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Abstract
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1 Introduction

Spatial concentration is a very important concept in the social sciences, and in economics in

particular – both in the sense of geographical space, as studied by urban economics, economic

geography or international trade, and in more abstract settings (e.g. product or policy spaces)

that are studied in many different fields, from industrial organization to political economy. As

a result, a number of methods have been developed to measure this concept, from relatively

ad hoc measures such as the Herfindahl index to theoretically grounded approaches such as the

“dartboard” method of Ellison and Glaeser (1997), and also including the adaptation of indices

used to capture related concepts such as inequality (Gini coefficient, entropy measures). These

measures are well-suited to analyzing the concentration of a given variable over a “uniform”

space, in which no point is considered to be of particular importance in an ex ante sense.

In practice, however, it is often the case that some points are indeed more important than

others. In other words, we might be interested in measuring the concentration of a given

variable around a point (e.g. a city or a specific site), rather than its concentration over some

area (e.g. a region or country). The standard indices of concentration are not suited to capture

this type of situation, as they leave aside plenty of information on actual spatial distributions.

This paper presents a coherent framework to understand the concept of concentration

around a capital point of interest across a broad range of applications – ultimately, the concen-

tration of any variable in very general spaces of economic interest. We conceptualize a spatial

distribution as describing the probability of an individual observation being located at any given

point in the relevant space. This analogy with probability distributions leads us to reach for the

tools of expected utility to build an axiomatic Expected Influence framework for concentration

around a capital point. We then develop this framework to generate a theoretically grounded

measure to quantify the concept: a centered index of spatial concentration (CISC).

Our approach establishes ordinal properties that should be satisfied by any relation �C

designed to capture the concept of concentration around a capital point C. The first basic

axiom builds on the analogy with expected utility theory to pose properties of Independence, or

Subgroup Consistency, and Continuity (Axiom 1) that are appealing in light of the probabilistic

interpretation underlying the approach – and find a natural counterpart in the literature on the

measurement of inequality and poverty. These axioms yield the Expected Influence Theorem
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(Theorem 1), whereby any concentration order �C has an Expected Influence (EI) represen-

tation. In words, we show that we can understand concentration as an aggregation of the

expected influence exerted by the capital on all points in the relevant space (or vice-versa).

We then proceed to give further content to the concentration order �C by specifying two

basic properties any such order should satisfy. Monotonicity (Axiom 2) considers a pair of

distributions such that one of them, for any given distance to C, places more mass closer to

that point than the other, and requires that the former should be ranked as more concentrated

around C than the latter. Rank Invariance (Axiom 3) prescribes that the ranking between

different distributions is preserved when the unit, or scale, of distance measure is arbitrarily

changed – in other words, the ranking of two distributions should not change based on whether

distances are measured in miles, kilometers, or millimeters. These two very natural properties,

when appended to the EI representation, define the class of CISC (Centered Index of Spatial

Concentration) (Theorem 2): the expected influence, with the influence function being a mono-

tonically decreasing, isoelastic (“constant relative risk aversion”) function of the distance to the

capital point C.

We then provide further discussion on how to calibrate the crucial degree of freedom left by

the CISC – the elasticity parameter. We can interpret it as measuring how marginal influence

is affected by the distance to the capital point, and as measuring how the concentration order

reacts to mean-preserving spreads (generalized to many dimensions). These two interpretations

define two special cases: the Linear CISC (L-CISC), with constant marginal influence, and the

Gravity-based CISC (G-CISC), which is invariant with respect to uniform mean-preserving

spreads and can thus be interpreted as eliciting the “gravitational pull” exerted by the capital.

We also discuss how the CISC can be normalized to suit different applications.

Examples of circumstances in which there is specific ex ante knowledge of the importance

of a given capital point are not hard to come by. Topics in urban economics (such as the study

of urban sprawl and urbanization, e.g. Henderson 2003, Glaeser and Kahn 2004), political

economy (political importance of capital cities and urban centers, e.g. Ades and Glaeser 1995,

Traugott 1995, Campante and Do 2007), international trade (gravity equations, as formalized

by Anderson and van Wincoop 2003),1 industrial organization (concentration of competitors

1Their formalization involves the concept of multilateral resistance, expressible as a measure of how remote a
particular country is from the ensemble of other countries. The geographical concentration of the world around
each country, in this sense, is theoretically expected and empirically verified to affect trade flows in and out
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around a firm or producer), economic geography (“market potential”, e.g. Fujita et al. 1999)

– all of these place emphasis on the concentration of population and economic activity around

a geographical center of interest. The concept is also important in non-geographical contexts.

For instance, one can think about concentration around points of interest within a product

space, with obvious applications in IO models of spatial competition, but also in development.2

The same goes for abstract policy spaces, in political economy.3

Not surprisingly in light of that, the literature has grappled with the question of devising

a centered measure of spatial concentration. Our EI approach, besides generating a specific

family of indices, enables us to systematically evaluate those alternative measures within a

unified framework, in very general spaces. We show that measures such as “capital primacy”

(e.g. the share of population of a country that lives in the capital or main city, as in Ades

and Glaeser 1995 or Henderson 2003) violate continuity and monotonicity, as they discard a

lot of information by attaching zero weight to all observations falling outside of the designated

boundary. Other approaches, such as the negative exponential density functions from the urban

economics literature that has tried to measure the “centrality” of “mononuclear” urban areas,

can be shown to violate rank invariance. Another interesting example also comes from the

same literature on urban sprawl. Galster et al. (2001), for instance, measure this centrality by

the inverse of the sum of the distances of each observation to the central business district. We

can show that this is a monotonic transformation of L-CISC, and therefore satisfies all of our

axioms. This underscores that our general framework can go much further than the typically

ad hoc approaches in the literature, which are inherently limited by what an intuitive grasp of

the properties of a given space will provide.

The EI approach also relates very naturally to the literature on the measurement of riskiness

(Aumann and Serrano 2008) (as is clear from the connection with expected utility theory),

inequality, and polarization (Duclos et al. 2004). It provides a foundation to extend these other

of that country. In an earlier version of this paper, available upon request, we detail the surprisingly close
connection between the measure of concentration we develop and the formula of multilateral resistance.

2Hidalgo et al. (2007), for instance, are interested in a product space in which distances measure the
likelihood that a country might move from one type of product to another. One might then be interested in
how concentrated a country’s economy is around a specific industry, say, oil production.

3See for instance Baron and Diermeier (2001), where the status quo policy has special clout, and hence the
concentration of preferences around that status quo point may be of particular interest. Empirically, one could
immediately connect this to the voting records of politicians, or to the collection of opinions from, say, the
World Values Surveys.
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contexts to multidimensional settings, and also lends itself to the development of a measure of

(non-centered) concentration.

The second part of the paper provides an example of empirical implementation of our mea-

sure, by computing an index of population concentration around capital cities across countries.

We use the L-CISC and G-CISC as illustration, and show that our index provides a much more

sensible ranking of countries than currently used ad hoc alternatives and non-centered proxies.

It also uncovers a negative correlation between the size of population and its concentration

around the capital city that is not detected by those alternatives.

In addition, motivated by the idea that political influence diminishes with distance to the

capital – as put by Ades and Glaeser (1995, p. 198-199), “spatial proximity to power increases

political influence” – we consider the correlation between population concentration and a num-

ber of measures of quality of governance. We show that there is a positive correlation between

concentration and the checks that are faced by governments, and that this correlation is present

only in non-democratic countries.4 The statistical significance of this correlation is substantially

improved by using our index instead of the ad hoc alternatives.

We also illustrate how our index can shed light on the issue of the choice of where to

locate the capital city, which goes back at least to James Madison during the debates at the

US Constitutional Convention of 1787. We show that there is a pattern in which both very

autocratic and very democratic countries tend to have their capital cities in places with relatively

low concentration of population. Inspired by the Madisonian origins of this debate, we extend

our implementation by computing our index for US states, and finish it off by running the

computations for US metropolitan areas.

The remainder of the paper is organized as follows. Section 2 presents the main definitions

required by the theory. Section 3 presents the foundations of the EI approach, and Section 4

adds the axioms that characterize the CISC. Section 5 discusses the interpretation of the elas-

ticity parameter, normalization procedures, and the comparison with other measures. Section

6 contains the empirical implementation and correlation analysis, and Section 7 concludes.

4This is consistent with Campante and Do (2007), who present a theory of revolutions and redistribution
where concentration is key in increasing the redistributive pressures faced by non-democratic governments.
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2 Main Definitions

We start by spelling out the definitions of the main mathematical objects and transformations

that are required for our approach. Our main concern is the spatial concentration of a variable

– which can be thought of as population, economic activity, etc. – around a point of interest, so

we consider a point C in a compact subset X of Rn.5 and denote X the σ−algebra of Lebesgue

measurable subsets of X. We refer to C as the capital point.6 Denote DX to be the space of

positive bounded measures on X , endowed with the topology of weak convergence, and PX to

be its subspace of probability measures (i.e. PX = {p :
∫
X
dp = 1}). Notice that PX is an

affine space.

We will use the term normalized distribution, or simply distribution, for all measures p ∈

PX . A normalized distribution px is called ε-simple, or just simple, at a point x ∈ S if px is a

uniform measure on the ball B(x, ε) of center x and radius ε (with B(x, ε) = {z : |z−x| < ε}).

We focus our attention on distributions whose size is normalized to one because, generally

speaking, we want to be able to disentangle features of the distribution that are distinct from

concentration per se. Most importantly among these features, of course, is the size of the

population under consideration.7

We can now define our main object of interest, which is an order that compares distributions

in relation to the capital point C.

Definition 1 (Concentration Order) A concentration order of distributions based on the

capital C is a complete preference relation %C on PX , that is, a transitive binary relation on

PX such that for all p and q ∈PX either p %C q or q %C p.

5While our presentation focuses on Euclidean spaces, our approach is, for the most part, easily generalizable
to any normed vector spaces. (We will explicitly note the parts that are not.) We also conjecture that the
approach is generalizable to a large set of “well-behaved” metric spaces. (See the discussion on normed vector
spaces and metric spaces in the Appendix.) This means that we can deal with non-Euclidean metrics such as,
say, the time (or cost) to travel between any two points on the map. This is a metric that satisfies the basic
metric properties (identity of indiscernibles, symmetry and triangular inequality), while being complicated by
road conditions, natural and institutional barriers, etc. We can thus extend our analysis to an even more general
framework, which could be tailored to specific applications.

6We use the term “capital point”, and not “center”, to emphasize that said point need not be located at any
spatial concept of a center, such as a baricenter or the center of a circle.

7We will see that it is always possible to normalize the distribution so that it is re-scaled to a unit size,
and we can focus without loss of generality on such normalized distributions. This is what we will do in the
remainder of the paper. Certain axiomatic frameworks, such as the construction of inequality measures, may
choose to incorporate a population invariance axiom imposing the equivalence of distributions that differ only
in size. We decide to leave that choice to specific applications.
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We will read p �C q as “p is more concentrated around C than q”. Our entire approach can

be understood as giving further content to this relation.

In order to think about the concept of spatial concentration, it will be helpful to define some

transformations on the space DX , namely “squeeze” (homothety) and translation. Roughly

speaking, a squeeze brings each point in Rn closer (when the scaling ratio is positive and less

than one) to a center point by the same proportion. A translation moves each point in Rn away

by the same vector. These concepts are easily extendable to distributions, and we can define

them more formally as follows:

Definition 2 (Squeeze, or homothetic transformation) A squeeze of origin O ∈ Rn and

ratio ρ ∈ R, denoted S(O,ρ), is a self-map on Rn that brings any point x closer to O by a factor

of ρ:

S(O,ρ)(x) = ρ(x−O) + O.

Definition 3 (Translation) A translation of vector t, denoted Tt, is a self-map on Rn such

that:

Tt(x) = x + t,

Definition 4 (Extension to sets and distributions) The squeeze and the translation are

defined on the σ−algebra X such that for each set Z ∈ X :

S(O,ρ)(Z) = {S(O,ρ)(z) : z ∈ Z}; Tt(Z) = {Tt(z) : z ∈ Z}.

The squeeze and the translation are defined on DX such that for each distribution p ∈ DX and

each set Z ∈ X :

S(O,ρ)(p)(Z) = p(S(O,ρ)(p)(Z)); Tt(p)(Z) = p(Tt(Z)).

A couple of additional definitions will be helpful for our statements and proofs. First, let us

define a univariate distribution that is associated with any p ∈PX and C ∈ X. This univariate

distribution, intuitively speaking, characterizes the probability of a point being within a certain

distance from C, under the distribution p. (Note that we thus define univariate distributions

on R+, so that they should not be confused with the distributions p ∈PX .) More formally, it

is defined as follows:
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Definition 5 (Univariate distribution) Each p ∈PX is associated with a unique univari-

ate distribution FC
p on R+ characterized by the following cumulative distribution function:

FC
p (d) = p({x : |x−C| ≤ d}).

Note that the definition is sensible because for every p ∈PX , the function FC
p on R+ is (weakly)

increasing and continuous on the right.

Our final definition is that of a uniform ball distribution, which is simply a uniform distri-

bution defined over a ball.

Definition 6 (Uniform ball distribution) A uniform ball distribution p(T,κ) of center T

and radius κ is a uniform probability distribution on the ball B(T, κ).

3 The Expected Influence Approach

We want to give content to the concentration order %C, so that it makes sense to compare

distributions with regard to how concentrated they are around the capital C. For that, it

is useful to start by laying out our approach in an informal way. Since we are interested in

normalized distributions, represented by the subspace PX , it is convenient to think of them as

probability distributions. To fix ideas, let us think about the application within which we will

exemplify the empirical implementation of the approach: the population of a country and its

concentration around the capital city. We can thus conceptualize the distribution as describing

the probability that a given individual (behind a “veil of ignorance”) will end up located at

any given point in the country. Our basic intuition is to think about the concentration order

%C as ranking the aggregate influence that is exerted by the capital C on all individuals, or

symmetrically the influence exerted by all points on the capital, under each distribution. This

probabilistic interpretation suggests that we can resort to expected utility theory in order to

think of desirable properties that such concentration order ought to display. This is the guiding

principle of our Expected Influence approach.

The analogy with von Neumann-Morgenstern expected utility theory suggests our basic

axiom, which (in consolidated form) closely parallels the standard independence and continuity

axioms:
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Axiom 1 (Independence / Subgroup Consistency and Continuity) 1. Independence

/ Subgroup Consistency:

p %C q ⇒ λp+ (1− λ)r %C λq + (1− λ)r ∀p, q, r ∈PX , λ ∈ [0, 1].

2. Continuity: ∀p ∈ PX , {q ∈ PX : p %C q} and {q ∈ PX : q %C p} are both closed in

the topology of weak convergence.

The intuition for this axiom is straightforward in light of the aforementioned probabilistic

interpretation. In words, the independence component of the axiom states that if a distribution

p is more concentrated around C than q, then a distribution that combines p and another

distribution r will be more concentrated around C than a distribution that combines q and r.

This is the familiar notion of independence of irrelevant alternatives: if an individual ends up

located at a certain point, the points were she could have ended up, but did not, should not

matter for the assessment of influence. By the same token, the continuity component means

that small changes in the “probabilities” of being located in different points should not affect

the concentration ranking.

The alternative label of subgroup consistency illustrates an alternative (and equivalent) in-

terpretation for the independence axiom. Subgroup consistency can be understood again in

reference to our application: suppose that we divide the population of the country into sub-

groups, and that one of these subgroups becomes more concentrated around the capital, while

the distribution of all other subgroups remains unaffected. Subgroup consistency requires that

the total population of the country be judged to be more concentrated as a result of that change.

That is to say, for instance, that if the Flemish population becomes more concentrated around

Brussels, and the Walloon population stays put, the population of Belgium as a whole will

have become more concentrated around its capital. This is a standard property often imposed

by the literature concerned with the measurement of inequality (Foster and Sen 1997) and

poverty (Foster and Shorrocks 1991), and seems to be a natural starting point for our concept

of concentration. While it does impose restrictions in terms of possible interactions between

the concentrations of different subgroups – it essentially imposes that they are independent –

this agnostic position with respect to the direction of these possible interactions seems to be

appropriate for our general approach.
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Axiom 1 thus states the first properties that will give content to the concentration relation

%C. We can now use it, with the arsenal of expected utility theory, to establish our first main

result, the backbone of our Expected Influence approach:

Theorem 1 (Expected Influence) The concentration order %C satisfies Axiom 1 if and only

if there exists a function hC : X → R that is bounded, continuous, and such that:

p %C q ⇔ IC(p) ≥ IC(q) ∀p, q ∈PX ,

where IC is a real-valued function on PX such that:

IC(p) =

∫
X

hCdp ∀p ∈PX .

The function hC is called the influence function associated with IC(·). Moreover, IC and its

associated influence function are unique up to positive affine transformations.

Proof. From Axiom 1, the result follows from standard arguments from expected utility theory

– see for instance Theorem 3.2.2 from Karni and Schmeidler (1991).

This Expected Influence Theorem means that the concentration order %C can be represented

by an index IC defined on PX (uniquely up to an affine transformation) and its associated

influence function hC defined on X. The analogy with expected utility is once again instructive,

as the influence function plays a role analogous to that of the (Bernoulli) utility function: it is

a cardinal measure of the influence exerted by the capital on any given point.

The theorem gives us a very natural way to frame the concept of concentration around a

point of interest: a distribution will be more concentrated than another when the expected

influence of the capital over an individual (or vice-versa) is greater in the former than in

the latter. With that in mind, we will refer to this index IC as an Expected Influence (EI)

representation of the concentration relation. (Of course, every monotonic transformation of IC

will still represent the same order %C, but without the EI representation.)8

The EI representation displays a property that proves very convenient in applications, which

we call decomposability and state as follows:

8It is important to keep in mind that Axiom 1 may rule out what could be interesting cases in specific
applications. Just as with expected utility, it leaves open the possibility of “paradoxes” that violate independence
– one could think, for instance, of a situation where the influence of an individual is disproportionately increased
by the presence of other individuals in the same location. In any case, as with expected utility, Axiom 1 provides
us with a general language to understand the concept, and a benchmark against which to interpret departures
in specific cases.
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Corollary 1.1 (Decomposability)

I (λp+ (1− λ)q,C) = λI(p,C) + (1− λ)I(q,C) ∀p, q ∈Px , λ ∈ [0, 1].

Decomposability means that the EI index can be computed separately for any given set of

subgroups, and we can add these indices to obtain the overall measure for the entire population.

This means, for instance, that the concentration of the US population around Washington, DC

can be decomposed into the concentration of the population of each state around that capital

point, or into the concentration of groups defined along ethnic lines, income, or any other

arbitrary criterion – we can compute the index separately for each group, and from those be

able to obtain the overall index for the entire population. This property is closely related to

subgroup consistency, as noted by Foster and Shorrocks (1991), but it builds in more structure,

with the additive feature. In particular, while any monotonic transformation of the EI index will

represent the same concentration order (and hence satisfy Axiom 1), only the EI representation

will be decomposable.

4 The Centered Index of Spatial Concentration

Having obtained the EI representation, we can now specify additional basic properties that the

order %C should satisfy so that it captures the idea of concentration around the capital point

C. We will show that these basic properties impose substantial constraints on the EI indices

that would be acceptable. These constraints will in turn define our class of Centered Indices of

Spatial Concentration (CISC).

The first of these properties is monotonicity, which should be satisfied by any reasonable

concept of concentration around a capital point. Suppose we compare two distributions, p and

q, and for any d > 0 there is more population that is within a distance d from C under the

former than under the latter. It should naturally be the case that p is judged to be more

concentrated than q. Note that this can be stated in terms of first-order stochastic dominance

(FOSD): if the univariate distribution FC
q FOSDs the univariate distribution FC

p , then the

concentration order should rank p ahead of q. This enables us to capture this idea concisely as

follows:

Axiom 2 (Monotonicity or First-Order Spatial Dominance)

∃ε > 0 : ∀p, q ∈PB(C,ε), F
C
q �FOSD FC

p ⇒ p �C q

10



The axiom states that there exists a neighborhood around the capital point within which FOSD

implies a specific ordering of the associated distributions. Note that in this particular definition

monotonicity is defined locally, that is to say in a neighborhood of the capital. This is a weaker

notion than one where stochastic dominance is defined globally, and leaves open the possibility

that some points would be more influential than others that are closer to the capital.

The second basic property, which we label rank invariance, can be understood with reference

to what happens when we change the units in which distances are measured. Suppose we have

two distributions, p and q, and the distances between points are measured in miles. If p

is deemed to be more concentrated around C than q, it stands to reason that this relative

ranking should not change if distances were instead measured in kilometers. In other words,

changing the unit of distance measure should not change the ordering of distributions by the

concentration order %C.

This change in units is isomorphic to a squeeze of the distribution around the capital point

of interest by a factor of ρ, where ρ > 0 gives us the conversion rate between the different units.

(Obviously, a “squeeze” in which ρ > 1 is actually an expansion around the capital point.) As a

result, our property affirms that the relative order of different distributions remains unchanged

when they are squeezed or expanded around the capital. We state this in the following axiom:

Axiom 3 (Rank Invariance)

p % q ⇔ S(C,ρ)(p) % S(C,ρ)(q) ∀p, q ∈PX , ρ > 0.

This axiom embodies a property of neutrality with respect to labels: to build on the example

of a Euclidean space, it requires that relabeling all the axes proportionally will leave the order

unaffected. This means that we attribute independent meaning to distances, regardless of the

unit in which they are measured.9

As it turns out, these two very natural axioms impose remarkably powerful restrictions on

the set of influence functions that can be used to represent the concentration order within the

EI framework. This can be stated in the following theorem, which characterizes the admissible

CISCs:
9This feature is obviously natural in a geographical context, but we surmise that it is just as fundamental

in abstract contexts where the specific scale is arbitrary. Consider an example in which preferences with
respect to policy are measured in an arbitrary 1-5 scale. If the researcher is not ready to impose the rank
invariance property were she to rescale them to a 1-10 scale, it would probably not make much sense to speak
of concentration.
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Theorem 2 (CISC) A concentration order %C satisfies Axioms 1-3 if and only if it is repre-

sented by an EI index IC with the influence function hC such that:

hC(x) = α|x−C|γ + β
def
≡ h(|x−C|),

where α < 0 and γ > 0.

Moreover, if γ < 0, or if h(|x−C|) = α log(|x−C|) +β, and α < 0, then the corresponding

%C satisfies Axioms 2 and 3, and Axiom 1.1 (Independence); but not Axiom 1.2 (Continuity).

Proof. See Appendix.

Let us start by focusing on the first part of the theorem. In essence, Axioms 2 and 3 imply

that the influence function that was defined in Theorem 1 must actually be a monotonically

decreasing, isoelastic function of the distance to the capital point C.10 (We henceforth denote

distances by z, for conciseness.) By isoelastic, we mean that, if we define Rh(z)
def
≡ −h′′(z)z

h′(z)

as the elasticity of the marginal influence function with respect to distance – or alternatively,

the “coefficient of relative risk aversion” of the influence function – then Theorem 2 establishes

that our class of admissible CISCs must have Rh(z) = 1− γ ≡ Rh, a constant.11

The isoelastic property is directly related to Axiom 3, i.e. rank invariance. The monotonicity

property is in turn tightly linked to Axiom 2. We should note, however, that the latter axiom

is local, in the sense that it refers to a neighborhood of the capital point, but the property of

monotonicity is global. This is due to the combination of the two axioms, since the isoelastic

shape means that local monotonicity implies global monotonicity.

The problem of unboundedness The first part of Theorem 2 imposes a constraint on the

elasticity parameter: γ > 0 (Rh < 1). This merits additional scrutiny. Theorem 1 establishes

that the EI representation implies bounded influence functions, whereas functions with Rh ≥ 1

are unbounded at z = 0. It is well-known from expected utility theory that unboundedness

implies that expected utility (and hence expected influence, in our context) could be infinite

for certain probability distributions, which necessarily violates Axiom 1.2 (Continuity).12 This

is exactly what the second part of Theorem 2 states.

10We denote this function by h, as distinct from hC, in order to emphasize the distinction between the two
objects. However, with a slight abuse of terminology, we still refer to it as the influence function.

11Technically, Theorem 2 also affirms the infinite differentiability of the impact function h, so the expression
of Rh(z) is meaningful.

12See Kreps (1988, ch. 5) for an intuitive discussion on the difficulty of having unbounded utility functions.
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As we will see in the next section, the elasticity parameter has very meaningful interpreta-

tions, and we do not want to rule out a range of possible values for that parameter on technical

grounds. Fortunately, expected utility theory provides several answers to the unboundedness

problem (see for instance Ledyard 1971, Fishburn 1975, 1976) that allow us to keep (at least

some of) the influence functions with Rh ≥ 1 within the set of admissible solutions. These

solutions typically involve relaxing Axiom 1’s Continuity, and imposing certain restrictions on

the class of distributions PX that are admissible. These adaptations, which we discuss in

the Appendix, are very mild and, we surmise, innocuous in the vast majority of conceivable

applications of the index.

In practice, any discrete dataset – which is likely to encompass the vast majority of instances

of empirical implementation of the index – will allow the full set of elasticity parameter values.

The one implementation requirement is that no observations be exactly at the capital point

C, although we could have observations that are arbitrarily close to it. (We will get back to

this issue when presenting our empirical implementation.) Even in continuous cases, a simple

weakening of Axiom 1’s Continuity allows for a wide range if functions with Rh ≥ 1 to be

admissible.

5 Discussion

Our three basic axioms define a circumscribed class of admissible CISCs, but before moving on

to the implementation stage a few issues must be tackled. First, a crucial feature of the CISC

defined in Theorem 2 is its flexibility: the degrees of freedom afforded by the parameters γ,

α and β mean that in any application it will be possible to shape the index in order to make

it most suitable to the specific goals of the analysis. We must thus discuss how to pick those

parameter values, and for that we first need an interpretation for the elasticity parameter γ.

We also want to have a framework within which to think of the free parameters α and β, which

we will do in the context of the normalization of the index. In addition, we will also provide

a comparison of the CISC with alternative measures of concentration and with other related

concepts.
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5.1 Interpreting the Elasticity Parameter

5.1.1 Elasticity and Marginal Influence

The first thing to note about the elasticity parameter γ is that it has to do with how the

marginal influence function is affected by the distance to the capital. To make things more

concrete, suppose we consider bringing an individual closer to the capital along the ray going

through her initial location, and ask what is the impact of this movement on expected influence.

The value of γ determines how this impact is affected when we vary the initial point of that

movement: if we move an individual 10 miles closer to the capital, how does it matter whether

she started 20 or 200 miles away?

As it turns out, our framework enables us to understand this choice in terms of the marginal

influence at the capital C relative to other points in X. Two very mild conditions on that

relative marginal influence will allow us to partition the parameter space into one region in

which the answer to the question above would be that the impact is greater when the movement

starts closer to the capital, and another region in which the answer would be the opposite.

Condition 1 (Maximal Marginal Influence) ∃x 6= C, η > 0, and t = η(C− x) such that:

1

2
pC +

1

2
px %C

1

2
pTt(C) +

1

2
pT−t(x)

Condition 2 (Minimal Marginal Influence) ∃x 6= C, η > 0, and t = η(C− x) such that:

1

2
pC +

1

2
px -C

1

2
pTt(C) +

1

2
pT−t(x)

The first condition states, in a nutshell, that there exists a point at which the marginal

influence is (weakly) smaller than at the capital. In ordinal terms, we consider a distribution

that consists of a mass point at C and another mass point at some other point x. If we slightly

shift the former mass point away from C, while shifting the latter towards C by the same

distance and in the same direction, the condition implies that the resulting distribution will

be less concentrated around C than the original one. This is what underlies the idea that the

marginal influence at x is smaller than at C. The second condition states that there exists a

point at which that marginal influence is (weakly) greater than at the capital, i.e. the same

shift will result in a more concentrated distribution. These two conditions, plus Axioms 1-3,

yield the following:
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Proposition 1 (Convexity / Concavity) Suppose Axioms 1-3 hold, then:

1. Condition 1 holds if and only if Rh ≥ 0 (or equivalently, γ ≤ 1).

2. Condition 2 holds if and only if Rh ≤ 0 (or equivalently, γ ≥ 1).

Proof. See Appendix.

Condition 1 thus implies that the influence function will be a convex function of the distance

to the capital, whereas Condition 2 implies the concavity of that function.13 The former case

means, intuitively, that movements that occur close to the capital point will have a (weakly)

greater weight than similar movements occurring farther away. The latter case has the opposite

implication, and it is obvious that the two can only happen simultaneously in the case where

Rh = 0 (γ = 1). We will refer to this limit case, in which all points display the same marginal

influence, as the Linear CISC (L-CISC). We state it here for future reference:

Definition 7 (Linear CISC) The Linear Centered Index of Spatial Concentration (L-CISC)

is the special case of the CISC defined in Theorem 2 in which γ = 1. The influence function is

defined as:

h(z) = αz + β,

with α < 0.

A brief inspection shows that Conditions 1 and 2 are mild enough that, in principle, they

could clearly hold simultaneously even beyond the boundary case. It is only when combined

with our basic axioms (particularly Axiom 3) that this ceases to be possible. In other words,

with the exception of the boundary case that yields the L-CISC, having both conditions hold

requires giving up rank invariance, and accepting the possibility that changes in scale will affect

the ranking of distributions.

In sum, Proposition 1 means that Rh or γ are sufficient statistics when it comes to describing

the relative weight that different points will have in affecting the ranking of distributions,

depending on their distance to the capital. Different contexts might call for different values,

13The convex case generated by Condition 1 includes influence functions that can run into the unboundedness
issue highlighted in the previous section. More specifically, this is the case for Rh ≥ 1 (γ ≤ 0). As pointed
out in the previous discussion, using these indices will require imposing some restrictions on the admissible
distributions to avoid unboundedness. Also as previously discussed, the discrete-support distributions that
are likely to arise in most instances of empirical implementation are always admissible, so that any elasticity
parameter can be used.
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but we know that higher Rh implies attaching a greater marginal influence to closer points, and

that negative values for Rh mean that more distant points have greater marginal influence.

5.1.2 Elasticity and Mean-Preserving Spreads

We can gain further intuition about the elasticity parameter by extending the analogy with

expected utility theory to include the concept of second-order stochastic dominance (SOSD),

just as we have done with FOSD. We know from the study of choice under uncertainty that

there is a close connection between the curvature of utility functions and the ranking of mean-

preserving spreads (MPS) of distributions, as captured by the concept of SOSD. We can now

show that extending this concept to our setting yields another interpretation for the elasticity.

The first challenge in to extend the concepts of MPS and SOSD for general, n-dimensional

Euclidean spaces, which is crucial since our applications will often involve more than one di-

mension.14 We must thus extend the concepts to that multidimensional context, which is not

obvious because it is not immediate to conceptualize a MPS in many dimensions.

A natural way would be to use the concept of univariate distributions associated with the

distributions p ∈PX , and directly define SOSD over them. It will turn out to be more fruitful

to start instead from what we may call a “uniform MPS”, which we define in terms of a squeeze

of the uniform ball distribution that we have defined. Informally speaking, consider individual

observations that are uniformly distributed over a ball around a given point T, such that C

is not in that ball. Now suppose we squeeze this distribution around that point, such that

the resulting distribution is also uniform over the resulting ball.15 (Of course, once again this

could be a squeeze or an expansion (“spread”) depending on the coefficient associated with the

transformation.)

The interesting question is how the concentration order %C will rank the distribution that

results from this uniform MPS. Let us consider the case where we have ρ < 1 (i.e. a squeeze):

should the resulting distribution be ranked as more or less concentrated around C than the

initial distribution? The answer to this question must be context-specific – still pushing the

analogy with choice under uncertainty, we could be in a case of “risk averse” or “risk loving”

behavior. But we can show that it is intimately related to the elasticity parameter, in a way

14This is in fact the only part of our approach that is restricted to Euclidean spaces.
15Other types of MPS could be envisioned, in ways that would not preserve uniformity. We will see shortly

why this is a convenient definition.
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that enables us to uncover some additional interesting properties.

As it turns out, the answer relies on two conditions that have a similar flavor to Conditions

1 and 2. Their implications can be studied with reference to harmonic function theory, which

is why we label then sub- and super-harmonicity. They are as follows:16

Condition 3 (Sub-Harmonicity)

S(T,ρ)(p(T,κ)) -C p(T,κ) ∀ρ < 1,B(T, κ) 63 C.

Condition 4 (Super-Harmonicity)

S(T,ρ)(p(T,κ)) %C p(T,κ) ∀ρ < 1,B(T, κ) 63 C.

Condition 3 states that the distribution that results from a uniform squeeze around T

is (weakly) less concentrated around C than the original distribution; Condition 4 states the

opposite. Note that Condition 4 is akin to SOSD: any (uniform) MPS will lead to a distribution

that is ranked below (“dominated by”) the original distribution. Condition 3 inverts that. This

in turn suggests that these conditions will be related to the curvature of the influence function,

just as SOSD is linked to the concavity of utility functions. This is indeed the case, but

the multidimensional uniform extension leads us into a result that is subtly but importantly

different:17

Proposition 2 (SOSD) Suppose Axioms 1-3 hold, then:

1. Condition 3 holds if and only if Rh ≥ n− 1 (or equivalently, γ ≤ 2− n).

2. Condition 4 holds if and only if Rh ≤ n− 1 (or equivalently, γ ≥ 2− n).

Proof. See Appendix.

This proposition thus provides us with another interpretation for the elasticity parameter,

having to do with MPS, in addition to the interpretation focusing on marginal influence.18 As

16Note that the definitions explicitly restrict attention to uniform MPS defined for a ball around T that does
not contain C. We will return to this point shortly.

17Another way to express the Proposition is to say that Condition 3 implies that the influence function is
sub-harmonic, whereas Condition 4 implies that the influence function is super-harmonic. See Appendix.

18Note in particular that there are functions that are convex, but super-harmonic; in other words, they repre-
sent concentration orders under which a uniform MPS results in a function that is ranked above (“dominates”)
the original function.
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before, the specific choice for the parameter can be thought of as context-specific.19 but it

turns out that the “harmonic” case of Rh = n − 1 displays interesting properties. Intuitively

speaking, it is a case in which any local force of concentration at an arbitrary point T does not

affect the ranking of distributions in terms of their concentration around C. In that sense, the

index measures the “gravitational pull” exerted by the capital point, while disentangling from

the data any impact of the presence of other local forces. It is invariant to changes in the degree

of attraction, or “gravity”, of any other points. An analogy comes from the gravitational pull

of the Sun over the Earth, which is measured focusing only on the distance between the two

bodies and their characteristics (mass), leaving aside the influence of all other planets. For this

reason, we will refer to this special case as the Gravity-based CISC (G-CISC).20

Besides the helpful interpretation, the G-CISC has a convenient property in terms of the

implementation of the index. In practice, the information used to compute the index typically

comes in a grid format, where we only know the aggregate information of each cell. This intro-

duces a source of measurement error. The G-CISC is orthogonal to symmetric measurement

error, because it satisfies both Condition 3 and 4 – in other words, the influence function is

harmonic.

Definition 8 (Gravity-based CISC) The Gravity-based Centered Index of Spatial Concen-

tration (G-CISC) is the special case of the CISC defined in Theorem 2 in which γ = 2−n. The

influence function is defined as: h(z) =

 αz + β ∀z > 0, α < 0 if n = 1
α log z + β ∀z > 0, α < 0 if n = 2
αz2−n + β ∀z > 0, α > 0 if n ≥ 3

.

19One caveat may be in order, however. If we look at uniform MPS defined for a ball around T that does
contain C – which were not considered by Conditions 3 and 4 – it turns out that it is not possible to pin down
what will happen to the index when the influence function is sub-harmonic. This is because the monotonicity
with respect to point C (implied by Axioms 2 and 3) pushes in the opposite direction of the sub-harmonicity.
This indeterminacy could be thought of as an argument for focusing on the super-harmonic case (Rh ≤ 1).

20The analogy with gravity is actually deeper than what might seem at first sight: there is a connection
between the G-CISC and the concept of potential in physics, which refers to the potential energy stored within
a physical system – e.g. gravitational potential is the stored energy that results in forces that could move objects
in space. In fact, our G-CISC can be interpreted, roughly speaking, as a measure of the potential associated
with the capital point of interest. This is because the G-CISC is the index that satisfies the Laplace equation,
and potential is defined by a solution to that equation – those readers familiar with the physics of the concept
will have noticed the connection from the use of harmonic function theory. To see this connection more clearly,
note that in the “real life” three-dimensional space of Newtonian mechanics, the potential of a point with respect
to a mass is the sum of inverse distances from that point to each location in the mass – and since the gravity
force is the derivative of potential, it is proportional to the inverse of the squared distance, as one may recall
from the classical Newtonian representation. Our G-CISC in three-dimensional space is also the weighted sum
of the inverse of distance, and thus coincides with the concept of potential in physics.
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5.2 Normalization

It is useful to normalize the index so that it can be easier to interpret, and this normalization

should be suitably chosen in order to address the questions that are relevant in the specific

context. The EI approach affords us two sets of levers for this normalization. First, there is the

focus on normalized distributions, i.e. probability measures. Second, we have the degrees of

freedom afforded by the CISC as defined in Theorem 2, in addition to the elasticity parameter,

which are the choice of parameters α and β.

In order to see both angles more clearly, and motivated by our empirical implementation,

let us fix ideas by focusing on a situation where our index is applied to the concentration

of the population of a given geographic unit of analysis (e.g. a country) around a point of

interest (e.g. the capital city), in two dimensions. Furthermore, we start by focusing our

interest on the special case of the G-CISC – which means that the influence function is given

by h(z) = α log(z)+β. (It is straightforward to extend the following analysis to other contexts.)

In this context, the first thing to note is that there is often other information that we

may want to disentangle from population concentration per se, e.g. population size and the

geographical size of the country. This is exactly why our theory focuses on normalized distri-

butions, i.e. probability measures. In practice, any implementation requires that the actual

distribution be normalized so that it can be expressed as a probability distribution, containing

only the information we are interested in. This will be context-specific, since each context will

determine what kind of information we want to leave out.

Second, we would like to have an easily interpretable scale, and this is what can guide the

choice of α and β. A convenient rule would be to restrict the index to the [0, 1] interval, with 0

and 1 representing situations of minimum and maximum concentration, respectively. The latter

can be defined simply as a situation in which the entire population is located arbitrarily close

to the capital, but the former will typically vary greatly with context. One could think of it as

a case in which the entire population is located as far from the center as possible, but “as far

as possible” could have different meanings, as we will discuss below. Alternatively, one could

think of minimum concentration as a situation where the population is uniformly distributed

over the entire country, along the lines of Ellison and Glaeser’s (1997) “dartboard” approach.21

This choice of parameters will inevitably be context-specific too.

21An implementation of this benchmark is available upon request.
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As a general principle, we can proceed with normalization in two steps: (1) normalize the

distribution under analysis, transforming it into a distribution p ∈PX that contains only the

information we are interested in; and (2) set the parameters α and β to fit a [0, 1] scale. The

specifics of each of these steps will depend on the context, so in what follows we discuss a

few benchmark examples that will be relevant for our application, and that can illustrate the

general procedure.

Maximum distance across units of analysis A first approach is to set the minimum

concentration based on the maximum possible distance between a point and the capital city in

any of the countries for which the index is to be computed. In this case, the index is evaluated

at zero if the entire population lives as far away from the center as it is possible to live in any

country.22 (As a result, only one country, the one where this maximum distance is registered,

could conceivably display an index equal to zero.) This will be appropriate if we want to

compare each country’s concentration against a single benchmark.

In order to achieve this, the two steps are:

1. Normalize the distribution by dividing it by total population size, which means that we

will be taking each country to have a population of size one.

2. Set:

(α, β) =

(
− 1

log(z)
, 1

)
where z ≡ maxxi,i |xi −Ci| is the maximum distance between a point and the center in

any country. This means that we take the (logarithm of the) largest distance between a

point and the capital in any country to equal to one.

Maximum distance within unit of analysis Another possibility is to evaluate the index

at zero for a given country if its entire population lives as far away from the capital as it

is possible to be in that particular country. This is appropriate if we want to compare each

country’s actual concentration to what its own conceivably lowest level would be.

With that in mind, the two steps are now:

22For instance, in the cross-country implementation later in the paper, the largest recorded distance from the
capital city within any country is between the Midway Islands and Washington, DC, in the United States.
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1. Besides the standard normalization by population size, normalize by log(zi), where zi ≡

maxx |x−Ci| is the maximum distance between a point in country i and that country’s

capital. This means that we not only take each country’s population to be of size one,

but also that we take the (logarithm of the) largest distance between a point and the

capital of that country to be one as well.

2. Set:

(α, β) = (−1, 1) .

Our empirical implementation will illustrate both of these cases of normalization and their

different interpretations.

5.3 Comparison with Other Indices

5.3.1 Comparison with other Centered Indices

The first obvious comparison is to other centered indices of spatial concentration used in the

literature. The EI approach in fact gives us a coherent framework to think of these alternative

measures, and to understand their properties and limitations.

Let us start with a class of widely used measures of spatial concentration that essentially

attach zero weight to observations located at more than a certain distance from the capital

point. A typical application of such a measure is the share of population of a country that lives

in the capital city (often refereed to as “capital primacy”), or in the main city in that country,

as in Ades and Glaeser (1995), Henderson (2003), among many others. It is easy to check

that this class of measures violates monotonicity (Axiom 2), and also that it violates continuity

(Axiom 1.2). Intuitively speaking, this is so because this class of measures essentially discard a

lot of information. Our approach, in stark contrast, incorporates all of that information, with

enough flexibility to allow for different weights according to the application – as parameterized

by the elasticity of the marginal impact function with respect to distance (as in Proposition

1): the greater that elasticity, the less weight is attached to observations that are farther away

from the capital point.

We can also use the EI approach to make sense of other widely used measures that do not

discard that type of information. One example is the negative exponential function that is

widely used in the empirical urban economics literature to describe the density of population or
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economic activity (e.g. Clark 1951, Mills 1970). (This has also been used in political economy,

as in Busch and Reinhardt (1999).)It has been recognized that this standard density function is

very restrictive, and alternative implementations have been proposed (McMillen 2004), but (to

the best of our knowledge) not from a theoretically grounded approach. With our EI framework,

it can be easily verified that this measure violates rank invariance (Axiom 3), and can thus lead

to different rankings as a result of changes in units.

Another interesting example, as illustrated by Galster et al. (2001), uses the inverse of

the sum of the distances of each observation to the center as a measure of “centrality” in the

context of studying urban sprawl. Prima facie, it is apparent that this measure does not fit the

EI representation, because of the inverse operation. A closer look reveals, however, that this

measure is a monotonic transformation of the L-CISC (Rh = 0). As such, Theorem 1 implies

that it must represent the same concentration order that is represented by the L-CISC. This

means that the Galster et al. (2001) index does satisfy – or more accurately, it represents a

concentration order that satisfies – all of our axioms.

These desirable properties were certainly not obvious from the ad hoc approach used in the

construction of the index. Our axiomatic approach enables us to identify them, and guarantee

that they are satisfied in very general spaces, without being limited by an intuitive grasp of

the features of a specific, concrete application. Our approach also enables us to understand

in greater depth the properties of such an ad hoc index: in the case of Galster et al. (2001),

following Propositions 1 and 2, we can state that their index attaches the same marginal

influence regardless of distance, and that their measured concentration would decrease as a

result of a uniform mean-preserving spread.

In sum, the EI approach provides a unified “language” to codify the concept of spatial

concentration around a capital point. This language has very wide applicability, and it provides

us not only with a family of CISCs but also with a way of making sense of pre-existing ad hoc

approaches.

5.3.2 Comparison with Non-Centered Indices of Concentration

Besides the obvious distinction that our index is built on the concept of a particular “center”,

it also contains considerably more spatial information than non-centered indices. For instance,

let us consider the many indices of concentration that are based on measures first designed
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to deal with inequality – such as the location Gini coefficient calculated on a distribution of

cells.23 Such measures do not take into account the actual spatial distribution.

Indeed, consider a thought experiment where half of the cells contain exactly one individual

observation, and the other half contain zero observations. Such indices do not make any dis-

tinction between a situation in which the former cells are all in the East and all the latter cells

are in the West, and another situation in which both types are completely mingled together in

a chess-board pattern. Generally speaking, this type of measure fails to take into account the

relative positions between the cells, which can be highly problematic in many circumstances.24

The same can be said of cruder measures of concentration, such as population density.25 In

addition, these measures are also highly non-linear with respect to individuals, because they

contain a function of the cell distribution. In that sense, they are not grounded at the individual

level in the way that our CISC is.

These differences are highlighted by the fact that we can actually derive a non-centered index

from our centered measure. We can do so by averaging the CISC over all possible capital points

(i.e. all points) within the support of the distribution, a feasible task in most applications. On R

(say, applied to individual income distributions), this aggregative, non-centered index coincides

with the much familiar Gini index of inequality. For now, we leave further explorations on this

subject for future work.26 In any case it is not possible to follow the reverse path and obtain

a centered index from a given non-centered measure. This underscores the versatility of our

approach.

5.3.3 Comparison with Related Indices: Inequality, Polarization, Riskiness

Finally, it is worth noting the links between our index and other indices designed to measure

other aspects of distributions, be they spatial or not. The connection with inequality measures

23For instance, the location Gini is used, inter alia, in the context of economic geography (Krugman 1991,
Jensen and Kletzer 2005), studies of migration (Rogers and Sweeney 1998), political economy (Collier and
Hoeffler 2004).

24In practice, for instance, if we measure the concentration of the US auto industry around Detroit, it matters
whether car plants are in nearby Ohio or in distant Georgia. However, a non-centered index of concentration
computed at the state level would stay unchanged if all the plants in Ohio were moved to Georgia and vice-versa.

25A related index that does use spatial information is the measure of compactness developed by Fryer and
Holden (2007).

26We should note that to fully develop a non-centered version of our approach, we would have to evaluate the
axioms from that non-centered perspective. For instance, we conjecture that such a framework should probably
add super-harmonicity (Condition 4) as an axiom, since we would not want to have that uniform MPS would
lead to more concentration.
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has already emerged from the very fact that such measures are used to capture spatial concen-

tration, and we have noted that a natural extension of our approach to a non-centered setting

highlights an interesting connection with the Gini coefficient.

Our approach is also interestingly related to the work on polarization by Duclos, Esteban

and Ray (2004). Intuitively speaking, one could think of a notion of “polarization” as broadly

working in the opposite direction of “concentration”. Keeping that in mind, our concentration

order would satisfy their axioms 1 and 3 (both related to our Monotonicity axiom) and also

their axiom 4 (related to our Rank Invariance axiom), as an “anti-polarization” order. Their

axiom 2, however, would work in the opposite direction of our Monotonicity axiom, which is of

course due to the fact that polarization and concentration around a point do capture different

concepts. Nevertheless, the analogy with the other three axioms suggests that our approach

could help build a generalization of their measure to multidimensional contexts.

The EI approach also entails interesting connections with the measurement of riskiness –

as should be evident from the connection with expected utility, and as was highlighted in

our discussion of the elasticity parameter. A desirable property of a measure of riskiness, as

spelled out by Aumann and Serrano (2008) is that it respects first- and second-order stochastic

dominance. Axiom 2 (Monotonicity) is clearly linked to FOSD – particularly if we were to state

it in a global, rather than local version. Just as previously highlighted, our Conditions 3 and 4

(and hence Proposition 2) are closely related to the notion of SOSD, and could be thought of

as entailing a generalization of that concept to multidimensional contexts.

6 Application: Population Concentration around Capi-

tal Cities

Having established the EI approach, derived the CISC, and discussed its properties, we now

move on to illustrate its applicability in practice. We focus on the distribution of population

around capital points of interest – capital cities across countries and across US states, and

the political center (e.g. the location of city halls) in US metropolitan areas. We will discuss

descriptive statistics and basic correlations with variables of interest, and also how the index

can be used to shed light on competing theories, using as an example the determinants of the

location of capital cities.
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6.1 Cross-Country Implementation

In our first application, we calculate population concentration around capital cities across coun-

tries in the world. We use the database Gridded Population of the World (GPW), Version 3

from the Socio-Economic Data Center (SEDC) at Columbia University. This dataset, published

in 2005, contains the information for the years 1990, 1995 and 2000, and is arguably the most

detailed world population map available. Over the course of more than 10 years, these data are

gathered from national censuses and transformed into a global grid of 2.5 arc-minute side cells

(approximately 5km), with data on population for each of the cells in this grid. 27 Details on

these and all other variables used in the analysis can be found in the Data Appendix.

The first step in the analysis is to decide which version of the index to focus on. As we have

shown, this entails a choice of the elasticity parameter, and of the appropriate normalization.

We would expect that it will oftentimes be convenient to have a specific model that might lead

to a specific choice. Since our goal in this paper is to broadly illustrate the application of the

index, we choose to retain generality and implement (and compare) a broader array of indices.

In any case, the choice of this broader array can exemplify the general principles discussed in

the previous section in their practical implementation.

With respect to the elasticity parameter, let us first consider the interpretation focused

on the marginal influence as a function of distance. We are mostly interested in the capital

city as a national political center. In this case, it seems natural to assume that the marginal

influence would be highest in the capital. To take a concrete example, if we want to measure the

concentration of Russia’s population around Moscow, it stands to reason that a given movement

of individuals towards the capital would not matter less if it were to happen in the outskirts

of Moscow than if it were to happen in Vladivostok, in the far east corner of the country. This

assumption, as we have seen, places us in the range of convex influence functions – namely with

Rh ≥ 0 (γ ≤ 1).28 Within this range, one focal point is the limit case of the L-CISC (Rh = 0),

which would attach equal marginal weights regardless of distance. While somewhat extreme,

27We limit our analysis to countries with more than one million inhabitants, since most of the examples with
extremely high levels of concentration come from small countries and islands. The results with the full sample
are very much similar, however, and are available upon request.

28As an example of a model that could pin down the elasticity parameter in this context, one could look
at the simple model of revolutions sketched in Campante and Do (2007). In that model, political influence is
modeled as a cost of joining a rebelion, which depends on the distance to the political center. The standard
assumption of convex costs would naturally lead to convexity, and specific functional forms would translate into
different elasticity parameters.
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it also has the advantage of providing a natural benchmark for comparison, since it represents

the same order as the alternative measure used for instance by Galster et al. (2001).

The second interpretation can help us expand our array, still within the set of convex

influence functions, to include an example in which the marginal influence at the capital is

strictly greater than anywhere else. As far as how we should think about uniform MPS in

terms of political influence relative to the capital, we choose to stick with the “agnostic” position

regarding the direction of the impact. This leads us to the limit case of the G-CISC – which in

our two-dimensional application corresponds to Rh = 1, the logarithmic influence function.29

Following the argument in the previous section, this is also a natural focal point in light of the

gravity interpretation and the robustness to (symmetric) measurement error.

When it comes to normalization, we use the two cases highlighted in section 5.2. The first

version (GCISC1) is normalized by the maximum distance across countries, and the second

version (GCISC2) is normalized by the maximum distance within the country. The former

case captures concentration relative to what it could possibly be in any country, while the

latter captures concentration relative to what it could possibly be in that specific country.30

In the interest of brevity, for the L-CISC we will only compute the version normalized by the

maximum distance across countries, LCISC1.

We will compare our indices with two alternative measures of concentration. The first

alternative is the location Gini coefficient (“Gini Pop”), a non-centered measure that is often

used in the literature, and the second one is the share of the population living in the capital city

(“Capital Primacy”), which provides a benchmark for comparison with another very simple

centered index.

6.1.1 Descriptive Statistics

Table 1 shows the basic descriptive statistics for the different measures, for the three years in

the sample, and Table 2 presents their correlation. The first remarkable fact is that there is

29Recall that the log function is in the range of parameters that might face the unboundedness problem.
Simply put, in practice the influence function is not defined for the distance of zero. In accordance with the
solutions that we have discussed, what we need to do is to choose the arbitrary size ε of the neighborhood around
the capital in which we will truncate the distribution. We pick the value of 1 (kilometer). In other words, we
assign the value 1 (kilometers) to the distance from each grid center to the capital whenever it is measured at
less than 1, truncating the log distance function at 0: h(z) = α log max{z, 1}+ β = αmax{log z, 0}+ β. There
is very little change in the index when we replace 1 by 10.

30While the non-normalized measure may present some interest in itself, we do not report it because of its
extremely high correlation with population size, which prevents us from disentangling any independent effect.

26



very little variation over that span of time: the autocorrelation is extremely high, and almost all

variation comes from the cross-country dimension. This suggests that the pattern of population

distribution is fairly constant within each country, and that a period of 10 years may be too

short to see important changes in that pattern. For this reason, we choose to focus on one of

the years; we choose 1990 because it is the one that has the highest quality of data, as judged

by the SEDC.31

[TABLES 1 AND 2 HERE]

Let us start by comparing the basic properties of our indices with those of the comparison

measures, noting that the appropriate benchmark for comparison in the case of G-CISC is

GCISC1, and not GCISC2, since both location Gini and Capital Primacy do not normalize

by the geographical size of each country. The striking fact that immediately jumps from Table

2 is that our index captures a very different concept from what the location Gini is capturing:

they are negatively correlated, both in the case of G-CISC and L-CISC. This underscores the

point that typical measures of concentration are ill-suited for getting at the idea of concentration

around a given point.

This point becomes even more striking when we compare the list of countries with very high

and very low levels of concentration, which are displayed in Table 3. We can see that the list of

the countries whose population is least concentrated around their capital cities accords very well

with what was to be expected: these are by-and-large countries where the capital city is not the

largest city. (The exceptions are Russia, on which we will elaborate later, and the Democratic

Republic of the Congo, formerly Zaire, whose capital is located on the far west corner of the

country.) By the same token, the list of highly concentrated countries is quite intuitive as well,

with Singapore leading the way. The same list for the location Gini, in contrast, surely helps us

understand why the correlation between the two is negative. It ranks very highly countries that

have big territories and unevenly distributed populations. While this concept of concentration

may of course be useful for many applications, it is quite apparent that using non-centered

measures of concentration can be very misleading if the application calls for a centered notion

of concentration.32

31Our results are very similar when we use the other two years.
32It is also worth noting that a measure such as location Gini is quite sensitive to how “coarse” the grid that

is being used to compute the index is: the fewer cells there are, the lower the location Gini will tend to be. Our
index, on the other hand, has the “unbiasedness” feature that we have already discussed.
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[TABLE 3 HERE]

In the case of the alternative centered measure of concentration, Capital Primacy, Table 2

shows that the correlation is positive, though not overwhelming.33 Table 3 shows, however, that

the ranking of countries that emerges from this measure is completely different from the ones

generated by both CISCs.34 This is not surprising, in light of the amount of information that is

being discarded by Capital Primacy, but another crucial problem with such a coarse measure

is clearly apparent from the table: its arbitrariness. Note that Kuwait, which is one of the

most concentrated countries in the world according to both CISCs, shows up as one of the least

concentrated ones as judged by Capital Primacy. This is so because the population of what

is officially considered as Kuwait City, the capital, is just over 30,000, while the population of

the metropolitan area is over two million. This difference of two orders of magnitude is simply

due to an arbitrary delimitation of what counts as the capital city. This clearly illustrates the

dramatic distortions that can result from discarding relevant information.

We can also compare the two versions of our index, L-CISC and G-CISC, in order to

understand the consequences of changes in the elasticity coefficient. Table 2 shows that the

correlation between GCISC1 and LCISC1 is positive and quite high, which is reassuring since

they both purport to measure the same concept. Nevertheless, there are important empirical

differences between the two. The first such difference can be seen from Figure 1, which plots

histograms of both indices. We can see from the figure that the distribution of LCISC1 is

very skewed, whereas GCISC1 has a more compelling bell-shaped distribution. This implies

that the latter is generally less sensitive to extreme observations. Another way to illustrate

this difference is to consider a specific comparison, between Brazil and Russia. Russia’s capital,

Moscow, is the country’s largest city, and is located at about 600km (slightly less than 400 miles)

from the country’s second largest city, St Petersburg. In contrast, Brazil’s capital, Braśılia, is

now the country’s sixth largest city, and is around 900km (more than 550 miles) away from

the country’s largest cities, São Paulo and Rio de Janeiro, whose combined metropolitan area

33Note also that the maximum value of Capital Primacy is greater than one. This is due to the fact that the
data for capital city population and total population, used to compute the share, come from different sources;
that data point corresponds to Singapore, which should obviously be thought of as having a measure of 1.

34Note that here we use the measure of Capital Primacy as computed for 1995. This is because there are
many fewer missing values for 1995 than there are for 1990.
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Figure 1: G-CISC and L-CISC

population is about ten times as large as Braśılia’s.35 Table 3 shows that Brazil is ranked to

have lower concentration than Russia with GCISC1, but not with LCISC1. This is because

LCISC1 gives a larger weight to people who are very far from the capital point of interest;

roughly speaking, it gives a relatively large weight to people who are in Vladivostok. This

example drives home the point that different choices of the elasticity coefficient lead to different

characterizations, thus illustrating the flexibility of our approach.

Finally, we also note an interesting pattern emerging from Table 3, regarding the “size-

normalized” version of our G-CISC, GCISC2: the countries with the most concentrated popu-

lations seem to be fairly small ones (in terms of territory). This does not arise from “mechanical”

reasons, first of all because the measure is normalized for size – the pattern suggests that the

population of relatively small countries is more concentrated than that of large ones, relative

to what it could be. In addition, while the measure for these countries may be less precise

because of the small size, and consequent smaller number of grids, we know that our index is

unbiased to classical measurement error. We will explore this pattern more systematically in

our regression results. We can also note that GCISC1 is typically much higher than GCISC2:

a country will have a more concentrated population relative to the maximum distance across

35According to official data, the metro area population of São Paulo, Rio de Janeiro, and Braśılia is around
19 million, 12 million, and 3 million, respectively.
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countries than to the maximum distance within the country itself.

6.1.2 Regression Analysis

We can also investigate the correlation patterns of our indices with several variables of interest.

We will stop short of providing a discussion of causal inference, as it falls outside the scope of

this paper, but we can nevertheless provide some interesting results that can be built upon by

future research.

Economic variables We start by regressing G-CISC and L-CISC on a number of economic

variables of interest.36 The results are described in Table 4. The first thing to note is that

there is a negative correlation between land area and concentration around the capital city:

countries with larger territories have populations that are less concentrated around the capital.

This correlation is robust to the inclusion of a number of controls. It is also worth noting that

the correlation between land area and concentration is positive when the latter is measured by

the Gini coefficient, which is not surprising in light of Table 3, but nevertheless underscores

the point that using Gini as a proxy for concentration of population around the capital city is

deeply misleading.

[TABLE 4 HERE]

It is not that surprising that the measures that are not normalized for size will indicate a

negative correlation with territorial size. However, our GCISC2 index, which is normalized,

also displays a very significant and robust negative correlation, as anticipated from Table 3,

which suggests that such correlation is more than a mechanical artifact of the construction of

the indices.

The second robust correlation pattern displayed by the different versions of our CISC is as

follows: there is a negative correlation between the size of population, and how concentrated

it is around the capital. In other words, the smaller the country’s population is, the more

concentrated it is around the capital. One can speculate over the reasons behind this negative

correlation; perhaps countries with larger populations are more likely to have other centers of

attraction that lead to the equilibrium distribution of population being more dispersed around

36All of the variables that are time-variant are measured with a 5-year lag in our main specifications. Exper-
imenting with other lags did not affect the results. All control variables are described in the Appendix.
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the capital city. (We should note, however, that in the case of G-CISC the property of Gravity,

which isolates the attraction exerted by the capital point of interest, ensures that the existence

of other centers of attraction will not be mechanically built into the index.) It is worth noting

that the relationship is weaker for GCISC2, where concentration is normalized by the territorial

size of the country. These patterns can and should be the subject of future research.37

Governance variables There is evidence that the spatial distribution of population is an

important determinant of redistributive pressures, particularly so in non-democratic countries

(Campante and Do 2007). This can be related to the idea, as expressed in Ades and Glaeser

(1995), that proximity to the capital city increases an individual’s political influence. This is

particularly the case with regard to “non-institutional” channels like demonstrations, insur-

gencies and revolutions, as opposed to democratic elections. As such, a more concentrated

population is more capable of keeping a non-democratic government in check.38 With that

idea in the background, we study the correlation between our measures of concentration and a

number of measures of the quality of governance, compiled by Kaufman, Kraay and Mastruzzi

(2006). These results are featured in Table 5.

[TABLE 5 HERE]

The first panel, for the full sample, displays a positive correlation between population con-

centration and governance. For conciseness, we present the results using the first principal

component of five of the KKM variables (Control of Corruption, Voice & Accountability, Gov-

ernment Effectiveness, Rule of Law, and Regulation Quality).39 Column (1) shows that higher

concentration as measured by the G-CISC is associated with better governance. (We focus on

GCISC1.) The one measure of governance that displays a different pattern turns out to be

Political Stability, as shown in Column (2), that shows no correlation. This is interesting in and

37One tentative way of probing deeper into this link with population size is to consider the effects of openness.
Introducing openness into the regression reduces the coefficient and significance of population size, which may
indicate that part of the negative relationship is indeed linked to the relative attraction of the capital city, which
may be more pronounced in a more open, outward-oriented economy. The high correlation between openness
and population makes it hard to disentangle their effects, however.

38See Traugott’s (1995) account of the role of capital cities in revolutions, and how it relates to the absence
of institutional outlets that could serve as alternatives to “insurrectionary politics”.

39The measures are notoriously highly correlated, and the Kaiser-Meyer-Olkin measure of sampling adequacy
is very high, always in excess of 0.85. The results for each individual measure are very similar, and are available
upon request.
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of itself. In fact, if we include the other governance variables as controls in a regression with

stability as the dependent variable, as in Column (3), we see that population concentration has

a negative and typically significant correlation with stability. This is consistent with the idea

that, controlling for the quality of governance in non-democratic polities, the concentration of

population around the capital city imposes checks on the incumbent government.40 Columns

(4)-(6) show that the same results hold when concentration is measured using the L-CISC.

An even more striking pattern emerges, however, when we split the sample between democ-

racies and non-democracies: it is clear that this relationship is present only in non-democratic

countries. In this sub-sample, a higher degree of concentration around the capital city is a

strong predictor of higher governance quality with an increase of around 30% of standard de-

viation for an increase of one standard deviation in G-CISC. Essentially no effect is verified

for more democratic countries, and the same pattern holds for the impact of concentration on

political stability – both for G-CISC and L-CISC. In other words, non-democratic countries

whose populations are more concentrated around the political center of power have better gov-

ernance and, conditional on that level of governance, less political stability. This is precisely in

line with the idea that the concentration of population represents a check on non-democratic

governments, through the stability threat that it poses.

Table 5 already shows that the significance of the coefficients is generally improved with

G-CISC, as opposed to L-CISC. This is not too surprising, in light of the more well-behaved

distribution displayed by the former. In fact, we can further establish this comparison, while

also considering how our measures of concentration fare when compared to the alternative

measures we have been using as benchmarks. For that purpose, we run a “horse race” in which

the measures are jointly included, as shown in Table 6 – for brevity, we only present the first

principal component of the governance measures, and focus on the sample of non-democratic

countries. It is clear that both G-CISC and L-CISC dominate the alternative measures, and

that G-CISC seems to provide the clearest picture of the correlations linking the concentration

of population around the capital city and governance.41

40These results, which are available upon request, are verified both when stability is measured by the Kaufman,
Kraay and Mastruzzi (2006) index, and also when it is measured by the average length of tenure experienced
by incumbent executives or parties in the previous twenty years. For details on this measure, see Campante,
Chor, and Do (2009).

41One can once again note that the location Gini goes in the opposite direction of the centered measures.
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[TABLE 6 HERE]

6.1.3 Where to Locate the Capital?

The idea that the capital city is a particularly important point from a political standpoint, and

the correlation between the concentration of population around the capital and the extent of the

checks on the government suggest that governments – and non-democratic ones in particular

– would have an incentive to pick suitable locations for their capital. This draws attention to

the endogeneity of the location of the capital city: not only is the concentration of population

a variable that is determined in equilibrium, but the concentration patterns can also influence

the choice of where to locate the capital. This is another idea that this application of our index

enables us to address.

While a full treatment of causality is beyond the scope of this paper, we can nevertheless

illustrate how our index can shed light on this topic. More generally, we can illustrate how our

index helps approach the issue of the choice of the capital point of interest. Consider a country

with a given spatial distribution of its population, and let us think of the problem faced by a

ruler with respect to where to locate the country’s capital.42 There are centripetal forces that

would lead the ruler to consider spots where the concentration would be very high – economies

of agglomeration, broadly speaking. But there are other centrifugal forces, such as the afore-

mentioned checks on his power, that would lead him to place the capital in a low-concentration

spot. The question is, which of these forces will prevail under which circumstances?

Our index can provide an avenue for answering this question, which we illustrate using

G-CISC. For every country, we compute the concentration of population around every single

point in that country.43 We then specify the point where this concentration reaches its maxi-

mum value. Interestingly, for three fourths of the countries (in the year 1990) this maximum-

concentration location lies right within the capital city. This high rate is explained in part by

the choice to put the capital in a central location, and in part by the fact that being the capital

increases the location’s attractiveness to migrants and to economic activity in general. More

broadly, the maximum-concentration location is often at the largest city.44

42The history of changes in the location of capital cities, considered at some length in Campante and Do
(2007), is proof that this problem is very often explicitly considered.

43More precisely, every single cell in the grid that covers the country.
44The exceptions are often illustrative. In China, it is close to Zhengzhou, the largest city in the province of

Henan, which is the country’s most populous; in India, similarly, it is in the state of Uttar Pradesh, which is also
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We can then measure the gap between this site and the actual capital, as an indicator

of how far a country’s actual choice of capital is from the point that would maximize the

“agglomeration economies”. We regress this distance, normalized by the greatest distance

to any point in the country, on a set of political variables using OLS and Tobit regressions.

The results are presented in Table 7. When we limit ourselves to non-democratic countries,

we see that a higher level of autocracy predicts a greater distance between the capital city

and the concentration-maximizing location. Then when we limit ourselves to non-autocratic

countries, then a higher level of democracy also predicts a greater distance. When combined

together, both variables of autocracy and democracy predict a greater distance: this shows a

type of U-shaped relationship, in which the centrifugal forces are strongest in both extremes

of autocracy and democracy. This pattern is very robust to the inclusion of many dummy

variables, including regional dummies and legal origin dummies. We can speculate that, on the

autocratic side, more autocratic governments have greater incentive and/or ability to insulate

themselves from popular pressure by locating their capital cities in low-concentration spots.

On the democratic side, it is perhaps the case that additional democratic openness will lead to

greater decentralization, and a lower level of attraction exerted by the capital. We are far from

having a theory to fully account for that at this point, but the stylized fact is quite interesting

nonetheless, and we also leave it to future research.

[TABLE 7 HERE]

6.2 US State-level Implementation

Building on this discussion on the location of the capital city, there is no better country in

which to take our empirical implementation to the regional level than the United States, with

its long tradition of dealing with the issue. Most famously, James Madison elaborated at length

on the choice of the site of the capital city, during the 1789 Constitutional convention, arguing

that one should “place the government in that spot which will be least removed from every

part of the empire,” and that “regard was also to be paid to the centre of population.” He also

pointed out that state capitals had sometimes been placed in “eccentric places,” and that in

the most populous. In the US, it is Columbus, OH, right in the middle of the large population concentrations
of the East Coast and the Midwest.
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those cases “we have seen the people struggling to place it where it ought to be.”45

The force identified by Madison have been very much at play in the case of US states, and

our index enables us to get a snapshot of what the outcome has been. Regarding concentration

normalized by the size of the territory (GCISC2), shown in Table 8, Illinois is less concentrated

around its capital Springfield than any country in the world. Even with country size, its level

of concentration is still comparable with Canada, ranking 10 in the world. Not only for Illinois,

but many US States where the capital is not the largest city have the level of concentration

comparable to the least concentrated countries in the world. On the other hand, the amount

of variation is comparable to that of the cross-country implementation, as the concentration in

states such as Rhode Island and Hawaii is on a par with some of the most concentrated countries

in the world. In general, the broad lessons from the cross-country level persist: GCISC1 and

LCISC1 generate similar rankings, and the Gini captures a completely different concept.

[TABLE 8 HERE]

6.3 US Metropolitan Area Implementation

Finally, for the sake of completeness, we implement our indices in the context of US metropolitan

areas. There is a large literature discussing and measuring urban sprawl in this context, to which

we obviously will not do justice. In any event, the concept of sprawl is multidimensional, and

many different measures have been used to capture these multiple elements (Galster et al. 2001,

Glaeser and Kahn 2003). Our measure of spatial concentration captures what Galster et al.

(2001) call “centrality”, and following that paper we compute our indices taking city hall as

our capital point of interest. The results for 24 major metropolitan areas are in Table 9.

[TABLE 9 HERE]

Some of the results are expected – the high levels of concentration in places such as Boston

and New York – while others may be somewhat more surprising to the naked eye – such as

the middling levels of concentration in Los Angeles, a city that is synonymous with urban

sprawl, or perhaps the extremely low level of concentration in San Francisco.46 From a broader

45These quotations were obtained from the website The Founders’ Constitution (on Article 1, Section 8,
Clause 17), available at http://press-pubs.uchicago.edu/founders/.

46Both results are very much consistent with the findings in Galster et al. (2001).
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perspective, perhaps the most notable feature is how closely linked are the rankings for the

three versions of CISC, and how numerically close are GCISC1 and GCISC2 compared to the

country- and state-level contexts. The message is simple: when distances are relatively small,

as they are bound to be for cities when compared to countries or states, differences in elasticity

coefficients or normalization procedures are less important.47

7 Concluding Remarks

We have presented a general axiomatic approach to understanding the concept of spatial con-

centration around a point of interest. Based on a probabilistic interpretation of spatial dis-

tributions, we build an analogy with expected utility theory that yields an expected influence

representation for concentration orders. We give such orders further content by imposing a

couple of basic properties, monotonicity and rank invariance, and show that they pin down

a specific class of measures, defined over very general spaces of economic interest. We then

go on to illustrate the empirical implementation of the measure, and how this implementation

highlights some of the advantages of our index over alternative approaches.

We emphasize that our approach is a very general one, and unapologetically so. Our idea was

to build a common language to operationalize the concept of centered spatial concentration over

a broad scope of applications, in geographical and also in more abstract spaces. We certainly

hope that this language, and the measure that we obtain from it, can be widely applied.

Empirically, the correlations that we are able to point out between our index and a number

of variables of interest can be exploited further, with particular attention to issues of causality

that are left outside the scope of this paper. An extension of our framework to an aggregate,

non-centered measure of concentration is left to future promising research.

47It is important to keep in mind that we are talking about relative distances, and not their numerical value:
scale does not matter for the CISC!
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A Appendix: Proofs and Discussion

A.1 Theorem 2

Before proceeding with the proofs, we state the following basic result regarding Cauchy’s func-
tional equation:

Lemma 1 A function f on R, continuous at at least one point, and satisfying Cauchy’s func-
tional equation f(x) + f(y) = f(x + y) must have the form f(x) = ax for some constant
a.

Proof of Theorem 2. We first prove that Axioms 1-3 impose the functional form stated
in Theorem 2 in two steps, before verifying the converse. Following Theorem 1, we write
IC(p) =

∫
X
hC(x)dp(x), where h is a continuous function on X.

Axiom 3 implies immediately that for any distributions p, q ∈ PX if p ∼ q (i.e. IC(p) =
IC(q)), then for all ρ positive: S(C,ρ)(p) ∼ S(C,ρ)(q) and IC(S(C,ρ)(p)) = IC(S(C,ρ)(q)).

Step 1: Determining hC on a ray. Consider a ray θ originating from the capital C.
Within Step 1, for all points z on this ray θ we denote h(z) = hC(z), where z = |C− z| is the
distance to the capital. Consider three points x, 1 and y on the ray θ, respectively at distances
|C− x| = x, |C− 1| = 1 and |C− y| = y from C. Assume that x > 1 > y.

Monotonicity of h. Consider the simple distributions px and py: by continuity of hC we
see that px -C py ⇔ h(x) ≤ h(y). Similarly, after a squeeze of coefficient ρ > 0 towards C
we obtain pS(C,ρ)(x) -C pS(C,ρ)(y) ⇔ h(ρx) ≤ h(ρy). Besides, Axiom 3 implies that pS(C,ρ)(x) -C

pS(C,ρ)(y) ⇔ px -C py; therefore h(x) ≤ h(y)⇔ h(ρx) ≤ h(ρy). As we could rewrite h(x) = h(y)

as h(x) ≥ h(y) and h(x) ≤ h(y), the inequalities becomes equalities at the same time.
Consider the simple distributions pρx and pρy. ρx > ρy implies FC

pρx %FOSD FC
ρy. When ρ is

small enough, Axiom 2 states that pρx -C pρy, so h(ρx) < h(ρy). It follows that h(x) < h(y)
when x > y, or h(z) is a strictly decreasing function.

Finding an invariant condition for h. From the monotonicity of h, there exists a real
number λ ∈ (0, 1) such that: λh(x) + (1−λ)h(y) = h(1) (similarly, that λpx + (1−λ)py ∼ p1).
Squeezing the simple distributions px, p1 and py by a ratio k, Axiom 3 implies: λh(kx) + (1−
λ)h(ky) = h(k). Eliminating λ in the last two equalities, we obtain:

h(kx)− h(ky)

h(x)− h(y)
=
h(ky)− h(k)

h(y)− h(1)
.

This equation shows that the left hand side does not depend on x. Given the symmetric roles
that x and y play, it is immediate that the left hand side term does not depend on y either. It
is thus a function of k only:

h(kx)− h(ky)

h(x)− h(y)
= g(k). (1)

Notice that if a
b

= c
d

then a
b

= c
d

= a−c
b−d . Now for x, z > 1, equation (1) implies h(kz)−h(ky)

h(z)−h(y) =

g(k), therefore g(k) = (h(kx)−h(ky))−(h(kz)−h(ky))
(h(x)−h(y)−(h(z)−h(y)) = h(kx)−h(kz)

h(x)−h(z) . Analogously in the case y, z < 1,

we deduce that equation (1) holds for any positive numbers x, y.
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Solving for g(k). Further investigation of equation (1) shows that ∀k, l > 0:

g(kl) =
h(klx)− h(kly)

h(x)− h(y)
=
h(klx)− h(kly)

h(lx)− h(ly)

h(lx)− h(ly)

h(x)− h(y)
= g(k)g(l).

Defining g̃(u)
def
≡ log(g(eu)) for u ∈ R, it follows that g̃ is continuous and satisfies the Cauchy

functional equation, and according to Lemma 1 must be of the form g̃(u) = γu, or equivalently,
g(k) = kγ.

Differentiability of h(x). We focus on the case γ > 0, as the other case is analogous. We
replace (x, y) in equation (1) by (knx, kn−1x), n = 1, 2, . . . and rearrange the terms to deduce
by induction that:

h(knx)− h(kn−1x) = kγ(h(kn−1x)− h(kn−2x)) = . . . = kγ(n−1)(h(kx)− h(x)),

from which we obtain by adding up all the differences:

h(knx)− h(x) =
kγn − 1

kγ − 1
(h(kx)− h(x)) . (2)

We reason by absurd: suppose that h(x) is not differentiable at x, i.e. there exist two

sequences (1xi) and (2xi) both converging to x, but producing two different limits of h(xi)−h(x)
xi−x .

These two series must also produce two different limits of h(xi)−h(x)
xγi −xγ

xγ
def
≡ Dγ(xi, x) ≤ 0, denoted

Dγ1 and Dγ2. Suppose Dγ1 − Dγ2 = ε > 0. For convenience, we only consider the case
where members of both sequences are greater than x (the other case is identical, by a change
of variable). Given any δ > 0, there exist k1 and k2 in the interval (1, 1 + δ) such that
k1x ∈ (1xi) and k2x ∈ (2xi). For any η > 0, we could find natural numbers m and n such
that knγ2 + η ≥ kmγ1 ≥ knγ2 (by choosing a rational number m

n
bigger than, yet as close to

log k2
log k1

as possible). From equation (2), we obtain: h(km1 x) = Dγ(k1x, x)(kγm1 − 1) + h(x) and

h(kn2x) = Dγ(k2x, x)(kγn2 − 1) + h(x).
Here we could choose δ small enough so that Dγ(k1x, x) and Dγ(k2x, x) are very close to

Dγ1 and Dγ2, such that Dγ(k1x, x)−Dγ(k2x, x) > 1
2
ε > 0. It follows that:

0 > Dγ(k1x, x)(kγm1 − 1) > Dγ(k2x, x)(kγn2 + η − 1) +
1

2
ε(kγn2 + η − 1)

= Dγ(k2x, x)(kγn2 − 1) +
1

2
ε(kγn2 + η − 1) +Dγ(k2x, x)η

> Dγ(k2x, x)(kγn2 − 1),

when we choose η to be very small compared to kγn2 . The last inequality implies that h(km1 x) >
h(kn2x), in contradiction with km1 > kn2 and h being a decreasing function. We have thus proved
by absurd that h is differentiable everywhere.

Solving for h(x). From equation (1), by fixing y = 1 and bringing x towards 1 we obtain:
h′(k) = kγ−1h′(1). This differential equation yields the following solutions: h(x) = αxγ + β or
h(x) = α log x + β in case γ = 0, with constants α, β. As h is strictly decreasing, we have
αγ < 0.
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Step 2: Determining hC. From Step 1, we could write: hC(x) = α(θ)|x−C|γ(θ) + β(θ) or
α(θ) log |x−C|+ β(θ), where θ denotes the ray from C to x, and α(θ)γ(θ) < 0.

Take two different rays θ1 and θ2, corresponding to the parameters α1, β1, γ1 and α2, β2, γ2

(the proof is analogous for the case of the log function). Consider the points x and y respectively
on θ1 and θ2, at distances x and y from C, such that hC(x) = hC(y), or α1x

γ1 + β1 =
α2y

γ2 + β2. Considering the squeeze S(C,ρ), as hC(S(C,ρ)(x)) = hC(S(C,ρ)(y)) ∀ρ > 0, it follows
that α1x

γ1ργ1 +β1 = α2y
γ2ργ2 +β2, or (α1x

γ1ργ1−γ2 −α2y
γ2)ργ2 +β1−β2 = 0 for all ρ. The last

equation holds for all ρ > 0, therefore β1 = β2, γ1 = γ2 and α1x
γ1 = α2y

γ2 .
Consider the case x > y. It follows that FC

px �FOSD FC
py , so Axiom 2 implies that px ≺ py,

from which we infer that hC(x) < hC(y). Now let x → y+, by continuity we obtain hC(x) ≤
hC(y). Similarly, consider x < y and let x → y−, we would deduce hC(x) ≥ hC(y) when
x = y. It follows that hC(x) = hC(y) whenever x = y, i.e. α1 = α2. Thus we could rewrite the
influence function as:

hC(x) = α|x−C|γ + β (αγ < 0) or α log |x−C|+ β (α < 0).

Step 3: Verifying Axioms 1-3. The result of Theorem 1 assures that Axiom 1 is satisfied
when γ > 0. When γ < 0 or h(z) = α log z + β, hC is discontinuous at C, therefore Axiom 1.1
is satisfied, but not Axiom 1.2. (This caveat of unbounded influence functions has been further
discussed in the paper.)

Given two distributions p and q such that FC
p ≺FOSD FC

q , because h is strictly decreasing,
we have:

IC(p) =

∫
X

h(|x−C|)dp(x) =

∫
R+

h(r)dFC
p (r) <

∫
R+

h(r)dFC
q (r) =

∫
X

h(|x−C|)dq(x) = IC(q),

so Axiom 2 is satisfied. Finally, for any pair of distributions p, q ∈ PX such that p %C q,
or equivalently

∫
X
h(|x−C|)dp(x) ≥

∫
X
h(|x−C|)dq(x), Axiom 3 would be verified if the

following inequality holds for all ρ > 0:∫
X

h(ρ|x−C|)dp(x) ≥
∫
X

h(ρ|x−C|)dq(x) (3)

If h(z) = azα + b, (3) is equivalent to:∫
X

[ρα(h(|x−C|)− b) + b] dp(x) ≥
∫
X

[ρα(h(|x−C|)− b) + b] dq(x)

⇔ ρα
∫
X

h(|x−C|)dp(x)− b(ρα − 1) ≥ ρα
∫
X

h(|x−C|)dq(x)− b(ρα − 1).

The last inequality holds because ρ > 0.
If h(z) = a log z + b, analogously, (3) is equivalent to:∫

X

[h(|x−C|) + a log ρ] dp(x) ≥
∫
X

[h(|x−C|) + a log ρ] dq(x)

⇔
∫
X

h(|x−C|)dp(x) + a log ρ ≥
∫
X

h(|x−C|)dq(x) + a log ρ,

which is automatically verified. This completes the proof of Theorem 2.
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A.2 Proposition 1

Proof of Proposition 1. By continuity of the influence function, Condition 1 implies:
h(0) + h(x) ≥ h(ηx) + h((1− η)x), or:

h(x− ηx)− h(x) ≤ h(0)− h(ηx), (4)

for some very small η. From Theorem 2 we know that h(z) is either convex or concave in
the distance to the capital, because h′′(z) is either positive or negative over R+. The above
inequality is inconsistent with h(z) being concave, so h(z) must be convex. As h′′(z) = αγ(γ−
1)zγ−2, or h′′(z) = −αz−2 in the log case, h(z) is convex if and only if Rh = 1 − γ ≥ 0.
Conversely, if Rh ≥ 0, h(z) is convex, so inequality (4) is satisfied, thus so is Condition 1. So
we have proved that Condition 1 is equivalent to Rh ≥ 0. The equivalence between Condition
2 and Rh ≤ 0 could be proved analogously.

A.3 Proposition 2

Proposition 2 requires some results in harmonic function theory, which we state here for con-
venience. They are discussed in much more detail, for instance, in Axler et al. (2001) and
Ransford (1995).

Definition 9 (Harmonic Function) A real function f(x1, x2, . . . , xn) is said to be harmonic
on an open domain D of Rn if it satisfies the Laplace equation over that domain (with well-
defined second order partial derivatives):

4f def
=

∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

≡ 0.

Definition 10 (Super-/Sub-harmonic functions) Given f(x1, x2, . . . , xn) a real-valued func-
tion on an open domain D of Rn that has finite second order partial derivatives. It is said to
be super-harmonic on D if 4f ≤ 0. It is said to be sub-harmonic if −f is super-harmonic.

In particular, a harmonic function transformed through a summation, scalar multiplication,
translation, squeeze, rotation or partial/directional differentiation is still a harmonic function.
The essential property of harmonic functions is its Mean Value Property.

Definition 11 Given a ball B(T, κ) within the open domain D ⊂ Rn, its sphere S(T, κ) =
∂B(T, κ), and a harmonic function f on D, σS as the uniform surface measure on the sphere,
and νB is the uniform (Lebesgue) measure on the ball. The mean of f on the sphere and on the
ball is defined as follows:

MS(T,κ)(f)
def
≡ 1

σS(S)

∫
S

f(x)dσS; MB(T,κ)(f)
def
≡ 1

νB(B)

∫
B

f(x)dνS

Property 1 (Mean Value Property) (1) f is harmonic on D if and only if the mean of f
on the sphere and its value at the center of the sphere are equal:

MS(T,κ)(f) = f(T).

(2) f is harmonic on D if and only if the mean of f on the ball and its value at the center of
the ball are equal:

MB(T,κ)(f) = f(T). (5)
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Property 2 (Mean Value Inequality) (1) f is super-harmonic (sub-harmonic) on D if and
only if for any sphere S(T, κ) whose ball B(T, κ) lies completely within the domain D, the
following mean value inequality holds with a ≤ (≥) sign:

MS(T,κ)(f) ≤ (≥)f(T),

(2) f is super-harmonic (sub-harmonic) on D if and only if for any ball B(T, κ) ⊂ D, the
following mean value inequality holds with a ≤ (≥) sign:

MB(T,κ)(f) ≤ (≥)f(T), (6)

The following Lemma is used for the proof of Proposition 2:

Lemma 2 Given a twice differentiable function h(|x−C|) on Rn\{C}, we have:

4h(|x−C|) = h′′(|x−C|) +
(n− 1)

|x−C|
h′(|x−C|).

Proof of Lemma 2. Straightforward algebra shows Lemma 2:

4h(|x−C|) =
n∑
1

∂2h(|x−C|)
∂x2

i

=
n∑
1

∂
(
h′ · xi

|x−C|

)
∂xi

=
n∑
1

(
h′′ · x2

i

|x−C|2
+ h′ ·

(
1

|x−C|
− x2

i

|x−C|3

))
= h′′(|x−C|) +

(n− 1)

|x−C|
h′(|x−C|).

Proof of Proposition 2.
We consider any ball B(T, κ) ⊂ X\{C}. Condition 4 implies the following inequality for

any ρ < 1:
MB(T,κ)(hC) ≤MB(T,ρκ)(hC) (7)

Letting ρ → 0, this inequality becomes the Mean Value Inequality in (6) for all points T.
Thus the influence function hC(x) ≡ h(|x−C|) must be super-harmonic on X\{C}, implying
4h(|x−C|) ≤ 0. By Lemma 2, it follows that:

Rh = −|x−C|h′′(|x−C|)
h′(|x−C|)

≤ n− 1.

Similarly, Condition 3 is equivalent to MB(T,κ)(hC) ≥ MB(T,ρκ)(hC), which would imply
the opposite for Rh: Rh ≥ n− 1.

Conversely, if Rh ≤ n− 1, hC must be super-harmonic on X\{C}, implying inequality (7).
The proof for the sub-harmonic case is analogous.

A.4 The Problem of Unboundedness

Let us consider a simple example of a solution to the problem of unboundedness related to
Theorem 2. We can restrict the set of probability distributions to that of simple probabilities,
namely the set Ps

X of probabilities p such that p(A) = 1 for a certain finite subset A ⊂ X\{C}.
Furthermore, we can replace Axiom 1.2 with the Archimedean Axiom that for all p, q, r ∈
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Ps
X , p � q � r, there exist real numbers α, β ∈ (0, 1) such that αp+(1−α)r � q � βp+(1−β)r

(since Axiom 1.2 implies the Archimedean Axiom, the latter is less stringent). This modified
Axiom 1 implies a result that is very much like Theorem 1, except for the boundedness and
continuity of the function hC (e.g. Fishburn 1975). On the other hand, influence functions
from Theorem 2 with Rh ≥ 1 now fully satisfy Axiom 1, and are thus admissible as solutions
to Theorem 2.

A second approach is to restrict the set of locations X to X ′ = X\B(C, ε)int for a very small
ε. In other words, we exclude a very small neighborhood of the capital from consideration.
In practice, the interpretation is similar to the previous paragraph, and entails a negligible
infinitesimal amputation of the space in consideration that would hardly be noticeable in any
real world dataset. Under this small change, X ′ remains compact, while the influence functions
from Theorem 2 with Rh ≥ 1 are now bounded in X ′, thus satisfying the conditions in Theorem
1. Therefore, these functions are also admitted as solutions to Theorem 2.

Generally speaking, there is a range of mild restrictions on the set of probability distributions
P that allows some influence functions with Rh ≥ 1. Notably, we may consider the set
P ⊂PX of distributions p, such that p is a convex combination of a Lebesgue probability pL
on X and a simple probability pS, and that the density of pL is bounded above by a constant ζ
within a small ball B(C, ε), and that P is closed under finite convex combinations. It is possible
to prove that our system, with Continuity replaced by the Archimedean Axiom, satisfies Axioms
0-6 stated by Ledyard (1971), as long as the expected influence is finite. (This proof is available
upon request.) This implies that influence functions with Rh ≥ 1 are also solutions to Theorem
2, as long as Rh < 2 + n where n is the dimension of the space. (Intuitively speaking, this
constraint keeps the expected influence finite for any probability in P.)

A.5 Generalization to Normed Vector Spaces

We have shown our results for a Euclidean space Rn, or more precisely, a finite dimension
vector space associated with the Euclidean metric. Our framework is easily generalizable to
any normed vector space (X, ‖‖) where the vector space X is defined with respect to the field
of real numbers. Replacing the Euclidean distance by the distance derived from the norm ‖‖,
Axioms 1-3 are immediately adaptable to the new space. Theorem 1 holds thanks to Expected
Utility Theory, and Theorem 2 holds when we require the continuity of the norm ‖‖.

Here is a practical example where this generalization allows for more flexibility. Suppose that
we are interested in the space of political, social and economic opinions, where each individual
is represented by her opinions on several issues, numerated from 1 to n. The distance between
two individuals could then be modeled more generally as a CES function of the form:

‖x− y‖ = (a1(x1 − y1)
ρ + . . .+ an(xn − yn)ρ)

1
ρ .

This allows for any coefficient of substitutability between the coordinates, as well as a normal-
ization coefficient ai for each coordinate. In such situation, our framework still permits the
researcher to measure the spatial concentration of opinions around a focal point C (such as the
political status quo).

A.6 Generalization to Metric Spaces

We also conjecture, without proving rigorously, that Theorems 1 and 2 could be extended to
a much more general context where one only needs to specify a well-behaved metric space,
with no need for a vector space structure. A concrete example of a non-Euclidean metric is
that of the time to travel between any two points on the map. It is a metric that satisfies the
basic metric properties (identity of indiscernibles, symmetry and triangular inequality), while
incorporating complications such as road conditions, natural and institutional barriers, etc.
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We would assume the metric to be continuous in the topology used to define the space of
distributions. (In the example of travel time, the travel-time metric should be continuous with
respect to the Euclidean metric.) Axiom 1 remains well-defined in this generalized framework.
In this metric space, we define the balls of center C as B(C, κ) = {x : d(x,C) ≤ κ}, with
which Axiom 2 could immediately be adapted. Axiom 3 is trickier, as it requires an extension
of the squeeze operation. We conjecture that with some conditions on the metric, the balls
B(C, κ) are homeomorphic, so we could define a family of homeomorphic transformations as
“generalized squeezes towards C”, where each squeeze of ratio ρ maps a point at distance x
from C to a point at distance ρx from C.

We notice that Theorem 1 still holds in this generalized context, which we know directly
from Expected Utility Theory. The proof of Theorem 2 would be somewhat more complicated,
yet feasible. We can define the concept of a ray that passes through C and any point x as the
set of images from the suitably defined squeezes of x towards C for all ρ ∈ R+, and build a
similar proof to Theorem 2.

In sum, we could extend our analysis to an even more general setting, which could be tailored
to specific aspects of the applications, while keeping the rigor and the properties guaranteed
by the axiomatic approach.
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B Appendix: Data Description

Population Concentration Index: The measures G − CISC’s and L − CISC’s are cal-
culated and normalized as explained in the text, using original gridded population maps
from the database Gridded Population of the World (GPW), Version 3 from the Socio-
Economic Data Center, Columbia University (2005), containing maps in 1990, 1995 and
2000 of a global grid of 2.5 arc-minute side cells (approximately 5km).

Alternative Indices of Concentration: The alternative indices of concentration are also
produced from the same dataset. The location Gini (noted in the Tables as “Gini Pop”) is
calculated as the Gini coefficient of inequality of a special sample, in which each “individ-
ual” corresponds to a gridded cell on the map, and each individual’s “income” corresponds
to the size of the population living within that cell. “Cap Prim” (Capital city primacy)
is calculated as the share of the capital city population over the total population. “Share
Largest Point” and “Share Largest Urban Extent” are calculated as the ratio of respec-
tively the largest settlement point and the largest urban extent over the total population.
These population figures come directly from the SEDC.

Gap to concentration maximizing location: This variable is calculated for each country
by measuring the distance between the actual site of the capital city, and the site of the
capital that would maximize the G-CISC. The maximization is done with Matlab’s large
scale search method (with analytical gradient matrix), from a grid of 50 initial guesses
evenly distributed on the country’s map for large countries.

Kaufmann, Kraay and Mastruzzi (KKM): From KKM’s (2006) indices, including Voice
and Accountability, Control of Corruption, Rule of Law, Government Effectiveness, Polit-
ical Stability, and Regulation Quality, themselves a composite of different agency ratings
aggregated by an unobserved components methodology. On a scale of −2.5 to 2.5. Data
are available for 1996-2002 at two-year intervals, and thereafter for 2002-2005 on an annual
basis. We use the data in 1996 for our measure of population concentration in 1990. KKM
data available at: http://info.worldbank.org/governance/kkz2005/pdf/2005kkdata.xls

Real GDP per capita: From the World Bank World Development Indicators (WDI). Real
PPP-adjusted GDP per capita (in constant 2000 international dollars).

Population by year: From the World Bank World Development Indicators (WDI).

Democracy: Polity IV democracy score, on a scale of 0 to 10.

Autocracy: Polity IV autocracy score, on a scale of 0 to 10.

Polity: Polity IV composite score as Democracy minus Autocracy, on a scale of -10 to 10.

The reference date for the annual observations in the Polity IV dataset is 31 December of
each year. We match these to the data corresponding to 1 January of the following year for
consistency with the DPI. Data available at: http://www.cidcm.umd.edu/inscr/polity/

Ethno-Linguistic Fractionalization: From Alesina et al. (2003).

Legal Origin: From La Porta et al. (1999). Dummy variables for British, French, Scandina-
vian, German, and socialist legal origin.

Region dummies: Following the World Bank’s classifications, dummy variables for: East
Asia and the Pacific; East Europe and Central Asia; Middle East and North America;
South Asia; West Europe; North America; Sub-Saharan Africa; Latin America and the
Caribbean.
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TABLE 1 
Cross Country Summary Statistics 

      

Variable Observations Mean 
Standard 
Deviation Min Max 

      
GCISC 1 90 156 0.4639 0.0971 0.2455 0.7641 
GCISC 1 95 156 0.4644 0.0971 0.2439 0.7641 
GCISC 1 00 156 0.4648 0.0971 0.2418 0.7641 
GCISC 2 90 156 0.2527 0.0737 0.1047 0.5820 
GCISC 2 95 156 0.2534 0.0736 0.1004 0.5820 
GCISC 2 00 156 0.2540 0.0737 0.0973 0.5820 
LCISC1 90 156 0.9678 0.0295 0.8347 0.9989 
LCISC195 156 0.9679 0.0295 0.8326 0.9989 
LCISC1 00 156 0.9679 0.0295 0.8301 0.9989 
Gini Pop 90 156 0.6496 0.1588 0.1388 0.9869 
Gini Pop 95 156 0.6515 0.1580 0.1244 0.9872 
Gini Pop 00 156 0.6538 0.1569 0.1097 0.9877 
Capital Primacy 90 110 0.1226 0.1268 0.0016 1.0337 
Capital Primacy 95 156 0.1174 0.1182 0.0011 1.1016 
Capital Primacy 00 156 0.1210 0.1153 0.0011 1.0241 
GCISC 1 Growth 90-95 156 0.0005 0.0026 -0.0129 0.0109 
GCISC 1 Growth 95-00 156 0.0004 0.0023 -0.0069 0.0116 
           

 



 
TABLE 2 

Cross Country Correlation 
               

  
GCISC 1 

90 
GCISC 1 

95 
GCISC 1 

00 
GCISC 2 

90 
GCISC 2 

95 
GCISC 2 

00 
LCISC1 

90 
LCISC1 

95 
LCISC1 

00 
Gini 

Pop 90 
Gini 

Pop 95 
Gini 

Pop 00 
Cap 

Prim 90 
Cap 

Prim 95 
GCISC 1 90 1                          
GCISC 1 95 0.9997  1                        
GCISC 1 00 0.999  0.9997  1                      
GCISC 2 90 0.6326  0.6314  0.6298  1                   
GCISC 2 95 0.6352  0.6351  0.6346  0.9988 1                 
GCISC 2 00 0.636  0.6369  0.6375  0.9953 0.9988 1               
LCISC1 90 0.8453  0.845  0.8442  0.3548 0.3573 0.3584 1             
LCISC1 95 0.846  0.846  0.8454  0.3547 0.3576 0.3591 0.9998 1            
LCISC1 00 0.8463  0.8465  0.8461  0.3542 0.3575 0.3595 0.9993 0.9998  1         
Gini Pop 90 ‐0.2678  ‐0.2718  ‐0.2754  0.3652 0.3555 0.3455 ‐0.4054 ‐0.408  ‐0.4099 1       
Gini Pop 95 ‐0.2699  ‐0.2732  ‐0.276  0.3662 0.3581 0.3499 ‐0.4072 ‐0.4096  ‐0.4114 0.9987 1     
Gini Pop 00 ‐0.2708  ‐0.2733  ‐0.2753  0.3663 0.3601 0.3537 ‐0.4074 ‐0.4096  ‐0.4112 0.9942 0.9984 1   
Cap Prim 90 0.4807  0.4792  0.4775  0.3814 0.3787 0.3749 0.3081 0.309  0.3096 ‐0.073 ‐0.0748 ‐0.0773 1  

Cap Prim 95 0.4751  0.4739  0.4724  0.3733 0.371 0.3677 0.2995 0.3004  0.301 ‐0.0807 ‐0.0825 ‐0.0848 0.9979 1 

Cap Prim 00 0.4746  0.4736  0.4724  0.3855 0.3837 0.3809 0.3033 0.3044  0.3052 ‐0.0754 ‐0.0765 ‐0.0782 0.9961 0.9979 

          
 



 
Table 3: Ranking by GCISC1 90 

 

Code Country 
GCISC1 

90 

Rank  
GCISC1 

90 
GCISC2 

90 

Rank  
GCISC2 

90 
LCISC1 

90 

Rank 
LCISC1  

90 
Gini  

Pop 90 

Rank  
Gini 

Pop 90 

Capital 
Primacy 

95 

Rank 
Capital 
Primacy 

95 
USA  United States  0.2455  1  0.2455  74  0.8347  1  0.9139  149  0.0022  4 
BRA  Brazil  0.2467  2  0.1471  12  0.8809  6  0.8518  140  0.0116  12 
CHN  China  0.2511  3  0.1688  21  0.8760  4  0.7507  113  0.0085  9 
ZAF(b)  South Africa (Cape Town)  0.2631  4  0.1047  1  0.8774  5  0.9230  150  0.0522  45 
RUS  Russian  0.2691  5  0.2501  77  0.8388  2  0.9298  153  0.0636  52 
IND  India  0.2704  6  0.1708  22  0.8895  7  0.5405  39  0.0097  10 
MOZ  Mozambique  0.2900  7  0.1449  11  0.8918  8  0.6613  88  0.0524  47 
KAZ  Kazakhstan  0.2983  8  0.1487  14  0.9165  11  0.7502  112  0.0190  18 
ZAR  Congo Kinshasa (DR)  0.2985  9  0.1563  15  0.8928  9  0.6063  58  0.0822  73 
CAN  Canada  0.3014  10  0.2435  72  0.8726  3  0.9869  156  0.0264  25 
                       
PRI  Puerto Rico  0.6215  147  0.3541  146  0.9948  150  0.4932  21  0.1063  91 
SLV  El Salvador  0.6283  148  0.3446  142  0.9946  148  0.5312  37  0.0794  69 
CRI  Costa Rica  0.6315  149  0.3919  152  0.9939  145  0.6543  86  0.0752  62 
ARM  Armenia  0.6446  150  0.4040  154  0.9948  151  0.5645  50  0.3317  153 
TTO  Trinidad and Tobago  0.6478  151  0.3458  144  0.9962  154  0.6136  62  0.0367  31 
LBN  Lebanon  0.6484  152  0.3283  137  0.9954  152  0.5957  56  0.3259  151 
JOR  Jordan  0.6520  153  0.4501  155  0.9947  149  0.8840  147  0.2411  141 
KWT  Kuwait  0.6653  154  0.3841  149  0.9963  155  0.7319  104  0.0170  15 
MUS  Mauritius  0.7038  155  0.5820  156  0.9961  153  0.6268  70  0.1082  93 
SGP  Singapore  0.7641  156  0.3529  145  0.9989  156  0.5162  28  1.1016  156 
                       

 



 
Table 4: Predictors of Population Concentration 

         
  (1) (2)  (3) (4)  (5) (6)  (7) (8)
         
Dependent variable  GCISC1 GCISC2 LCISC1 Gini Pop 
         
Log Population -0.00831** -0.00951** -0.008 -0.00989* -0.00456*** -0.00620*** -0.0186* -0.002 
 [0.00393] [0.00385] [0.00610] [0.00582] [0.00159] [0.00156] [0.0102] [0.0127] 
Log Land Area -0.0476*** -0.0465*** -0.0145*** -0.0147** -0.0118*** -0.00884*** 0.0587*** 0.0446***
 [0.00262] [0.00264] [0.00531] [0.00573] [0.00153] [0.00104] [0.00844] [0.00940]
Log GDP per capita 0.003 0.005 0.0121** 0.010 -0.002 -0.00526* 0.0566*** 0.0750***
 [0.00354] [0.00871] [0.00591] [0.0131] [0.00186] [0.00309] [0.0104] [0.0240] 
Polity Score  -0.001  0.001  0.000  0.004 
  [0.000732]  [0.00144]  [0.000261]  [0.00234]
Ethno-Linguistic Frac -0.024  -0.038  -0.004  0.129* 
  [0.0201]  [0.0325]  [0.00630]  [0.0654] 
Region FE  YES  YES  YES  YES 
Legal Origin FE  YES  YES  YES  YES 
         
Observations 113 108  113 108  113 108  113 108 
R-squared 0.817 0.868  0.222 0.462  0.657 0.783  0.421 0.578 
*** p<0.01, ** p<0.05, * p<0.1        
Intercepts omitted. Robust standard errors in brackets. All independent variables are taken with a 5-year lag.  
G-CISC and L-CISC are both for 1990.   
See Appendix for description of variables and sources.      
  



 
Table 5: Governance and Population Concentration 

              
  (1) (2) (3) (4) (5) (6) 

 Dependent variable  
Governance  

(First Princ. Comp.) Political Stability Political Stability 
Governance  

(First Princ. Comp.) Political Stability Political Stability 
  A. Full Sample 
       
GCISC1 2.698** -0.378 -1.426*    
 [1.081] [0.825] [0.729]    
LCISC    6.554** -1.305 -3.62 
    [3.189] [2.874] [2.463] 
Control for Governance   Yes   Yes 
       
Obs 128 134 128 128 134 128 
R2 0.88 0.541 0.671 0.876 0.541 0.666 
       
 B. More Democratic Countries 
       
GCISC1 -0.016 0.148 -0.194    
 [1.327] [1.134] [0.953]    
LCISC    -1.488 -0.441 -1.123 
    [3.698] [3.730] [3.006] 
Control for Governance   Yes   Yes 
       
Obs 78 80 78 78 80 78 
R2 0.888 0.675 0.797 0.888 0.675 0.797 
       
 C. Less Democratic Countries 
GCISC1 6.227*** -1.083 -4.497**    
 [1.609] [1.461] [1.732]    
LCISC    15.84** 3.274 -0.546 
    [7.224] [6.168] [6.661] 
Control for Governance   Yes   Yes 
       
Obs 50 54 50 50 54 50 
R2 0.769 0.387 0.619 0.731 0.385 0.551 
       
Intercept omitted. Robust standard errors in brackets. All regressions include Log GDP per capita, Log Population, Polity, and Ethno-Linguistic 
Fractionalization, plus Region and Legal Origin FEs. Panel B consists of countries with polity score larger than 5, Panel C consists of countries with polity 
score less than or equal to 5. GCISC and LCISC are both for 1990. Independent variables are taken with lag. *** p<0.01, ** p<0.05, * p<0.1 

 



 
 
 
 
 

Table 6: Governance and Population Concentration in Less Democratic Countries 
 

Dependent variable:  
Governance (First Princ. Comp.) (1) (2) (3) (4) (5) 

GCISC1 90 5.967*** 6.420*** 6.355***   

 [1.940] [1.821] [2.104]   

LCISC1 90 1.398   16.05** 15.25** 

 [6.909]   [7.015] [7.339] 

Gini Pop 90  -0.425  0.426  

  [1.004]  [0.899]  

Cap Prim 95   -0.148  0.865 

   [0.912]  [0.889] 

      

Observations 50 50 50 50 50 

R-squared 0.769 0.77 0.769 0.733 0.738 
*** p<0.01, ** p<0.05, * p<0.1     
Intercepts omitted. Robust standard errors in brackets. All regressions include Log GDP per capita, Log Population, Polity, and Ethno-Linguistic  
Fractionalization, plus Region and Legal Origin FEs. All independent variables are taken with a 5-year lag.  
See Appendix for description of variables and sources.       

 



 
 
 
 

Table 7: Capital City and gap to the G-CISC-maximizing location 
                    
Dependent variable: 
Gap Distance (1990) (1) (2)   (3) (4)   (5) (6) (7) 

          
 A. Democratic Countries  B. Autocratic Countries  C. Full Sample 
 Tobit OLS  Tobit OLS  Tobit OLS OLS 
          
Autocracy 0.137*** 0.025**    0.165*** 0.038*** 0.040***
 [0.048] [0.010]    [0.040] [0.012] [0.012] 
Democracy   0.159* 0.022**  0.143*** 0.023*** 0.032***
   [0.094] [0.0088]  [0.038] [0.011] [0.012] 
Log(Population) 0.044 0.0297** 0.100** 0.012  0.079*** 0.032*** 0.033* 
 [0.045] [0.013] [0.045] [0.024]  [0.029] [0.012] [0.019] 
Log(GDP per Capita) -0.092 0.041 -0.098 -0.039  -0.082 -0.002 0.001 
 [0.092] [0.050] [0.076] [0.055]  [0.056] [0.032] [0.038] 
Regional Fixed Effect  YES   YES   YES YES 
Legal Origin Fixed Effect YES   YES   YES YES 
Other controls         YES 
                  
Observations 58 58  54 54  113 113 100 
R-squared . 0.26   . 0.25   . 0.22 0.26 

*** p<0.01, ** p<0.05, * p<0.1. Intercept omitted. Robust standard errors in brackets. Panel A consists of countries with autocracy score 
less than 2, Panel B consists of countries with democracy score les than 2. Dependent variable is calculated as the distance between the 
actual and the hypothetical capital city that maximizes G-CISC. Other control variables include Log Land Area, Landlock, Island, 
Coastshare (coastal line as proportion of total boundary). Independent variables are taken with lag 5. Tobit regressions' standard errors 
are bootstrapped with 500-replications.  
          



                   
Table 8: Population Concentration in US States 

 

State  Code  GCISC_1 
Rank 

GCISC_1 GCISC_2 
Rank 

GCISC_2 LCISC 
Rank 
LCISC  Gini Pop 

Rank  
Gini Pop 

Top 10                   
Illinois  IL  0.3029  6  0.0793  1  0.8916  8  0.3066  43 
South Dakota  SD  0.3042  7  0.0943  2  0.8901  7  0.2945  36 
Florida  FL  0.2309  2  0.0998  3  0.8068  2  0.3867  50 
Nevada  NV  0.2801  4  0.1445  4  0.8182  4  0.3311  47 
Missouri  MO  0.3447  10  0.1452  5  0.9215  15  0.2880  29 
Alaska  AK  0.1465  1  0.1465  6  0.5801  1  0.2683  20 
Delaware  DE  0.5101  43  0.1530  7  0.9759  46  0.2883  30 
New York  NY  0.3171  8  0.1530  8  0.9007  9  0.3025  40 
Alabama  AL  0.3625  12  0.1542  9  0.9230  16  0.3088  44 
California  CA  0.2590  3  0.1617  10  0.8076  3  0.3089  45 
                   
Bottom 10                   
Oregon  OR  0.4327  33  0.3081  41  0.9467  35  0.2805  27 
Maryland  MD  0.5010  41  0.3114  42  0.9749  45  0.2922  33 
Nebraska  NE  0.4454  36  0.3377  43  0.9406  29  0.2041  1 
Massachusetts  MA  0.5548  48  0.3526  44  0.9779  49  0.2596  15 
Minnesota  MN  0.4978  40  0.3830  45  0.9569  37  0.2519  10 
Arizona  AZ  0.5088  42  0.3830  46  0.9580  39  0.3477  48 
Colorado  CO  0.5261  45  0.3997  47  0.9642  40  0.2863  28 
Utah  UT  0.5411  47  0.4238  48  0.9674  42  0.2656  18 
Rhode Island  RI  0.6907  50  0.4465  49  0.9926  50  0.2674  19 
Hawaii  HI  0.5855  49  0.4606  50  0.9663  41  0.3049  42 
 



 

Table 9: Population Concentration in US Metropolitan Statistical Areas 
                   

city_id  City  GCISC_1 
Rank 

GCISC_1  GCISC_2 
Rank 

GCISC_2  LCISC 
Rank 
LCISC  Gini Pop 

Rank 
Gini Pop 

20  San Francisco   0.2169  1  0.1847  1  0.6626  1  0.3089  15 
19  San Diego   0.2212  2  0.2212  2  0.6876  2  0.3089  16 
10  Houston   0.2571  3  0.2485  3  0.7351  3  0.3179  19 
8  Dallas   0.2607  4  0.2336  4  0.7422  4  0.3179  20 
17  Pittsburgh   0.2724  5  0.1585  5  0.7792  7  0.2713  5 
12  Miami   0.2764  6  0.2479  6  0.7637  6  0.3867  23 
18  Riverside   0.2785  7  0.2665  7  0.7630  5  0.3089  17 
5  Cincinnati   0.2795  8  0.1680  8  0.8103  9  0.2739  7 
23  Tampa   0.2901  9  0.2112  9  0.8246  10  0.3867  24 
11  Los Angeles   0.3282  10  0.3125  10  0.7909  8  0.3089  18 
7  Cleveland   0.3319  11  0.2000  11  0.8587  13  0.2739  8 
22  St. Louis   0.3368  12  0.2458  12  0.8332  11  0.2880  10 
15  Philadelphia   0.3541  13  0.2635  13  0.8433  12  0.2713  6 
6  Detroit  0.4016  14  0.3624  14  0.8944  15  0.2605  4 
1  Atlanta   0.4075  15  0.3070  15  0.9035  16  0.3547  22 
21  Seattle   0.4286  16  0.3338  16  0.9078  18  0.2527  2 
4  Chicago   0.4420  17  0.3750  17  0.9057  17  0.3066  14 
14  New York   0.4491  18  0.3732  18  0.8887  14  0.3025  12 
16  Phoenix   0.4621  19  0.3789  19  0.9238  19  0.3477  21 
13  Minneapolis   0.4664  20  0.3940  20  0.9240  20  0.2519  1 
9  Denver   0.4857  21  0.3992  21  0.9347  21  0.2863  9 
2  Baltimore   0.5130  22  0.3734  22  0.9610  23  0.2922  11 
3  Boston   0.5144  23  0.3509  23  0.9589  22  0.2596  3 
24  Washington DC  0.7397  24  0.3609  24  0.9937  24  0.3041  13 

 


