANDCHECK("900B "+cd+","+st_date+",,"+freq,"$$"+CHR$(34)+"H0")

A 900B request is made, using cd, i.e.
the current code.

IF &TEXTFOUND=FALSE THEN

MESSAGE (cd + " is not a valid code")

If the Data Channel output is not found,
display the message.

ENDIF

SET L TO 1

ENDIF

IF MID$(codes,L,1)="!" THEN If the terminator is found at the end of
the code string,

GOTO endloop the macro will continue processing at
the label endloop.

ENDIF

SET L TO I+1

GOTO loop

endloop:

ENDDC

END

 Example macros

166 DSWindows 2.2 Macros User Guide

Example 24: EX_EXCEL.MAC

This macro illustrates how you can start another application, such as Excel, from a
macro and open saved data from Excel. It also illustrates how you can number the
.CSV files using a counter.

SET count TO 1 Initiate a variable for the counter called
count.

OPENDATA list

Loop: Set up a loop and open the data file as
explained in EX_LIST.MAC.

If &ENDOFDATA = FALSE THEN

STARTDC(CSVFILE,"ex_xls"+STR$(count)+".csv")

Use the value of the counter in the file
name.

INPUT mnemonic

>[CLEAR]

SEND ("900A")

SEND (mnemonic)

SEND ("NAME,P,PE,EPS,DY,DCV,DPSC,MV//")

SET count TO count+1 Increment the value of the counter.

ENDDC

GOTO Loop

(Continued)

 Example macros

Issue 1 167

ENDIF

SET total_count TO count

SET count TO 2

SET csvfiles TO "ex_xls1.csv" To append the file names (ex_xls...) to
the program name (EXCEL) in the
STARTPROGRAM command,
variables are set for the total number of
files and the file names are
concatenated.
NB: If the Save file directory is not on
the path, you should add the full path
before the file name (ex_xls).

Loop1:

IF count< >total_count THEN

SET csvfiles TO left$(csvfiles,100)+" ex_xls"+STR$(count)+".csv"

With each iteration of the loop (loop1) a
further file name is added.

SET count TO count+1

GOTO Loop1

ENDIF

(Continued)

 Example macros

168 DSWindows 2.2 Macros User Guide

STARTPROGRAM ("c:\xl4\excel "+csvfiles)

The STARTPROGRAM command is
used to start EXCEL and open the CSV
files.
NB Excel will be loaded only if it is on
the path or if you specify the path. Excel
looks in the ‘macros’ directory for the
.CSV files, since that is now the current
directory. The .CSV files would, by
default, be saved to the save file
directory.

END

list:

DATA

"BREWSA"
"BREWSD"
"BREWSH"
"BREWSJ"
"BREWSK"
"BREWSS"
"BREWSW"
"BREWSZ"

ENDDATA The data for this list was created using
the Extract facility in Code Lookup
(entering *BREWERIES in the
‘Description’ field and ALL in the
‘coverage’ field for Industry Lists), then
selecting all the extracted codes (by
holding down the <Shift> key) and
copying these to the Clipboard (NB: The
Clipboard options in Code Lookup must
be set to ‘return codes’ and ‘quotes’.)

 Example macros

Issue 1 169

Example 25: STARTUP.MAC

This macro runs when you load DSWindows.

ActivateBackpages Open the Backpages window.

ActivateGraphics Open the Graphics window.

ActivateTerminal Open the Terminal window.

MaximizeTerminal Maximize the Terminal window.

LOGON Call the LOGON macro.

 Example macros

170 DSWindows 2.2 Macros User Guide

Example 26: LOGON.MAC

This macro runs when it is called by the startup macro, or when you select Logon on
the Connect menu in the Terminal window. It connects your terminal to Datastream
and logs on.

CONNECT Connect to Datastream

SEND("DS") To logon to Datastream, send DS.

SEND("XDSMnnnabcxyz") Then send your Datastream ID
(XDSMnnnn) and password (abcxyz).

 Example macros

Issue 1 171

Example 27: EX_PSS.MAC

This macro demonstrates how to connect via UK PSS. These commands should be
inserted in your LOGON.MAC after (and replacing) the CONNECT command in
LOGON.MAC.

CONNECTNOWAIT Open the port connecting DSWindows
and Datastream.

start:

SEND("ATZ", "OK", TIMEOUT:3) Connect to the modem.

SEND(Text:"ATE1", "OK") Turn echo off from the modem, and wait
for the modem to respond with "OK".

SEND("ATDxxxxxxxx", WaitFor:"CONNECT", 45)

After receiving "OK" from the modem,
dial the phone no: ATxxxxxxxx, and wait
for the response: "CONNECT".

IF &sendComplete<>TEXTFOUND THEN
If the PAD does not respond with
"CONNECT", display the message:
"DID NOT FIND ‘CONNECT’", and
start again.

MESSAGE("DID NOT FIND ’CONNECT’ ", "DEMOPSS.MAC")

GOTO start

ELSE If the PAD responds with "CONNECT",
logon to the PAD with:
<Enter><Enter> <S> <P> <Enter>
and wait for LO to be returned.

(Continued.....)

 Example macros

172 DSWindows 2.2 Macros User Guide

SEND("[ENTER][ENTER]SP[ENTER]", "LO")

If the PAD responds with "CONNECT",
logon to the PAD with:
<Enter><Enter> <S> <P> <Enter>
and wait for LO to be returned.

SEND("[ENTER]", "NUI") Press <Enter> and wait for the NUI:
(Network User Identity) prompt.

; enter your NUI

SEND("NUIXXXX", "ADD") Send your NUI and wait for the ADD:
(Network User Address) prompt.

SEND("A212301202", "LOGON") Send Datastream’s user address, and
wait for the LOGON: prompt.

; enter your user id and password

SEND("UUUUUUUUPPPPPP") Send your Datastream User ID and
password.

ENDIF

When the Program Finder is displayed, you are connected to Datastream.

 Example macros

Issue 1 173

Example 28: EX_WRITE

This macro illustrates the WriteToFile macro command. Problems are logged to a file
that is displayed after the macro has run. To run this macro you must be logged on
and at the Program Finder screen.

WriteToFile writes just what you ask it to. It does not automatically write carriage
returns and line feeds to the file. The EndOfLine variable below is set to a string that
contains a carriage return (13) and a line feed (10).

Set endOfLine To chr$(13) + chr$(10) ; Carriage return + line feed

Set quote To chr$(34) ; ASCII value for a quote

Set tab To chr$(9) ; ASCII value for a tab

; If the 900B program encounters an error it outputs $$"ER" on the second
line

Set errorString To "$$" + quote + "ER" + quote ; $$"ER"
Set dateString To str$(&dayOfMonth) + "/" + str$(&month) + "/" + str$(&year)
Set logFile To "c:\dswindow\files\write.log"

WriteToFile("Macro run date:" + dateString + endOfLine, logFile,
OVERWRITE)
WriteToFile(endOfLine, logFile) ; Write a blank line

StartDC(CSVFILE, "write.csv")

; Run through all the mnemonics listed at the foot of the macro. For each
; of them run the 900B program to request 10 years of weekly data to be
; included in the CSV files. If there is an error then write this to the
; log file.

 Example macros

174 DSWindows 2.2 Macros User Guide

OpenData LIST

LOOP:

 If &endOfData = FALSE Then
 Input mnemonic
 ; EndPage stops the 900B after one page of output
 EndPage
 Send("900B " + mnemonic + ",1/1/85,1/1/90,W")
 If mid$(&screen, 81, 6) = errorString Then
 Set fullError To mnemonic + tab + mid$(&screen, 81, 80)
 WriteToFile(fullError + endOfLine, logFile)
 Send("[CLEAR]")

 Else
;Request the remaining pages of the 900B output
 AutoPage
 Send("[ENTER]")
 EndIf
 Goto LOOP
 EndIf

; End of LOOP

EndDC()

; Display the errors in notepad

StartProgram("notepad c:\dswindow\files\write.log")

LIST:
Data
 "@BOOT" ; No data available between 1/1/85 and 1/1/90
 "@FOOT" ; Should work without error
 "INVALID" ; Invalid mnemonic
 "U:LEG" ; Should work without error
 "ARM" ; No data available between 1/1/85 and 1/1/90
EndData

 Example macros

Issue 1 175

Example 29: RECOVER.MAC

NOTE The full text of RECOVER.MAC is documented in the section entitled,
’How to make your macros more robust’, pp. 107-123.

Example 30: EX_TIMES.MAC

Demonstrates the ConstTimeSeries macro command which allows you to place a
constant value (such as a string) in the next row/column.

STARTDC (CSVFILE,"consttim.csv")

 ConstTimeSeries("British Telecom","-6D","","D")
 SEND ("900B BT,-5D,,D")
 ConstTimeSeries("Primark","-6D","","D")
 SEND ("900B U:PMK,-5D,,D")
 ConstTimeSeries("Acorn Computers","-6D","","D")
 SEND ("900B ACRN,-5D,,D")

ENDDC ()

; If the AllowDuplicateTimeSeries is set to FALSE then a 900B request which
; has one time period wholly enclosed by the other (as in the example below)
; will produce only one column of output (i.e. the identical results are
; merged). If the value is set to TRUE the identical results will not be
; merged.
; NOTE: all changes to this option will be written to the ini file

ConfigureDC (Merge900B:1, Transpose900B:0, Titles900B:1, ColHeadings900B:0,
RowHeadings900B:0)

AllowDuplicateTimeSeries(FALSE) ; Activates on next call to ENDDC

STARTDC (CSVFILE,"dupltim1.csv")

 SEND ("900B BT,-2W,,D")
 SEND ("900B BT,-1W,,D")

ENDDC ()

 Example macros

176 DSWindows 2.2 Macros User Guide

AllowDuplicateTimeSeries(TRUE) ; Activates on next call to ENDDC

STARTDC (CSVFILE,"dupltim2.csv")

 SEND ("900B BT,-2W,,D")
 SEND ("900B BT,-1W,,D")

ENDDC ()

AllowDuplicateTimeSeries(FALSE) ; Activates on next call to ENDDC

STARTDC (CSVFILE,"dupltim3.csv")

 SEND ("900B BT ,-2W,,D")
 SEND ("900B ICI,-2W,,D")
 SEND ("900B BT ,-2W,,D")

ENDDC ()

;Resetting the value to default

AllowDuplicateTimeSeries(FALSE) ; Activates on next call to ENDDC

Example 31: EX_DATEF.MAC

Demonstrates the DateExportFormat macro command. Choose a date format as listed
in the short date styles options in your Windows control panel.

NOTE All changes to the date format will be written to the ini file.

SetDateExportFormat("MM/dd/yy") ; Activates on next call to STARTDC

STARTDC (CSVFILE, "expdate1.csv")
 >900B BT,-1Y,,D
ENDDC ()

SetDateExportFormat("dd.MM.yy") ; Activates on next call to STARTDC

 Example macros

Issue 1 177

STARTDC (CSVFILE, "expdate2.csv")
 >900B BT,-1Y,,D
ENDDC ()

SetDateExportFormat("WINDOWS") ; Activates on next call to STARTDC

STARTDC (CSVFILE, "expdate3.csv")
 >900B BT,-1Y,,D
ENDDC ()

Example 32: EX_PROMT.MAC

Example use of the new (2.2) system variable, &AtPrompt.

ActivateTerminal

If (&AtPrompt) ThenMessage ("Datastream prot found", "Test &AtPrompt")

Else
Message ("Datastream prompt not found", "Test &AtPrompt")

EndIf

Message ("Sending Clear", "Test &AtPrompt")

>[CLEAR]

If (&AtPrompt) Then
Message ("Datastream prompt found", "Test &AtPrompt")

Else
Message ("Datastream prompt not found - you may not be logged on",
"Test &AtPrompt")

EndIf

 Example macros

178 DSWindows 2.2 Macros User Guide

Example 33: EX_CLOSE.MAC

Demonstrates how to close DSWindows. This can be used to control DSWindows
via DSAgenda. For example, it can be called from the last Macro scheduled or, more
simply, run as the last scheduled job to ensure that DSWindows is closed down and,
more importantly, that the session it was using is freed.

CloseDSWindows()

Example 34: EX_900CO.MAC

This macro demonstrates the use of continuous 900A transmission and compressed
900B transmission by adding the text "//C" to the end of each request. It also uses
the default recovery macro, recover.mac, to attempt recovery.

NOTE Both SEND commands are complete Datastram requests and so are fully recoverable.
See ’Potential problems with the SEND Command’ in the ’How to make your macros
more robust’ section of this User Guide.

LOGERRORSTOFILE ("recover.log")

RECOVERUSING "recover.mac":

STARTDC (CSVFILE, "ex_900co.csv")

SEND("900A FT30;NAME, MNEM, BDATE, INDG,P;1/1/97//C ")

SEND("900B @MSFT(P#S),-1Y,,D//C ")

ENDDC ()

 Example macros

Issue 1 179

Example 35: EX_CONN.MAC

This macro demonstrates how the connect command can be used to connect via
alternate comms mechanisms.

; The following connects using the default comms mechanism :

Connect()

; The following connects using a named gateway which is not
; necessarily your default gateway. This assumes that your
; default comms mechanism is DSGATE 2 or DSGATE 3 :

Connect("MyOtherGateway")

; Further, DSGate 3 users can specify a queue name as follows :

Connect("MyOtherGateway,MyQueue")

; The following connects using a session configuration that
; was previously setup using the DSWindows menu option
; Options->Configure->Communications. Note that this
; technique may not be portable to other computers, since
; thier sessions may be configured differently :

Connect("SESSION2")

; The following connects using a named device type. These
; strings, describing the device, can be found in your
; dsadp.ini file (in the Windows directory).

Connect("DEVICE=XTEC,S,COM1,9600,E,7,1,X,4000,2666,1333,C,D")

 Example macros

180 DSWindows 2.2 Macros User Guide

Appendix A

Converting control files into macros

Introduction

This appendix gives information on how to convert existing DSCOM/DSTERM
Control files into macros which you can use in DSWindows.

A conversion program is supplied with the DSWindows software which converts
control files to DSWindows macros. You can also use the conversion program to
convert list files into data files, in a format which can be used in a DSWindows
OPENDATA command.

Most control file commands are translated automatically, but there may be some
commands (for example, those regarding printer configuration and graphics display)
for which there is no equivalent DSWindows command. We recommend that, after
converting a control file, you test the new DSWindows macro. If it does not work as
you intended you can then edit it in the Notepad, or another suitable editor.
Comments in the converted file indicate commands which could not be converted.

The conversion program

Introduction The conversion program is a DOS program called CONVERT.EXE which is stored
in the DSWINDOW directory. It enables you to:

q Convert a single control file

q Convert a single list file

q Convert more than one control file

q Convert more than one list file

q Convert all control files in a directory

q Convert all list files in a directory

Converting control files into macros Appendix A

Issue 1 181

It also provides options which enable you to:

q Control the comments which are added to the macro

q Override extensions other than .LST

q Automatically overwrite existing macro files

q Automatically append converted list files to macros of the same name

q Save different types of data:

q Data channel

q Graphics

q .TXT (plain text)

q .DST (text for use in DSWindows)

q Print out a help screen

When you run the program, the resulting macro files have a .MAC extension, and
you can specify the directory you want to store them in (if it is different from the
source file directory).

Syntax The syntax of the command is as follows:

convert [filespec[destpath][options]]

filespec the directory path and filename of the file(s) you want to
convert. If you omit the filespec, you are prompted to
supply it.

destpath the destination directory path, in which the converted
macro file will be stored. It must appear after filespec in
a convert command.

If you do not specify a destination, the destination file is
stored in the same directory as the source file, with a .mac
extension.

You can specify the destination path name with or without
a terminating "\", for example, both:

C:\DSWINDOW\FILES and C:\DSWINDOW\FILES\ are
acceptable.

Appendix A Converting control files into macros

182 DSWindows 2.2 User Guide

options may be in any order, and you can write them in a
command between the filespec and the destpath.

NOTE We recommend that you convert your control files before you convert any list files
associated with them (and which have the same name), because you can append
converted list files to the corresponding macros. If you do not append list files to
macros of the same name, you risk overwriting a macro with data, if the automatic
overwrite option is specified.

♦ To convert a single control file

q At the prompt, type: convert path\filename.ctl destpath.

Example convert \dscom\dsfiles\search75.ctl c:\DSWINDOW\FILES

This command converts the control file "search75.ctl" into a macro which will be
stored in the \DSWINDOW\FILES directory as "search75.mac".

If you omit the filename extension, .ctl is added automatically.

♦ To convert a single list file

q At the prompt, type: convert path\filename.lst destpath.

Example convert \dscom\dsfiles\grtest.lst c:\DSWINDOW\FILES

This command converts the list file "grtest.lst" into a data file in the
\DSWINDOW\FILES directory. If a macro file already exists with this name, than
you are asked whether you want to append the data to the macro.

You must type in the extension (.lst), or the file will be assumed to be a control file.
Alternatively, use the -L option (see page 185).

♦ To convert more than one control file

q Use the wildcard character (*) to specify a number of files to be converted at
once.

Converting control files into macros Appendix A

Issue 1 183

Example convert \dscom\dsfiles\search*.ctl

This command converts all control files beginning with the characters "search". In
this example, no destination path is specified; the files will be stored as .mac files in
the dscom\dsfiles directory.

♦ To convert more than one list file

q Use the wildcard character (*) to specify a number of list files to be converted at
once.

Example convert 75code*.lst

This command converts all list files beginning with the characters "75code" in the
current directory. If macro files already exist with the same names, then you are
prompted to append the data to the corresponding macros.

♦ To convert all control files

q Use the wildcard character (*) to convert all the control files in the directory.

Example convert *.ctl

This command converts all control files in the current directory, into macro files in
the same directory.

♦ To convert all list files

q Use the wildcard character (*) to convert all the list files in the directory.

Example convert *.lst

This command converts all list files in the current directory, into macro files in the
same directory (unless you append them to converted control files).

♦ To control the comments which are added to the macro

When you convert a control or list file, comments may be added to the translated
macro. Such comments are inserted to point out, for example, that the command

Appendix A Converting control files into macros

184 DSWindows 2.2 User Guide

cannot be translated or is not supported by DSWindows. You can also have the
original code inserted into the macro in the form of comments.

The option -Cn (where n is 0, 1 or 2) controls the comments which are added to the
final macro:

0 gives, in addition to comments, the original code. These
comments appear in the macro before the code into which
it has been translated.

1 gives comments but does not insert the original code. This
is the default.

2 suppresses all comments, apart from a header (which is
always added).

Example To translate the file search75.ctl with comments and original code, type:

convert search75.ctl -C0

♦ To override extensions other than .lst

q Use the option -L to convert files which do not have a .LST extension. The file
extension is overridden, and the file is translated into a macro or a data file. You
can convert one file (or a number of files at once) into a data file.

Example convert * -L

This command converts all the files in the current directory into data files (as if they
were list files).

♦ To overwrite existing files automatically

q Use this option to overwrite files automatically. Normally the conversion
program prompts you if the target macro file already exists and you must select
whether to overwrite the file or not. If you include the overwrite option (-O) in a
convert command, files will be overwritten without prompting.

Converting control files into macros Appendix A

Issue 1 185

Example convert *.ctl -O

This command converts all the control files in the current directory into macros,
automatically overwriting any existing macros with the same names, without
prompting.

♦ To append a list file to a macro automatically

q Use this option to append a list file to a macro of the same name. Normally the
conversion program prompts you if a macro file of the same name exists, and
you must select whether or not to append the list file to that macro. If you
include the append option (-A) in a convert command, the data is appended
automatically to the macro.

Example convert *.lst -A

This command converts all the list files in the current directory into data lists,
automatically appended to the macros with which they share a name.

♦ To save different types of data

q Use this option to specify the type of data which is to be saved, when you
convert a control file containing a @S or @C command. Four flags enable you
to differentiate different types of data:

q -D Data channel

q -G Graphics

q -T .TXT (plain text)

q -S .DST (text for use in DSWindows)

Example convert *.ctl -D

This command converts all the control files in the current directory into macro files,
with all @S commands converted to STARTDC and all @C commands converted to
ENDDC.

Appendix A Converting control files into macros

186 DSWindows 2.2 User Guide

The following table shows the effect of using the different flags:

Flag Data Type @S converts to: @C converts to:

-D Data Channel STARTDC ENDDC

-G Graphics AUTOSAVE ENDAUTOSAVE

-T Plain text CAPTURE ENDCAPTURE

-S Text in .DST
format

CAPTURE ENDCAPTURE

q If you do not specify any flags on the command line, the -T and -G options take
effect.

q If you want just the plain text option, specify -T.

q If you want just the graphics option, specify -G.

♦ To display a help screen

q Use this option to display a help screen about CONVERT and the options
available.

Example convert -? or convert -H

♦ To print a help screen

Press the Print Screen key, or type the command, convert -H>PRN:

Converting control files into macros Appendix A

Issue 1 187

Appendix A Converting control files into macros

188 DSWindows 2.2 User Guide

&ATOUTPUT 113
&ATPROMPT 112
&CONNECTSTATE 94, 109
&DAYOFMONTH 95
&DAYOFWEEK 95
&ENDOFDATA 93
&MONTH 95
&RECOVERYATTEMPTS 113
&RESULT 96
&SCREEN 93
&SENDCOMPLETE 94
&TEXTFOUND 94
&YEAR 95

A

ACTIVATEBACKPAGES 76
ACTIVATEGRAPHICS 76
ACTIVATESAVEFILES 76
ACTIVATETERMINAL 76
WAIT 114
ADDTOSELECTITEMS 57
ALLOWDUPLICATETIMESERIES 73
APPEND 90
Arranging windows

macro commands 76
AUTOPAGE 26
AUTOPRINT 25
AUTOSAVE 43

B
Basic (prog. language) 2
BEEP 86

C
CALL 27
CAPTURE 74
CHANGEITEMS 61
CLIPBOARD 91
CLOSEBACKPAGES 76
CLOSEDSWINDOWS 76
CLOSEGRAPHICS 76
CLOSESAVEFILES 76
CLOSETERMINAL 76
Commands 2
COMMENT 36
CONFIGUREDC 70
CONNECT 78
CONNECTED 88
Connecting to Datastream 19, 21,

78, 171
via UK PSS 21, 172
via SITA 131

CONNECTNOQUEUE 79
CONNECTNOWAIT 79
Constants 2, 87
ConstTimeSeries 72
Control files

conversion 181
Conversion from
 DSCOM/DSTERM 181
CONVERT.EXE 181
Converting strings 102
Coordinates system 53
COPYITEMS 60
Creating macros 8, 9
CSVFILE 90

D
DATA 32
Data Channel 71, 126,

127
DELETEITEMS 60
DEMO900.MAC 126
DEMOGLST.MAC 125
DEMOGRPH.MAC 127
DEMOLIST.MAC 127
DEMOPSS.MAC 129
DEMOSAVE.MAC 128
DEMOSITA.MAC 131
DESELECTGRAPH 51
DESELECTITEMS 58
DISCONNECT 82
DISPLAYLAYOUT 41
DISPLAYSINGLEGRAPH 41
DSAGENDA 14
DSCOM

converting from 181
DSTERM

converting from 181

E

END 31
ENDALLMACROS 83, 115
ENDAUTOSAVE 44
ENDCAPTURE 75
ENDDATA 33
ENDDC 72
ENDPAGE 26
ENDPRINT 25
EX_300C.MAC 153
EX_401X.MAC 142
EX_900CO.MAC 179

INDEX

Index

Issue 1 189

EX_CLIP.MAC 165
EX_CLOSE.MAC 179
EX_CONN.MAC 180
EX_CSV.MAC 163
EX_DATEF.MAC 177
EX_EXCEL.MAC 167
EX_GANT.MAC 150
EX_GANT1.MAC 160
EX_GLIST.MAC 144
EX_GSTYL.MAC 147
EX_LIST.MAC 136
EX_MASTR.MAC 141
EX_PRNT.MAC 134
EX_PROMT.MAC 178
EX_PSS.MAC 172
EX_RECOVER.MAC 176
EX_SAVE.MAC 135
EX_SET.MAC 138
EX_STRNG.MAC 139
EX_SYSTM.MAC 140
EX_TIMES.MAC 176
EX_WRITE.MAC 174
EXPORTGRAPHICS 44
Expressions 2, 105
Extracting strings 99

F

FALSE 88
Functions 2, 100

asc 104
chr$ 103
convert strings and
 integers 99, 102
left$ 100
len 100
manipulating strings 99
mid$ 100
str$ 103
val 103

G

GOTO 30
GRAPHDRAWOFF 69
GRAPHDRAWON 69
Graphics annotations 52
Graphics macro commands 41
GRAPHPAGESETUP 47

H

Help
CONVERT.EXE 187
online xiii
online help xiv
telephone support xiv
training xiv

I

IF 28
INPUT 33
Instr 101
Instructions 2, 4
integers 99

L

Labels 2, 4
line breaks (\) 15
List files

conversion 181
LISTFILE 91
LOADFILLSTYLES 49
LOADGRAPHFILE 46
LOADLAYOUT 48
LOADLAYOUTFILE 46
LOADLINESTYLES 48
LOADTEXTSTYLES 49
LOGERRORSTOFILE 83, 109
Logical operators 105
LOGON 80
LOGON.MAC 171

M

Macro recorder 2, 9
Macros 2 - 7
Mathematical operators 105
MAXIMIZEBACKPAGES 77
MAXIMIZEDSWINDOWS 77
MAXIMIZEGRAPHICS 77
MAXIMIZESAVEFILES 77
MAXIMIZETERMINAL 77
MESSAGE 86
MINIMIZEBACKPAGES 76
MINIMIZEDSWINDOWS 76
MINIMIZEGRAPHICS 76
MINIMIZESAVEFILES 76
MINIMIZETERMINAL 76
MOVEITEMS 59

N

NEWBOX 63
NEWLINE 68
NEWRECT 65
NEWTEXT 67
NOT_CONNECTED 88

O

ONERROR 85
OPENDATA 32
OPENSAVEFILE 75
OVERWRITE 90

P

Paging 26
PRINTGRAPHFILE 45
PRINTGRAPHICS 44
Printing 25
PRINTLAYOUTFILE 45
PRINTSAVEFILE 25
SEND 116

Index

190 DSWindows 2.2 Macros User Guide

Q

QUERY 90
QUEUING 89
Quotes 53

R

RECOVER.MAC 107-124
RECOVERSTOP 83, 115
RECOVERUSING 82, 117
RECOVERYATTEMPTS 96
REFINESELECTITEMS 58
RESTOREBACKPAGES 77
RESTOREDSWINDOWS 77
RESTOREGRAPHICS 77
RESTORESAVEFILES 77
RESTORETERMINAL 77
rules 15

summary of general
macro rules 15

S
SAVEGRAPHICS 42
SAVEWMF 43
Saving 74
Scheduling a macro 11-14
SELECTGRAPH 51
SELECTITEMS 55
self-reporting 111
SENDANDCHECK 24
Sending data 19
SET...TO 39
SETDATEEXPORTFORMAT 86
SETGLOBAL 40
SETGRAPHNAME 50
SHOW_MAX 91
SHOW_MIN 91
SHOW_NORMAL 91
Simple examples 3
Special keys

macros 19

STARTDC 71
STARTPROGRAM 27
STARTUP.MAC 170
strings 99
System variables 93

T

TEXTFOUND 89
TIMEOUT 89
Tips 16
TRACECAPTION 111
TRUE 88

U

UNLOCK 89
USERINPUT 37

V
Variables 2, 92

W

WAIT 38
Windows

maximising windows 77
WRITETOFILE 84
recovery 107

Index

Issue 1 191

Index

192 DSWindows 2.2 Macros User Guide

	Contents
	Alphabetic Index to Commands and Instructions
	About this guide
	What’s new in DSWindows 2.2
	Who should use this guide
	What you need to know
	How to use this guide
	Conventions
	Further information

	Introduction
	What are Datastream macros?
	Creating macros
	Editing macros
	Running macros
	Scheduling your macros using DSAGENDA
	Summary of general macro rules
	Tips on writing and editing macros

	Macro commands and instructions
	Conventions used in this section
	Sending data to Datastream
	SEND
	SENDANDCHECK

	Printing
	AUTOPRINT
	Roger, use file as input list

