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Abstract—In both the commercial and defense sectors a com-
pelling need is emerging for rapid, yet secure, dissemination of
information. In this paper we address the threat of information
leakage that often accompanies such information flows. We focus
on domains with one information source (sender) and many
information sinks (recipients) where: (i) sharing is mutually
beneficial for the sender and the recipients, (ii) leaking a shared
information is beneficial to the recipients but undesirable to
the sender, and (iii) information sharing decisions of the sender
are determined using imperfect monitoring of the (un)intended
information leakage by the recipients. We make two key contribu-
tions in this context: First, we formulate data leakage prevention
problems as Partially Observable Markov Decision Processes; we
show how to encode one sample monitoring mechanism—digital
watermarking—into our model. Second, we derive optimal infor-
mation sharing strategies for the sender and optimal information
leakage strategies for a rational-malicious recipient as a function
of the efficacy of the monitoring mechanism. We believe that our
approach offers a first of a kind solution for addressing complex
information sharing problems under uncertainty.

Keywords-data leakage prevention; digital watermarking; par-
tially observable Markov decision processes;

I. INTRODUCTION

In both the commercial and defense sectors a compelling
need is emerging for rapid, yet secure, dissemination of infor-
mation to the concerned actors. For example, in a commercial
setting, the ability of multiple partners to come together,
share sensitive business information and coordinate activities
to rapidly respond to business opportunities is becoming a key
driver for success. Similarly, in a military setting, traditional
wars between armies of nation-states are being replaced by
highly dynamic missions where teams of soldiers, strategists
and support staff fight against elusive enemies that easily
blend into the civilian population [1]. Securely disseminating
mission critical tactical intelligence to the pertinent people in
a timely manner will be a critical factor in a mission’s success.

Within a single organization, it is possible to allow sharing
of information while managing the risk of information dis-
closure by appropriately labeling (or classifying) information
with its secrecy characteristics and performing an in-depth
security assessment (including system characterization, threat
and vulnerability identification, control analysis, likelihood
determination and impact analysis [2]) of its systems and

users to create controls necessary to protect information com-
mensurate with its label. However, such an approach may
not be viable for information sharing across organizations as
one organization will typically not permit another to perform
a security assessment of its internal systems, controls and
people. In dynamic settings, where systems and processes
evolve rapidly and there are transient needs for sharing tactical,
time-sensitive information across organizational boundaries, a
new approach of securing information flows is required.

In this paper we present a novel decision theoretic approach
for securing such information flows by reducing the risk
of data leakage. Our approach is designed to make optimal
information sharing decisions based on only partial or im-
perfect monitoring data, while ensuring that the efficacy of
our decisions degrades gracefully with that of the monitoring
mechanism. We focus on information sharing domains first
studied in [3] that involve one information source (sender)
and K information sinks (recipients) under the following
generalized settings: (i) Information sharing occurs over a
fixed period of N decision epochs and is mutually beneficial
for the sender and each of the recipients; (ii) In each decision
epoch a sender can share only one information object (packet),
with a chosen recipient1; (iii) Leaking a shared packet results
in a positive reward for the recipient and a penalty to the
sender; (iv) Sharing a packet is instantaneous and the recipient
leaks (or not) a packet immediately upon receiving it; (v)
Sender uses a monitoring mechanism to detect an (un)intended
packet leakage by the recipients, and finally (vi) Subsequent
sender actions (whether to share a packet and with whom)
are determined using the imperfect observations made in (v).
We remark that if the monitoring mechanism is non-existent
or arbitrarily imperfect then the system can have two trivial
solutions: (a) share everything if the reward for information
sharing is more than the penalty of information leakage; and
(b) share nothing otherwise. Hence, we will examine settings
wherein the information sharing is encouraged even when
the penalty for information leakage is higher than that of
information sharing by using a monitoring mechanism with
realistic imperfections.

1Note that this assumption merely states that the packets to be shared can
be arranged in a serial order. By considering multiple copies of a packet one
can model situations where a packet is to be shared with multiple recipients.



In arriving at solutions to such planning problems we
develop our key contributions: First, we provide a first of a
kind formulation of the complex information sharing problems
discussed above by combining Partially Observable Markov
Decision Processes (POMDPs) with digital watermarking, a
monitoring mechanism for data leakage detection. Second,
we derive the optimal information sharing strategies for the
sender and the optimal information leakage strategies for a
rational-malicious recipient as a function of the efficacy of
the underlying monitoring mechanism. Finally, we analyze the
thresholds on the efficacy of a monitoring system in order
to encourage information sharing under imperfect monitoring
conditions for various reward models.

II. BACKGROUND

A. Secure Information Sharing

Recently, new approaches based on risk estimation and
economic mechanisms have been proposed for enabling the
sharing of information in uncertain environments [4], [5],
[6]. These approaches are based on the idea that the sender
constantly updates the estimate of the risk of information
disclosure when providing information to a receiver based on
the secrecy of the information to be divulged and the sender’s
estimate on the trustworthiness of the recipient. The sender
then charges the recipient for this estimated risk. The recipient,
in turn, can decide which type of information is most useful
to him and pay (using its line of risk credit) only to access
those pieces of information. Under the assumption that the
line of risk credit or the risk available for purchase in the
market is limited, an entity will be encouraged to be frugal
with their amassed risk credits and consequently, reluctant
to spend them unnecessarily. Since all information flows are
charged against expected losses due to unauthorized disclosure
and the amount of risk available is limited, an argument is
made that the total information disclosure risk incurred by an
organization is controlled. Our work complements past work
on risk-based information sharing by considering uncertainty
in detecting information disclosure as a first class entity in
complex information sharing domains.

As an alternative to economic mechanisms, in order to
encourage behavioral conformity in ad-hoc groups one can
also employ incentive mechanisms which have received a
lot of attention in recent years. To date, the goal of such
works has been to either reward “good” behavior [7], [8],
[9], or punish “bad” behavior [10], [11]. In [12] for example,
entities exchange tokens as a means of charging for/rewarding
service usage/provision. Entities which behave correctly and
forward packets are rewarded with additional tokens which,
in turn, may be spent on forwarding their own packets.
However, these approaches also fail to model the uncertainty
in detecting good/bad behavior when making appropriate
reward/punishment decisions.

Other incentive mechanisms rely on reputation as a means
of encouraging entities to behave correctly. Reputation sys-
tems, such as [13], [14], aim to encourage good behavior
by maintaining a trust/reputation score for some subset of

entities in a network. If the reputation value for an entity
drops below a predefined threshold, then that entity is deemed
to be misbehaving and packets from that entity may be
probabilistically dropped until the entity starts to conform [15].
By contrast, punishment mechanisms, such as those found
in [16], [17], typically focus on the permanent exclusion of
misbehaving entity from the network. Much like reward-based
schemes, punishment strategies typically rely on implementing
a threshold scheme, where, once a specific (mis)trust value is
reached, an entity may instigate a revocation procedure. Our
approach differs from these works as it allows to incentivize
good behavior even in uncertain domains.

B. Digital Watermarking

In this paper we focus on digital watermarking based moni-
toring mechanism to detect information leakage. Figures 1 and
2 show how digital watermarking works in a simple spatial
domain (2-dimensional image): The main idea is to generate
a watermark W (x, y) using a secret key chosen by the sender
such that W (x, y) is indistinguishable from random noise for
any entity that does not know the key (i.e., the recipients). The
sender adds the watermark W (x, y) to the information object
(image) I(x, y) before sharing it with the recipient(s). It is then
hard for any recipient to guess the watermark W (x, y) (and
subtract it from the transformed image I ′(x, y)); the sender
on the other hand can easily extract and verify a watermark
(because it knows the key).

The recipient may attempt to corrupt the information object
(e.g., toggle a few bits in the image file) with the goal of eras-
ing the watermark to avoid detection. We note that in a patho-
logical scenario, a recipient may corrupt the entire information
object, thereby successfully erasing the watermark completely.
Fortunately, corrupting an information object devalues it and
thus, in such scenario, the leaked information is worthless.
In particular, robustness requirements of digital watermarks
mandates that any attempt to remove or destroy the watermark
should produce a remarkable degradation in data quality before
the watermark is lost [18]. Thus, there is a clear trade-off
between the extent of corruption (and the residual value of
the corrupted information object) and the false positive/false
negative probabilities of the watermark detection algorithm.
In this paper we investigate these trade-offs. Specifically, we
employ POMDPs to help the sender (information source)
characterize strategies of information sharing (what to share
with whom?) and understand the optimal corruption strategies
for a malign recipient.

C. Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs)
[19] are defined as follows: S is a finite set of discrete states of
the process and A is a finite set of agent actions. The process
starts in state s0 ∈ S and runs for N decision epochs. In
particular, if the process is in state s ∈ S in decision epoch
0 ≤ n < N , the agent controlling the process chooses an
action a ∈ A to be executed next. The agent then receives
the immediate reward R(s, a) while the process transitions
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with probability P (s′|a, s) to state s′ ∈ S and decision epoch
n + 1. Otherwise, if n = N , the process terminates. The
goal of the agent is to find a policy π that, for each epoch
0 ≤ n < N , maximizes the sum of expected immediate
rewards earned in epochs n, n + 1, . . . , N when following
policy π. What complicates the agent’s search for π is that the
process is only partially observable to the agent. That is, the
agent receives noisy information about the current state s ∈ S
of the process and can therefore only maintain a probability
distribution b(s) over states s ∈ S (referred to as the agent
belief state). Specifically, when the agent executes an action
a ∈ A and the process transitions to state s′, the agent receives
with probability O(z|a, s′) an observation z from a finite set
of observations Z. The agent then uses z to update its current
belief state b, as shown in [19].

A policy π of the agent therefore indicates which action
π(n, b) ∈ A the agent should execute in decision epoch n
in belief state b, for all 0 ≤ n < N and all belief states b
reachable from an initial belief state b0 after n agent actions.
To date, a number of efficient algorithms have been proposed
to find a policy π∗ that yields the maximum expected reward
for the agent [20], [21], [22], [23], [24], [25], [26]. In our
experiments we used a POMDP solver based on a point-based
incremental pruning technique [21].

III. DATA LEAKAGE PREVENTION USING POMDPS

As we now demonstrate, a systematic study of data leakage
prevention domains of increased complexity allows to employ
POMDPs to characterize optimal information sharing strate-
gies for the sender and optimal watermark corruption strategies
for a maligned recipient. We begin this study with a domain
with a single, deterministic recipient (who either leaks out all
the packets it receives or none of them). Next, we relax the
assumption that the recipient is deterministic by considering
a fuzzy recipient who leaks f% of the packets it receives.
We finally generalize our models to domains where the sender
shares information with multiple fuzzy recipients (each leaking
a different percentage of packets it receives).

A. One Deterministic Recipient

The first type of data leakage prevention domains that we
study involves a single information recipient (i.e., K = 1)
who acts in a deterministic way (leaks either 0% or 100%
of all the packets it receives). We model such domain using
POMDPs as follows: The set of states is S = {s0, s100} where
s0 denotes a state where the recipient leaks 0% of the packets
it receives whereas s100 denotes a state where the recipient
leaks 100% of the packets it receives. The set of sender actions
is A = {anoShare, aShare} where action anoShare results in
the sender not sharing a packet with the recipient and aShare
in sharing exactly one packet with the recipient, in some
decision epoch. We assume that the recipients never change
the percentage of packets they leak out, and thus, the transition
function is given by P (s0|anoShare, s0) = P (s0|aShare, s0) =
P (s100|anoShare, s100) = P (s100|aShare, s100) = 1. The set
of sender observations is Z = {zLeak, znoLeak, z∅} where,
according to zLeak, the last-shared packet has been leaked
and, according to znoLeak, the last-shared packet has not
been leaked. The sender receives an empty observation z∅
when it does not share a packet with the recipient. (Note,
that because z∅ carries no information about the status of
shared packets, it also does not affect the current sender
estimate of the trustworthiness of the recipient. Also, because
of the false positive/false negative observations, we may have
O(zLeak|aShare, s0) > 0 and O(zLeak|aShare, s100) < 1.) Fi-
nally, we have R(s0, anoShare) = R(s100, anoShare) = 0 (not
sharing a packet provides the sender with no reward/penalty)
and R(s100, aShare) < 0 < R(s0, aShare) (sharing a packet
is beneficial to the sender only if the packet is not leaked).

To illustrate a domain with a deterministic recipient on
an example assume N = 10 decision epochs, rewards
R(s0, aShare) = 2, R(s100, aShare) = −1, observation func-
tion O(zLeak|aShare, s0) = 10%, O(znoLeak|aShare, s0) =
1 − O(zLeak|aShare, s0) = 90%, O(znoLeak|aShare, s100) =
30%, O(zLeak|aShare, s100) = 1−O(znoLeak|aShare, s100) =
70%, O(z∅|anoShare, s0) = O(z∅|anoShare, s100) = 100%
and initial sender belief about the trustworthiness of the
recipient b0(s0) = b0(s100) = 50%. In such setting, the
optimal policy of the sender yields the expected reward of
2.81. In Table I we show this policy for 5 selected action-
observation scenarios and 4 initial decision epochs.



TABLE I
OPTIMAL SENDER POLICY FOR A DOMAIN WITH ONE DETERMINISTIC RECIPIENT

Decision epoch 1 Decision epoch 2 Decision epoch 3 Decision epoch 4
Action Observation Action Observation Action Observation Action

scenario 1 aShare znoLeak aShare znoLeak aShare znoLeak aShare

scenario 2 aShare znoLeak aShare znoLeak aShare zLeak aShare

scenario 3 aShare znoLeak aShare zLeak aShare znoLeak aShare

scenario 4 aShare znoLeak aShare zLeak aShare zLeak anoShare

scenario 5 aShare zLeak anoShare z∅ anoShare z∅ anoShare

The policy in Table I confirms some of the early intuitions
about the domain with just one deterministic recipient: First
(scenario 1), if the sender does not observe any leaked packets,
it keeps sharing the packets with the recipient. Second (sce-
nario 2), if the sender does not observe any leaked packets in
the 1st and 2nd decision epochs, it builds enough confidence
of the trustworthiness of the recipient so that, when a packet
is observed to be leaked out in 3rd decision epoch, the
sender attributes this leakage to its imperfect observations
and resumes sharing the packets with the recipient in the
4th decision epoch. Third, (scenario 4) if the sender does
not observe any leaked packets in the 1st decision epoch, but
observes two consecutive leaked packets in the 2nd and 3rd
decision epochs, the sender confidence of the trustworthiness
of the recipient drops below a threshold where the sender
decides to stop sharing further packets with the recipient.
Finally, (scenario 5) if the sender observes a leaked packet in
the 1st decision epoch, it attributes this leakage to a malev-
olent recipient (rather than to an imperfect observation) and
never attempts to resume sharing packets with the recipient.
(Note that not sharing any packets with the recipient provides
no further observations to the sender and thus, the sender
confidence of the trustworthiness of the recipient will not
change. However, by considering P (s|a, s) < 1 for some
a ∈ A, s ∈ S one can model a sender who is forgiving towards
the recipient. The optimal policy of a forgiving sender might
then include a series of anoShare actions preceding a aShare
action, so that the impact of the old observations on the current
belief state is less significant.)

B. One Fuzzy Recipient

We now move on to study more complex domains where
the recipient can be fuzzy, i.e. leaks f% of the packets it
receives thus appearing (to the sender) to be benevolent in
some decision epochs and malevolent in other decision epochs.
In modeling a fuzzy recipient we must address a key issue: The
recipient fuzziness f is never known to the sender, and can only
be estimated by the sender, using the observations it receives.
It is then required that the sender maintains a probability
distribution over all possible recipient fuzziness levels, i.e.,
a probability distribution over the probabilities with which
the recipient can leak the packets. Because the number of all
possible recipient fuzziness levels is infinite (f ∈ [0, 1]), one
cannot use POMDPs to model a fuzzy recipient exactly (due to
an infinite POMDP state-space and the corresponding infinite

transition/observation/reward functions).
We circumvent the problem of having to consider an infinite

number of possible recipient fuzziness levels by approximating
the actual (unknown) recipient fuzziness level f within some
error ε with only a finite set M of chosen fuzziness levels.
Precisely, we choose M to contain d 1

2ε + 1e uniformly dis-
tributed fuzziness levels so that for any f ∈ [0, 1] there always
exists some m ∈ M where |f −m| < ε. The set of POMDP
states is then S = {sm}m∈M where sm is a state wherein
the recipient leaks m% of the packets it receives. The set
of sender actions and observations, A = {anoShare, aShare}
and Z = {zLeak, znoLeak, z∅} respectively, are the same as
for a deterministic recipient. Similarly, (assuming that the
recipient never changes the percentage of packets it leaks)
the transition function is defined as P (sm|aShare, sm) =
P (sm|anoShare, sm) = 1 for all sm ∈ S. In defining the
sender observation and reward functions, one needs to use the
extreme values of these functions for a deterministic recipient
case (when the recipient leaks 0% and 100% of packets it
receives). Specifically, if the process is in state sm ∈ S
and the sender executes action aShare, there is m% chance
that the packet will be leaked and (100 − m)% chance that
the packet will not be leaked and thus, R(sm, aShare) =
m
100R(s100, aShare) + 100−m

100 R(s0, aShare). Similarly, (recall
that the sender detects a leak if the leak really occurred with
probability O(zLeak|aShare, s100) and, if the leak did not
occur, with probability O(zLeak|aShare, s0)) if the process is
in state sm ∈ S and the sender executes action aShare, it
will observe a leak with probability O(zLeak|aShare, sm) =
m
100O(zLeak|aShare, s100) + 100−m

100 O(zLeak|aShare, s0).
To illustrate a domain with a fuzzy recipient on an ex-

ample assume that the recipient fuzziness f is approximated
with a set of fuzziness levels M = {0%, 33%, 66%, 100%}.
Also, let N = 10, R(s0, aShare) = 2, R(s100, aShare) =
−1, O(zLeak|aShare, s0) = 10%, O(zLeak|aShare, s100) =
70%—exactly as in the deterministic recipient case. Similarly,
let the initial belief state of the sender be uniform, i.e.,
b0(sm) = 0.25 for all m ∈ M . In such setting, the optimal
policy of the sender yields the expected reward of 2.23. In
Table II we show this policy for 7 selected action-observation
scenarios and 4 initial decision epochs.

As can be seen, the optimal policy of the sender when facing
a fuzzy recipient (Table II) differs from the optimal policy of
the sender when the recipient is deterministic (Table I). Specif-
ically, the sender is more tolerant of packet leaks (compare



TABLE II
OPTIMAL SENDER POLICY FOR A DOMAIN WITH ONE FUZZY RECIPIENT

Decision epoch 1 Decision epoch 2 Decision epoch 3 Decision epoch 4
Action Observation Action Observation Action Observation Action

scenario 1 aShare znoLeak aShare znoLeak aShare znoLeak aShare

scenario 2 aShare znoLeak aShare znoLeak aShare zLeak aShare

scenario 3 aShare znoLeak aShare zLeak aShare znoLeak aShare

scenario 4 aShare znoLeak aShare zLeak aShare zLeak anoShare

scenario 5 aShare zLeak aShare znoLeak aShare znoLeak aShare

scenario 6 aShare zLeak aShare znoLeak aShare zLeak anoShare

scenario 7 aShare zLeak aShare zLeak anoShare z∅ anoShare

scenarios 5 in Table I with scenarios 5,6,7 in Table II): Even
if a packet shared in the 1st decision epoch is observed to
be leaked, the sender decides to share another packet in the
2nd decision epoch. This phenomenon occurs because, for a
leak detection probability O(zLeak|aShare, s100) approaching
100%, whenever the sender detects a leak of a deterministic
recipient, the sender considers the recipient to be almost 100%
non-trustworthy; In contrast, if the leak is caused by a fuzzy
recipient (of fuzziness f ), the sender knows that there is still
a (100 − f)% chance that the recipient will not leak further
packets. Increased sender tolerance of leaked packets has an
impact on the expected reward of its optimal policy; it amounts
to only 2.23 as opposed to 2.81 if the recipient is deterministic.

C. Multiple Recipients

We finally move on to investigate the most complex data
leakage prevention domains wherein the sender shares packets
with multiple recipients, each potentially leaking a different
percentage of packets it receives. That is, we now consider
situations where a sender can choose which recipient (if any)
should receive a packet in each decision epoch. In modeling
such domains involving K > 1 recipients we must first choose
the accuracy with which we approximate the actual (unknown)
fuzziness values of each of the K recipients. Specifically, we
assume a set Mk of fuzziness levels that approximate the
(unknown) fuzziness of recipient k for each recipient k ∈ K.
(As shown below, sets Mk need not to be equal as the sender
might desire higher accuracy in approximating the fuzziness
of more important recipients.)

A POMDP for a domain with multiple recipients is then
defined as follows: Let m = (m1, ...,mK) be a vector
such that mk ∈ Mk is the chance that recipient k leaks
a packet it receives, for k ∈ K. The set of states is then
S = {sm}m∈M1×...×MK

. Because in each decision epoch the
sender can share a packet with at most one recipient, the set
of actions is A = {anoShare, aShare(1), ..., aShare(K)} where
aShare(k) is an action that the sender executes to share a packet
with recipient k. When the process is in state sm and the
sender executes action aShare(k), the process transitions to the
same state sm (recipients’ fuzziness values never change) with
probability 1. The sender then gets rewardR(sm, aShare(k)) ≡
R(smk

, aShare) where the latter term is the sender reward

in a single recipient case, as defined earlier2. Finally, the
set of observations Z = {zLeak, znoLeak, z∅} is the same as
in the one recipient case, because the last executed action
uniquely identifies the recipient who affects the sender last
observation. As such, the observation function only depends on
the fuzziness of the recipient that the packet was sent to, and
thus, O(zLeak|aShare(k), sm) ≡ O(zLeak|aShare, smk

) where
the latter term is the sender observation function in a single
recipient case, as defined earlier.

To illustrate a domain with multiple recipients on an
example assume K = 2 recipients whose fuzziness val-
ues are approximated with different accuracy, i.e., M1 =
{0%, 100%} and M2 = {0%, 33%, 66%, 100%}. Also,
let N = 10, R(s0, aShare) = 2, R(s100, aShare) =
−1, O(zLeak|aShare, s0) = 10%, O(zLeak|aShare, s100) =
70%—exactly as in a single recipient case. Similarly, let the
initial belief state of the sender be uniform, i.e., b0(sm) =
0.5 · 0.25 = 0.125 for all m ∈ M1 × M2. In such setting,
the optimal policy of the sender yields the expected reward of
3.27. In Table III we show this policy for 7 selected action-
observation scenarios and 4 initial decision epochs.

As can be seen (scenario 1), the sender always starts its
optimal policy by sharing a packet with recipient 1, because
recipient 1 appears to the sender to be more predictable (its
fuzziness is approximated with fewer fuzziness levels) and
consequently, it is easier for the sender to identify the trust-
worthiness of recipient 1 than to identify the trustworthiness
of recipient 2. Next (scenario 2), if the sender observes no
leaks while sharing the packets with recipient 1 in the 1st
and 2nd decision epoch, it builds enough confidence about
the trustworthiness of recipient 1 so that, even if a leak is
observed after sharing a packet with recipient 1 in the 3rd
decision epoch, the sender attributes this leak to its imperfect
observations and decides to resume sharing packets with
recipient 1 in the 4th decision epoch. However, (scenarios
3,4) if the sender observes no leak while sharing a packet with
recipient 1 in the 1st decision epoch, but observes a leak while
sharing a packet with recipient 1 in the 2nd decision epoch,
sender confidence about the trustworthiness of recipient 1 is
too low and the sender decides to switch to sharing the packets

2The sender could vary the importance of sharing the packets with different
recipients by assuming that different recipients offer different rewards for
received packets.



TABLE III
OPTIMAL SENDER POLICY FOR A DOMAIN WITH MULTIPLE RECIPIENTS

Decision epoch 1 Decision epoch 2 Decision epoch 3 Decision epoch 4
Action Observation Action Observation Action Observation Action

scenario 1 aShare(1) znoLeak aShare(1) znoLeak aShare(1) znoLeak aShare(1)

scenario 2 aShare(1) znoLeak aShare(1) znoLeak aShare(1) zLeak aShare(1)

scenario 3 aShare(1) znoLeak aShare(1) zLeak aShare(2) znoLeak aShare(2)

scenario 4 aShare(1) znoLeak aShare(1) zLeak aShare(2) zLeak anoShare

scenario 5 aShare(1) zLeak aShare(2) znoLeak aShare(2) znoLeak aShare(2)

scenario 6 aShare(1) zLeak aShare(2) znoLeak aShare(2) zLeak aShare(2)

scenario 7 aShare(1) zLeak aShare(2) zLeak anoShare z∅ anoShare

with recipient 2. In particular, (scenarios 4,7) if recipient 2 is
also observed to be leaking the packets, the sender decides
to stop sharing the packets with the recipients. Note that the
sender ability to choose a recipient to share a packet with
results in an increased expected reward of its optimal policy
(equal to 3.27 as opposed to 2.81 and 2.23 when K = 1).

D. Recipient Strategy
Our methods for computing the sender policy assume that

the number of decision epochs and the sender observation
function (the accuracy of the mechanism that examines a
watermark to determine if a packet is leaked or not) are
fixed and known to both parties. Yet, there may be situations
where the recipient can try to remove the watermarks from
the packets, in an attempt to disguise the packets it leaks.
In these situations, recipient’s tampering with the watermark
has a direct impact on the sender observation function. While
this may seem to complicate the sender decision making, we
show in the following that this is not the case: If both the
sender and the recipient are rational and if they both know
the domain parameters, the recipient strategy (how much it
tampers with watermarks to obfuscate sender observations)
is predictable, allowing the sender to compute its optimal
policy when facing such a recipient. Note that it is of clear
interest to the recipient to tamper with the watermarks. If the
recipient leaves the watermarks intact, each time it leaks a
packet, the leak will be detected with 100% accuracy by the
sender (who may consequently stop sharing the packets with
the recipient). On the other hand, if the recipient completely
prevents the sender from detecting a leak, the sender may
have little incentive to even begin sharing the packets with
the recipient. Exactly how much to corrupt the watermarks
therefore constitutes a decision problem in itself that every
rational recipient has to face.

To illustrate this decision problem on an example, recall
the domain with a deterministic recipient introduced earlier.
Refer to Figure 3. Each bar in the figure represents the
expected reward of the optimal sender policy for a given
number of decision epochs N , a chance of leak detection
O(zLeak|aShare, s100) and an initial belief about recipient
trustworthiness b0(s0) = b0(s100) = 50%. (For explana-
tion purposes we assume no false negative observations:
O(zLeak|aShare, s0) = 0.) As can be seen, the expected
reward of an optimal sender policy can be either greater

Fig. 3. Expected rewards of optimal sender policies

than zero, if the sender decides to share the packets with the
recipient, or equal to zero, if the sender decides to not to share
any packets with the recipient. Under these circumstances, the
optimal strategy of a rational recipient will be to act in such a
way that the chance of leak detection encourages the sender to
share its packets, but provides the sender with as inaccurate
information as possible about packet leaks. For example, if
the number of decision epochs is 3, a rational recipient will
allow the sender to detect a leak with 70% chance because
that guarantees that the sender will start sharing the packets
with the recipient but also ensures that sender observations will
allow it to learn as little as possible about the packet leaks.
A complete recipient strategy (Table IV) is hence a mapping
from the number of decision epochs to the chance with which
the recipient allows the sender to detect a leak. If both the
sender and the recipient are rational and if they both know the
domain parameters, their information sharing and watermark
corruption strategies form a Nash-Equlibrium that both players
will adhere to.

Finally, we note that to properly account for the strategic
iterative decision making of the recipient (who may only
possess partial information about the reward structure of



the sender), one would have to employ Partially Observable
Stochastic Games [27] or Interactive POMDPs [28]. However,
due to the N-EXP completeness of the exact algorithms for
solving problems modeled in these frameworks [29], such an
approach would be computationally prohibitive.

IV. EXPERIMENTS

We have adopted the state-of-the-art POMDP solver [21]
to conduct sensitivity and scalability analysis of our method
applied to data leakage prevention. In our first experiment we
investigated the sensitivity of the optimal sender policies to
the changes in the chance of leak detection (Figure 4) in a
deterministic recipient domain. We assumed N = 10 decision
epochs, reward R(s0, aShare) = 2 for sharing a packet that
is not leaked and an initial sender belief about the recipient
trustworthiness b0(s0) = b0(s100) = 50%. We then recorded
the expected reward of optimal sender policies (y-axis) con-
sidering various leak costs R(s100, aShare) = 0,−2,−4,−6
and various chances O(zLeak|aShare, s100) of leak detection
(x-axis). Our results revealed that if the leak cost is 0, the
chance of leak detection has no impact on the expected reward
(= 10) of the optimal sender policy. This is because when
the sender shares the packets with only one recipient and
there is no penalty for leaked packets, sender optimal policy
is to share the packets in all the decision epochs, regardless
of the trustworthiness of the recipient—thus, regardless of its
observations and the chance of leak detection. However, when
the leak cost is other than 0, smaller chances of leak detection
translate into higher chances of the sender deciding not to
share the packets with the recipient and consequently, smaller
expected rewards of the optimal sender policies. Furthermore,
increase in the absolute value of the leak cost appears to
amplify this phenomenon. For example, a decrease of the
chance of leak detection from 100% to 50% corresponds to
12% decrease (from 9 to 8) of the expected reward if leak cost
is −2, 25% decrease (from 8 to 6) if leak cost is −4 and as
much as 43% decrease (from 7 to 4) is the leak cost is −6.
We hence conclude that the greater the absolute value of the
leak cost, the greater the sensibility of sender policy to the
chance of leak detection.

The effect that the initial belief b0 has on the expected
reward of sender policies is orthogonal to that of the chance of
leak detection, as revealed in our second experiment (Figure
5). Specifically, for a fixed chance O(zLeak|aShare, s100) =
80% of leak detection, the greater the initial sender belief
b0(s0) about the trustworthiness of the recipient (x-axis), the
higher the chance that the sender will share the packets with
the recipient and consequently, the bigger the expected reward
of the sender policy. Not surprisingly, if b0(s0) drops below
a certain threshold (e.g., 30% for the leak cost −4 and −6),
the expected reward becomes 0 as it is not profitable for the
sender to even start sharing packets with the recipient. On
the other hand, the expected reward peaks at b0(s0) = 100%
where it is invariant of the cost of leak and derived from
N ·R(s0, aShare) = 20 (for P (s0|aShare, s0) = 1). We hence

Fig. 4. Sensitivity of the expected reward of the optimal sender policies
to different chances of leak detection

Fig. 5. Sensitivity of the expected reward of the optimal sender policies
to different initial beliefs b0

conclude that the greater the initial belief b0(s0), the smaller
the sensibility of the optimal sender policy to the leak cost.

In the final part of our experimental evaluation (refer to
Table V) we recorded the runtimes of the POMDP solver
employed to find the optimal sender policies (The solver was
run on a 2.4 GHz machine with 2GB of RAM.) As expected,
the runtime increases for higher number of epochs, higher
number of recipients, and higher number of fuzziness levels
(used to approximate a fuzzy recipient). The less dramatic
increase seems to be related to the number of decision epochs,
as the algorithm does not suffer severely from adding more
epochs. However, increasing either the number of recipients
or the number of fuzziness level results in a running time
higher by almost an order of magnitude. Even though it is
undeniable that some scalability issues arise here, the extent to
which this might be a real concern in a practical application
is unclear. As far as the number of recipients is concerned,
we note that a group of recipients can always be modeled
as a single one at the expense of losing some accuracy in
our decisions (e.g., either we share with all of them or with
none). In this way, applications where the number of recipients
is high could be approached with an initial classification stage
wherein recipients with similar characteristics are grouped



TABLE IV
OPTIMAL RECIPIENT STRATEGY (THE CHANCE WITH WHICH THE RECIPIENT ALLOWS THE SENDER TO DETECT A LEAK)

Number of decision epochs 1 2 3 4 5 6 7 8 9 10
Chance of leak detection 0% 0% 70% 50% 40% 30% 30% 30% 20% 20%

TABLE V
POMDP SOLVER RUNTIMES (IN MILLISECONDS)

Number of decision epochs
2 4 6 8 10

One recipient
Fuzziness = 2 37 21 78 57 82
Fuzziness = 3 86 49 293 94 38
Fuzziness = 4 75 40 41 71 45

Two recipients
Fuzziness = 2 61 71 89 99 149
Fuzziness = 3 345 393 478 561 577
Fuzziness = 4 959 1045 1214 1397 1623

Three recipients
Fuzziness = 2 371 456 860 1064 1365
Fuzziness = 3 3851 4965 6215 8487 11060
Fuzziness = 4 20815 25996 32748 48473 64447

Four recipients
Fuzziness = 2 2083 3230 6532 11429 16316
Fuzziness = 3 45560 69745 93792 156302 249792

Five recipients
Fuzziness = 2 11744 19982 47398 96674 156288
Fuzziness = 3 631660 1156397 1638620 3180314 4587189

Fig. 6. Efficiency of the approximation of recipient fuzziness

into a single “class”. (Note that this same philosophy has
been applied in access control schemes for decades, where
similar users are given the same security clearance.) As for the
number of fuzziness levels, the trade-off here is clearly one
of how much computational overhead we can afford against
how accurately we want to approximate the recipient. Figure
6 illustrates graphically such a trade-off for a domain with
one recipient and 10 decision epochs. For instance, if we are
modeling a single recipient and the maximum amount of time
we can afford is 500 ms, the best parameterization consists of
using 12 levels, resulting in a 5% approximating error.

An interesting consequence of varying the number of de-
cision epochs (in scenarios where this is possible) is that it
affects not only performance (more epochs = higher expected
reward, as seen in Figure 3), but also the receiver’s optimal
strategy. Previously we discussed how a rational recipient
would see increased his possibilities of tampering with the
watermarks (see Figure 3 and Table 4) depending on the

number of epochs. It is easy to see that reducing the number of
epochs increases the rate at which a recipient will start to leak
out information. Nevertheless, we foresee that in many real
applications the sender will not be at liberty of manipulating
this parameter.

V. CONCLUSIONS

In both business and military applications an increase in
demand is seen for solutions that allow for rapid yet secure
sharing of information. Of particular need are solutions that
view the information sharing as a sequential process where
the trustworthiness of the information recipients is constantly
monitored using data leakage detection mechanisms. Towards
addressing this need, this paper has shown (i) how to formu-
late information sharing decisions using Partially Observable
Markov Decision Processes combined with a digital water-
marking leakage detection mechanism and (ii) how to derive
optimal information sharing strategies for the sender and
optimal information leakage strategies for a rational-malicious
recipient as a function of the efficacy of the underlying
monitoring mechanism. We have experimentally shown that
the efficacy of our system degrades gracefully with the efficacy
of the underlying monitoring mechanism and that the proposed
system scales-up to realistic information sharing domains.
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