Have we solved the idiosyncratic volatility puzzle?

Roger Loh¹ Kewei Hou²

¹Singapore Management University

²Ohio State University

Presented by Roger Loh Proseminar SMU Finance Ph.D class

Hou and Loh (JFE, in press)

Have we solved the idiosyncratic volatility puzzle?

Dec 8, 2015 1 / 14

The IVOL puzzle Our contribution Candidates examined

The idiosyncratic volatility puzzle

- Ang, Hodrick, Xing, & Zhang (2006) find that idiosyncratic volatility (IVOL) and next-month cross-sectional returns are negatively related.
 - Puzzling because according to standard asset-pricing models (e.g. CAPM), non-systematic risk should not be priced (Fama and MacBeth, 1973)
 - Or if priced, the relation should be positive (Merton, 1987; Hirshleifer, 1988). Investors with undiversified portfolios demand positive premium for holding stocks with high idiosyncratic risk
- Many papers try to explain the puzzle. But not clear which explanation is best or whether the puzzle is fully explained.

Our paper

Provides a method to objectively quantify the marginal contribution of each existing story that claims to explain the puzzle.

Hou and Loh (JFE, in press)

The IVOL puzzle Our contribution Candidates examined

Our contribution

- Objective and agnostic approach
 - Most papers aim to remove the IVOL puzzle with their favorite explanation. We treat each potential candidate explanation seriously, without favorites.
 - Most papers just aim to make the IVOL coefficient insignificant. We can quantify the fraction of the puzzle that a candidate explains.
- 2 We pit existing explanations against one another
 - A common framework, standard sample, and fair horse race between explanations.
 - Existing papers usually do not consider competing explanations.
- ③ Our method can be used to evaluate any anomaly in asset-pricing (e.g. Chen, Strebulaev, Zhang, and Xing (2014), Bao, Chen, Hou, and Lu (2015))

The IVOL puzzle Our contribution Candidates examined

Candidate explanations

1) Lottery Preference

- 1 Skewness (Barberis & Huang, 2008)
- 2 Co-skewness (Chabi-Yo & Yang, 2009)
- 3 Expected idiosyncratic skewness (Boyer, Mitton, & Vorkink, 2010)
- 4 Maximum daily return (Bali, Cakici, Whitelaw, 2011)
- 5 Retail-trading proportion (Han & Kumar, 2013)

2) Market Frictions

- 6 Lag Return (Fu, 2009; Huang, Liu, Rhee, & Zhang, 2009)
- 7 Amihud illiquidity (Han & Lesmond, 2009)
- 8 Zero-return measure (Han & Lesmond, 2009)
- Id-ask spread (Han & Lesmond, 2009)
- 3) Others
 - 10 Dispersion (Ang et al., 2009)
 - Average variance beta (Chen & Petkova, 2012)
 - SUE (Wong, 2009; Jiang, Xu, & Yao, 2009)

Hou and Loh (JFE, in press)

The IVOL puzzle Our contribution Candidates examined

Conditioning variables

We also examine the success of the best candidates in subsamples associated with a stronger IVOL puzzle:

- 1 Non-penny stocks (e.g. > \$5, Bali & Cakici, 2008)
- 2 Low analyst coverage (George and Hwang, 2011)
- 3 Poor credit ratings (Avramov, Chordia, Jotova, & Philipov, 2013)
- 4 High short-sale constraints (George & Hwang, 2011)
- 5 High leverage (Johnson, 2004; Ang et al. 2009)
- 6 Low institutional ownership (Nagel, 2009)
- 7 High growth firms (Barinov, 2014)
- 8 Non-Nasdaq stocks (Bali & Cakici, 2008)
- In Non-January months (Doran, Jiang, & Peterson, 2012)

Hou and Loh (JFE, in press)

Decomposition methodology

• Start from Fama-MacBeth cross-sectional regressions each month t for all stocks i.

$$R_{it} = \alpha_t + \gamma_t I VOL_{it-1} + \epsilon_{it} \tag{1}$$

 Suppose we have a candidate explanation. Candidate_{it-1} must be correlated with IVOL_{it-1} to explain the IVOL puzzle. So we regress:

$$IVOL_{it-1} = a_{t-1} + \delta_{t-1}Candidate_{it-1} + \mu_{it-1}$$
(2)

- From above, we can decompose $IVOL_{it-1}$ into 2 components, $(\delta_{t-1}Candidate_{it-1})$ and $(a_{t-1} + \mu_{it-1})$.
 - First is the component of IVOL related to the candidate.
 - Second is a residual component unrelated to the candidate.

Hou and Loh (JFE, in press)

Start from Fama-MacBeth regressions Decompose IVOL coefficient into two parts

Decomposition methodology

• Using the linearity property in covariances, we decompose the estimated γ_t coefficient in equation (1): $R_{it} = \alpha_t + \gamma_t IVOL_{it-1} + \epsilon_{it}$.

$$\gamma_{t} = \frac{Cov[R_{it}, IVOL_{it-1}]}{Var[IVOL_{it-1}]}$$

$$= \frac{Cov[R_{it}, (\delta_{t-1}Candidate_{it-1}) + (a_{t-1} + \mu_{it-1})]}{Var[IVOL_{it-1}]}$$

$$= \frac{Cov[R_{it}, (\delta_{t-1}Candidate_{it-1})]}{Var[IVOL_{it-1}]} + \frac{Cov[R_{it}, (a_{t-1} + \mu_{it-1})]}{Var[IVOL_{it-1}]}$$

$$= \gamma_{t}^{C} + \gamma_{t}^{R}$$
(3)

- γ_t^C / γ_t is the fraction explained by the *Candidate*.
- We can obtain the mean explained fraction using Fama-MacBeth time-series averages: $\overline{\gamma_t^C}/\overline{\gamma_t}$, and the variance of this ratio using the multivariate delta method.

Hou and Loh (JFE, in press)

Start from Fama-MacBeth regressions Decompose IVOL coefficient into two parts

Relating to the conventional approach

• Conventional approach:

$$R_{it} = \tilde{\alpha_t} + \tilde{\gamma}_t^R IVOL_{it-1} + \tilde{\gamma}_t^C C_{it-1} + \tilde{\epsilon}_{it}.$$
(4)

• Which can be re-written as:

^

$$R_{it} = \tilde{\alpha}_{t} + \tilde{\gamma}_{t}^{R} (\boldsymbol{a}_{t-1} + \mu_{it-1} + \delta_{t-1} C_{it-1}) + \tilde{\gamma}^{C} C_{it-1} + \tilde{\epsilon}_{it}$$

$$R_{it} = \tilde{\alpha}_{t} + \tilde{\gamma}_{t}^{R} (\boldsymbol{a}_{t-1} + \mu_{it-1}) + \bar{\gamma}^{C} C_{it-1} + \tilde{\epsilon}_{it}$$
(5)

where $\bar{\gamma}_t^C = \tilde{\gamma}_t^C + \delta_{t-1} \tilde{\gamma}_t^R$, is the coefficient when R_{it} is regressed on C_{it-1} . • We can then rewrite our Equation 3 as follows:

$$Y_{t}^{C} = \frac{Cov[R_{it}, \delta_{t-1}C_{it-1}]}{Var[IVOL_{it-1}]}$$

$$= \frac{Cov[R_{it}, \delta_{t-1}C_{it-1}]}{Var[\delta_{t-1}C_{it-1}]} \times \frac{Var[\delta_{t-1}C_{it-1}]}{Var[IVOL_{it-1}]}$$

$$= \frac{\bar{\gamma}_{t}^{C}}{\delta_{t-1}} \times \frac{Var[\delta_{t-1}C_{it-1}]}{Var[IVOL_{it-1}]}$$

$$= (\frac{\tilde{\gamma}_{t}^{C}}{\delta_{t-1}} + \tilde{\gamma}_{t}^{R}) \times \frac{Var[\delta_{t-1}C_{it-1}]}{Var[IVOL_{it-1}]}$$
(6)

Hou and Loh (JFE, in press)

Univariate candidates Multivariate analysis

Example with Skewness as candidate, Table 3A

Stage	Description	Variable	Skewness	
1	Regress returns on IVOL	Intercept	0.353***	(6.47)
		IVOL	-17.401***	(-8.47)
2	Add candidate variable	Intercept	0.355***	(6.47)
		IVOL	-16.145***	(-7.67)
		Candidate	-0.099***	(-5.53)
3	IVOL on candidate variable	Intercept	2.398***	(90.46)
		Candidate	0.367***	(34.31)
		Adj R-Sq	4.3%	
4	Decompose Stage 1 IVOL coefficient	Candidate	-1.785	
			10.3%***	(6.73)
		Residual	-15.615	
			89.7%***	(58.88)
		Total	-17.401***	(-8.47)
			100%	
	sample		1963 to 2012	
	avgnfirms		3563.7	

• IVOL-return relation $\overline{\gamma_t} = -17.401$ percent. Skewness can explain $(\overline{\gamma_t^C} = -1.785)$ 10.3% of this relation.

Hou and Loh (JFE, in press)

Univariate candidates Multivariate analysis

Explained fraction of each univariate candidate

Story	No.	Candidate Variable	Fraction explained	
Lottery preference	1	Skewness	10.3%***	
	2	CoSkewness	1.9%	
	3	E(idioskew)	14.7%***	
	4	Maxret	112.0%***	
	5	RTP	22.3%***	
Market friction	8	Lag Return	33.7%***	
	9	Amihud Illiquidity	-2.4%	
	10	Zero Return Proportion	0.9%	
	11	Bid-Ask Spread	30.4%***	
Others	12	Analyst forecast Dispersion	5.3%*	
	13	Average Variance Beta	1.0%*	
	14	SUE	10.9%***	

• Many variables explain less than 10% of the puzzle (from Table 3).

Hou and Loh (JFE, in press)

Univariate candidates Multivariate analysis

All candidates in multivariate setting

Variable	Model 1			Model 2			Model 3		
	Coeff.	Fraction	t-stat	Coeff.	Fraction	t-stat	Coeff.	Fraction	t-stat
Skew	-0.450	2.4%	(1.51)	-0.432	3.0%	(1.56)	-1.246	6.5%***	(6.35)
Coskew	-0.520	2.8%	(0.99)	-0.505	3.5%	(0.73)	-0.593	3.1%***	(2.95)
E(IdioSkew)	-0.772	4.2%**	(2.13)	-1.516	10.7%**	(1.98)	-2.874	15.1%***	*(6.24)
RTP	-0.043	0.2%	(0.08)						
Lagret	-1.050	5.7%	(1.03)	-0.072	0.5%	(0.07)	-4.085	21.5%***	*(5.74)
Amihud	0.351	-1.9%	(-0.69)	-0.531	3.7%	(0.69)	-0.726	3.8%	(1.60)
Zeroret	-0.248	1.3%	(0.28)	0.136	-1.0%	(-0.47)	0.186	-1.0%	(-1.02)
Spread	-1.412	7.6%	(0.52)						
Dispersion	-0.640	3.4%***	(2.66)	-0.793	5.6%***	(3.22)			
AvgVar β	-0.150	0.8%	(0.81)	0.032	-0.2%	(-0.12)	-0.060	0.3%	(0.67)
SUE	-0.448	2.4%***	(2.76)	-0.579	4.1%***	(3.12)	-0.973	5.1%***	(7.58)
Residual	-13.178	71.0%***	(5.86)	-9.972	70.1%***	(6.56)	-8.657	45.5%***	*(10.06)
Total	-18.560**	*100%	(-3.17)	-14.231**	*100%	(-3.49)	-19.028**	*100%	(-8.89)
Sample 1984 to 2001				1982 to 2012			1971 to 2012		
Avg # firms/mt	h 1524.4			1806.0			2752.4		

• Lottery and friction variables dominate other explanations (from Table 5).

Hou and Loh (JFE, in press)

Have we solved the idiosyncratic volatility puzzle?

Dec 8, 2015 11 / 14

Motivation Decomposition methodology Results Univariate candidates Multivariate analysis

Fig 1A: Summary of explained fraction

• All existing explanations explain 30-55%. Lottery-preference and market friction-based stories are the most successful.

• We can plot such pie charts because the contributions add up to 100%. Can't be done with conventional approach.

Hou and Loh (JFE, in press)

Flexibility of our decomposition Conclusion

Flexibility of our decomposition

Portfolios

• Can be applied to cross-sectional regressions on portfolios sorted by IVOL (portfolios help reduce measurement error which causes downward bias in fraction explained).

Non-linear specifications.

- Replace continuous IVOL with a dummy variable indicating high IVOL, and/or replace candidate with dummy variable.
- We show non-linear specifications produce similar set of best candidates.
- ③ Decompose other anomalies.
 - We can flip the analysis to see how much of other anomalies (e.g. Maxret, SUE) are explained by IVOL.
 - Our method can be easily applied to other anomalies.

Flexibility of our decomposition Conclusion

Conclusion

- We survey explanations for the IVOL puzzle and propose a simple methodology to quantify the success of each explanation.
- $\, \bullet \,$ We find that most explanations explain ${<}10\%$ of the puzzle.
- The most promising explanations are lottery preference and market friction explanations.
- Across various specifications, the residual part of the IVOL puzzle that remains unexplained by the best candidates is statistically significant.
- Our simple methodology can be used to compare competing explanations for other anomalies.