
Towards Finding Robust Execution Strategies for RCPSP/max with Durational
Uncertainty

Fu Na, Pradeep Varakantham, Lau Hoong Chuin
School of Information Systems, Singapore Management University, Singapore

na.fu.2007@phdis.smu.edu.sg, pradeepv@smu.edu.sg, hclau@smu.edu.sg

Abstract

Resource Constrained Project Scheduling Problems
with minimum and maximum time lags (RCPSP/max)
have been studied extensively in the literature. How-
ever, the more realistic RCPSP/max problems – ones
where durations of activities are not known with cer-
tainty – have received scant interest and hence are the
main focus of the paper. Towards addressing the sig-
nificant computational complexity involved in tackling
RCPSP/max with durational uncertainty, we employ a
local search mechanism to generate robust schedules.
In this regard, we make two key contributions: (a) In-
troducing and studying the key properties of a new deci-
sion rule to specify start times of activities with respect
to dynamic realizations of the duration uncertainty; and
(b) Deriving the fitness function that is used to guide
the local search towards robust schedules. Experimen-
tal results show that the performance of local search is
improved with the new fitness evaluation over the best
known existing approach.

Introduction
Much research in scheduling has assumed problems with de-
terministic durations. In real-world scheduling problems,
unexpected external events such as manpower unavailabil-
ity, weather changes, etc. lead to delays or advances in
completion of activities, which can in turn have a signifi-
cant impact on the completion of the overall project. There
has been a growing interest to account for such data uncer-
tainty (Rodrı́guez et al. 2009; Herroelen and Leus 2005)
while providing optimized schedules. This paper also fo-
cusses on this important issue of duration uncertainty in
scheduling problems.

From the computational perspective, stochasticity adds
a great deal of complexity to the underlying determinis-
tic problems. For example, for the infinite-resource project
scheduling problem in which every processing time has two
possible discrete values, the problem of computing the ex-
pected makespan (or any point on the cumulative distribu-
tion of the optimal makespan), is #P-hard (Hagstrom. 1988;
Möhring 2001). It has also been shown that for the schedul-
ing problem 1|stoch pj ; dj = d|E[

∑
wjUj], the problem of

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

computing a policy (i.e. execution strategy) maximizing the
probability that some job completes exactly at the deadline
is PSPACE-hard (Dean, Goemans, and Vondrák 2004).

The concrete problems of interest in this paper are the Re-
source Constrained Project Scheduling Problems with min-
imum and maximum time lags (RCPSP/max), which are
of great importance in manufacturing, logistics and project
management. Though these problems have been shown to
be NP-Hard (Bartusch, Mohring, and Radermacher 1988),
local search based techniques (Demeulemeester. and Her-
roelen. 2002) have achieved great success in solving these
problems. Taking a cue from this, we also employ local
search techniques to solve RCPSP/max with durational un-
certainty. More precisely, we focus on the issues of com-
puting a robust makespan with proven probability of suc-
cess and a local search method for deriving a policy that will
achieve the robust makespan.

A popular approach for tackling durational uncertainty in
scheduling problems is to employ a hybrid of proactive and
reactive methods (Vonder, Demeulemeester, and Herroelen
2007). In this approach, a robust baseline schedule is com-
puted offline initially. This baseline schedule is then mod-
ified (if required) during execution reactively based on the
occurrence of external events. In this paper, we focus only
on the computation of a robust baseline schedule and assume
that this schedule can then be modified (if necessary) by any
of the existing reactive procedures.

There have been approaches that have addressed the com-
putation of this robust baseline schedule. A recent approach
(Beck and Wilson 2007) provides techniques to compute this
robust baseline schedule from a risk management perspec-
tive, where durations of activities are modeled as random
variables. Given a level of risk 0 < ε ≤ 1, they compute a
schedule with minimal (probabilistic) makespan, which has
a probability of successful execution of at least 1 − ε over
all realizations of the durational uncertainty. The main idea
there was to compute a lower bound for the minimal proba-
bilistic makespan by solving a deterministic problem. How-
ever, it considers problems where the underlying scheduling
problem is a Job Shop Scheduling Problems (JSP), which is
a much simpler problem than RCPSP/max.

Another approach is to compute an execution strategy
(also known commonly as schedule policy) such as a Partial
Order Schedule (POS). This approach was adopted by (Lau,

Ou, and Xiao 2007), which combines techniques from ro-
bust optimization with classical local search to compute a
POS that minimizes the robust makespan, V ∗. The robust
makespan is one where the probability that the actual real-
ized makespan of the schedule derived from the POS does
not exceed it is greater than 1−ε, over all realizations of un-
certainty. The key idea there was to apply the segregated lin-
ear decision rule (Chen et al. 2008) to represent start times
of activities and then compute an upper bound for the robust
makespan, which is in turn used for guiding the local search
to find a POS.

The use of the segregated linear decision rule provides
for computing the fitness measure quickly. However, this
advantage comes at a price in that the fitness measure is a
loose upper bound (which has the side effect of guiding the
search into bad regions). In this paper, we address the is-
sue of loose upper bounds with two key contributions: (a)
we propose a new general non-linear decision rule; and (b)
derive the fitness measure of a POS irrespective of the du-
rational uncertainty distributions with the new decision rule.
By using the new fitness measure to guide the local search,
we were able to show a definitive improvement in perfor-
mance through our experiments.

Background
Notationally, a random variable is denoted by x̃, bold face
lower case letters like x represent vectors and the corre-
sponding tilde case such as x̃ denote a vector with variables
as elements.

RCPSP/max with Durational Uncertainty
The RCPSP/max problem (Bartusch, Mohring, and Ra-
dermacher 1988) is defined over a set of N activities
{a1, a2..., aN}. Each activity ai has an expected process-
ing time of d0

i and requires rik units of resource type k (k =
1, 2...,K). Ck is the constant resource capacity for resource
type k. Each activity has a start time of st(ai) and end time
of et(ai), such that st(ai) + d0

i = et(ai). In addition, there
exist a set E of temporal constraints between various activity
pairs 〈ai, aj〉 of the form st(aj) − st(ai) ∈ [Tmin

ij , Tmax
ij]

called minimum and maximum time lags between the start
times of two related activities. Note that in the determinis-
tic case, additional temporal constraints that designate time
lags between the end time and the start time of two related
activities can be equally transformed in the general start-start
form.

Durational uncertainty corresponding to each activity ai

is modeled using a random variable z̃i. Therefore, the dura-
tion of an activity is specified as: d̃i = d0

i + z̃i, where z̃i can
correspond to any probability distribution, with an expected
value of 0 and standard deviation σ. In this paper, we assume
that these random variables, {z̃i}, corresponding to dura-
tional uncertainty are independent of each other. Note that
for RCPSP/max instances where the end-start time lag con-
straint exists, the temporal constraint can be violated during
execution. This is due to duration uncertainty, which causes
the end time of activities to be uncertain and uncontrollable.
Thus, as in RCPSP/max literature (Bartusch, Mohring, and

Radermacher 1988), we only handle the general start-start
form of time lag constraints in this paper.

Given the level of risk, ε, the goal is then to find a resource
and time feasible schedule (an assignment of start times to
activities) that minimizes the robust makespan (makespan is
the completion time of the last activity).

Partial Order Schedule
A Partial Order Schedule (POS) (Policella et al. 2004)
is a set of activities, which are partially ordered such that
any schedule with total activity order that is consistent with
the partial order is a resource and time feasible schedule.
Mathematically, a POS can be represented by a graph where
an activity is represented by a node and the edges represent
the precedence constraints between the activities. Within
a POS, each activity retains a set of feasible start times,
which provides the flexibility to respond to unexpected dis-
ruptions. To construct a POS, typically a feasible sched-
ule is first obtained using a simple greedy heuristic. Conse-
quently, a chaining procedure is used to construct the POS.
It should be noted the time lag constraints of RCPSP/max
have already been incorporated in the underlying temporal
constraints network which corresponds to a Simple Tempo-
ral Problem (Dechter, Meiri, and Pearl 1991) based on which
the POS is constructed. Hence, we do not need to model
time lags in the decision rule expressions henceforth.

Robust Local Search Framework
(Lau, Ou, and Xiao 2007) integrated techniques from ro-
bust optimization (Chen et al. 2008) with the classical local
search and proposed a Robust Local Search Framework to
tackle the RCPSP/max problem under duration uncertainty,
summarized as follows.

Segregated Linear Decision Rule In the segregated linear
decision rule (SLDR) proposed by (Chen et al. 2008), each
random variable z̃ is represented by two segregated random
variables z̃+ and z̃−:

z̃ = z̃+ − z̃−

z̃+ = max{z̃, 0}
z̃− = max{−z̃, 0}.

(1)

Thus, the uncertain processing time or duration of an
activity is composed of three components: its mean d0,
lateness z̃+ (i.e. max{d̃ − d0, 0}), and earliness z̃− (i.e.
max{d0 − d̃, 0})

d̃ = d0 + z̃+ − z̃−. (2)

For a normally distributed duration, i.e. z̃ ∼ N{0, σ}, the
respective values of mean and variance for the segregated
variables can be summarized as:

E[z̃+] = E[z̃−] =
σ√
2π

V ar[z̃+] = V ar[z̃−] =
(π − 1)σ2

2π
.

(3)

In the context of scheduling, activities are either con-
nected in series or in parallel, and hence the actual start times

of activities can be obtained by performing either a sum or
maximum on a set of random variables. Under SLDR (Chen
et al. 2008), upper bounds on both the sum and maximum
of random variables are derived as linear functions of segre-
gated variables.

• Serial Activities In the case of a project network involv-
ing k activities, any two of which have either precedence
constraints in between or competing for the same resource
units, a solution in the form of POS requires these activ-
ities be executed in series. Thus, the end time of a serial
k-activity project in SLDR is expressed as:

Ṽk(z̃+, z̃−) =
k∑

i=1

(d0
i + z̃+

i − z̃−i). (4)

• Parallel Activities Consider activities that are executed
concurrently, the upper bound of the end time of a paral-
lel k-activity project network in SLDR is represented by
a linear function of the positive segregated components of
duration perturbations:

Ṽk(z̃+, z̃−) ≤ max
i=1,...k

{d0
i }+

k∑

i=1

z̃+
i . (5)

Robust Fitness Function In (Lau, Ou, and Xiao 2007),
the robust optimization problem for scheduling was defined
as finding the minimum value V ∗ and a POS x, such that
we have a prescribed probability guarantee that the real-
ized makespan of the feasible schedule instantiated by the
POS does not exceed V ∗. In other words, computing the
minimum V ∗ such that the following probability bound is
guaranteed:

P (Ṽ (x, z̃) ≤ V ∗) ≥ 1− ε, (6)

where Ṽ (x, z̃) represents the actual makespan variable of a
feasible schedule derived from POS x with uncertainty pa-
rameters z̃, whose value varies with respect to the decision
rule as shown above.

From the one-sided Chebyshev’s Inequality, the above ro-
bust optimization problem can be reformulated as:

min V ∗

s.t. E[Ṽ (x, z̃)] +
√

1−ε
ε

√
V ar[Ṽ (x, z̃)] ≤ V ∗.

(7)

Thus, the fitness function to be used in the local search can
be obtained as a function of the expected value and variance
of the adjustable variable (i.e.Ṽ (x, z̃)). The fitness value fi-
nally returned is termed as the robust makespan.

Definition 1. Given a level of risk 0 < ε ≤ 1 and the ad-
justable function Ṽ (x, z̃) expressed under Segregated Linear
Decision Rule, the robust fitness function f(x, z̃, ε) of a POS
x, is defined as

f(x, z̃, ε) = E[Ṽ (x, z̃)] +

√
1− ε

ε

√
V ar[Ṽ (x, z̃)] (8)

Robust Local Search Algorithm To efficiently solve
problem of finding the POS that minimizes the robust
makespan, (Lau, Ou, and Xiao 2007) proposed to employ
the above robust fitness function in a traditional local search
algorithm. The input to this algorithm are an RCPSP/max
problem instance, mean and variance values of the segre-
gated variables of data perturbations and the level of risk,
while the output is the POS with a locally minimal robust
value.

In the algorithm, local search is conducted on activity
lists. An activity list is considered as the sequence of all
activities that satisfy the non-negative minimal and maxi-
mal time lag constraints, and it is obtained by employing a
greedy heuristic. Subsequently, each activity is scheduled
sequentially based on its order position in the activity list.
After finding a feasible schedule, a POS will be generated
by applying the chaining procedure proposed by (Policella
et al. 2004). Finally, each POS is evaluated by obtaining its
fitness value, and the solution with the lowest robust objec-
tive value is the best solution.

The key to the local search is the local moves between
activity lists in the space of all activity lists. In this case,
it is performed as follows: When the activity list results in
an infeasible schedule, the local move will randomly push
ahead the first activity which cannot be scheduled in the cur-
rent activity list. When the activity list results in a feasible
schedule, the local move will randomly pick two activities
and swap them in the current activity list, while satisfying
the non-negative minimal time lag constraints. In order to
explore more different activity lists, a probability set at 0.01
is introduced to accept the move to an activity list which
leads to an infeasible schedule.

Comments on Segregated Linear Rule Compared with
other linear decision rules (Ben-Tal and Nemirovski 2002),
the superiority of SLDR (Chen et al. 2008) lies in the ability
to linearly express an upper bound on a subset of random
variables by dissecting each uncertainty into its positive and
negative components (see Eqn 2), which is helpful to de-
cide the start time of each activity (and also eventually the
makespan which is represented as the start time of the final
dummy activity). Unfortunately, this decision rule increases
tractability and scalability at the expense of losing accuracy.

General Non-linear Decision Rule
As mentioned earlier, the SLDR was unable to provide tight
upper bounds on robust makespan, due to the restriction on
linear decision rules. In this section, we define a general
non-linear decision rule(GNLDR), which not only provides
tight upper bounds but is also efficiently computable and
used effectively for local search.

For clarity and comparison purposes, we use G̃ to de-
note the start time instead of Ṽ used by (Lau, Ou, and Xiao
2007). Given the mean and variance values of duration un-
certainty, we first provide the definition of this new decision
rule, i.e., the start time representation for activities in serial
or in parallel. Furthermore, we compute the robust fitness
value by computing the mean and variance values of the ad-
justable variable, G̃(x,z̃). To compare results with the pre-

vious method, we also investigate the specific case where
duration perturbation for each activity ai is normally dis-
tributed, i.e. z̃i ∼ N(0, σi).

Serial Activities
In GNLDR, we represent the end time of the serial k-activity
project network as the sum of all stochastic durations:

G̃k(z̃) =
k∑

i=1

(d0
i + z̃i). (9)

Therefore, in this case, we have the same representation as
the SLDR.

Since {z̃i}i=1,...k are random variables with zero mean,
we can then calculate the expected value as:

E[
k∑

i=1

(d0
i + z̃i)] =

k∑

i=1

d0
i . (10)

Because {z̃i} are assumed to be independent of each other,
the variance value is computed by the following expression:

V ar[
k∑

i=1

(d0
i + z̃i)] =

k∑

i=1

V ar[z̃i], (11)

and under normal distribution where z̃i ∼ N(0, σi), we have

V ar[
k∑

i=1

(d0
i + z̃i)] =

k∑

i=1

σ2
i . (12)

Note that the expressions for expected value and variance in
the case of serial activities are identical to the ones used in
(Wu., Brown., and Beck 2009).

Parallel Activities
In the parallel case, for ease of explanation, we begin by
considering two activities to be executed in parallel and then
extend the analysis to multiple parallel activities.

Two Parallel Activities The new decision rule to repre-
sent the starting time of an activity, which will begin after
the completion of two parallel activities is defined as:

G̃2(z̃) ≤ max{d0
1, d

0
2}+ max{z̃1, z̃2}. (13)

Note that we tighten the bound in Eqn ?? by replacing z̃+
1 +

z̃+
2 with max{z̃1, z̃2}.

Towards computing the robust fitness value, we now de-
rive the expressions for expected value and variance of the
adjustable variable, i.e., the RHS term of Eqn 13 in this case.
Firstly, for the expected value:

E[max{d0
1, d

0
2}+ max{z̃1, z̃2}]

= max{d0
1, d

0
2}+ E[max{z̃1, z̃2}]. (14)

In the general case, it is difficult to derive an exact expres-
sion for E[max{z̃1, z̃2}] and hence, we provide an upper
bound.
Proposition 1. Expected value for the maximum of two
general distributions, z̃1 and z̃2 is less than
1
2
(E[z̃1]+E[z̃2])+

1
2

√
V ar[z̃1] + V ar[z̃2] + (E[z̃1])2 + (E[z̃2])2

Proof. We begin by considering the following two equali-
ties:

max{z̃1, z̃2}+ min{z̃1, z̃2} = z̃1 + z̃2

max{z̃1, z̃2} −min{z̃1, z̃2} = |z̃1 − z̃2|
We now sum the above two equalities.

max{z̃1, z̃2} =
1
2
(z̃1 + z̃2 + |z̃1 − z̃2|), (15)

Thus, we can now compute the expected value of the maxi-
mum using the following equation.

E[max{z̃1, z̃2}] =
1
2
(E[z̃1] + E[z̃2] + E|z̃1 − z̃2|) (16)

In addition, by using the definition of variance, we obtain:

V ar|z̃1 − z̃2| = E(z̃1 − z̃2)2 − (E|z̃1 − z̃2|)2 ≥ 0,

Therefore,

E|z̃1 − z̃2| ≤
√

E(z̃1 − z̃2)2.

Since expected values for data perturbation can never be
negative during computation of robust fitness value, we can
further bound E|z̃1 − z̃2| as:

E|z̃1 − z̃2|
≤

√
V ar[z̃1] + V ar[z̃2] + E(z̃1)2 + E(z̃2)2.

Substituting this expression into Eqn 16 yields the bound

E[max{z̃1, z̃2}]
≤ 1

2 (E[z̃1] + E[z̃2])+
1
2

√
V ar[z̃1] + V ar[z̃2] + (E[z̃1])2 + (E[z̃2])2.

(17)
Hence the proof. ¥
In the special case where {z̃i} (i = 1, ...k) are normally

and identically distributed, i.e. z̃i ∼ N(0, σ), we know from
(E.Clark 1961) that there is a closed form representation for
the expected value of the maximum when k = 2 and k = 3,
respectively:

E[max{z̃1, z̃2}] =
σ√
π

E[max{z̃1, z̃2, z̃3}] =
3σ√
2π

Now we focus on deriving expressions for vari-
ance of the maximum of two general distributions, i.e.,
V ar[max(z̃1, z̃2)].
Proposition 2. Variance for the maximum of two general
distributions, z̃1 and z̃2 is less than
V ar(z̃1) + V ar(z̃2) + 1

2 (E(z̃1))2 + 1
2 (E(z̃2))2

Proof. From Eqn 15, we have

V ar[max(z̃1, z̃2)]
= 1

4V ar[z̃1 + z̃2 + |z̃1 − z̃2|]
≤ 1

2 (V ar[z̃1 + z̃2] + V ar|z̃1 − z̃2|).
(18)

Firstly, we consider the following two equations.

V ar|z̃1 − z̃2| = E(z̃1 − z̃2)2 − (E|z̃1 − z̃2|)2
V ar(z̃1 − z̃2) = E(z̃1 − z̃2)2 − (E(z̃1 − z̃2))2

Subtracting the second from the first yields

V ar|z̃1 − z̃2|
= V ar(z̃1 − z̃2) + (E(z̃1 − z̃2))2 − (E|z̃1 − z̃2|)2.

Now, we substitute this expression into the third term of
Eqn 18 to obtain:

V ar[max(z̃1, z̃2)]
≤ V ar(z̃1) + V ar(z̃2)+

1
2 (E(z̃1)− E(z̃2))2 − 1

2 (E|z̃1 − z̃2|)2.
(19)

When no specific distribution about duration perturbation
is known, we can obtain a bound for V ar[max(z̃1, z̃2)] as:

V ar[max(z̃1, z̃2)]
≤ V ar(z̃1) + V ar(z̃2) + 1

2 (E(z̃1))2 + 1
2 (E(z̃2))2.

(20)
Hence the proof. ¥
It is interesting to consider the special case when both ran-

dom variables are normally distributed. We first state the
following lemma1.
Lemma 0..1. If X is normally distributed X ∼ N(0, σ), then
Y = |X| is half-normally distributed, with

E(Y) = σ

√
2
π

. (21)

Under normal distribution z̃i ∼ N(0, σi), since z̃1 − z̃2

is also normally distributed, and z̃1 − z̃2 ∼ N(0, σ1 + σ2),
we can conclude from Lemma 0..1 that |z̃1− z̃2| follows half-
normal distribution with

E|z̃1 − z̃2| = (σ1 + σ2)

√
2
π

. (22)

Thus, if we substitute this expression into Eqn 19, we can ex-
press an upper bound on the variance value for the maximum
duration perturbation of two activities, when z̃i ∼ N(0, σi)
as :

V ar[max(z̃1, z̃2)] ≤ (1− 1
π

)(σ2
1 + σ2

2)− 2
π

σ1σ2. (23)

Multiple Parallel Activities Extending from two to k
(k > 2) parallel activities, the completion time can be upper
bounded by:

G̃k(z̃) ≤ max
i=1,...k

{d0
i }+ max

i=1,...k
{z̃i} (24)

In the following, we first compute the variance value of
the above RHS term and then use a similar procedure to
compute the expected value. The basic expression for vari-
ance of RHS is:

V ar[max
i=1,...k

{d0
i }+ max

i=1,...k
{z̃i}]

= V ar[max
i=1,...k

{z̃i}] (25)

To obtain the value of V ar[max
i=1,...k

{z̃i}] for general prob-

ability distributions, we take advantage of the analysis pro-
vided for the two-parallel-activity case above. The following
steps outline the overall idea:

1This can be found in statistics texts, and found online at
http://en.wikipedia.org/wiki/Half-normal distribution

(a) Firstly, we group the activity set {a1, ..., ak} into a couple
set {C1, ..., Cd k

2 e}, where each element Cj(j = 1, ...dk
2 e)

contains two different activities Cj = {aj1, aj2} chosen
from the activity set. Note that when k is an odd, the final
element in the couple set contains just one activity.
(b) For each couple Cj , we apply the maximum operator on
duration perturbations of involving activities. Denote c̃j =
max{z̃j1, z̃j2}, where z̃j1 and z̃j2 are duration perturbations
of the two activities involved in Cj , then V ar(c̃j) can be cal-
culated based on the expression for the two-parallel-activity
case.
(c) Then we have max

i=1,...k
{z̃i} = max

j=1,...d k
2 e
{c̃j}. (Note

again just one activity is contained in Cd k
2 e when k is odd).

Then, we can build another couple set from {C1, ..., Cd k
2 e},

and the same method from steps (1) and (2) above is used
to compute V ar[max

j=1,...d k
2 e
{c̃j}] based on Eqn 20 and/or

Eqn 23.
To generate the couple set {C1, ..., Cd k

2 e} for k activities

in parallel, we have k(k−1)
2 different ways of grouping the

activities. Each of these groupings can lead to different lev-
els of tightness of derived robust makespan. The problem to
find the grouping technique which provides the best robust
fitness value is an open question. Instead, we are trying to
provide a good grouping technique under normal distribu-
tion z̃i ∼ N(0, σi) by solving the following optimization
problem:

max
t

∑

j=1,...b k
2 c

σj1σj2 (26)

where t denotes the grouping technique and is also the deci-
sion variable; the size of solution space is k(k−1)

2 ; {Cj} is
the couple set constructed from the activity set under group-
ing method t; σj1 and σj2 are the standard deviations of data
perturbation for durations of activities contained in Cj .

Proposition 3. The solution t∗ to the optimization problem
of Eqn 26 is obtained by ordering the k activities in a non-
increasing order of their variance values and then grouping
all two nearest activities according to the order, i.e. Cj =
{aj1, aj2}, where j = 1, ...bk

2 c and the standard deviations
are in the following order:

σ11 ≥ σ12 ≥ σ21 ≥ σ22 ≥, ...σb k
2 c1 ≥ σb k

2 c2. (27)

Proof. Suppose we have another grouping method t′, in
which all elements in the couple set are the same as under
t∗ except two couples 2 where the ordering is different, i.e.,
Cm = {am1, an2} and Cn = {am2, an1} (m 6= n), where
Cm = {am1, am2} and Cn = {an1, an2} under t∗. Without
loss of generality, assume m > n and from Eqn 27, we have

σm1 ≥ σm2 ≥ σn1 ≥ σn2. (28)

2It should be noted that if there is an ordering change in only
one couple, then the method still produces the same solution be-
cause within a couple the variance computation does not consider
the order.

Since t′ is supposed to provide a solution which is no less
(defined in Eqn 26) than t∗, i.e.
σ11σ12 + ... + σm1σn2 + ... + σn1σm2 + ... + σb k

2 c1σb k
2 c2≥

σ11σ12 + ... + σm1σm2 + ... + σn1σn2 + ... + σb k
2 c1σb k

2 c2.
Therefore, we have

σm1σn2 + σn1σm2 ≥ σm1σm2 + σn1σn2,

which is equivalent to: (σm1 − σn1)(σn2 − σm2) ≥ 0.
This contradicts Eqn 28 (except the case where all standard
deviations are equal, in which case mixing the order does
not affect anything). Thus, there exists no such t′ which
is different from t∗ by at least two couples and has better
objective value. The general case that t′ has multiple (more
than two) couples different from t∗ can be easily derived
from to this case (and is omitted due to space constraints).

Hence the proof. ¥
As for analyzing the expected value E[max

i=1,...k
{z̃i}], we

apply the same procedure employed to calculate the vari-
ance, i.e., based on the group solution returned by the above
optimization problem, we first calculate the expected value
for each couple and then, get the final bound following
Eqn 17.

Extended Robust Local Search
In this section, we derive a new fitness function under our
proposed GNLDR, and present how the fitness function can
used to guide the local search towards finding robust execu-
tion strategies (POS).

Fitness Function under General Non-linear Rule
Under GNLDR, we know how the actual start times of the
activities are to be set with respect to dynamic realizations
of uncertainty and a POS. The makespan for the POS, which
is also the start time of the final dummy activity a variable,
can as well be constructed(or upper bounded). Moreover,
the mean and variance values of the makespan (or its upper
bound) can be obtained in terms of given mean and variance
values of duration perturbation, according to different ways
of connection between activities analyzed above.

Given a 0 < ε ≤ 1, our goal is to find the minimum
robust makespan G∗ and a policy (i.e. POS) such that we
have 1 − ε probability guarantee that the actual realized
makespan instantiated by the policy does not exceed G∗.
Based on the similar analysis in (Lau, Ou, and Xiao 2007),
we can also derive the robust fitness function under our
proposed non-linear decision rule which will be used to
guide the local search towards robust strategies:

Definition 2. Given a level of risk 0 < ε ≤ 1 and
the adjustable function G̃(x, z̃) expressed under General
Non-linear Decision Rule, the robust fitness function
g(x, z̃, ε) of a POS x, is defined as

g(x, z̃, ε) = E[G̃(x, z̃)] +

√
1− ε

ε

√
V ar[G̃(x, z̃)] (29)

Algorithm Design
To search for better schedules, we provide a minor modifi-
cation to local search algorithm provided by Lau et al. (Lau,
Ou, and Xiao 2007). Given the RCPSP/max problem in-
stance, mean and variance values of duration perturbations,
level of risk prescribed by the planner, this algorithm will
also return the POS with the minimal robust makespan G∗.

We perform local search on the neighborhood set of activ-
ity lists and apply the same heuristic to generate the initial
solution as in (Lau, Ou, and Xiao 2007). Where we depart
from that work in our algorithm is that we design a fitness-
based neighborhood generation mechanism, rather than ran-
domly picking the activity list from a randomly generated
neighborhood. The idea is, that for the current activity list,
five candidate neighbors will be generated randomly and lo-
cal move will pick the one which results in a POS with the
best objective value. To explore different activity lists, we
set a higher probability 0.8 to move from an activity list
which results in a feasible schedule to one which lead to
an infeasible schedule.

Experimental Evaluation
We tested on 3 benchmark sets for RCPSP/max: J10, J20
and J30 as specified in the PSPLib (Kolisch, Schwindt, and
Sprecher 1998). Each set contains 270 problem instances
(denoted from PSP1 to PSP270) with duration range for
each activity as [1,10]. The maximum number of activ-
ities for J10, J20, J30 are 10, 20, 30, respectively. For
each benchmark set, we record the average results over the
solved problem instances included in that set. Our code
was implemented in C++ and executed on a Core(TM)2
Duo CPU 2.33GHz processor under FedoraCore 11 (Ker-
nel Linux 2.6.29.4-167.fc11.i586) with a main memory of
1004MB.

For each activity ai, we set the expected value d0
i of

the stochastic duration as the corresponding deterministic
duration given by the benchmarks, and assume that dura-
tion uncertainty is normally distributed, i.e. z̃i ∼ N(0, σ).
We run our algorithm across 5 different duration variabili-
ties σ = {0.1, 0.5, 1, 1.5, 2} and 4 increasing levels of risk
ε = {0.01, 0.05, 0.1, 0.2} with the maximal number of it-
erations for local search set to 1000. To reduce the possi-
ble effect of random factors during the search process on
final results, we average over 10 random executions for each
problem instance.

Factors affecting G∗

We first present the results of applying our local search
guided by our proposed GNLDR, and study how the robust
makespan is affected by the level of risk ε and the standard
deviation σ of duration uncertainty. This subsection also il-
lustrates that our new algorithm retains the desirable proper-
ties of the algorithm by (Lau, Ou, and Xiao 2007). The algo-
rithm will return an execution strategy (denoted as POSG∗)
with the robust makespan G∗. We observe that J30 has the
same trend as for J10 and J20, thus missing due to space
constraints. Figure 1 gives the results for variation in dura-
tion standard deviation and level of risk for J10 and J20. We

(a) Results of J10 (b) Results of J20

Figure 1: G∗ over different values of σ and ε.

observe that:
(a) As the level of risk ε increases, the robust makespan G∗
decreases. Clearly, the lower risk that the planner is will-
ing to take, the higher robust value of the generated exe-
cution strategy, and our method is capable of quantifying
the tradeoff, which can help the planner to decide on the
desired strategies. Thus, the customer-oriented property of
the approach of (Lau, Ou, and Xiao 2007) is retained in our
method.
(b) As the degree of duration variability σ increases, the

robust makespan G∗ increases, and the value becomes more
sensitive to σ when the level of risk is constrained to be to a
small value (e.g. ε = 0.01).

50

60

70

80

90

0.01 0.05 0.1 0.2

80

88

96

104

112

120

128

136

0.01 0.05 0.1 0.2

100

108

116

124

132

140

148

156

164

0.01 0.05 0.1 0.2

Figure 2: Comparison of G∗ and V ∗
POSG∗ under σ = 1.5.

G∗-guided Local Search vs V ∗-guided Local Search
In our next experiment, we compare G∗ and V ∗ correspond-
ing to POSG∗ . This is to check whether the new robust fit-
ness value provided by the new decision rule provides tighter
bounds on robust makespan values. As can be noted from
Figure 2, except for very small values of ε (= 0.01), our new
decision rule is able to provide better robust makespan val-
ues. For very small values of epsilon, the robust makespan
value provided by SLDR is better. However, for slightly
higher values of ε (from 0.05), G∗ dominates and the range
of domination increases for higher values of ε.

Next, in Figure 3, we compare the quality of the execution
strategies obtained by our scheme, against those produced
by the search method guided by the fitness evaluation func-
tion V ∗ (Lau, Ou, and Xiao 2007). More precisely, we wish

to obtain insights on and compare the distributions of the
actual makespans of schedules derived using these methods.

For this purpose, we generate a set of 100 samples of re-
alizations of durational uncertainty and test with all 270 in-
stances of each benchmark set with different levels of risk
ε = 0.2, ε = 0.1 and ε = 0.05 to obtain the respective
POS, and then compute the actual makespans of schedules
derived from the respective POS under the given realization
samples. This difference was observed across the board in
all examples of the three sets for all values of ε except 0.01.
Due to the same trend, we randomly selected three prob-
lem instances from the each benchmark set and summary
the results in Figure 3. Figure 3 also compares the cumula-
tive frequency distributions of the actual makespans. We ob-
serve that our method provided far better realized makespans
- both in absolute terms, as well as distributionally.

68

70

72

74

76

78

80

82

0%

20%

40%

60%

80%

100%

69 71 73 75 77 79 81

(a) Results of PSP50 from J10 under ε = 0.2

40

45

50

55

60

0%

20%

40%

60%

80%

100%

41 43 45 47 49 51 53 55 57

(b) Results of PSP45 from J20 under ε = 0.1

85

90

95

100

105

110

0%

20%

40%

60%

80%

100%

86 88 90 92 94 96 98 100 102 104 106 108

(c) Results of PSP45 from J30 under ε = 0.05

Figure 3: Comparison of Actual Makespans.

Related Work
In scheduling with duration uncertainty, one key approach is
to execute a baseline schedule that is buffered against uncer-

tainty (Aytug et al. 2005). However, baseline schedules may
become brittle in face of unpredictable execution dynamics
and can quickly get invalidated. On the other hand, Partial
Order Schedules (POS) defined in (Policella et al. 2004)
can retain temporal flexibility whenever the problem con-
straints allow it and can often absorb unexpected deviation
from predictive assumptions. In (Rasconi., Cesta., and Poli-
cella 2010), different methods of generating POS are com-
pared in terms of robustness, flexibility and fluidity of the
resulting schedules.

For a good survey of works on project scheduling under
uncertainty, one may refer to (Herroelen and Leus 2005).
As for the Job Shop Scheduling Problems, a recent work
in (Rodrı́guez et al. 2009) modeled uncertain durations as
fuzzy numbers and improved local search methods to solve
the problem.

Robust Optimization has been an active topic in Opera-
tions Research. (Chen et al. 2008) proposed tractable de-
cision rule models to solve linear stochastic optimization
problems. To overcome the inherent computational chal-
lenge of this decision rule model in solving large-scale prob-
lems, (Lau, Ou, and Xiao 2007) integrated robust optimiza-
tion techniques into local search and proposed Robust Local
Search framework. This framework was then extended with
additional consideration of unexpected resource breakdowns
in (Fu, Lau, and Xiao 2008), so that POS can absorb both re-
source and duration uncertainty.

Conclusion
Given a level of risk 0 < ε ≤ 1 chosen by the planner, we
concerned with the problem of finding the minimum (1−ε)-
guaranteed makespan (i.e. Robust Makespan) and a policy
(i.e. POS) such that when uncertainty is dynamically re-
alized, the execution policy will result in a solution whose
value is as good as robust makespan. We first put forward a
new decision rule utilized in scheduling to help specify the
start times for all activities with respect to execution pol-
icy and dynamic realizations of data uncertainty. Based on
the decision rule, new fitness function was then derived to
evaluate robustness, which was finally integrated into a lo-
cal search framework to produce the solution with robust
makespan. Experimental results illustrate the improved per-
formance of local search with the new fitness evaluation,
which provider tighter bounds on robust makespan and bet-
ter partial order schedules compared to the existing method.

References
Aytug, H.; Lawley, M. A.; McKay, K.; Mohan, S.; and Uz-
soy, R. 2005. Executing production schedules in the face of
uncertainties: A review and some future directions. In Eu-
ropean Journal of Operational Research, volume 165(1),
86–110.
Bartusch, M.; Mohring, R. H.; and Radermacher, F. J.
1988. Scheduling project networks with resource con-
straints and time windows. Ann. Oper. Res. 16(1-4):201–
240.
Beck, J. C., and Wilson, N. 2007. Proactive algorithms for

job shop scheduling with probabilistic durations. J. Artif.
Int. Res. 28(1):183–232.
Ben-Tal, A., and Nemirovski, A. 2002. Robust optimiza-
tion - methodology and applications. Math. Prog. Series B
92:453–480.
Chen, X.; Sim, M.; Sun, P.; and Zhang, J. 2008. A linear
decision-based approximation approach to stochastic pro-
gramming. Oper. Res. 56(2):344–357.
Dean, B. C.; Goemans, M. X.; and Vondrák, J. 2004. Ap-
proximating the stochastic knapsack problem: The benefit
of adaptivity. In FOCS, 208–217.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artif. Intell. 49(1-3):61–95.
Demeulemeester., E. L., and Herroelen., W. S. 2002.
Project scheduling : a research handbook. Kluwer Aca-
demic Publishers, Boston.
E.Clark, C. 1961. The greatest of a finite set of random
variables. Oper. Res. 9(2):145–162.
Fu, N.; Lau, H. C.; and Xiao, F. 2008. Generating robust
schedules subject to resource and duration uncertainties. In
ICAPS, 83–90.
Hagstrom., J. N. 1988. Computational complexity of pert
problems. Networks 18:139–147.
Herroelen, W., and Leus, R. 2005. Project scheduling un-
der uncertainty: Survey and research potentials. In Eu-
ropean Journal of Operational Research, volume 165(2),
289–306.
Kolisch, R.; Schwindt, C.; and Sprecher, A. 1998. Bench-
mark Instances for Project Scheduling Problems. Kluwer
Academic Publishers, Boston. 197–212.
Lau, H. C.; Ou, T.; and Xiao, F. 2007. Robust local
search and its application to generating robust schedules.
In ICAPS, 208–215.
Möhring, R. H. 2001. Scheduling under uncertainty:
Bounding the makespan distribution. In Computational
Discrete Mathematics, 79–97.
Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A.
2004. Generating robust schedules through temporal flex-
ibility. In International Conf. on Automated Planning and
Scheduling (ICAPS), 209–218.
Rasconi., R.; Cesta., A.; and Policella, N. 2010. Validat-
ing scheduling approaches against executional uncertainty.
Journal of Intelligent Manufacturing 21(1):49–64.
Rodrı́guez, I. G.; Vela, C. R.; Puente, J.; and Hernández-
Arauzo, A. 2009. Improved local search for job shop
scheduling with uncertain durations. In ICAPS.
Vonder, S.; Demeulemeester, E.; and Herroelen, W. 2007.
A classification of predictive-reactive project scheduling
procedures. J. of Scheduling 10(3):195–207.
Wu., C. W.; Brown., K. N.; and Beck, J. C. 2009. Schedul-
ing with uncertain durations: Modeling - robust schedul-
ing with constraints. Computers and Operations Research
36:2348–2356.

