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Abstract—In today’s world, organizations are faced with
increasingly large and complex problems that require decision-
making under uncertainty. Current methods for optimizing
such decisions fall short of handling the problem scale due to
not exploiting the inherent structure of the organizations. We
propose a new model called the OrgPOMDP (Organizational
POMDP), which is based on the partially observable Markov
decision process (POMDP). This new model combines two
powerful representations for modeling large scale problems:
hierarchical modeling and factored representations. In this
paper we make three key contributions: (a) Introduce the Org-
POMDP model; (b) Present an algorithm to solve OrgPOMDP
problems efficiently; and (c) Apply OrgPOMDPs to scenarios
in an existing large organization, the Air and Space Operation
Center (AOC). We conduct experiments and show that our
OrgPOMDP approach results in greater scalability and greatly
reduced runtime. In fact, as the size of the problem increases,
we soon reach a point at which the OrgPOMDP approach con-
tinues to provide solutions while traditional POMDP methods
cannot. We also provide an empirical evaluation to highlight
the benefits of an organization implementing an OrgPOMDP
policy.

I. INTRODUCTION

Solving decision problems in uncertain domains with im-
perfect information is a difficult challenge. These problems
include situations with uncertain action effects and only par-
tial information about the current state of the environment.
Partially observable Markov decision processes (POMDPs)
provide a robust model for representing these problems.
While many promising algorithms have been developed [1],
[2], [3], [4], [5], [6], [7], [8], scalability to large real-world
domains remains an open question.

Recently, work on hierarchical [9], [10], [11] and factored
models [12], [13], [14], [15] has shown increased scalability
by making use of inherent structure in a problem. These
approaches allow the problem to be broken up into more
manageable pieces which can be solved more easily by
using either a hierarchy of more finely grained problems
or factored problem variables which contain sets that are
independent of one another. In this paper, we combine the
benefits of both approaches by breaking up a large problem
into a set of hierarchically related problems, each of which
is made up of a factored model. This model is motivated by
the need to find the best use of an organization’s resources
while taking into account the partially observable nature of

a domain, leading us to call our model an Organizational
POMDP, or OrgPOMDP. OrgPOMDP helps leverage the
hierarchical nature of the organization and the structure in
dependencies between different levels efficiently.

From the perspective of organizations such as Air and
Space Operation Center (AOC), OrgPOMDP is an ideal
model to represent (a) organizations’ control hierarchy; (b)
decision problems (primarily under uncertainty) faced at
each level of the control hierarchy; and most importantly
(c) the interactions between decision makers at different
levels of the hierarchy. Due to such a rich representation
of the decision problem, an OrgPOMDP policy ensures that
an organization reacts to unexpected events in a coherent
manner. We provide empirical evidence illustrating this
aspect in the context of AOC. It is worth noting that a large
number of hierarchical problems can be represented using
the OrgPOMDP model.

Apart from presenting the OrgPOMDP model, we also
introduce a novel algorithm to solve OrgPOMDPs. This
algorithm provides methods to exploit the factored and
hierarchical structure present in the OrgPOMDP, drastically
reducing the solution complexity. Finally, we also show
the performance of this solver on scenarios from the AOC
domain. These results show that as the complexity of the
problem increases, the benefits of the OrgPOMDP approach
increase as well. In fact, as we increased the complexity
of the Organizational Planning Scenario (Section II-B2),
we quickly reached a point where the OrgPOMDP could
provide solutions, whereas a traditional POMDP could not.
As mentioned in the previous paragraph, we have conducted
experiments to highlight the advantages for an organization
in employing an OrgPOMDP policy.

II. MOTIVATING DOMAINS

The OrgPOMDP model is applicable to a wide range of
problems. In order to make our discussions and experiments
concrete, we present the general characteristics of domains
that would benefit from the OrgPOMDP model.

A. Domain Characteristics

Informally, this paper focuses on representing and solving
problems in which:(a)There is a hierarchical control struc-
ture. (b)Decisions are made at each level and they are made
sequentially, i.e., initially a decision is made at the root (level
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Figure 1. Rescue Mission and Planning Scenarios.

0) for which a set of decisions are made at level 1 (the next
level) and for each decision at level 1 there are a set of
decisions made at level 2 and so on. Decisions of a parent
node can potentially affect all aspects (mentioned formally
in Section III) of a child’s decision problem. Child decisions
affect state transitions of its parent.

B. Air and Space Operations Center (AOC)
Many military organizations possess the hierarchical

structure described above. One organization that needs to
quickly and seamlessly adapt is the United States Air Force’s
Air and Space Operations Center (AOC). The AOC is a
command and control center with the capability to direct
and supervise the activities of assigned and attached forces
and to monitor the actions of both enemy and friendly
forces. By design, the AOC consists of core personnel
and augmenting elements. The AOC constantly evolves its
staffing, structure and processes to changes in the envi-
ronment and its missions. The policies for augmentations
and commensurate personnel responsibility assignments are
examples of organizational adaptation in the AOC.

In addition to the general organizational adaptation chal-
lenges described above, AOC is an example of an organiza-
tion with hierarchical authority, distributed roles, and flexible
staffing. Its hierarchical structure is embodied in the multiple
command teams and cells. Each team has a set of core
functions, and can be augmented with additional personnel
if required. All elements of AOC have two main processes:
standard proactive and planned tasks, and event-based time-
critical tasks. Consequently, organization adaptation involves
changes in the staffing for the teams and the assignment of
tasks to teams. We consider two representative problems, in
the form of scenarios for the AOC:

1) Rescue Scenario: In this scenario (depicted in Fig-
ure 1), AOC has been alerted that a hurricane is imminent,
and that an island must be evacuated. There are two key
aspects to the scenario, one is the hierarchical organization
structure and the second is the hierarchical task structure.
The task structure is representative of the several fragment
areas of the island that need to be evacuated. The organiza-
tion has selected resources to perform the evacuation, in the
form of aircraft operating out of a nearby base. Each aircraft

Figure 2. OrgPOMDP representation.

can hold up two evacuation teams, and each evacuation
team is capable of performing evacuation operations in a
particular location within the area. Nodes in the control
hierarchy can only be allocated to tasks on the same level
of the hierarchy, as shown in the figure. When a node on
the right is assigned to a task on the left, it is permitted to
allocate its child nodes to subtasks. The dotted arrows in
the figure show that (a) Base has been assigned to rescue
Island 1, (b) Aircraft 1 has been assigned to rescue Area
1, and (c) EvacTeam1 has been assigned to rescue Location
0-0. We will refer to this scenario simply as Rescue for the
experiments in Section V of this paper.

2) Organizational Planning Scenario: Second, we con-
sider the much larger problem of planning for the whole
organization. The hierarchical structure of Figure 1 rep-
resents the organization. Each division has a role in the
planning process, and each team within the division has a
more specific role. However, when multiple tasks arrive, it
may be unclear which of the tasks should be handled by the
teams, and how the organization should leverage its structure
to handle them. We will refer to this scenario as Planning
for the experiments in Section V of this paper.

3) Additional scenario details: Figure 2 shows the deci-
sions that will be made by each organizational node. Parent
nodes have three categories of actions which affect the
child nodes by either: (1) redistributing extra resources (or
personnel) among the child nodes, which will increase the
probability of progress in the child nodes which receive the



resources. (2) changes the allocation of subtasks to child
nodes, which will again alter the probability of progress de-
pending on the effectiveness of the child node at handling the
allocated task. (3) doing nothing and waiting for progress.

Henceforth, we will refer to the extra resources in the
Rescue domain and extra personnel in the Planning do-
main generically as Extra Resources (ER). In the Rescue
scenario, ER represents additional team members or rescue
equipment, and in the Planning scenario ER represents
specialists (software expert, domain expert, etc) that assist
in planning. Thus, increasing ER increases effectiveness at
performing the tasks. The formal model in the next section
will situate these two motivating domains into a broader
class of problems.

III. MODEL

To represent the domains of interest in this paper, we in-
troduce an extension to the well known partially observable
Markov decision process (POMDP) model which we call
the OrgPOMDP, OP . The model is defined as the tuple

OP = (P, {cOP1, cOP2, · · · },SD,MD, H)

with the following attributes: P is the standard POMDP
tuple, cOP1, cOP2, · · · are child OrgPOMDPs, SD are
state dependencies and MD are model dependencies. As
can be noted from the definition above, OP is recursively
defined, thus an OrgPOMDP can be represented as a tree
with each “node” in the tree representing an OrgPOMDP.
Without loss of generality, we assume Q nodes in this tree
and each node is referred to as OPq .
Factored POMDP model: In each OrgPOMDP node, the
P is represented as the tuple 〈S,A,Ω, T,O,R,H〉 with
a factored state (S = (Si)l1), action (A = (Ai)m1 ) and
observation space (Ω = (Ωi)n1 ). That is, each of the states,
actions and observations can be broken up into a set of
features. For instance, a state at a node in the planning
scenario is broken into features such as progress, extra
personnel, allocation of tasks at a node. T defines the
probability of transitioning to state s′ from state s given
action a was taken, or T (s′|s, a), O defines the probability
of observing o given action a was taken and the resulting
state is s′, or O(o|s′, a), R defines the immediate reward
for being in state s and taking action a, or R(s, a) and H
represents the time horizon for the decision making at the
root node.
Child OrgPOMDPs: For each node OPq , its child nodes
are represented as cOPq,1, cOPq,2, · · · . These child nodes
are further defined recursively. Time horizon for the child
nodes can be different from the parent and the OrgPOMDP
representation allows for such a variation.

Then, we have two aspects of the model related to the
dependencies existing between nodes at different levels of
the hierarchy:
State space dependencies: These are dependencies from
child nodes to their parent nodes that arise due to the
dependence between state space features. For instance in
AOC type organizations, these dependencies arise because

the performance of the organization as a whole (i.e. root
OP) depends on overall progress (feature in the state space
of root node) achieved on various tasks, which in-turn is
computed from the progress achieved by child nodes on
sub-tasks (feature in the state space of child node). Thus,
a state dependency, sd ∈ SD of OPq is defined as the tuple
〈k, cOPq,1, G1, f()〉, where sk = f({si1}i∈G1

), G1 is a
subset of the state space features in POMDP, P (of cOPq,1)
and f can be any surjective function that is invertible. In
the Rescue domain mentioned earlier, f() is the “average”
function over the progress achieved on its sub tasks. At this
juncture, a state feature for the parent can only be obtained
from state features of one child. In the future, we wish
to extend this interaction to consider state features from
multiple children.
Model dependencies: These are dependency links from a
parent node to one of its child nodes. In this paper, we
assume that the state and actions of a parent OPq could
affect all aspects of the child decision problem, except the
observations. Therefore, a model dependency, mdas ∈ MD
from OPq to cOPq,1 is defined as mdas : s × a →
S × A × T × R, where s ∈ OPq.P.S and a ∈ OPq.P.A.
Thus, a model dependency, can have the following effects on
the child node (depending on the state and action of parent
node):

(a) Defining the state and action space: For example in the
planning scenario, if at the parent node a decision (action)
is made to avoid having extra personnel at a child node,
then at that child node, the state and action space would not
contain a feature associated with extra personnel.

(b) Defining the reward function: Organization (parent
node) sets goals for individual groups (child nodes) to
achieve in a planning scenario. Such goal setting by higher
levels is modeled in terms of defining the reward function
for the lower levels; and

(c)Defining the transition function: Continuing the plan-
ning scenario, depending on the number of extra personnel
allocated to a child node, the dynamics (captured by the
transition function) at the lower level vary.

Due to these dependencies between different levels of the
hierarchy, the OrgPOMDP model is only partially specified.
For instance, if there is a state dependency between two
nodes in the hierarchy, the state transition can only be
partially specified at the parent node (i.e. for features not
dependent on child node) and similarly, if there is an
action dependency, the aspects of the child node that are
dependent on the parent node are partially specified. In
the organizational planning scenario mentioned earlier, an
example of a model dependency would be where the top
level management decides to restructure the tasks each group
is working on. Such a scenario would correspond to a
model dependency, where most aspects of the child decision
problem are affected.

A. Mapping to a Flat POMDP model
To illustrate the complexity of an OrgPOMDP decision

problem, we provide a mapping from an OrgPOMDP model



to an equivalent (flat) POMDP model where all the decisions
are made using one single POMDP. In the flat model,
different attributes of the POMDP tuple 〈S,A,Ω,T,O,R〉
are defined as follows:
(a) States, S: The set of states is a cross product of a subset
of state features from each node OPq of the OrgPOMDP.
Intuitively, this subset at each node includes all the features
which cannot be aggregated from state features of a child
node. Formally, this subset of features at each node in
the OrgPOMDP, OPq will include all those state features
k, where 6 ∃ 〈k, cOPq,z, G1, f()〉 ∈ OPq.SD s.t. skq =
f({siq,z}i∈G1

, skq ∈ OPq.P.S and siq,z ∈ cOPq,z.P.S.
Therefore, ∀st ∈ S, st = ×q<Qstq , where stq = ×ks

k
q .

(b) Actions, A: The set of actions is a cross product of
actions from each node in the OrgPOMDP,
i.e. A = ×q∈QOPq.P.A.
(c) Observations, Ω: The set of observations is also a
cross product of observations from all the nodes in the
OrgPOMDP,
i.e. Ω = ×q∈QOPq.P.Ω
(d)Transition function, T: Since the transition functions
are primarily independent for the different nodes of the
OrgPOMDP, the transition function for the flat POMDP is
defined as the product of feature transition probabilities from
individual OrgPOMDP nodes:

∀st, st′ ∈ S,T(st, a, st′) =
∏

q<Q,a∈OPq.P.A

T (sq, a, st
′
q),

where sq ∈ OPq.P.S, sq = stq×¬sq . Henceforth, we refer
to ¬sq as being the state features obtained by aggregating
features in st using state dependencies, OPq.SD.
(e) Observation function, O: Similar to the transition func-
tion computation, observation function is obtained by com-
puting a product of different OrgPOMDP nodes:

∀st′ ∈ S, ω ∈ Ω,O(st′, a, ω) =
∏

q<Q,a∈OPq.P.A,ωl∈ω

O(s′q, a, ω
l),

where s′q ∈ OPq.P.S, s′q = st′q × ¬s′q .
(f) Reward function, R: The reward function for the flat
POMDP is computed by summing the rewards obtained at
different nodes in the OrgPOMDP. Formally,

∀st, st′ ∈ S,R(st, a, st′) =
∑

q<Q,a∈OPq.P.A

R(sq, a, s
′
q),

where sq, s
′
q ∈ OPq.P.S, sq = stq × ¬sq, s′q = st′q × ¬s′q .

It should be noted that due to the sequential nature of
policy execution between parent nodes and child nodes in
an OrgPOMDP, the flat POMDP model will have high costs
(in its reward function) for actions that are not executable
at a decision.

B. Differences with Current Methods

A number of approaches have been developed for ex-
ploiting hierarchical structure in POMDPs [9], [10], [11].

These approaches have not exploited factored representa-
tions. Similarly, a number of approaches have exploited
factored representations in POMDPs [12], [13], [14], [15]
but have not accounted for hierarchical relationships. Our
approach not only combines these representations in a novel
manner, but also extends them in significant ways.

OrgPOMDPs are different from hierarchical POMDPs in
several ways. Hierarchical approaches typically break up a
problem into a set of smaller problems of finer granularity
using methods such as HMMs [11], finite-state controllers
[9] or action hierarchies [10]. Like these methods, Org-
POMDPs uses a sequential execution order between different
levels, i.e. the root (zero) level first executes its action,
based on which the first level nodes execute their policies
and so on, but in our case, we break the problem up into
whole POMDPs which are executed by each node in the
hierarchy. This results in the state dependencies, in which
the states of the parent depend on the state features of the
child and model dependencies, which define the effect of
parent OrgPOMDP’s action on the child nodes. The effect
of the action can either be nothing or a combination of the
four effects described in action dependency above. These
dependencies can be efficiently represented by using the
factorized parameter space.

Specifically, the OrgPOMDP approach has three funda-
mental differences from current hierarchical methods: (a)
Hierarchical POMDPs only capture the hierarchical task
decomposition (state space), while with OrgPOMDPs we
are able to capture both the control (action space) and task
(state space) hierarchies, a key factor required in modeling
dynamic organizations; (b) We assume general hierarchies:
(i) existing at the level of state features and not entire states;
and (ii) aggregation of state features with general surjective
functions (f()); and (c) For solving hierarchical POMDPs,
multiple message passing iterations through the hierarchy
are proposed, which limit the scalability considerably. In our
approach, we are able to solve the OrgPOMDP with only
one pass through the hierarchy, which provides considerable
computational savings.

OrgPOMDPs are also substantially different from current
factored POMDPs. The factored POMDP model (introduced
by Boutilier and Poole [12] with improved algorithms fol-
lowing [13], [14], [15]), separates states and observations
into sets of features and uses a two-stage dynamic Bayesian
network to define the independencies between these features
for each action. In an OrgPOMDP, there exist state features
for parent nodes that are not related to state features of any of
its child nodes. Similarly, there exist state features for child
nodes that are not dependent on states or actions of parent
node. This allows the problem to be factored differently at
each node in the hierarchy. Also, actions can be factored in
the OrgPOMDP model to further simplify the representation
and model multiagent scenarios (where a set of workers is
completing a task, each possessing a different set of actions).
It is worth noting that while the actions can be factored, it
remains future work to also factor the rewards in such a way
as to extend the efficient solution concepts of the cooperative



multiagent MDP model of Guestrin et al. [16] to the partially
observable case.

IV. ALGORITHM

In this section, we provide an algorithm for fully specify-
ing and solving an OrgPOMDP problem. The key challenge
in solving the OrgPOMDP is reasoning with circular depen-
dencies that exist between the parent and child nodes in the
hierarchy: (a) The model for the child nodes is constructed
based on the actions selected at the parent node; and (b)
Because certain features of the state space at the parent
nodes are dependent on states at child nodes, the transition
probabilities for parent nodes can only be computed by
knowing child policies. In this paper, the key idea is to
resolve the circular dependency by converting each node in
the hierarchy into a fully specified POMDP and solving it.
We achieve this in three steps:
(a) We start from the root of the hierarchy and move towards
the leaf nodes, while initializing the POMDPs at all nodes
with states, actions and observations.
(b) At the leaf nodes of the hierarchy, OrgPOMDP nodes are
already full specified POMDPs. The parent nodes for the leaf
nodes are not POMDPs and the models at the leaf levels can
change based on the state and actions of the parent node (as
explained in state and action dependencies). To account for
this, we generate and solve all POMDPs corresponding to
the set of states and actions of the parent. The policies thus
generated are stored and used for computing state transitions
for the parent POMDPs. Our first contribution in this paper
is in exploiting structure in the domain to reduce the number
of possible POMDPs that are generated and solved.
(c) We construct the parent model by using the policies
computed at the child (corresponding to all possible state,
action pairs). This stage involves simulating the execution
of policy for the child and subsequently computing the
transition and observation probability functions at the parent.

Algorithm 1 OPSOLVER (OP, OrgProb)
1: P ← CONVERTTOPOMDP(OP, OrgProb)
2: π ← SOLVEPOMDP (P)

Algorithm 2 CONVERTTOPOMDP(OP, OrgProb)
1: P ← INITIALIZEPOMDP(OP, OrgProb)
2: if OP.children 6= φ then
3: for all child ∈ OP.children do
4: P.Tchild ← GETCHILDTRANSPROB(P, child,OrgProb)
5: P.T ← MERGETRANSPROBS(P.T,OrgProb)
6: P.R← GETREWARDS(P.R,OrgProb)
7: P.O ← GETOBSPROBS(OrgProb);
8: return P

We present the technique for solving an OrgPOMDP in
Algorithm 1. This algorithm solves the decision problem
at the top of the organizational hierarchy by converting
an OrgPOMDP to a POMDP. We perform this conversion

Algorithm 3 GETCHILDTRANSPROB(P,OPChild,OrgProb)
1: for all (s, a) ∈ (P.S,P.A) do
2: if INSTORE(s, a) then
3: 〈chP, πch〉 ← RETRIEVE(s, a)
4: else
5: chP ← CONVERTTOPOMDP(OPChild,OrgProb)
6: πch ← SOLVEPOMDP(chP)
7: STORE (s, a, chP, πch)
8: chBel← GETCHILDBELIEF(s,OrgProb)
9: chBelArr ← PROPAGATEBELIEF(chBel, π)

10: {P.Tchild(s, a, s
′)} ← GETPARENTTRANS(chBelArr)

11: return P.Tchild

using the recursive function CONVERTTOPOMDP()in Al-
gorithm 2. In this function, the transition, observation and
reward functions are computed based on whether it is a
leaf node or an intermediate node in the hierarchy (line
2). For the leaf nodes, the POMDP is readily specified
given the state and action of the parent node and hence the
model conversion is performed on line 1 itself. However, the
interesting aspect of this algorithm is when the computation
is performed for intermediate nodes (lines 3 - 7).

As we have illustrated in Algorithm 3, the computation
of transition probability for an intermediate node relies on
converting to and solving the POMDP for the child nodes,
over all state action pairs (line 1). The policy obtained
by converting to and solving the child POMDP (lines 5-
6) is simulated (lines 8-9) to compute the state transition
probability for the parent OrgPOMDP (line 10). This simu-
lation of the policy accounts for the state dependencies that
exist between parent and child OrgPOMDPs. To avoid re-
solving of the same POMDPs and improve the performance,
we maintain a cache of the generated POMDPs and their
solution policies (lines 2-3, line 7).

Computing the policy: While the policy for the root node
is present at the start of execution, rest of the OrgPOMDP
policy (i.e. policies for nodes at lower levels) is constructed
as observations are received. The key idea is to cache the
policies for the child node, while constructing transition
probabilities at the parent nodes. Specifically, in computing
T(s,a,s’) at the parent node: (a) we construct the POMDP
model for the child corresponding to the model dependency,
mdas ; and (b) we solve this new child model to obtain the
policy to be executed at the child and use the beliefs at
the end of executing this policy. Once these child node
policies are cached with reference to the model dependency,
the policy for the child corresponding to parent’s action is
computed by using the parent belief state and aggregating
the child policies corresponding to that belief state and the
action taken at the parent.

The following two key ideas employed with our algorithm
improve its efficiency considerably:

A. Exploiting action dependency structure

Depending on the action dependencies between a parent
node and child node, we would potentially need to run
all possible POMDPs at the lower level. In this paper, we



exploit the structure in the model dependencies to avoid
solving S × A POMDPs at the lower level. The key idea
here is that over all model dependencies, mdas , we would
only solve POMDPs which have a distinct effect on the
child node than with any other (s,a) pair. Due to a factored
state and action spaces, model dependencies can be redefined
more compactly with respect to the state and action features.
Thus, an action dependency with the factoredness taken
into account will be - md : (×i∈GsSi) × (×i∈GaAi) →
S1 × A1 × T1 × R1, where Gs, Ga represent a subset of
the features of the state and action spaces of OP.P . This
method of representing dependencies allows for grouping of
(state,action) pairs for which only one child POMDP needs
to be solved.

B. Single pass through the control hierarchy

In earlier research on solving hierarchical POMDPs [10],
multiple passes from root to leaf and leaf to root were
proposed to obtain the policy. This was primarily due to
the circular dependencies that existed between child and
parent nodes. However, in this research, we do a single
pass from root to the leaf and back from leaf to the root of
the control hierarchy. This is possible, because we generate
all feasible options (i.e. fully specified POMDPs) efficiently
(see Section IV-A) for action dependencies and this converts
the circular dependencies into uni-directional dependencies
(from child to parent). This mechanism of generating fully
specified POMDPs at each node increases the scalability of
the approach considerably.

V. RESULTS

We evaluated the performance of our approach on both
Rescue and Planning scenarios, as described in Section 2.
We also compare the performance of the OrgPOMDP model
to a Flat POMDP model, which is computed using the
mapping method provided in Section III-A. Flat POMDP
does not take advantage of organizational infrastructure to
allocate subtasks to the various child nodes and merely
considers all possible allocations of tasks to the nodes in
organizational hierarchy. We solve a POMDP in both cases
by invoking the point based solver [4].

Except where noted, experiments involve a 3-level control
and task hierarchy, corresponding to different levels of
granularity in the organization and tasks. Leaf nodes at the
bottom of the hierarchy have a single action, to progress on
their assigned task with their assigned number of personnel.
Each task has a discrete number of progress levels, and
a reward is assigned for completing each task. Transitions
advance the progress based on the resources assigned to the
leaf node (more resources = higher probability of progress).

At the root level, a single node is assigned a root task
that is decomposable into subtasks. Reward is accumulated
up the hierarchy through accumulation functions such as
sum, min, max, etc. We use sum for this set of experiments.
Observations report noisy observed progress levels on tasks.

OrgPOMDP
ER TIME MaxS AvgS MaxA MaxO POMDPs
0 2.188 36 18.0 5 9 6
1 2.422 36 18.0 5 9 10
2 4.953 54 21.8 6 9 14
3 9.922 72 26.0 7 9 18
4 25.687 108 32.7 9 9 22
5 116.094 198 46.4 14 9 26

FlatPOMDP
ER TIME |S| |A| |O|
0 - 486 8 81
1 - 1944 11 81
2 - 4860 17 81
3 - 9720 27 81
4 - 17010 42 81
5 - 27216 63 81

Table I
ORGPOMDP AND FLAT POMDP PERFORMANCE FOR Rescue

SCENARIO. ’-’ INDICATES SOLVER FAILED TO COMPLETE IN 1 HOUR.

HORIZON 1 2 3 4 5
FLAT-HORIZON 3 14 39 84 155

TIME 5.6 13.8 52.1 140.8 466.6

Table II
HORIZON VERSUS TIME FOR Rescue SCENARIO.

A. Rescue Scenario

We first report results on the Rescue scenario depicted
in Figure 1. Extra resources are available from the highest
level, and can be added to each aircraft and each team
in turn. Table I compares performance of Flat POMDP to
OrgPOMDP for varying numbers of extra personnel. For
OrgPOMDPs, we report the key complexity indicators such
as number of POMDP problems (POMDPs) generated by the
OrgPOMDP representation, the size of the subproblem with
the largest state (MaxS), action (MaxA), and observation
space (MaxO) (subproblems faced at different levels are
different, thus the table represents the size of the largest
subproblem), and the average state space (AvgS) size in the
organization. For Flat POMDPs, we report the number of
states (|S|), actions (|A|), and observations (|O|) in it. The
table shows that even for simpler versions of the problem
with no extra personnel, the Flat POMDP representation of
these problems was intractable for our POMDP solver, due
to the large number of states and observations.

Next, we consider larger problems to analyze scalability
properties of the OrgPOMDP model. Having established the
relative inability of Flat POMDP to handle even the simpler
problems, we do not report further on Flat POMDP time
(which is no solution, unless stated otherwise) on more
complicated problems. Rather, we use properties of the Flat
POMDP in order to provide context to the scalability of
OrgPOMDP with respect to problem features. We start with
time horizon. Table II shows the solution time versus the
horizon for the OrgPOMDP. Also shown is the time horizon
for the equivalent Flat POMDP problem. For hierarchies of



Number of Areas Time MaxS MaxA MaxO
2 13.7 54 6 9
3 52.6 54 6 9
4 55.0 54 6 9
5 55.3 54 6 9

Table III
EFFECT OF ADDING MORE AREAS

Aircraft Time MaxS MaxA MaxO
2 55.3 54 6 9
3 228.2 162 10 9
4 1800 648 28 9

Table IV
EFFECT OF ADDING MORE AIRCRAFT.

size 3, in cases where the individual OrgPOMDP problems
are of horizon H , the time horizon in the equivalent Flat
POMDP problem will equal H3 + H2 + H steps, as each
child runs for H steps for each step of the parent. The table
shows that solution time for OrgPOMDP grows roughly
proportionally to the underlying Flat POMDP time horizon,
not the OrgPOMDP time horizon.

We now compare the effects of adding to Task structure,
as well as the effects of adding complexity to Organization
structure. Table III shows the effect of adding tasks on the
rescue problem while keeping other parameters constant.
In the scenarios depicted, more areas (each with two sub
locations) were added to the middle of the three levels of
the hierarchy. As the table shows, the effect of adding areas
to this particular scenario is negligible. This was because the
most direct effect of adding areas is to add states to the root
node, it can contemplate new task allocations. However, the
larger POMDPs in the scenario are not at the root node, and
thus the addition does not drive the timing.

However, adding components to the organizational struc-
ture does have an effect. Table IV shows the time taken
versus number of aircraft (nodes at the middle level). When
adding aircraft, the organizational POMDP grows exponen-
tially. Each aircraft can be assigned to any of the areas, and
furthermore each aircraft can be assigned any number of
personnel. The Flat POMDP was 〈19440s, 35a, 81o〉 for the
4 aircraft scenario, orders of magnitude larger than the size
of a solvable Flat POMDP.

In summary, the effect of adding to either structure must
be analyzed in terms of whether it increases the decision
space of an organizational node and the position of that node
in the hierarchy. If the node is a computational bottleneck,
such as the root node in Table III, adding complexity will
have considerable effect. Similarly adding to the decision
space of a node also increases overall run-time. In either
case, a great deal of scalability was demonstrated for this
problem.

B. Planning Scenario
The goal of these experiments is to simulate operations

within the AOC. In this domain, tasks consist of individual

ER Time MaxS MaxA MaxO
0 36.1 36 5 9
1 75.5 36 5 9
2 158.7 54 6 9
3 320.0 72 7 9
4 739.7 108 9 9
5 2688.9 198 14 9

Table V
TIMING RESULTS FOR Planning SCENARIO.

missions, and each mission task structure matches the orga-
nization structure, that is, there is no confusion in the AOC
as to which organization node was appropriate for a task.
However, staffing allocation decisions for each node must
still be made. Thus, manipulation of Extra Resources is the
key.

The Planning task had 4 missions, 2 divisions each with 2
planning teams, as in Figure 1. In this scenario, as opposed
to the Rescue scenario, each team was able to perform
two tasks concurrently. The resulting Flat POMDP had
〈52488s, 9a, 6561o〉 for the case with 0 extra personnel, and
no solution was found within an hour, because again this
is orders of magnitude larger than any Flat POMDP that
is solvable by current approaches. For the OrgPOMDP, we
plotted results for varying numbers of extra personnel in
Table V. The effects of extra resources were similar to that
in the Rescue scenario, in that adding extra resources added
to the decision space which in turn made the probleme less
tractable.

The policies generated from the OrgPOMDP are large,
planning for all possible contingencies from each node of
the organization. To give a sense of the dynamic organization
structure produced by the policies, we include in Table VI
examples of the decisions made by the organizational policy
at execution time. Transitions and observations were chosen
stochastically based on the transition and observation func-
tions of the OrgPOMDP. It can be seen that the organization
will adapt based on the availability of resources and the tasks
assigned to the different workers.

Finally, we compare the performance of a dynamic or-
ganization represented using an OrgPOMDP and a static
organization. Table VII compares the average quality of
the OrgPOMDP policy, which dynamically changes the
organizational structure over time, with the average quality
of a static organization which does not adjust over time.
Because the OrgPOMDP policy can reallocate tasking and
resources, such as from completed tasks to incomplete tasks,
or from tasks with low progress to more promising tasks in
the last horizon steps, it is able to achieve higher scores. To
generate these scores, a reward of 1 was allocated for each
time step at which a low level task was complete, a reward
of 3 was allocated for mid-level tasks, and a reward of 7
was allocated for the highest level tasks.



Node Timestep Action
Commander 1 TA(1,0)

Strat Division 2 TA(0,1)
Strat Plans Team 3-4 RA(0,4), RA(3,1)

Strat Guidance Team 3-4 Wait, Wait
Strat Division 5 TA(0,1)

Strat Plans Team 6-7 RA(0,4), Wait
Strat Guidance Team 6-7 Wait, Wait

CP Division 2 TA(0,1)
Target Effects Team 3-4 Wait, Wait

Air Task Team 3-4 Wait, Wait
CP Divison 5 TA(0,1)

Target Effects Team 6-7 Wait, Wait
Air Task Team 6-7 Wait, Wait

... ... ...

... ... ...

Table VI
EXECUTION OF ORGPOMDP POLICY FOR A HORIZON-2 PROBLEM FOR

THE ORGANIZATION IN 1. “WAIT” DOES NOT CHANGE THE
ORGANIZATION STRUCTURE, “TA” CHANGES TASK ALLOCATION OF

CHILD NODES AND “RA” CHANGES RESOURCE ALLOCATION.

Dynamic Static
355 188

Table VII
DYNAMIC ORGANIZATION (ORGPOMDP) VS. STATIC ORGANIZATION

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced the OrgPOMDP model
and presented an algorithm to solve it efficiently. The
OrgPOMDP model efficiently represents problems having
a hierarchical structure with general parent and child depen-
dencies. Furthermore, this model can also take advantage of
factored model parameters to even more efficiently represent
the problem. The algorithm to solve OrgPOMDPs makes
use of this problem structure to allow solutions to be found
efficiently. The OrgPOMDP model is very general and many
hierarchical problems in the of academic interest as well as
real world scenarios can be represented, permitting more
compact description and more scalable solutions.

We conducted experiments that demonstrate that our Org-
POMDP approach is both scalable and useful. We have
applied OrgPOMDPs to two realistic scenarios used by the
Air and Space Operations Center (AOC): Rescue Mission
and Organizational Planning. Our results in two domains
show that OrgPOMDPs dramatically reduces computation
time. In fact, our results show that as we shifted to the more
complex domain of planning for the entire organization,
we quickly reached a point where the OrgPOMDP could
provide optimal solutions, whereas a traditional POMDP
could not. The OrgPOMDP’s advantage is that it leverages
the hierarchical nature of the organization and the structure
in dependencies to compute policies for decision makers at
various levels efficiently.

It is also worth noting that because the problem is trans-
formed into a set of POMDPs, any POMDP solver can be
used on these subproblems, allowing further improvements

to performance as solvers improve. In this paper, we have
employed PBVI [10], an approximate technique to solve
POMDPs. However, any of the other leading approximate
solvers can be employed [10], [6], [7] to reduce computation
time while producing high quality approximate solutions
for each POMDP. Lastly, OrgPOMDPs can leverage the
factored POMDP algorithms such as factored PERSEUS
[14] and factored HSVI [15] on the low level problems,
further increasing scalability.
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