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Abstract

In this paper, we solve cooperative decentralized stochastic
planning problems, where the interactions between agents
(specified using transition and reward functions) are depen-
dent on the number of agents (and not on the identity of the
individual agents) involved in the interaction. A collision of
robots in a narrow corridor, defender teams coordinating pa-
trol activities to secure a target, etc. are examples of such
anonymous interactions. Formally, we consider problems that
are a subset of the well known Decentralized MDP (DEC-
MDP) model, where the anonymity in interactions is speci-
fied within the joint reward and transition functions. In this
paper, not only do we introduce a general model model called
D-SPAIT to capture anonymity in interactions, but also pro-
vide optimization based optimal and local-optimal solutions
for generalizable sub-categories of D-SPAIT.

Introduction
Decentralized Markov Decision Problem (Dec-MDP) model
provides a rich framework to tackle decentralized decision-
making problems. However, solving a Dec-MDP problem
to create coordinated multi-agent policies in environments
with uncertainty is NEXP-Hard (Bernstein et al. 2002). Re-
searchers have typically employed two types of approaches
to address this significant computational complexity: (1) ap-
proximate dynamic programming and policy iteration ap-
proaches (Seuken and Zilberstein 2007; Bernstein, Hansen,
and Zilberstein 2005); (2) exploit static and dynamic spar-
sity in interactions (Becker et al. 2004; Nair et al. 2005;
Velagapudi et al. 2011; Witwicki and Durfee 2012; Mostafa
and Lesser 2012). In this paper, we pursue a third type
of approach, where in we exploit anonymity in interac-
tions. This is generalising on the notion of aggregate in-
fluences that has previously been considered in existing
work (Witwicki and Durfee 2012; Mostafa and Lesser 2012;
Varakantham et al. 2009).

More specifically, we exploit the fact that in many decen-
tralised stochastic planning problems, interactions between
agents (specified as joint transition or reward functions) are
not dependent on the identity of the agents involved. Instead
they are dependent only on the number of agents involved
in the interaction. For instance, in the navigation domains
of (Melo and Veloso 2011) and (Varakantham et al. 2009),
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rewards (and transitions) in narrow corridors are dependent
only on the number of agents entering the narrow corridor
simultaneously and not on the specific agents. Similarly, in
the coordination problem introduced by (Yin and Tambe
2011) for Autonomous Underwater and Surface Vehicles
(AUVs and ASVs), the rewards are associated with the num-
ber of agents sampling the underwater samples simultane-
ously and not which specific agents. In fact, most sensor
network problems (Kumar, Zilberstein, and Toussaint 2011;
Nair et al. 2005) have coordination problems with anony-
mous interactions, where reward is dependent on the num-
ber of agents tracking a region (and not which specific sen-
sors). Finally, in the context of coordinating defenders in
security patrolling problems (Shieh et al. 2013), the reward
for patrolling a target by multiple agents is dependent on the
number of agents patrolling a target.

While anonymity in interactions has been considered in
the context of competitive games (Roughgarden and Tardos
2002; Varakantham et al. 2012; Ahmed, Varakantham, and
Cheng 2012), it has not been considered in the context of
decentralized and stochastic cooperative planning and that
is the main focus of this paper. Concretely, we first pro-
vide a general model called Decentralized Stochastic Plan-
ning with Anonymous Interactions (D-SPAIT) to represent
anonymity in interactions within the context of the Dec-
MDPs framework. Secondly, we develop an optimization
based formulation for solving the general D-SPAIT prob-
lems and in reference to this optimization, we prove a key
theoretical result regarding the scalability of this formula-
tion. Thirdly, we develop specific and scalable methods
for generalizable sub-categories of the D-SPAIT problems
and finally, we demonstrate the performance of these ap-
proaches on random D-SPAIT problems. In our experimen-
tal results, we also compare against Softmax based Flow Up-
date (SMFU) algorithm, which was developed for competi-
tive games and can be adapted to solve D-SPAIT problems.

Model: D-SPAIT
In this section, we describe the Decentralized Stochastic
Planning with Anonymous InteracTions (D-SPAIT) model
that combines the cooperative stochastic planning frame-
work of Decentralized MDP (DEC-MDP) (Bernstein et al.
2002) with anonymity in interactions introduced in the con-
text of multi-agent routing and planning models (Roughgar-
den and Tardos 2002; Varakantham et al. 2012) from com-
petitive game theory. More formally, D-SPAIT is described
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Figure 1: Example of navigation task, where agents are on the
left side and goals are on the right side. For agents to achieve the
goals, they have to pass through a narrow corridor. If multiple
agents pass through the narrow corridor, then each agent receives a
penalty that is dependent on the number of agents passing through
the corridor. Except for interactions in the narrow corridor, agents
can independently move through the grid world.

using the tuple of 〈P,S,A,R, φ, (δi)i∈P , T 〉:
P is the agent population, S is the set of states and A is the
action set of any individual agent in P .
R is the joint reward and is expressed as the sum of individ-
ual rewards, R parameterized by the number of agents due
to any anonymous interactions in the joint state, action pair:

Rt(
〈
s1, .., s|P|

〉
,
〈
a1, .., a|P|

〉
) =

∑
i

Rt(si, ai, d
t
si,ai

) (1)

where dtsi,ai
refers to the number of agents impacting the

reward function for si, ai in the anonymous interaction. For
instance, in the example of Figure 1, number of agents im-
pacting the reward for an agent entering the narrow corridor
from S1 and taking action East will be those agents which
are either entering the narrow corridor from S1 taking action
East or S2 taking West. Therefore, if xti(s, a) denotes the
number of times agent i takes action a in s at time step t,
then dts1,”East” corresponding to interaction in narrow cor-
ridor is given by:

dts1,”East” =
∑
i

[
xti(s1, ”East”) + xti(s2, ”West”)

]
When an agent is not part of any interaction, then:
Rt(si, ai, d

t
si,ai

) = Rt(si, ai)
φ refers to the joint transition probability and is expressed as
a product of individual transition functions, ϕ parameterized
by the number of agents numbers due to any anonymous
interactions in the joint state, action pair:

φt(
〈
s1, · · · , s|P|

〉
,
〈
a1, · · · , a|P|

〉
,
〈
ŝ1, · · · , ŝ|P|

〉
) =∏

i

ϕt(si, ai, ŝi, d
t
si,ai

) (2)

δi is the initial belief over states for agent i. δti = 0 for all
decision epochs t > 0. T is the time horizon. The goal is
to compute a strategy for the individual agents so as to max-
imize joint expected reward over the time horizon. Some
important aspects of the D-SPAIT model are:
(1) The individual rewards and transitions are parameterized
by the number of agents in Equations 1 and 2 respectively.
In general, dtsi,ai

can be different for reward and transition

functions and we define dtsi,ai
for the reward function as:

dtsi,ai
=
∑
i

∑
(s,a)∈IR

si,ai

xti(s, a) (3)

where IRsi,ai
and Iϕsi,ai

refer to the set of state, action pairs
that impact (through the number of agents executing action
ai in state si) the reward and transition function respectively
for (si, ai) pair.
(2) Since the transition and reward functions of agents are in-
dependent given the number of agents, dtsi,ai

for each si, ai
and t values, the value function over all agents is given by:

V 0({πi}) =
∑

i,si,ai,t

Rt(si, ai, d
t
si,ai

)xti(si, ai) (4)

where xti(si, ai) is the frequency of executing action ai in
state si for agent i at time t given joint policy {πi}.

Optimization Approach
We first formulate the solution to a D-SPAIT problem as an
optimization problem. Given that the individual reward and
transition functions (parameterized by number of agents)
can be any arbitrary functions, we cannot solve this opti-
mization problem in the most general case. However, this
optimization based formulation helps deduce an important
property associated with optimal policies for D-SPAIT. In-
tuitively, the problem faced by every agent in D-SPAIT is
an MDP with the reward and transition functions that de-
pend on the number of agents involved in the anonymous
interactions. Due to the dependence of reward and transition
function on number of agents, this optimization problem be-
comes significantly more complicated than a single agent
MDP. xti(s, a) in the formulation represents the fraction of
times agent i takes action a in state s at time t.

Algorithm 1 SOLVEDSPAIT()
Inputs: R,ϕ, δ
Outputs: x = {xti(s, a)}i,t,s,a

max
x

∑
s,a,i,t

xti(s, a) ·Rt(s, a,
∑

j,(s′,a′)∈IR
s,a

xtj(s
′, a′))

∑
a

xti(s, a)−
∑
s′,a

[
xt−1i (s′, a)·

ϕt−1(s′, a, s,
∑

j,(s′,a′)∈Iϕ
s,a

xt−1j (s′, a′))

]
= δti(s),∀i, s

(5)

xti(s, a)

{
≥ 0, ∀i, s, a, t ≥ 0

= 0, ∀i, s, a, t < 0

The formulation in SOLVEDSPAIT() has three aspects:
(1) Since the goal is to compute optimal expected joint re-
ward for all agents, objective includes a summation over all
agents i.



(2) The reward function corresponding to a state, ac-
tion pair in the objective has the number of agents im-
pacting the reward value in that state, action pair, i.e.,∑

j,(s′,a′)∈IR
s,a
xtj(s

′, a′)) as a parameter. Since we have a
finite horizon problem, xtj(s

′, a′) corresponds to the propor-
tion of one agent (i.e. j) taking action a in state s′ at time t′
and consequently,

∑
j x

t
j(s
′, a′) corresponds to the number

of agents taking action a′ in state s′ at time t.
(3)Similar to the reward function above, the transition func-
tion in the first constraint has an extra parameter correspond-
ing to the number of agents executing a dependent action in
dependent state.

We now prove an important property for populations,
where the starting belief distribution, b over states is the
same for all agents. We use xi to represent the vector of
flow values, xti(s, a) for all s, a, t.

Proposition 1 If x =
[
x1, x2, . . . x|P|

]
is the optimal so-

lution for the optimization problem in Algorithm 1 and
∀i, j, s : δ0i (s) = δ0j (s), then x̂ defined below is also an
optimal solution for the same optimization problem :

x̂ =
[∑

i xi

|P|
,

∑
i xi
|P|

, . . .
]

Proof. We first show that x̂ belongs to the feasible region.
By summing up the LHS and RHS of the Constraint 5 for all
agents i and for each value of s and t, we have:∑

a

∑
i x

t
i(s, a)

|P| −
∑
s′,a

∑
i x

t−1
i (s′, a)

|P| ·

[
ϕt−1

(
s′, a, s,

∑
i,(s′,a′)∈Iϕs,a

|P| · x
t−1
i (s′, a′)

|P|

)]
= δt(s)

Therefore, if x is a feasible solution to the optimization
problem in SOLVEDSPAIT(), then so is x̂. Now, we show
that x̂ is also an optimal solution. To demonstrate this, we
calculate the objective value corresponding to x and show
that it is equal to the value obtained with x̂.

F(x) =
∑
s,a,t

[∑
i

xti(s, a)
]
·Rt

(
s, a,

∑
j

xtj(s, a)
)

=
∑
s,a,t

[
|P| ·

∑
i x

t
i(s, a)

|P|

]
·Rt

(
s, a,

[
|P| ·

∑
j x

t
j(s, a)

|P|

)
= F(x̂)

�
Proposition 1 provides a very important result that re-

moves the dependence of SOLVEDSPAIT() on the num-
ber of agents. It indicates that the class of symmet-
ric joint policies is guaranteed to contain at least one
optimal joint policy. Hence, we can rewrite the op-
timization problem in SOLVEDSPAIT() as the one in
SOLVEDSPAIT-HOMOGENEOUS(). While the scalability
of SOLVEDSPAIT-HOMOGENOUS is independent of num-
ber of agents, it is dependent on two key factors.
(1) The structure of Iϕ and IR functions, i.e., the depen-
dence of reward and transition for a given state action pair
on number of agents in other state action pairs. We first
describe the simpler case, where dependence of reward and
transition for a given state action pair (s, a) at time t is de-
pendent on number of agents executing action a in state s at
the same time step t, i.e.,

Iϕs,a = {(s, a)}; IRs,a = {(s, a)} (6)

Algorithm 2 SOLVEDSPAIT-HOMOGENOUS()
Inputs: R,ϕ, δ
Outputs: x = {xt(s, a)}t,s,a

max
x

∑
s,a,t

|P| · xt(s, a) · Rt(s, a, |P| ·
∑

(s′,a′)∈IR
s,a

xt(s′, a′))

∑
a

xt(s, a)−
∑
s′,a

xt−1(s′, a)·

ϕt−1
(
s′, a, s, |P| ·

∑
(s̃,ã)∈Iϕ

s′,a

xt−1(s̃, ã)
)

= δt(s),∀i, s

xt(s, a)

{
≥ 0, ∀i, s, a, t ≥ 0

= 0, ∀i, s, a, t < 0

However, our approaches are applicable to general Iϕ and
IR structures and we provide specific comments in the sub-
section on ”Discussion on generic IR and Iϕ Structures”.
(2) Functional form of reward, R and transition, ϕ func-
tions with respect to the number of agents, dt(s, a). For
instance, it will be very difficult to solve SOLVEDSPAIT-
HOMOGENOUS for non-linear and non-convex functions.
We focus on functional forms for reward and transitions that
can be used to approximate non-linear and non-convex func-
tional forms, such as: (a) Linear; (b) Piecewise constant; (c)
Piecewise linear and convex.

We now focus on functional forms where it is possible to
provide scalable approaches (optimal and local-optimal).

Linear Rewards
Our first set of assumptions on the reward and transition
functions where we can provide a scalable approach are:
(1) Transition function, φ is independent of d, i.e.
φt(s, a, s′, dts,a) = φt(s, a, s′).
(2) Reward function, R is dependent linearly on dts,a, i.e.
Rt(s, a, ds,a) = mt

s,a · dts,a + cts,a. More specifically, we
are interested in linear functions, where the reward decreases
with increase in number of agents, that is to say, all mt

s,a are
less than 0. It should be noted that a positive set of slopes
imply that the problem is not concave and hence requires
more sophisticated approximations.

Linearity of reward function and the structure of I (from
Equation 6) reduces the objective in Algorithm 2 as follows:∑

s,a,t

|P| · xt(s, a) · Rt(s, a, |P| · xt(s, a))

=
∑
s,a,t

[
mt

s,a · |P|2 ·
(
xt(s, a)

)2
+ cts,a · |P| · xt(s, a)

]
(7)

Thus, even when the reward function is linear, we have a
quadratic objective. A general quadratic objective cannot be
solved in polynomial time and typically requires non-linear
solvers. However, in cases of resource congestion or colli-
sion interactions, reward decreases with number of agents
and hence there is a negative slope on the reward function.
In such cases, we can show that the objective is concave and
hence has only one maxima.



Proposition 2 If all slopes mt
s,a are negative, then the ob-

jective provided in Equation 7 is concave.
Proof Sketch. We prove this proposition by showing that
the Hessian matrix, H corresponding to the objective func-
tion is negative semidefinite. Let F denote the objective
function, then

F(x) =
∑
s,a,t

mt
s,a · |P|2 ·

(
xt(s, a)

)2
+ cts,a · |P| · xt(s, a)

We first consider the diagonal element for the row corre-
sponding to ŝ, â, t̂:

H(
〈
ŝ, â, t̂

〉
,
〈
ŝ, â, t̂

〉
) =

∂2F
∂2[xt̂(ŝ, â)]

= 2 ·mt̂
ŝ,â · |P|2

We now consider a non diagonal element in the row corre-
sponding to ŝ, â, t̂, and column corresponding to s̃, ã, t̃:

H(
〈
ŝ, â, t̂

〉
,
〈
s̃, ã, t̃

〉
) =

∂2F
∂[xt̂(ŝ, â)]∂[xt̃(s̃, ã)]

= 0

Therefore, all the diagonal elements ofH are negative and
other elements are zero. Hence, for any vector y: yTHy ≤
0. Thus F is negative semi definite and concave. �

Proposition 2 is important as concavity implies the max-
imization problem in Algorithm 3 can be solved in polyno-
mial time. More practically, the optimization can be solved
using standard LP solvers like CPLEX.

Algorithm 3 SOLVEDSPAIT-LINEAR (〈m, c〉)
Inputs: {mt

s,a, c
t
s,a}s,a,t, ϕ, δ

Outputs: x = {xt(s, a)}t,s,a

max
x

∑
s,a,t

[
mt

s,a ·
(
|P| · xt(s, a)

)2
+ cts,a · |P| · xt(s, a)

]
s.t.

∑
a

xt(s, a)−
∑
s′,a

xt−1(s′, a)ϕt−1(s′, a, s) = δt(s) ∀s, t

xt(s, a)

{
≥ 0, ∀i, s, a, t ≥ 0

= 0, ∀i, s, a, t < 0

PieceWise Constant (PWC) Transition Function
From the assumptions in the previous sub section, we relax
the assumption with respect to the transition function. More
specifically, we no longer assume that transition function is
independent of d, instead, we assume a piecewise constant
dependency on d, i.e., ∀s, a, s′, t, we have

ϕt(s, a, s′, d) =


pt,1(s, a, s′), if ď1 ≤ d ≤ d̂1
pt,2(s, a, s′), if ď2 ≤ d ≤ d̂2
. . . , . . .

(8)

A key advantage of piecewise constant functions is their
ability to closely approximate very general functions. The
impact of the piecewise constant dependency on d is on the
flow preservation constraint ∀s, a:∑
a

xt(s, a)−
∑
s′,a

xt(s′, a) · ϕt(s′, a, s, |P| · xt(s′, a)) = δt(s)

Since transition function is no longer a constant, the terms
xt(s′, a)·ϕt(s′, a, s, |P|·xt(s′, a)) are a product of two vari-
ables and hence are non-linear. In this section, we contribute
novel mechanisms to linearize the above terms. We use a set
of new variables, {Xt(s′, a, s)} that represent the product
terms, i.e.,:

Xt(s′, a, s) = xt(s′, a) · ϕt(s′, a, s, |P| · xt(s′, a)) (9)

To linearize these product terms, we first provide equivalent
expressions for the new variables as follows:

Xt(s′, a, s) =
∑
k

Xt,k(s′, a, s), where (10)

Xt,k(s′, a, s) ={
pt,k(s′, a, s) · xt(s′, a), if ďk ≤ |P| · xt(s′, a) ≤ d̂k
0, otherwise

(11)

The above expressions require two linearization steps.
Firstly, we need to linearize the conditional required to
check if the overall flow on state s′ and a (= |P| · xt(s′, a))
belongs to an interval [ďk, d̂k]. The binary variables,
yt,k(s′, a) are used to represent the satisfaction of this con-
dition, i.e., yt,k(s′, a) = 1 implies that the |P| · xt(s′, a)

value belongs to the interval [ďk, d̂k]. More specifically, the
constraints that are used to achieve this assignment are as
follows: ∑

k

yt,k(s, a) = 1 (12)

1− yt,k(s, a) ≥ ďk − |P | · xt(s, a)

M
(13)

1− yt,k(s, a) ≥ |P | · x
t(s, a)− d̂k
M

(14)

Secondly, we need to set Xt,k(s′, a, s) to pt,k(s′, a, s) ·
xt(s′, a) if yt,k(s′, a) is set to 1 and a value of zero other-
wise. The linearized constraints corresponding to this con-
ditional assignment are as follows:

Xt,k(s′, a, s) ≤ xt(s′, a) · pt,k(s′, a, s) (15)

Xt,k(s′, a, s) ≤ yt,k(s′, a) ·M (16)

Xt,k(s′, a, s) ≥ xt(s′, a) · pt,k(s′, a, s)− (1− yt,k(s′, a)) ·M
(17)

Proposition 3 Constraints 12, 13 and 14 ensure that:
(a) yt,k(s, a) = 0, if |P | · xt(s, a) /∈ [ďk, d̂k].
(b) yt,k(s, a) = 1, if |P | · xt(s, a) ∈ [ďk, d̂k].

Proposition 4 Constraints 10, 15, 16, 17 ensure that defi-
nition of X variables in Equation 9 are satisfied.

Proposition 5 M in constraints 16 and 17 can be set to 1
without violating their correctness. Large values of M im-
ply longer run-times (Hooker 1995) and thus, Proposition 5
is important in reducing the run-time required to solve the
optimization problem significantly.



Algorithm 4 SOLVEDSPAIT-PWC()
Inputs: {ct,ks,a}t,k,s,a, ϕ, δ
Outputs: x = {xt(s, a)}i,t,s,a

max
x

∑
s,a,t,k

|P| · Zt,k(s, a) s.t.

Zt,k(s, a) ≤ zt,k(s, a) ·M ;Zt,k(s, a) ≤ xt(s, a) ∗ ct,ks,a

Zt,k(s, a) ≥ xt(s, a) ∗ ct,ks,a − (1− zt,k(s, a)) ·M∑
a

xt(s, a)−
∑
s′,a

xt−1(s′, a)ϕt−1(s′, a, s) = δt(s) ∀s, t

∑
k

zt,k(s, a) = 1; 1− zt,k(s, a) ≥ ďk − |P | · xt(s, a)

M

1− zt,k(s, a) ≥ |P | · x
t(s, a)− d̂k
M

xt(s, a)

{
≥ 0, ∀i, s, a, t ≥ 0

= 0, ∀i, s, a, t < 0

Number of Agents, d(s,a)

Reward 
Function

Figure 2: Example of PWC reward

PieceWise Constant (PWC) Rewards
We now consider piecewise constant reward functions (Fig-
ure 2) for R(s, a, d) in a similar vein to the PWC transi-
tion function. We employ the same linearization techniques
as the ones used for piecewise constant transition function.
While we only provide the algorithm for piecewise con-
stant rewards in SOLVEDSPAIT-PWC, the constraints in-
troduced for piecewise constant transitions can be included
directly into this algorithm.

PieceWise Linear and Convex (PWLC) Rewards
We now generalize the reward function to be piecewise lin-
ear and convex (Figure 3[a]). Unlike the previous cases
where we have provided an exact linear program, we are
only able to provide a local-optimal approach for this case.
Formally, the piecewise linear and convex reward function
is specified as follows:

Rt(s, a, d) = max
k
{mt,k

s,a · d+ ct,ks,a} (18)

Therefore, the objective reduces to:∑
s,a,t

|P| · xt(s, a) ·max
k

[
mt,k

s,a · |P| · xt(s, a) + ct,ks,a

]

Number of Agents, d(s,a)

Reward 
Function

Number of Agents, d(s,a)

Reward 
Function

Figure 3: (a) Example of a PWLC reward function; (b) Max-
imum of two concave functions
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Figure 4: Run-time performance of (a) SOLVEDSPAIT-
LINEAR(); (b) SOLVEDSPAIT-PWC().

=
∑
s,a,t

max
k

[
mt,k

s,a · |P|2 ·
(
xt(s, a)

)2
+ ct,ks,a · |P| · xt(s, a)

]
Figure 3[b] provides an example to illustrate that the

maximum of multiple concave functions is typically non-
concave and has multiple local maxima. Hence, well known
convex or concave programming solvers cannot be used di-
rectly to solve this optimization problem. Therefore, we pur-
sue an approximate approach that iteratively improves on the
flow variables x and the piecewise linear components, k.

Algorithm 5 SolveDSPAIT-PWLC()
1: k =

〈
k00,0, . . . , k

t
s,a, . . .

〉
← GETRANDCOMPNNTS()

2: x← SOLVEDSPAIT-LINEAR(k); x1 ← ∅
3: while x 6= x1 do
4: x1 ← x; k← GETBESTK(x)
5: x← SOLVEDSPAIT-LINEAR(k)
6: return x

Algorithm 5 provides the approximate approach for solv-
ing this category of problems. Initially, we select a random
linear component (slope, m and intercept, c) from the avail-
able components for every state action pair at every time
step. On line 1, we obtain these components k using the
GETRANDCOMPNNTS() function. Given a fixed set of lin-
ear components, k for every state, action pair at each time
step, the resulting problem has linear reward functions and
hence we use the SOLVEDSPAIT-LINEAR() function of Al-
gorithm 3 (line 2) to obtain the optimal flow, x . We then
find the best component vector k corresponding to the flow
vector x on line 4 using the GETBESTK() function. This
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Figure 5: Convergence of SOLVEDSPAIT-PWLC function on three different example problems.

iterative improvement process over k and x (lines 4-5) is
continued until the convergence of the flow vector.

In this algorithm, both GETBESTK() and
SOLVEDSPAIT-LINEAR() functions will never find a
solution that has lower value than the current solution as
current solution is part of the search space. Each iteration
thus does not reduce the solution quality and since there are
a finite number of PWLC components, the algorithm will
converge to a local optima.

Discussion on generic IR and Iϕ Structures
Our contributions earlier are provided for the case where
IR(s, a) = {(s, a)} and Iϕ(s, a) = {(s, a)}. We now focus
on generic IR and Iϕ structures, where reward and transition
functions can depend on sum of agent numbers in multiple
different state, action pairs. We now comment on the gen-
erality of the our contributions in the context of generic IR
and Iϕ structures.
(a) SOLVEDSPAIT-PWC() with PWC reward and transi-
tion functions can be used to solve with generic Iϕ and IR
structure. There is no change in approach required.
(b) If we have linear reward function with a generic
IR(s, a), the Hessian matrix for the objective is not negative
semi definite with negative slopes. Hence, the problem is not
concave. However, since the quadratic optimization prob-
lem contains products of the form xt(s, a) · xt(s′, a′) and
each of the flow values are less than 1 (since finite horizon
MDPs), separable programming (applied in the context of
MDPs by (Ahmed et al. 2013)) can be used to provide tight
approximations for the the quadratic terms. More specifi-
cally,

xt(s, a) · xt(s′, a′) = A2 −B2

A =
xt(s, a) + xt(s′, a′)

2
;B =

xt(s, a)− xt(s′, a′)
2

A and B can be approximated as follows, by dividing [0,1]
into W intervals, {brw} and using SOS2 constraints:

A =
∑
w

λw · brw;A2 =
∑
w

λw · (brw)2∑
w

λw = 1;SOS2({λw})

SOLVEDSPAIT-LINEAR() and consequently
SOLVEDSPAIT-PWLC will be updated to include
this approximation of quadratic terms.

Experimental Results
In this section, we demonstrate the following:
(1) Run-time performance of SOLVEDSPAIT-LINEAR(),
SOLVEDSPAIT-PWC approaches.
(2) Run-time performance, scalability and solution quality
for the local optimal approach in SOLVEDSPAIT-PWLC.
(3) Performance comparison against the SMFU(Varakan-
tham et al. 2012), which also exploits anonymous interac-
tions in competitive settings.
We generated random DSPAIT problems, where both the re-
ward and transition functions were generated randomly. For
the transition function, we varied the reachability (number of
states with positive probability) of the states and generated
random transition probabilities. For the reward function, we
generated random numbers between a range while satisfy-
ing the assumptions of the specific categories of functions
(ex: negative slopes, monotonically non-increasing, etc.).
We then used our optimization algorithms to solve 1 these
random DSPAIT problems.

Figure 4(a) provides the runtime results for
SOLVEDSPAIT-LINEAR(). A problem type is de-
noted by a cross product of number of states (zones),
number of actions (zones) and number of decision epochs
(time horizon). The five problem types we considered for
the linear reward functions were: (20x20x24, 40x40x24,
60x60x24, 80x80x24,100x100x24). We randomly gener-
ated 25 instances for each problem type and each point
in the graph Figure 4(a) is an average run-time for 25 in-
stances. The biggest problem was solved within 4 minutes.
The performance of the mixed integer linear program in
SOLVEDSPAIT-PWC() is shown in Figure 4(b). We were
able to solve problems with up to 30 states, 10 actions and
10 decision epochs with 6 piecewise constant components
per state action pair (for both the reward and transition
functions) within 20 mins. Every point in the graph is
averaged over 25 instances.

We show the performance of the SOLVEDSPAIT-PWLC
function by considering 10 piecewise linear components for
every state action pair, time step corresponding to the re-
ward function. We experimented with multiple sets of prob-
lems where the number of states, actions and time steps were
varied from 20-100, 20-100 and 5-24 respectively. In all
the cases, the number of iterations required for convergence

1All the linear and quadratic optimization problems were solved
using the commercial optimization software CPLEX 12.2 on a 1.8
GHz Intel Core i5 machine with 8GB 1600 MHz DDR3 RAM.



was less than 15 (≈ solving SOLVEDSPAIT-LINEAR() 15
times). Since SOLVEDSPAIT-PWLC does not provide op-
timal solutions, the key results are with respect to solution
quality. While, SOLVEDSPAIT-PWLC converges to local
optima , a very important and practically interesting phe-
nomenon is observed with respect to the quality of the local
optima. Figure 5 provides results on all our experiments
with PWLC reward functions with number of components
ranging from 5 - 20. Here are the key results:
(a) The total number of iterations for convergence (the num-
ber of times the while loop in SOLVEDSPAIT-PWLC() is
executed) varied between 9-14. However, the number of it-
erations required to be near local optima was only 3 or 4.
(b) For each problem , we started with 10 random starting
values of k and as witnessed in all the three graphs, the start-
ing solution quality has a very high variance. However, the
algorithm converged to local optima that were very close to
each other on all the problems (3 shown here and numerous
others that we experimented with). While we do not know
if the global optima is close to these set of local optima, this
is a unique result for a local optimal algorithm, especially
since the problems were generated randomly.

Previously, SMFU was proposed by (Varakantham et al.
2012) to compute equilibrium solutions for stochastic deci-
sion making problems for competitive settings. SMFU ex-
ploits the anonymity in interactions while computing equi-
librium and hence our comparison against SMFU. We com-
pare against SMFU and not against D-TREMOR (Velaga-
pudi et al. 2011) because:
• SMFU employs shaping of model based on influences of

other agents, similar to D-TREMOR.
• SMFU exploits anonymity in interactions and scales to

problems with thousands of agents.
• Unlike D-TREMOR, SMFU converges to local optimal.

Since SMFU’s solution depends on the initial policy,
performance was averaged over multiple initializations of
the starting policy. The SOLVEDSPAIT-LINEAR() and
SOLVEDSPAIT-PWLC() computed optimal policies at
run-times (at least) an order of magnitude faster than the
runtime by SMFU. For instance, on the 80x80x24 problem
(equivalent in size to the real world taxi fleet optimization
problem in (Varakantham et al. 2012)), the SOLVEDSPAIT-
LINEAR problem generated optimal solutions in 70 seconds,
whereas SMFU took close to 30 minutes. However, with
respect to SOLVEDSPAIT-PWC(), SMFU computed solu-
tions in runtimes that were an order of magnitude shorter on
large problems (ex: 30x10x10). While SMFU returned opti-
mal solutions in few cases, overall it returned solutions that
were around 60% of the optimal.
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