
Revisiting Risk-Sensitive MDPs: New Algorithms and Results∗

Ping Hou
Department of Computer Science

New Mexico State University
phou@cs.nmsu.edu

William Yeoh
Department of Computer Science

New Mexico State University
wyeoh@cs.nmsu.edu

Pradeep Varakantham
School of Information Systems

Singapore Management University
pradeepv@smu.edu.sg

Abstract
While Markov Decision Processes (MDPs) have been shown
to be effective models for planning under uncertainty, the
objective to minimize the expected cumulative cost is in-
appropriate for high-stake planning problems. As such, Yu,
Lin, and Yan (1998) introduced the Risk-Sensitive MDP (RS-
MDP) model, where the objective is to find a policy that max-
imizes the probability that the cumulative cost is within some
user-defined cost threshold. In this paper, we revisit this prob-
lem and introduce new algorithms that are based on classi-
cal techniques, such as depth-first search and dynamic pro-
gramming, and a recently introduced technique called Topo-
logical Value Iteration (TVI). We demonstrate the applica-
bility of our approach on randomly generated MDPs as well
as domains from the ICAPS 2011 International Probabilistic
Planning Competition (IPPC).

Introduction
Markov Decision Processes (MDPs) have been shown to be
effective models for planning under uncertainty. Typically,
MDP solvers find policies that minimize the expected cu-
mulative cost (or, equivalently, maximize the expected cu-
mulative reward). While such a policy is good in the ex-
pected case, there is a small chance that it might result in an
exorbitantly high cost. Therefore, it is not suitable in high-
stake planning problems where exorbitantly high costs must
be avoided. For example, imagine a time-sensitive logis-
tics problem, where a delivery truck needs to plan its route,
whose travel times are stochastic, in order to reach its des-
tination before a strict deadline (Ermon et al., 2012). Aside
from this logistics example, other high-stake planning situ-
ations include environmental crisis situations (Cohen et al.,
1989; Blythe, 1999), business decision situations (Murthy et
al., 1999; Goodwin, Akkiraju, and Wu, 2002), planning sit-
uations in space (Pell et al., 1998; Zilberstein et al., 2002),
and sustainable planning situations (Ermon et al., 2011).

With this motivation in mind, Yu, Lin, and Yan (1998) in-
troduced the Risk-Sensitive MDP (RS-MDP) model, where
∗A part of this research is supported by the Singapore National

Research Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the IDM Pro-
gramme Office, Media Development Authority (MDA). We also
thank Yaxin Liu for sharing with us his implementation of FVI.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the objective is to find a policy π that maximizes the proba-
bility Pr(cT (π)(s0) ≤ θ0), where cT (π)(s0) is the cumula-
tive cost or travel time of the policy and θ0 is the cost thresh-
old or deadline. They also introduced a Value Iteration (VI)
like algorithm to solve the problem. Unfortunately, their al-
gorithm, like VI, cannot scale to large problems as it needs
to perform Bellman updates for all states in each iteration.

As such, in this paper, we revisit RS-MDPs and develop
new RS-MDP algorithms that are faster than VI. Specifi-
cally, we introduce algorithms that are based on classical
techniques, such as depth-first search and dynamic program-
ming, and a recently introduced technique called Topologi-
cal Value Iteration (Dai et al., 2011). We demonstrate the ap-
plicability of our approach on randomly generated MDPs as
well as domains from the ICAPS 2011 International Proba-
bilistic Planning Competition (IPPC).

MDP Model
A Goal-Directed MDP (GD-MDP) is represented as a tuple
P = 〈S, s0,A,T,C,G〉. It consists of a set of states S; a
start state s0 ∈ S; a set of actions A; a transition function
T : S×A× S→ [0, 1] that gives the probability T (s, a, ŝ)
of transitioning from state s to ŝ when action a is executed;
a cost function C : S×A×S→ [0,∞)1 that gives the cost
C(s, a, ŝ) of executing action a in state s and arriving in
state ŝ; and a set of goal states G ⊆ S, which are terminal,
that is, T (sg, a, sg) = 1 and C(sg, a, sg) = 0 for all goal
states sg ∈ G and actions a ∈ A. In this paper, we will focus
on GD-MDPs and will thus use the term MDPs to refer to
GD-MDPs. Notice that our definition of GD-MDPs allows
problems that do not lie in the Stochastic Shortest-Path MDP
(SSP-MDP) class (Bertsekas, 2000) because our definition
does not require the existence of a proper policy. A proper
policy is a policy with which an agent can reach a goal state
from any state with probability 1.

Strongly Connected Components (SCCs)
The state space of an MDP can be visualized as a directed
hyper-graph called a connectivity graph. Figure 1(a) shows
the connectivity graph of our example MDP, where nodes

1With a slight modification, our algorithms can also be applied
on GD-MDPs with negative cost as long as the cost function does
not form negative cycles in the connectivity graph.

C(s0,&a1,&s1)&=&2&
T(s0,&a1,&s1)&=&1.0&

C(s1,&a2,&s0)&=&2&
T(s1,&a2,&s0)&=&0.6&

C(s1,&a2,&s2)&=&0&
T(s1,&a2,&s2)&=&0.4&

C(s2,&a3,&s3)&=&0&
T(s2,&a3,&s3)&=&0.3&

C(s2,&a3,&s1)&=&0&
T(s2,&a3,&s1)&=&0.7&

C(s3,&a4,&s4)&=&1&
T(s3,&a4,&s4)&=&1.0&

s0&

s2&s1&

s3&

s4&

3&

2&

1&

s0,6

s1,4 s2,4 s3,4

s4,3

s0,*2$

s1,0 s2,0 s3,0

s4,*1$

s0,2

(a) Example MDP (b) Example Augmented MDP

Figure 1: Connectivity Graphs

correspond to states (denoted by circles) and hyper-edges
correspond to actions (denoted by squares) and transitions
(denoted by arrows).2 We will use this example as our run-
ning example throughout this paper. The subgraph rooted at
a start state is called a transition graph.

It is possible to partition the connectivity or transition
graphs into Strongly Connected Components (SCCs) in such
a way that they form a Directed Acyclic Graph (DAG) (Tar-
jan, 1972; Bonet and Geffner, 2003; Dai et al., 2011). More
formally, an SCC of a directed graph G = (V,E) is a max-
imal set of vertices Y ⊆ V such that every pair of vertices
u and v in Y are reachable from each other. Since the SCCs
form a DAG, it is impossible to transition from a state in a
downstream SCC to a state in an upstream SCC. Each SCC
is denoted by a rounded rectangle in Figure 1. We call this
DAG an SCC transition tree.

MDP Algorithms
An MDP policy π : S → A is a mapping from states to
actions. A common objective is to find a policy π with the
minimum expected cost Cπ(s0), where

Cπ(s) =
∑
ŝ∈S

T (s, π(s), ŝ)
[
C(s, π(s), ŝ) + Cπ(ŝ)

]
(1)

for all states s ∈ S.

Value Iteration (VI)
Value Iteration (VI) (Bellman, 1957) is one of the funda-
mental approaches to find an optimal expected cost policy.
It uses a function C to represent expected costs. The expected

2We call them hyper-edges as a state can transition to multiple
successor states.

cost of the policy is the expected cost C(s0) for start state s0,
which is calculated using the Bellman equation:

C(s) = min
a∈A

∑
ŝ∈S

T (s, a, ŝ)
[
C(s, a, ŝ) + C(ŝ)

]
(2)

The action chosen for the policy for each state s is then the
one that minimizes C(s). A single update using this equation
is called a Bellman update. In each iteration, VI performs a
Bellman update on each state. The difference between the
expected cost of a state in two consecutive iterations is called
the residual of that state and the largest residual is called
the residual error. The algorithm terminates when the values
converge, that is, the residual error is less than a user-defined
threshold ε. Lastly, VI can be optimized by only considering
the set of states reachable from the start state.

Topological VI (TVI)
VI suffers from a limitation that it updates each state in ev-
ery iteration even if the expected cost of states that it can
transition to remain unchanged. Topological VI (TVI) (Dai
et al., 2011) addresses this limitation by repeatedly updating
the states in only one SCC until their values converge before
updating the states in another SCC. Since the SCCs form
a DAG, states in an SCC only affect the states in upstream
SCCs. Thus, by choosing the SCCs in reverse topological
sort order, it no longer needs to consider SCCs whose states
have converged in a previous iteration. Figure 1(a) shows the
indices of the SCCs in reverse topological sort order on the
upper left corner of the rounded rectangles. Like VI, TVI
can also be optimized by only considering the set of states
reachable from the start state.

Risk-Sensitive MDP Model
A Risk-Sensitive MDP (RS-MDP) is defined by the tuple
〈P,Θ, θ0〉, where P is an MDP, Θ is a set of possible cost

thresholds, and θ0 ∈ Θ is the user-defined cost threshold.
The objective is to find a policy π that maximizes the prob-
ability that the cumulative cost cT (π)(s0) is no greater than
the cost threshold θ0 (Yu, Lin, and Yan, 1998):

argmax
π

Pr(cT (π)(s0) ≤ θ0) (3)

The cumulative cost cT (π)(s0) of a trajectory T (π) =
〈s0, s1 = π(s0), s2 = π(s1), . . .〉, formed by executing an
MDP policy π, is defined as follows:

cT (π)(s0) = cT (π)(s0,∞) (4)

cT (π)(s0, H) =

H∑
t=0

C(st, st+1) (5)

where st is the state in the t-th time step.
The optimal policy for an MDP often does not depend on

the time step or the accumulated cost thus far. In contrast, an
optimal policy for an RS-MDP does depend on the accumu-
lated cost thus far. For example, one can take riskier actions
when the accumulated cost is small, but should avoid them
when the accumulated cost is close to the threshold. There-
fore, instead of a mapping of states to actions, an RS-MDP
policy π : S × Θ → A is a mapping of augmented states
(s, θ | s ∈ S, θ ∈ Θ) to actions a ∈ A. The threshold
θ = θ0 − cT (π)(s0, t) is the amount of unused cost, where
cT (π)(s0, t) is the accumulated cost thus far up to the current
time step t. In this paper, we focus on finding deterministic
policies, that is, policies that always return the same action
for an augmented state. We show in the theoretical results
section that deterministic policies are optimal.

We use the notation Pπ(s, θ) to denote the reachable
probability, that is, the probability Pr(cT (π)(s) ≤ θ) that
the accumulated cost of starting from state s is no larger
than a cost threshold θ with policy π. Thus, in solving an
RS-MDP, the goal is to find a policy π∗ such that:

π∗ = argmax
π

Pπ(s0, θ0) (6)

We refer to the maximum probability value corresponding
to π∗ as P (s0, θ0).

Solution Approach
Similar to the Bellman equation to back up value functions
in regular MDPs (Bellman, 1957), one can characterize the
relationship between the different augmented states of an
RS-MDP with the following system of equations:

P (s, θ) = max
a∈A

∑
ŝ∈S

P (s, a, ŝ, θ) (7)

P (s, a, ŝ, θ) ={
0 if θ<C(s, a, ŝ)
T (s, a, ŝ) if ŝ∈G, θ≥C(s, a, ŝ)
T (s, a, ŝ) · P (ŝ, θ−C(s, a, ŝ)) if ŝ /∈G, θ≥C(s, a, ŝ)

where P (s, a, ŝ, θ) is the reachable probability from aug-
mented state (s, θ) assuming that one takes action a from
state s and transitions to successor state ŝ. For each state-
action-successor-threshold tuple (s, a, ŝ, θ), there are the fol-
lowing three cases:

Algorithm 1: TVI-DFS(θ0)
1 Y = FIND-SCCS(s0, θ0)
2 for SCCs yi ∈ Y with indices i = 1 to n do
3 UPDATE-SCC(yi)

Procedure Update-SCC(yi)
4 for (s, θ) ∈ yi do
5 P (s, θ) = 0

6 repeat
7 residual = 0
8 for (s, θ) ∈ yi do
9 P ′(s, θ) = P (s, θ)

10 UPDATE(s, θ)
11 if residual < |P (s, θ)− P ′(s, θ)| then
12 residual = |P (s, θ)− P ′(s, θ)|

13 until residual < ε;

• If the cost threshold θ is smaller than the action cost
C(s, a, ŝ), then the successor can only be reached by ex-
ceeding the cost threshold. Thus, the reachable probabil-
ity is 0.

• If the successor is a goal state and the cost threshold is
larger than or equal to the action cost C(s, a, ŝ), then
the successor can be reached without exceeding the cost
threshold. Thus, the reachable probability is the transi-
tion probability T (s, a, ŝ).

• If the successor is not a goal state and the cost threshold
is larger than or equal to the action cost C(s, a, ŝ), then
the successor can be reached without exceeding the cost
threshold. Thus, the reachable probability can be recur-
sively determined as the transition probability T (s, a, ŝ)
multiplied by the reachable probability of a new aug-
mented state P (ŝ, θ − C(s, a, ŝ)).

One can extract the optimal policy by taking the action
that is returned by the maximization operator in Equation 7
for each augmented state (s, θ).

Augmented MDP
One can transform the MDP connectivity graph, where
nodes correspond to states and hyper-edges correspond to
actions and transitions, to an augmented MDP connectiv-
ity graph, where nodes now correspond to augmented states.
This augmented MDP is a MAXPROB MDP (Kolobov et
al., 2011), where the reward function is 1 for transitions that
transition into a goal state and 0 otherwise. For our example
MDP, Figure 1(b) shows the connectivity graph of the cor-
responding augmented MDP with s0 as the start state, s4 as
the goal state, and an initial cost threshold θ0 = 6. Note that
states that are in the same SCC in an MDP might not be in
the same SCC in an augmented MDP. For example, states
s0, s1, and s2 are in the same SCC, but augmented states
(s0, 6), (s1, 4), and (s2, 4) are not all in the same SCC.

TVI-DFS
We now introduce TVI-DFS—an algorithm based on TVI
and Depth-First Search (DFS). At a high level, TVI-DFS is
identical to TVI, except that it operates on an augmented

6	

5	

4	

3	

2	

1	

0	

s0	 s4	 s3	 s2	 s1	

1	 2	

3	

4	

5	 6	

7	 6	

5	

4	

3	

2	

1	

0	

s0	 s4	 s3	 s2	 s1	

1	

2	 3	

4	

5	
6	

5	

4	

3	

2	

1	

0	

s0	 s4	 s3	 s2	 s1	

1	

2	 3	

4	

5	

(a) TVI-DFS (b) TVI-DP (SCCs only) (c) TVI-DP

Figure 2: Transitions in the Augmented State Space

Procedure Update(s, θ)
14 P ∗ = 0
15 for a ∈ A do
16 Pa = 0
17 for ŝ ∈ S | T (s, a, ŝ) > 0 do
18 if θ ≥ C(s, a, ŝ) then
19 if ŝ ∈ G then
20 Pa = Pa + T (s, a, ŝ)
21 else
22 θ̂ = θ − C(s, a, ŝ)

23 Pa = Pa + T (s, a, ŝ) · P (ŝ, θ̂)

24 if Pa > P ∗ then
25 P ∗ = Pa
26 a∗ = a

27 P (s, t) = P ∗

28 π(s, t) = a∗

MDP instead of a regular MDP and it uses Equation 7 to
update the probabilities of each augmented state instead of
using the Bellman equation to update the value of each state.

Algorithm 1 shows the pseudocode of the algorithm. TVI-
DFS first partitions the augmented MDP state space into
SCCs with Tarjan’s algorithm (Tarjan, 1972), which tra-
verses the connectivity graph in a depth-first manner and
marks the SCC membership of each state (line 1). Tarjan’s
algorithm returns an SCC transition tree Y , where the SCC
indices are in reverse topological sort order. It then per-
forms a depth-first search, but instead of calling a recursive
function in depth-first order, the algorithm updates the aug-
mented states in the SCCs in reverse topological sort order
(lines 2-3). This process is similar to popping elements of a
stack that are pushed in depth-first order. For each SCC, the
algorithm performs a VI-like update using Equation 7 until
the residual of all augmented states, defined as the difference
in the probability between subsequent iterations, are within
ε (lines 6-13).

Figure 2(a) shows the resulting augmented MDP when
one runs the TVI-DFS algorithm on our example MDP with
s0 as the start state, s4 as the goal state, and an initial cost
threshold θ0 = 6. Each circle represents an augmented state
(s, θ), where the state s is shown on the x-axis and the
threshold θ is shown on the y-axis. Each rounded rectan-

(a) TVI-DFS

θ

6 0.167 - - - -
5 - - - - -
4 - 0.167 0.417 0.300 -
3 - - - - 1.000
2 0.000 - - - -
1 - - - - -
0 - 0.000 0.000 0.000 -

s0 s1 s2 s3 s4

(b) TVI-DP

θ

6 0.167 0.306 0.514 0.300 1.000
5 0.167 0.306 0.514 0.300 1.000
4 0.167 0.167 0.417 0.300 1.000
3 0.167 0.167 0.417 0.300 1.000
2 - 0.167 0.417 0.300 1.000
1 - 0.167 0.417 0.300 1.000
0 - - - - 1.000

s0 s1 s2 s3 s4

Table 1: Augmented State Probabilities

gle represents an SCC and each arrow represents a possible
transition after taking the sole action from that augmented
state. For example, after taking an action in augmented state
(s1, 4), one can transition to augmented states (s2, 4) or
(s0, 2). Nodes without arrows represent unreachable aug-
mented states and are thus not included in the SCC transi-
tion tree. The indices of the SCCs in reverse topological sort
order are shown on the upper left corner of the rectangles.
This augmented MDP is the same as the one shown in Fig-
ure 1(b) except that augmented states with thresholds θ < 0
are omitted. Table 1(a) shows the probability P (s, θ) of each
reachable augmented state (s, θ).

One can slightly optimize this algorithm by integrating
Tarjan’s algorithm to find SCCs (line 1) with the procedure
to update augmented states in the SCCs (line 3). Specifically,
• When Tarjan’s algorithm finds a leaf SCC,3 then TVI-

DFS can pause Tarjan’s algorithm, update the aug-
mented states in that SCC, and then resume Tarjan’s
algorithm. For example, when Tarjan’s algorithm finds
SCC 1 (which contains (s3, 0)) in Figure 2(a), TVI-DFS
calls UPDATE-SCC on that SCC before backtracking to

3A leaf SCC is an SCC without any downstream SCCs.

Algorithm 2: TVI-DP(θ0)
29 for sg ∈ G do
30 P (sg, 0) = 1

31 Y = FIND-TRANSPOSED-SCCS(G, 0)
32 for θ = 0 to θ0 do
33 for SCCs yθi ∈ Y with indices i = 1 to n do
34 UPDATE-SCC(yθi)

35 for s ∈ S | (s, θ) /∈ Y do
36 P (s, θ) = P (s, θ − 1)
37 π(s, θ) = π(s, θ − 1)

SCC 2 (which contains (s1, 0) and (s2, 0)).
• When Tarjan’s algorithm backtracks to an SCC, all aug-

mented states in downstream SCCs would have been up-
dated. Thus, TVI-DFS can also update the augmented
states in the SCC that it just backtracked to. For example,
when Tarjan’s algorithm backtracks to SCC 2, TVI-DFS
calls UPDATE-SCC on that SCC since the augmented
state in SCC 1 has already been updated.

This optimized version requires less memory as it does not
need to represent the SCCs explicitly. We implement this op-
timized version in the experiments but provided the simpler
pseudocode for the sake of clarity.

Additionally, one can optimize this algorithm further if
the cost function C : S×A× S → (0,∞) does not return
zero costs. In such a situation, each SCC contains exactly
one augmented state (see Theorem 1). Thus, there is no need
to use Tarjan’s algorithm to find the SCCs and there is no
need to check for convergence in each SCC.

TVI-DP
While TVI-DFS is efficient in that it only updates reach-
able augmented states and ignores the unreachable ones, the
policy that it finds is correct only for the given user-defined
threshold θ0. If the value of the threshold changes, then one
has to recompute a new policy for the new threshold. In some
risk-sensitive applications, the threshold might change dur-
ing policy execution due to exogenous circumstances.

We thus introduce TVI-DP—an algorithm based on TVI
and dynamic programming (DP) that finds optimal policies
for all thresholds θ ∈ Θ that are bounded from above: 0 ≤
θ ≤ θ0. The algorithm requires the costs and thresholds to
have a finite precision, which results in a finite set of the
thresholds Θ. For example, if one limits the precision on the
costs and thresholds to integers, as we do in this paper for
the sake of clarity, then |Θ| = θ0 + 1.4

Algorithm 2 shows the pseudocode of the algorithm. Like
TVI-DFS, TVI-DP also partitions the augmented MDP state
space into SCCs with Tarjan’s algorithm (line 31). How-
ever, unlike TVI-DFS, TVI-DP runs Tarjan’s algorithm on
the transposed graph from all goal states sg ∈ G, where all
the direction of the transition edges are reversed.

Once all the SCCs are found, TVI-DP updates the aug-
mented states starting from the augmented states with

4One can convert problems with higher precision costs and
thresholds to problems with integer costs and thresholds by mul-
tiplying them with a sufficiently large constant.

thresholds θ = 0 to the states with thresholds θ = θ0
(line 32). For each group of augmented states with the same
threshold, TVI-DP updates the states in the SCCs in re-
verse topological sort order (lines 33-34). For each aug-
mented state (s, θ) that is not in an SCC, TVI-DP updates
its probability value and action to that in the augmented state
(s, θ−1) (lines 35-37). An important property here is that all
augmented states in an SCC must have the same threshold
(see Theorem 1). Therefore, TVI-DP ensures that before up-
dating any augmented state, it updates all augmented states
with smaller thresholds first.

Figures 2(b) and 2(c) show the resulting augmented MDP
when one runs the TVI-DP algorithm on our example MDP
with s0 as the start state, s4 as the goal state, and a max-
imum threshold θ0 = 6. The indices of the SCCs in re-
verse topological sort order are shown on the upper left cor-
ner of the rounded rectangles. Figure 2(b) shows the tran-
sitions of augmented states that are in SCCs. These transi-
tions were computed by the UPDATE-SCC procedure. Fig-
ure 2(c) shows all the transitions including the transitions of
augmented states that are not in SCCs. Table 1(b) shows the
probability P (s, θ) of each reachable augmented state (s, θ).

Note that TVI-DP finds a larger number of reachable aug-
mented states than TVI-DFS. The reason is that TVI-DP
finds a policy for each possible combination of start state
and starting threshold except for combinations of start states
and starting thresholds with zero probability of reaching a
goal with a cost within the threshold.

Similar to TVI-DFS, one can also optimize TVI-DP by
integrating Tarjan’s algorithm to find SCCs (line 31) with
the procedure to update the augmented states (lines 34, 36-
37). However, since TVI-DP calls Tarjan’s algorithm on the
transposed graph and starts from the goal states, its opti-
mizations are slightly different than those in TVI-DFS. TVI-
DP finds all the SCCs for a particular threshold θ by running
Tarjan’s algorithm on the subgraph consisting only of aug-
mented states with that threshold, updates all the augmented
states in that subgraph, and proceeds to find the SCCs in the
next threshold θ + 1. For example, TVI-DP finds SCCs 2
and 3 in Figure 2(c), updates all the augmented states with
θ = 1, before proceeding to find SCCs in the layer θ = 2.

Finally, similar to TVI-DFS, if the cost function does not
return zero costs, then one can also optimize TVI-DP to not
use Tarjan’s algorithm to find the SCCs and to not check for
convergence in each SCC.

TVI-Bidirectional
Lastly, we also introduce an algorithm called TVI-
Bidirectional that combines both TVI-DFS and TVI-DP. It
searches top-down with TVI-DFS from a given start state
and starting threshold (s0, θ0) and bottom-up from the goal
states sg ∈ G with TVI-DP. When the policies of the two
algorithms intersect at the augmented states with thresholds
θ = θ0/2, the policies can be combined into a single policy.

Theoretical Results
Theorem 1 In an RS-MDP, all augmented states in an SCC
have the same cost threshold.

PROOF SKETCH: We prove the theorem by showing that if
two augmented states (s, θ) and (ŝ, θ̂) have different thresh-
olds, then they must be in different SCCs. Assume that (s, θ)
can transition to (ŝ, θ̂) via action a. Thus, θ̂ = θ−C(s, a, ŝ).
• If C(s, a, ŝ) > 0, then θ > θ̂. Additionally, (ŝ, θ̂) cannot

transition back to (s, θ) as the cost function C returns
non-negative costs. As there are no transition cycles, the
two augmented states cannot be in the same SCC.

• If C(s, a, ŝ) = 0, then θ = θ̂. It is possible for (ŝ, θ̂) to
transition back to (s, θ), in which case we have a cycle,
and both augmented states are in the same SCC.

Lemma 1 The UPDATE-SCC procedure is correct and
complete given that the reachable probabilities of aug-
mented states in downstream SCCs are correct.
PROOF SKETCH: UPDATE-SCC is similar to the Bellman
update for SCCs in TVI. We use the mechanism employed
to prove correctness and completeness of Bellman update in
guaranteeing correctness and completeness for the updates
in Equation 7 for all the augmented states.

Theorem 2 TVI-DFS is correct and complete.
PROOF SKETCH: The reachable probability of an aug-
mented state (s, θ) depends only on the reachable probabil-
ity of its successors (ŝ, θ̂) (see Equation 7). Therefore, the
reachable probability of augmented states in an SCC depend
only on the reachable probability of augmented states in the
same SCC and downstream SCCs. Since downstream SCCs
are updated before upstream SCCs (the SCCs are updated
in reverse topological sort order), the reachable probabili-
ties are correct after the update (see Lemma 1). Thus, the
algorithm is correct. The algorithm is also complete because
each SCC is updated only once and each update is guaran-
teed to converge (see Lemma 1).

Theorem 3 TVI-DP is correct and complete.
PROOF SKETCH: For augmented states that are in SCCs,
their reachable probabilities are correct for the same reason
as that in TVI-DFS. For each augmented state (s, θ) that is
not in an SCC, its path to an augmented goal state (sg, θg) is
the same path as that from (s, θ − 1) to (sg, θg − 1), except
that the threshold of each augmented state is added by 1.
The reachable probability for each augmented state (s′, θ′)
in that path is thus the same as that for (s′, θ′ − 1). Thus,
copying the probabilities and policies (lines 36 and 37) is
correct. Consequently, the algorithm is correct. The algo-
rithm is also complete because each SCC is updated only
once (see Lemma 1) and each augmented state that is not in
an SCC has its probability updated only once.

Theorem 4 In an RS-MDP, optimal policies are stationary
and deterministic in the augmented state space.
PROOF SKETCH: The augmented MDP is a MAXPROB
MDP (Kolobov et al., 2011). In a MAXPROB MDP, an op-
timal policy is stationary and deterministic (Kolobov, 2013).
Thus, optimal policies for RS-MDPs are also stationary and
deterministic.

Theorem 5 Solving RS-MDPs optimally is P-hard in the
original state space.

PROOF SKETCH: Similar to the proof in (Papadimitriou and
Tsitsiklis, 1987), one can easily reduce a Circuit Value Prob-
lem to an RS-MDP.

Notice that solving RS-MDPs optimally is not P-complete
because RS-MDPs are not in P in the original state space;
solving them requires specifying an action for each aug-
mented state in the set S ×Θ, which, in turn, could be ex-
ponential in the size of S if |Θ| = 2|S|.

Related Work
While most of the MDP algorithms seek risk-neutral poli-
cies, that is, policies that minimize the expected cost or max-
imize the expected reward, there are several exceptions that
seek risk-sensitive policies. As mentioned earlier, Yu, Lin,
and Yan (1998) introduced RS-MDPs and introduced a VI-
like algorithm to solve it.

McMillen and Veloso (2007) solved a specific type of
RS-MDPs—finite-horizon RS-MDPs with zero-sum utility
functions—inspired by robot soccer. They used a dynamic
programming based algorithm that performs a one-sweep
backup from the horizon to the starting time step to solve
their problem.

Liu and Koenig (2005, 2006, 2008) generalized RS-
MDPs by mapping the MDP rewards to risk-sensitive utility
functions and sought to find policies that maximize the ex-
pected utility—an RS-MDP is a specific case, where the util-
ity function is a step function. They introduced Functional
Value Iteration (FVI), which finds optimal policies for any
one-switch utility functions that are combinations of linear
and exponential functions.

Ermon et al. (2012) extended their work by including a
requirement that the returned policy needs to satisfy cer-
tain worst-case guarantees in addition to the expected utility
maximization criterion. The worst-case guarantee is simi-
lar to those enforced by Constrained MDPs (Altman, 1999;
Dolgov and Durfee, 2005), which enforces all constraints
(e.g., the cumulative cost of a trajectory is no larger than
a threshold) as hard constraints that cannot be violated. In
contrast, RS-MDPs allow constraints to be violated but min-
imize the probability of that happening.

Kolobov et al. (2011) have also introduced an optimiza-
tion criterion for MDPs, which is to maximize the proba-
bility of getting to a goal independent of cost. In order to
solve for this criterion, they create a MAXPROB MDP that
corresponds to the original MDP and solve that MAXPROB
MDP. A MAXPROB MDP is thus equivalent to an RS-MDP
where the objective is to find a policy π that maximizes
Pr(cT (π)(s0) < ∞).

Defourny, Ernst, and Wehenkel (2008) introduced another
criterion, where they seek to find a policy π that minimizes
the expected cost and satisfies Pr(cT (π)(s0) ≤ θ0) ≥ p,
where p is a user-defined minimum probability threshold.
This problem is similar to Orienteering Problems (OPs),
which are also known as prize-collecting traveling salesman
problems. In OPs, cities have associated rewards, and the

θ0 P (s0, θ0)
VI FVI TVI-DFS TVI-DP TVI-Bidirectional

time (s) time (s) time (s) #SCCs time (s) #SCCs time (s) #SCCs
0.25 · Cπ(s0) 0.18 38.47 23.63 2.82 3,134,824 2.14 5,591,122 2.42 2,759,843
0.50 · Cπ(s0) 0.38 146.43 180.61 7.77 11,657,785 4.76 14,314,249 5.34 10,993,543
0.75 · Cπ(s0) 0.52 294.59 731.55 12.69 20,187,753 7.32 23,037,377 9.11 19,620,136
1.00 · Cπ(s0) 0.64 477.7 1307.34 17.62 28,717,721 9.94 31,760,504 12.91 28,246,639
1.25 · Cπ(s0) 0.72 696.05 2373.46 22.62 37,249,652 12.61 40,485,632 16.79 36,875,149
1.50 · Cπ(s0) 0.79 941.46 3934.78 27.63 45,781,574 15.25 49,210,759 20.58 45,503,650

Table 2: Results of the Randomly Generated MDPs with 1 Goal State

|G| θ0 = 0.25 · Cπ(s0) θ0 = 0.50 · Cπ(s0) θ0 = 1.00 · Cπ(s0)
1 10 100 1 10 100 1 10 100

TVI-DFS time (ms) 2,823 182 14 7,774 2,050 46 17,620 6,319 1,065
#SCCs 3,134,824 18,863 9 11,657,785 2,255,975 3,124 28,717,721 9,587,331 1,159,199

TVI-DP time (ms) 2,142 722 171 4,762 1,842 482 9,944 4,098 1,218
#SCCs 5,591,122 1,210,976 22,950 14,314,249 4,957,647 780,862 31,760,504 12,458,139 3,140,533

Table 3: Results of the Randomly Generated MDPs with Multiple Goal States

goal is to visit a subset of cities that maximizes the reward
with the condition that the total traveling time is within a
given maximum (Tsiligrides, 1984). Stochastic OPs (SOPs)
extend OPs by assuming that the traveling times are stochas-
tic (Campbell, Gendreau, and Thomas, 2011), and Dynamic
SOPs extend SOPs by assuming that the stochastic travel-
ing times are dynamic (time-dependent) (Lau et al., 2012;
Varakantham and Kumar, 2013).

Experimental Results
We evaluate the TVI-DFS, TVI-DP, and TVI-Bidirectional
algorithms against VI (on the augmented MDP)5 and FVI.
The VI algorithm is thus similar to that proposed by Yu, Lin,
and Yan (1998). We run the algorithms on two sets of do-
mains: (i) randomly generated MDPs, and (ii) ICAPS 2011
International Probabilistic Planning Competition (IPPC) do-
mains. We conducted our experiments on a quad-core 3.40
GHz machine with 8GB of RAM.

Randomly Generated MDPs: We randomly generated
MDPs with 10,000 states, 2 actions per state, and 2 suc-
cessors per action. We randomly chose the costs from the
range [0, 100], varied the initial cost thresholds θ0 according
to minimum expected cost Cπ(s0), and varied the number of
goal states from 1 to 100.

Tables 2 and 3 show our results.6 We show the smallest
runtime for each configuration in bold. We make the follow-
ing observations:
• On problems with a single goal state, TVI-DP is faster

than TVI-DFS. The reason is that the number of SCCs
for both TVI-DFS and TVI-DP are about the same and
the runtime overhead per SCC of TVI-DP is smaller than
that of TVI-DFS. Both TVI-DFS and TVI-DP call Tar-
jan’s algorithm recursively (similar to a recursive DFS

5We considered only the reachable augmented states in the aug-
mented MDP.

6The runtime of VI does not include the runtime to generate the
augmented MDP.

function) to find SCCs. For TVI-DP, the largest num-
ber of recursive calls in memory is the largest number
of SCCs in any subgraph consisting only of augmented
states with the same threshold. This number is typically
small. In contrast, for TVI-DFS, the largest number of
recursive calls in memory is the height of the entire SCC
transition tree, which can be large. The runtime over-
head grows with the number of recursive calls in mem-
ory. TVI-DP thus has a smaller runtime overhead than
TVI-DFS.

• On problems with a large number of goal states, despite
the larger runtime overhead per SCC, TVI-DFS is still
faster than TVI-DP. The reason is that TVI-DFS gener-
ates significantly fewer SCCs, often by more than one
order of magnitude, than TVI-DP in these problems. As
TVI-DP constructs the SCC transition tree on the trans-
posed graph from each goal state, its number of SCCs
grows with the number of goal states. In contrast, TVI-
DFS constructs the SCC transition tree from each start
state and, thus, its number of SCCs is less dependent on
the number of goal states.

• The runtime of TVI-Bidirectional is in between the run-
times of TVI-DFS and TVI-DP in all cases. This result
is to be expected since the algorithm is sped up by the
faster algorithm but slowed down by the slower algo-
rithm.

• All three TVI-based algorithms are faster than VI. The
reason is similar to why TVI is faster than VI on regular
MDPs—VI needs to update all augmented states in each
iteration while TVI only needs to update the augmented
states in a single SCC in each iteration.

• All three TVI-based algorithms are also faster than FVI.
The reason is that they are designed to solve RS-MDPs
specifically and, thus, exploits utility-dependent proper-
ties in RS-MDPs. In contrast, FVI is designed to solve
general one-switch utility functions.

• Finally, as expected, the reachable probability of the aug-
mented start state P (s0, θ0) increases with increasing

(a) θ0 = 0.5 · Cπ(s0)

Domain P (s0, θ0)
VI FVI TVI-DFS TVI-DP TVI-Bidirectional

time (ms) time (ms) time (ms) #SCCs time (ms) #SCCs time (ms) #SCCs
Crossing Traffic 0.34 82 10,150 19 27,368 227 317,860 110 90,215

Elevators 0.10 20,228 24,294 2,296 1,293,481 3,184 1,772,491 3,439 1,377,087
Game of Life 0.00 2,755 42,503 771 160,430 735 175,249 785 182,398
Navigation 0.00 8 1,075 4 40 61 46,685 32 10,610

Reconnaissance 0.00 21 1,396 20 1 293 57,984 160 25,472
Skill Teaching 0.00 79 73,899 74 1 4,259 3,367,968 1,772 927,159

SysAdmin 0.05 120,639 637,868 12,476 608,039 225,318 624,315 110,084 832,023
Traffic 0.33 1,110 27,175 101 141,072 703 1,723,891 439 712,191

(b) θ0 = 1.0 · Cπ(s0)

Crossing Traffic 0.69 248 16,902 44 76,087 452 754,248 252 347,868
Elevators 0.52 53,552 70,242 6,961 6,043,855 7,127 8,235,034 8,617 6,697,757

Game of Life 0.51 6,471 51,372 1,328 277,856 1,456 293,773 1,624 368,886
Navigation 0.00 40 1,507 12 2,630 126 120,520 70 47,935

Reconnaissance 0.77 45 4,485 42 3,876 588 123,264 322 59,796
Skill Teaching 0.58 3,269 152,618 433 216,308 9,069 8,085,337 4,400 3,370,019

SysAdmin 0.56 223,781 1,071,347 26,921 1,347,970 480,052 1,385,249 250,196 1,972,285
Traffic 0.59 2,010 45,949 206 284,229 1,492 4,661,085 829 1,893,678

(c) θ0 = 1.5 · Cπ(s0)

Crossing Traffic 0.89 448 21,061 73 129,609 704 1,198,408 403 645,614
Elevators 0.89 86,351 109,579 11,849 11,670,296 11,094 15,851,101 13,544 13,624,710

Game of Life 1.00 6,391 52,979 1,579 332,161 2,138 349,138 2,438 539,662
Navigation 1.00 55 1,514 16 8,649 183 120,920 108 104,214

Reconnaissance 1.00 67 4,474 61 9,124 864 127,872 482 99,748
Skill Teaching 0.97 8,982 196,538 1,008 664,274 13,440 12,056,444 7,028 5,977,072

SysAdmin 0.91 283,092 1,445,475 40,121 2,033,750 732,474 2,092,030 388,462 3,045,182
Traffic 0.82 2,609 55,410 302 407,688 2,259 7,433,331 1,336 3,589,219

Table 4: Results of the ICAPS 2011 IPPC Domains

threshold θ0.
Therefore, for problems with a small number of goal

states, TVI-DP is better suited. For problems with a large
number of goal states, TVI-DFS is better suited. Nonethe-
less, TVI-DP finds policies for all combinations of start
states and initial cost thresholds that are no larger than a
maximum threshold θ0.

ICAPS 2011 IPPC Domains: We used the eight domains
from the ICAPS 2011 International Probabilistic Planning
Competition (IPPC) in our second set of experiments. For
each domain, we report the results of the largest instance
that fit in memory. The exceptions are as follows: (i) For
the Navigation domain, all the instances were too small and
could not sufficiently illustrate the difference in runtimes of
the various algorithms. As such, we created a larger instance
that uses the same domain logic and report the results of that
instance. (ii) For the Game of Life, Reconnaissance, SysAd-
min, and Traffic domains, all the instances were too large
and could not fit in memory. Therefore, we created smaller
instances that use the same domain logic and report the re-
sults of those instances.

Table 4 shows our results for three initial cost threshold θ0
values, as a function of the minimum expected cost Cπ(s0).
The trends in these results are similar to the trends in the ran-
domly generated MDPs with large number of goal states. As

these problems are finite-horizon problems, each augmented
state is actually a state-timestep-threshold (s, t, θ) tuple, and
each augmented state (s,H) with the horizon H as the time
step is a goal state. Thus, the number of goal states is large.

Conclusions

While researchers have made significant progress on RS-
MDPs, for example, by mapping MDP rewards to risk-
sensitive utility functions and finding policies that maximize
the expected utility (Liu and Koenig, 2005, 2006, 2008),
little progress have been made on solving the original RS-
MDP (with hard deadlines) since (Yu, Lin, and Yan, 1998).

In this paper, we revisit this problem and introduce new
algorithms, TVI-DFS and TVI-DP, that combine TVI and
traditional methods like depth-first search and dynamic pro-
gramming, respectively. Our experimental results show that
both TVI-DFS and TVI-DP are faster than VI and FVI. TVI-
DP also has the added advantage that it finds policies for
all combinations of start states and initial cost thresholds
that are no larger than a maximum threshold θ0. Thus, it is
suitable in problems where the initial cost threshold is not
known a priori and can be set at execution time. To the best
of our knowledge, this is the first algorithm that is able to
provide such policies.

References
Altman, E. 1999. Constrained Markov Decision Processes.

Stochastic Modeling Series. Chapman and Hall/CRC.

Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.

Bertsekas, D. 2000. Dynamic Programming and Optimal
Control. Athena Scientific.

Blythe, J. 1999. Decision-theoretic planning. AI Magazine
20(2):37–54.

Bonet, B., and Geffner, H. 2003. Faster heuristic search al-
gorithms for planning with uncertainty and full feedback.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 1233–1238.

Campbell, A.; Gendreau, M.; and Thomas, B. 2011. The
orienteering problem with stochastic travel and service
times. Annals of Operations Research 186(1):61–81.

Cohen, P.; Greenberg, M.; Hart, D.; and Howe, A. 1989.
Trial by fire: Understanding the design requirements for
agents in complex environments. AI Magazine 10(3):32–
48.

Dai, P.; Mausam; Weld, D.; and Goldsmith, J. 2011. Topo-
logical value iteration algorithms. Journal of Artificial
Intelligence 42(1):181–209.

Defourny, B.; Ernst, D.; and Wehenkel, L. 2008. Risk-
aware decision making and dynamic programming. In
NIPS 2008 Workshop on Model Uncertainty and Risk in
Reinforcement Learning.

Dolgov, D. A., and Durfee, E. H. 2005. Stationary determin-
istic policies for constrained MDPs with multiple rewards,
costs, and discount factors. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
1326–1331.

Ermon, S.; Conrad, J.; Gomes, C.; and Selman, B. 2011.
Risk-sensitive policies for sustainable renewable resource
allocation. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 1942–1948.

Ermon, S.; Gomes, C.; Selman, B.; and Vladimirsky, A.
2012. Probabilistic planning with non-linear utility func-
tions and worst-case guarantees. In Proceedings of the In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 965–972.

Goodwin, R.; Akkiraju, R.; and Wu, F. 2002. A decision-
support system for quote generation. In Proceedings of
the Conference on Innovative Applications of Artificial In-
telligence (IAAI), 830–837.

Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 130–137.

Kolobov, A. 2013. Scalable Methods and Expressive Mod-
els for Planning Under Uncertainty. Ph.D. Dissertation,
University of Washington.

Lau, H. C.; Yeoh, W.; Varakantham, P.; Nguyen, D. T.;
and Chen, H. 2012. Dynamic stochastic orienteering
problems for risk-aware applications. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence
(UAI), 448–458.

Liu, Y., and Koenig, S. 2005. Risk-sensitive planning with
one-switch utility functions: Value iteration. In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI), 993–999.

Liu, Y., and Koenig, S. 2006. Functional value iteration for
decision-theoretic planning with general utility functions.
In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 1186–1193.

Liu, Y., and Koenig, S. 2008. An exact algorithm for solv-
ing MDPs under risk-sensitive planning objectives with
one-switch utility functions. In Proceedings of the In-
ternational Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 453–460.

McMillen, C., and Veloso, M. 2007. Thresholded rewards:
Acting optimally in timed, zero-sum games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence
(AAAI), 1250–1255.

Murthy, S.; Akkiraju, R.; Goodwin, R.; Keskinocak, P.;
Rachlin, J.; Wu, F.; Yeh, J.; Fuhrer, R.; Aggarwal, S.;
Sturzenbecker, M.; Jayaraman, R.; and Daigle, R. 1999.
Cooperative multiobjective decision support for the paper
industry. Interfaces 29(5):5–30.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of markov decision processes. Mathematics of Op-
erations Research 12(3):441–450.

Pell, B.; Bernard, D.; Chien, S.; Gat, E.; Muscettola, N.;
Nayak, P. P.; Wagner, M.; and Williams, B. 1998. An
autonomous spacecraft agent prototype. Autonomous
Robots 5(1):29–52.

Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2):146–160.

Tsiligrides, T. 1984. Heuristic methods applied to orienteer-
ing. Journal of Operation Research Society 35(9):797–
809.

Varakantham, P., and Kumar, A. 2013. Optimization ap-
proaches for solving chance constrained stochastic ori-
enteering problems. In Proceedings of the International
Conference on Algorithmic Decision Theory (ADT), 387–
398.

Yu, S.; Lin, Y.; and Yan, P. 1998. Optimization models
for the first arrival target distribution function in discrete
time. Journal of Mathematical Analysis and Applications
225:193–223.

Zilberstein, S.; Washington, R.; Bernstein, D.; and Mouad-
dib, A.-I. 2002. Decision-theoretic control of planetary
rovers. In Revised Papers from the International Seminar
on Advances in Plan-Based Control of Robotic Agents,
270–289. Springer-Verlag.

