
Lagrangian Relaxation for Large-Scale Multi-Agent Planning

Geoffrey J. Gordon†, Pradeep Varakantham‡, William Yeoh∗, Hoong Chuin Lau‡,
Ajay S. Aravamudhan‡ and Shih-Fen Cheng‡

†Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
‡School of Information Systems, Singapore Management University, Singapore 178902

∗Computer Science Department, New Mexico State University, Las Cruces, NM 88003, USA
†ggordon@cs.cmu.edu ‡{pradeepv,hclau,ajaysa,sfcheng}@smu.edu.sg ∗wyeoh@nmsu.edu

Abstract—Multi-agent planning is a well-studied problem
with various applications including disaster rescue, urban
transportation and logistics, both for autonomous agents and
for decision support to humans. Due to computational con-
straints, existing research typically focuses on one of two
scenarios: unstructured domains with many agents where
we are content with heuristic solutions, or domains with
small numbers of agents or special structure where we can
provide provably near-optimal solutions. By contrast, in this
paper, we focus on providing provably near-optimal solutions
for domains with large numbers of agents, by exploiting a
common domain-general property: if individual agents each
have limited influence on the overall solution quality, then
we can take advantage of randomization and the resulting
statistical concentration to show that each agent can safely plan
based only on the average behavior of the other agents. To that
end, we make two key contributions: (a) an algorithm, based on
Lagrangian relaxation and randomized rounding, for solving
multi-agent planning problems represented as large mixed-
integer programs; (b) a proof of convergence of our algorithm
to a near-optimal solution. We demonstrate the scalability of
our approach with a large-scale illustrative theme park crowd
management problem.

I. INTRODUCTION

Rapid progress in ubiquitous computing has enabled real-
time delivery of contextualized information via devices (such
as mobile phones and car navigation devices) over wide
areas. As a result, a new kind of information service for mass
user support is beginning to emerge. Examples include ser-
vices that coordinate movements of first responders during
a disaster rescue [1], movements of taxis in a fleet [2] and
movements of visitors in leisure destinations (such as theme
parks or World expositions). In these services, users are
typically represented by computational agents that perform
real-time planning and adaptation. Designing coordination
mechanisms that can govern these services in ways that
meet global criteria such as fairness, revenue maximization,
stability/convergence, and efficient resource utilization is a
research challenge.

Motivated by this challenge, we consider in this pa-
per a large-scale multi-agent planning problem both for
autonomous agents and for decision support to humans.
We seek provably near-optimal solutions for domains with
large numbers of agents by exploiting influence limits for

individual agents. Our method is based on Lagrangian
relaxation, a technique that has often been successfully
applied to solve centralized optimization problems, together
with a straightforward randomized rounding method.

Lagrangian relaxation has the advantage in that it inher-
ently produces subproblems that can be solved in parallel.
This property fits very naturally in a multi-agent environ-
ment, where each agent reasons about its own subproblem.
Our contributions in this paper are thus: (a) a new paralleliz-
able algorithm for solving multi-agent planning problems,
and (b) a proof of convergence to optimality as the number
of agents increases. In fact, the quality of the solution
actually improves as the problem size increases.

II. BACKGROUND: LAGRANGIAN RELAXATION

Lagrangian relaxation [3] is a well known algorithm-
design strategy for solving constrained optimization prob-
lems, where there are two types of constraints: (a) local
constraints, which factor across agents, and (b) global con-
straints, which couple agents and make the problem difficult
to solve. The first step is to dualize the global constraints by
introducing Lagrange multipliers (referred to as prices). The
global planning problem then splits into a number of slave
problems, which have only local constraints, plus one master
problem. The goal of the master problem is to determine
the correct value for the vector of prices. Given these
prices, the slave problems are completely independent. So,
starting from an initial price vector, we can solve the slave
problems in parallel, and then use the resulting solutions to
improve the prices, e.g., by gradient descent. This procedure
of updating the prices is continued until all the global
constraints are satisfied.

Lagrangian relaxation has two key drawbacks that pre-
clude its application in the domains of interest in this paper:
(a) it does not provide any bounds on the quality of the
solution, and (b) it can oscillate and fail to converge if
the slave problems are too homogeneous. In this paper, we
overcome both drawbacks, allowing Lagrangian relaxation
to be used in large-scale multi-agent planning problems.

III. ILLUSTRATIVE DOMAIN

We motivate our work with a theme park crowd man-
agement problem, where each patron needs to plan its
route, that is, its sequence of attractions to visit, such
that his total waiting time is minimized. We represent this
problem with a tuple 〈A,P, {A(pi)}n1 , {dai}k1 , {Ui}n1 , H〉,
where A = {ai}k1 is the set of attractions in the theme
park; P = {pi}n1 is the set of patrons in the theme park;
A(pi) ⊆ A is the subset of attractions that patron pi prefers
to visit; dai is the service rate of attraction ai, that is, the
number of patrons that attraction ai can service in each time
step; Ui is the utility function of patron pi; and H is the
horizon of the problem. The goal is to find the route πi for
each patron pi such that the sum of utilities Ui(πi) over all
patrons is maximized.

Fig. 1 shows a centralized mixed-integer program (MIP)
formulation of the problem, where we discretize the queue
at each attraction into buckets.

pc
t
b,a is the utility of patron p being in bucket b of attraction

a at time step t. We set a utility of 10 when a patron is
serviced at a preferred attraction, a utility of -1 when
a patron is queuing up.

px
t
b,a is the binary decision variable indicating whether pa-

tron p is at bucket b of attraction a at time step t.
Constraint 2 ensures that the number of patrons at each
bucket does not exceed its service rate. Constraint 3
ensures that each patron can be in at most one bucket
at each time step, that is, he is in at most one queue
position at each time step. Constraint 4 ensures that
each patron can be serviced at most once by each
attraction, that is, he does not repeatedly visit an
attraction. Constraint 5 ensures that if a patron p exits
the park at time step t, that is, when

∑
a,b px

t
b,a = 0,

then he does not reenter the park at a future time step.
Constraint 6 ensures that patrons do not jump queue,
that is, they move to the next bucket in each time step.

Using the terminology from the “Background: Lagrangian
Relaxation” section, Constraints 2 are the global constraints,
while the others are local constraints.

IV. MULTI-AGENT PLANNING PROBLEM

In this paper we are interested in multi-agent planning
problems where the interactions between agents are due to
common resource consumption. For example, in our illustra-
tive theme park crowd management problem, the resources
are the buckets for which the agents contend (acting on
behalf of humans). We represent such large-scale multi-agent
planning problems as MIPs with special structure.

Our chief assumptions are: (i) Factored structure: apart
from interactions due to common resource consumption,
we assume that the planning problems of individual agents
are independent of each other [4], [5]. However, our ap-
proach easily extends to cases with common global states

max
∑
p,b,a,t

px
t
b,a ·pctb,a s.t. (1)∑

p

px
t
b,a ≤ da ∀b, a, t (2)∑

b,a

px
t
b,a ≤ 1 ∀p, t (3)∑

t

px
t
1,a ≤ 1 ∀p, a (4)∑

b,a

px
t
b,a ≥

∑
b,a

px
t+1
b,a ∀p, t<H (5)

px
t
b,a ≤ px

t+1
b−1,a ∀p, b>1, a, t<H (6)

Figure 1. Centralized MIP Formulation

(although we do not include this generalization due to space
constraints). (ii) Influence limit: the influence of each agent
on the overall solution quality and resource consumption is
limited. (iii) Existence of local planning subroutines: our
approach does not depend on the specific local planning
problems (MIPs, MDPs, etc.), but we do assume that there
exist tractable procedures to solve them.

A. Factored Structure

More formally, we suppose that agent i’s plan is repre-
sented by a set of decision variables xi ∈ <ni ,1 subject to
local constraints Aixi = bi, xi ∈ Xi and local costs c>i xi.
These local terms represent restrictions (e.g., on movement)
or rewards/costs (e.g., from accomplishing local goals) that
are due to the actions of an individual agent. The agents
interact through coupling constraints, based on production
or consumption of generalized resources: resource j is
described by a closed proper convex function fj : < →
<∪ {∞} (which represents the global cost of consuming a
certain quantity of the resource) an vectors `ij ∈ <ni (which
govern the relationship between agent i’s decision variables
and the global consumption yj =

∑n
i=1 `

>
ijxi).

2 The global
planning problem of interest is therefore:

max
x

Vp(x) s.t. Aixi = bi, xi ∈ Xi ∀i (7)

Vp(x) =

n∑
i=1

c>i xi −
m∑
j=1

fj

(
n∑
i=1

`>ijxi

)
Typical examples of resources include fuel, water, sub-
assemblies of a final product, or the limitation that only one
agent at a time can occupy a given location. By choosing fj
appropriately, we can obtain either soft or hard constraints:
e.g., for a soft version of the constraint yj ≤ dj , we could
set fj(yj) to be the hinge loss function max(0, k(yj − dj)),

1If each agent’s planning problem is an MDP, then these would be
associated with every state-action pair.

2Negative consumption (i.e., production) is allowed.

where k > 0 determines the strength of the soft constraint.
For a hard constraint, we could set

fj(yj) =

{
0 yj ≤ dj
∞ yj > dj

(equivalent to setting k =∞ in the hinge loss).
1) Piecewise Linear Resource Cost:: For computational

simplicity, we assume that each resource cost function fj is
piecewise linear: that is,

fj(yj) = max{αyj + β | (α, β) ∈ Fj}
where Fj is a finite set of slope-intercept pairs (α, β). The
assumption of piecewise linearity loses us very little: for a
soft constraint, the hinge loss max(0, k(yj − dj)) is clearly
piecewise linear, with Fj = {(0, 0), (k,−kdj)}. For a hard
constraint, we can use the well-known trick of substituting a
hinge loss with a sufficiently large finite slope k. Finally, to
simulate a smooth fj , we can use a large number of pieces
to achieve any desired approximation accuracy.

B. Influence Limit

As described so far, the global planning problem (Eq. 7) is
NP -hard and inapproximable to within any constant factor
(unless P = NP). We thus cannot in general hope to
make progress without further restrictions. We propose that
a natural restriction is an influence limit for each agent.
Intuitively, such a limit captures the idea that each agent
has a bounded effect on the quality of the overall solution.
The influence limit has two parts. First, no agent controls
a disproportionate share of the utility or resources: writing
V ∗p for the optimal value in Eq. 7, and y∗j for the usage of
resource j in some optimal solution, we assume that there
is a constant U > 0 such that

−U
n
|V ∗p | ≤ c>i xi ≤

U

n
|V ∗p | (8)

−U
n
|y∗j | ≤ `>ijxi ≤

U

n
|y∗j | (9)

for all i, j, and xi ∈ Xi.
Second, we suppose that the optimization problem as a

whole is well conditioned, so that a small change in resource
availability leads to only a small change in solution quality.
In particular, we consider redefining the consumption cost
for resource j in Eq. 7 to be

fj
(
εj +

∑n
i=1 `

>
ijxi

)
(10)

for some small εj ≥ 0. Let V ∗ε be the optimal value of Eq. 7
after substituting in the definition of Eq. 10 for all j.

Given this definition, we assume that there exists a bound
εmax > 0, a condition number κ > 0, and a discretization
level ∆ > 0 such that

V ∗ε ≥ V ∗p − κ
∑
j εj −∆/n (11)

whenever 0 ≤ εj ≤ εmax,∀j. This restriction eliminates
problems that are balanced at the knife edge of feasibility.
In more detail, this assumption says that (within the range
[0, εmax]) a decrease in resource availability has two effects:
first, we lose utility in proportion to the loss of resources, at
a rate no greater than κ. Second, there can be a discrete loss
in utility, independent of εj , due to integrality constraints:
e.g., changing x ≤ 4.01 to x ≤ 3.99 means that the largest
feasible integer x changes from 4 to 3. This discrete loss
must get smaller as we increase n: proportionally, the effect
of going from x ≤ 400.01 to x ≤ 399.99 must be smaller
than for changing from 4.01 to 3.99.

V. SUBGRADIENT LAGRANGIAN RELAXATION

We now describe our Lagrangian-relaxation-based algo-
rithm for our multi-agent planning problem, that is, the
global planning problem of Eq. 7 along with its modification
in Eq. 10. Not only is the algorithm efficient, it is also able
to converge in the presence of homogeneous agents to a
solution with quality guarantees.

Lagrangian relaxation of the global constraints yields:

V ∗d = inf
λ

{
max
x

{ n∑
i=1

c>i xi −
m∑
j=1

[
λjyj − f∗j (λj)

]}}
s.t. C

= inf
λ

{ m∑
j=1

f∗j (λj) +

n∑
i=1

max
xi

[
c>i xi −

m∑
j=1

λjyj

]}
s.t. C

(12)

where V ∗d is the optimal dual value; yj = εj +
∑
i `
>
ijxi;

C stands for the constraints Aixi = bi, xi ∈ Xi, ∀i; and
f∗j (λj) = maxz{λjz− fj(z)} is the Lagrangian dual of fj .
(For hinge loss functions, f∗j (λj) = λjdj + I(0 ≤ λj ≤ k),
where I(test) is 0 or∞ according to whether test is satisfied
or not.) Thus, the two terms in Eq. 12 are: (1) a penalty
to prevent resource prices λj from rising too high, and (2)
the sum of agent utilities, including costs based on λj for
resource usage.

A. Decoupling

Given a price vector λ, we can decouple the optimization
of Eq. 12: each agent i optimizes its own dual value V id (λ)
using the slave problem

V id (λ) = max
xi

[
c>i xi −

m∑
j=1

λj

(
εj +

∑
i

`>ijxi

)]
s.t. Ci

(13)

where Ci is agent i’s local constraints. The master program
is now to compute the optimal dual value V ∗d using the
following reformulation of Eq. 12:

V ∗d = inf
λ
Vd(λ) (14)

Vd(λ) =

m∑
j=1

f∗j (λj) +

n∑
i=1

V id (λ) (15)

Here, Vd(λ) is the dual value for a specific λ.

B. Subgradient Descent

We can solve Eq. 14 by iteratively updating the price
vector λ using projected subgradient descent. A subgradi-
ent of Vd is defined as any function ∂[Vd(λ)] satisfying
Vd(λ

′) ≥ Vd(λ) + (λ′ − λ)>∂[Vd(λ)] for all λ′ and λ. The
projected subgradient descent algorithm iteratively updates
the old price vector λ to the new price vector λ′ using:

λ′ ← Π(λ− ηt∂[Vd(λ)])

where ηt is a decreasing sequence of learning rates, and
Π(λ) is the greedy projection of λ onto the domain of Vd [6],
[7]. We then use the following commonly-used lemma to
compute ∂[Vd(λ)]:

Lemma 1: For any function g(λ) = supx∈X [λ>(Qx +
r) − s(x)], if x∗ ∈ arg maxx∈X [λ>(Qx + r) − s(x)] for
some λ, then ∂[g(λ)] = Qx∗ + r.
To use the lemma, we reformulate Eq. 15 as

Vd(λ)=

m∑
j=1

max
z

[λjz − fj(z)] +

n∑
i=1

max
xi

c>i xi − m∑
j=1

λj`
>
ijxi

 s.t. C (16)

Thus, if we define z∗j = arg maxz[λjz − fj(z)] and x∗i =
arg maxxi s.t. Ci [c

>
i xi −

∑m
j=1 λj`

>
ijxi], then

∂[Vd(λj)] = z∗j −
∑
i

`>ijx
∗
i (17)

according to Lemma 1. For example, we can always take
z∗j = dj for hinge loss functions, so ∂[Vd(λj)] = dj −∑
i `
>
ijx
∗
i , which is the difference between the resource limit

and usage.
To implement the projection Π, we also need to know

the domain of Vd(λ). The domain of Vd is determined by
the domains of the dual functions f∗j . Since we assumed
that each fj is piecewise linear, we just need αmin

j ≤ λj ≤
αmax
j , where αmin

j and αmax
j are the smallest and largest

slopes of the linear pieces. So, to calculate Π(λ), we just
set λj ← max(αmin

j ,min(αmax
j , λj)).

C. SLR Algorithm

Plugging the above subgradient and projection operator
into the update rule yields our final algorithm, which we call
Subgradient Lagrangian Relaxation (SLR). Fig. 2 shows the
pseudocode, where η > 0 is an initial learning rate and T is
the desired maximum number of iterations. The outputs are

an average policy for each agent (x̄i) as well as an average
price for each resource (λ̄j).

Contrary to existing mechanisms for Lagrangian relax-
ation, a major difference is that the algorithm can be stopped
if the dual value Vd(λ̄) (Eq. 16) is close to the primal
value Vp(x̄) (Eq. 7). (Here λ̄ is the vector of λj for all
j, and x̄ is the vector of x̄i for all i, calculated on the last
two lines of pseudocode.) This convergence criterion not
only allows for performance bounds (see the next section)
but also prevents the oscillation observed in problems with
homogeneous agents.

We cannot directly execute the final aggregated policy
x̄: since the domains Xi are typically non-convex, aver-
aging feasible solutions (as in the pseudocode) does not
typically yield a feasible solution. We propose a simple
remedy for this problem: each agent should independently
pick a random locally-feasible policy xi ∈ Xi according
to a distribution which makes E(xi) = x̄i. (One such
distribution, perhaps the simplest and most general, is the
uniform distribution over xit for t = 1 . . . T ; but, other
domain-specific distributions may be preferable.) However,
the resulting global policy x̂ might have poor performance,
or might not even be a feasible solution, due to the coupling
constraints. We remedy this problem by increasing εj (de-
scribed in Eq. 10) sufficiently large such that the probability
of x̂ being a near-optimal solution is reasonably high (see
proof below).

Mapping our illustrative theme park crowd management
to SLR, each patron p corresponds to an agent i; for each
patron p, the constants pctb,a for all buckets b and attractions
a together corresponds to the vector ci of that agent, and the
variable pxtb,a for each bucket b and attraction a corresponds
to a variable xit for the current iteration t of that agent.
Prices λ correspond to the global constraints (2), and keep
each bucket of each queue from getting too crowded.

It should be noted that SLR is applicable to cases where
there is uncertainty associated with coupling constraints. An
example of such an uncertainty would be in problems where
the capacity of a resource is unknown at planning time. This
is handled by executing SLR over different samples of the
uncertainty [8].

VI. THEORETICAL RESULTS

The analysis of SLR can be divided into two parts: first,
demonstrating that we can solve the Lagrangian relaxation
of the global planning problem, and second, demonstrating
that our randomized selection rule doesn’t reduce our payoff
too much compared to the relaxed solution.

For the first part, we can measure the performance of the
subgradient iteration based on the duality gap, which is the
difference between the primal and dual solution values Vp(x̄)
and Vd(λ̄).

The dual value Vd(λ) can be found from Eq. 16. If x̄i is
the current average solution for agent i and ȳj =

∑
i `
>
ij x̄i,

Inputs: ci, Ci, `ij , fj , η, T Outputs: x̄i, λ̄j
λj0 ← 0 j = 1 . . .m

for t← 1, 2, . . . , T

xit ← arg maxxi s.t. C [c
>
i xi −

∑m
j=1 λj`

>
ijxi] i = 1 . . . n

yj ← εj +
∑n
i=1 `

>
ijxit j = 1 . . .m

zj ← arg maxz[λjz − fj(z)] j = 1 . . .m

λjt ← λj,t−1 + η√
t
(yj − zj) j = 1 . . .m

λjt ← max(αmin
j ,min(αmax

j , λjt)) j = 1 . . .m

x̄i ← 1
t

∑t
k=1 xik i = 1 . . . n

λ̄j ← 1
t

∑t
k=1 λjk j = 1 . . .m

Figure 2. Subgradient Lagrangian Relaxation pseudocode (see text for
descriptions of inputs and outputs)

then the primal value is Vp(x̄) =
∑
i c
>
i x̄i.

Standard results about subgradient descent [9] imply that,
after T iterations, the difference between the smallest dual
value and the largest primal value encountered so far is
O(1/

√
T). So, if x̄ were guaranteed to be feasible, we would

be done: we would simply need to set T large enough so
that Vd(λ̄)−Vp(x̄) is smaller than some error tolerance. This
is the convergence criterion that we have used in SLR.

Unfortunately, the domains Xi are typically non-convex,
and x̄ can be infeasible. So, we need the second part of our
analysis: showing that our randomized selection rule extracts
a near-optimal feasible solution from the average solution x̄.
Lemma 2 and Theorem 1 do so.

Intuitively, Theorem 1 tells us how SLR scales as the num-
ber of agents n increases. It lets us choose our parameters
(resource slack t, convergence tolerance γ for subgradient
descent, and failure probability δ for a single attempt at
rounding) so that we get the best possible guarantee on
the performance of the final global plan; and, it tells us
that, with these parameters, the performance approaches
optimal as n→∞. Furthermore, with these parameters, the
expected runtime of SLR will be a low-order polynomial in
the problem size.

In more detail, suppose for concreteness that we scale
our problem so that the optimal value V ∗p and optimal
resource consumption |y∗j | remain approximately constant as
n increases. Then we can pick parameters as described in
Lemma 3 so that (1) the runtime of subgradient descent is a
low-order polynomial; (2) the expected number of rounding
attempts is constant (so the total expected runtime is still
a low-order polynomial); and (3) the suboptimality bound
goes to zero as n → ∞. SLR is therefore a polynomial-
time algorithm which solves large planning problems near-
optimally, with an error that decreases as we move to larger
problems.

Thus, SLR as a whole runs in polynomial time and makes
a polynomial number of calls to the local planning subrou-

tines. If SLR succeeds, it finds a solution whose quality is
close to V ∗p (with an error that decreases as O(1√

n
)). Each

randomization of the final policy x has a constant failure
probability, so we can achieve any desired failure probability
by trying several independent randomizations and taking
the best (increasing runtime by at most a constant factor).
SLR is therefore a polynomial-time algorithm which solves
large planning problems near-optimally, with an error that
decreases as we move to larger problems.

Lemma 2: If each agent has a bounded influence on
resource use and overall utility (Eqs. 8–9), and randomizes
independently with E(xi) = x̄i, then with high probability,∑
i c
>
i xi is close to

∑
i c
>
i x̄i and

∑
i `ijxi is close to∑

i `ij x̄i. In particular, for any t, set

δ = e−nt
2/2U2|V ∗

p |
2

+me−nt
2/2U2|y∗j |

2

with probability at least 1− δ, the following holds.∑
i

c>i xi ≥
∑
i

c>i x̄i − t∑
i

`ijxi ≤
∑
i

`ij x̄i + t ∀j

Proof: By the Hoeffding-Azuma inequality and Eq. 8,

P[
∑
i c
>
i xi <

∑
i c
>
i x̄i − t] ≤ e−nt

2/2U2|V ∗
p |

2

Similarly, by Hoeffding-Azuma and Eq. 9, for each j,

P[
∑
i `
>
ijxi >

∑
i `
>
ij x̄i + t] ≤ e−nt

2/2U2|y∗j |
2

A union bound then yields the desired result.

Theorem 1: Suppose influence limits are guaranteed by
Eqs. 8–11. Fix t ≤ εmax, set εj = t for all j, and run
SLR (Fig. 2) to some tolerance γ. Let each agent randomize
independently with E(xi) = x̄i. Set

δ = e−nt
2/2U2|V ∗

p |
2

+me−nt
2/2U2|y∗j |

2

Then with probability at least 1− δ,

Vp(x) ≥ V ∗p −∆/n− (κm+ 1)t− γ

Proof: By Eq. 11, setting εj = t means that the overall
value of the modified program is V ∗ε ≥ V ∗p −∆/n− κmt.
Running SLR to tolerance γ will yield a relaxed solution x̄
with value Vrelax ≥ V ∗ε − γ in the modified program. Split
Vrelax =

∑
i c
>
i x̄i−

∑
j fj(t+

∑
i `
>
ij x̄i). By Lemma 2, with

probability at least 1− δ, the randomly selected solution x
will have ∑

i

c>i xi ≥
∑
i

c>i x̄i − t

and, for all j, ∑
i

`ijxi ≤
∑
i

`ij x̄i + t

which implies

fj(
∑
i `ijxi) ≤ fj(

∑
i `ij x̄i + t)

since fj is monotone increasing. So, with probability at least
1− δ, ∑

i

c>i xi −
∑
j

fj(
∑
i `ijxi) ≥ Vrelax − t

Since the left-hand side above is Vp(x), substituting in
Vrelax ≥ V ∗ε − γ and V ∗ε ≥ V ∗p − ∆/n − κmt yields the
desired bound.

Lemma 3: We can pick parameters t, γ, and δ to satisfy
properties (1)–(3) from above.

Proof: For (2), if we keep the failure probability δ
bounded for each attempt at rounding, we need an expected-
constant number of attempts before success. We can do so
by picking t large enough: e.g., we can pick t = Ω(ln 1/δ√

n
) to

achieve any desired failure probability δ, say δ = 0.01. For
(3), in the bound on Vp(x), the first term (V ∗p)will remain
constant as n→∞. The second term (∆/n) will go to zero
as n→∞. The third term will also go to zero, since t→ 0
as n → ∞. The fourth term (the convergence tolerance γ)
is under our control: e.g., we can take γ = 1√

n
so γ → 0 as

n → ∞. For (1), the number of iterations of SLR depends
polynomially on 1/γ (and therefore on n); the time for each
iteration of SLR depends polynomially on n and m; and
each iteration makes polynomially many calls to the local
planning subroutines.

VII. EXPERIMENTAL RESULTS

In this section, we show that SLR is able to find near-
optimal solutions for large-scale problems using the il-
lustrative theme park crowd management domain. Using
the notation from the “Illustrative Domain” section, we
categorize each problem with the following parameters: (a)
horizon H; (b) number of attractions |A|; (c) service rates
δai ; (d) number of patrons n; and (e) number of distinct
patron preferences k. In our experiments, we fix |A| to 10.
We vary δai from 5 to 15 for all attractions, H from 5 to 10,
n from 500 to 1500, and k from 5 to 10. These parameter
ranges imply that the smallest problem has 500 agents (= n)
and 250 resources (= H2×|A|) and the largest problem has
1500 agents and 1000 resources. We run our experiments on
a quad-core Intel Xeon 3.16GHz CPU with 16GB memory.
Fig. 3 shows a set of representative results, where we plot
the primal and dual values across iterations. We make the
following observations:
• Fig. 3(a) shows that as H increases, the converged

solution improves as well. Intuitively, the reason is
that the optimal solution quality increases with the
horizon – some patrons are now able to visit unvisited
attractions that they would otherwise have skipped if
H was smaller.

Table I
SOLUTION QUALITY OF THE CENTRALIZED MIP AND SLR

n Centralized MIP TREMOR SLR
5 100 100 [0.00] 100 [0.00]

10 200 200 [0.00] 200 [0.00]
25 500 500 [0.00] 499 [0.20]
50 950 945 [0.00] 944 [0.63]
75 1150 1125 [2.17] 1138 [1.04]
100 1150 1085 [5.65] 1138 [1.04]

• Fig. 3(b) shows that as n and δai increase, the con-
verged solution improves as well. Intuitively, the reason
is that the optimal solution quality increases with the
number of patrons and service rates – the number of
patrons serviced increases with these two parameters.

• Fig. 3(c) shows that as k increases, the converged
solution remains very similar. Intuitively, the reason
is that the optimal solution quality likely remained
unchanged – the maximum number of patrons that can
be serviced is already reached. The maximum number
of patrons that can be serviced is 500 (= |A|×δai×H),
which is less than n.

• All three figures show that the duality gap, which
reflects the error bound, is very small upon convergence
indicating that the solution is near optimal.

Additionally, we compare SLR with the centralized MIP
described in the “Illustrative Domain” section as well as
TREMOR [10] (a DEC-POMDP algorithm that uses model
shaping) on smaller sandbox problems to quantitatively
gauge the actual error. For these problems, we fix |A| to
5, δai to 5 for all attractions, H to 5 and k to 5. We vary n
from 5 to 100. Table I shows our results, where the numbers
in brackets indicate the percentage error. Unfortunately, we
could not compare our approach on larger problems as the
centralized MIP failed to converge in CPLEX after one hour
even for our smallest problem. In contrast, SLR converges
to a solution after about 1000-4000 iterations, where each
iteration takes about 0.5s. In these problems, TREMOR
was able to find solutions of similar quality as those found
by SLR. However, TREMOR does not provide any quality
guarantees on the solutions found unlike SLR. It is also
possible to construct specific problems where TREMOR will
perform arbitrarily bad.

VIII. RELATED WORK

Our crowd management problem is also very similar to
Prize Collecting TSPs (PC-TSP) [11], where an agent plans
a path through the theme park to collect “prizes” at each
attraction. However, PC-TSPs are not directly applicable:
PC-TSP is a single-agent problem, while our crowd man-
agement problem is a multi-agent problem.

Lagrangian relaxation has been used extensively in solv-
ing large-scale optimization problems [3] with most of
the work done on designing “good” subgradient descent
formulas to achieve quick global convergence [12], [13] as

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 0 2000 4000 6000 8000 10000
Iteration

n = 1500, k = 10, ai
=5

Dual H=5
Primal H=5

Dual H=7
Primal H=7
Dual H=10

Primal H=10

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 0 2000 4000 6000 8000 10000
Iteration

H = 10, k = 10

Dual n=500, ai
=5

Primal n=500, ai
=5

Dual n=1000, ai
=10

Primal n=1000, ai
=10

Dual n=1500, ai
=15

Primal n=1500, ai
=15

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 0 2000 4000 6000 8000 10000
Iteration

H = 10, n = 1500, ai
=5

Dual k=5
Primal k=5

Dual k=7
Primal k=7
Dual k=10

Primal k=10

(a) (b) (c)

Figure 3. Experimental Results of SLR

well as adapting standard Lagrangian relaxation to handle
oscillations caused by agent homogeneity [14]. Unfortu-
nately, the ideas on oscillation in the papers above do not
scale well, as the slave problem for each homogeneous agent
needs to be solved in sequence.

As far as multi-agent planning is concerned, researchers
have previously used Lagrangian relaxation with some suc-
cess; however, past work often either assumes infinitely
divisible resources [15], [4], or tries to get an exact so-
lution and therefore doesn’t scale to really large prob-
lems [16]. Researchers have also studied restrictions to the
type of planning problem considered, in some cases pro-
viding strong approximation guarantees using polynomial-
time algorithms [17], [1]. In contrast, our work allows near-
arbitrary local planning problems for the individual agents,
and a very general mechanism for agent interaction. Instead
of restricting the problem type, we gain leverage from the
assumption of bounded influence for any individual agent.

There has been research in weakly coupled MDPs [18],
[19] where resource coupled interactions have been con-
sidered. However, the approaches have either focused on
a simpler problem (sequential dependence on resources) or
have considered optimal approaches that are not scalable.
Researchers have also proposed heuristic model-shaping
approaches for solving a sub-class of DEC-POMDPs [10].
While their approach is applicable and can scale to the prob-
lems of interest in this paper, they do not have guarantees on
convergence and final solution quality. In fact, even on small
problems, we were able to demonstrate significant difference
in solution quality.

ACKNOWLEDGMENTS

This research is supported by the Singapore National
Research Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office.

REFERENCES

[1] S. Koenig, P. Keskinocak, and C. Tovey, “Progress on agent
coordination with cooperative auctions [Senior Member Pa-
per],” in Proceedings of AAAI, 2010, pp. 1713–1717.

[2] P. Varakantham, S.-F. Cheng, and T. D. Nguyen, “Decen-
tralized decision support for an agent population in dynamic
and uncertain domains,” in Proceedings of AAMAS, 2011, pp.
1147–1148.

[3] M. Fisher, “An applications oriented guide to Lagrangian
relaxation,” Interfaces, vol. 15, no. 2, pp. 10–21, 1985.

[4] C. Guestrin and G. Gordon, “Distributed planning in hier-
archical factored MDPs,” in Proceedings of UAI, 2002, pp.
197–206.

[5] D. Dolgov, M. James, and M. Samples, “Combinatorial
resource scheduling for multiagent MDPs,” in Proceedings
of AAMAS, 2007, pp. 657–664.

[6] G. Gordon, “Regret bounds for prediction problems,” in
Proceedings of COLT, 1999, pp. 29–40.

[7] M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in Proceedings of ICML, 2003,
pp. 928–936.

[8] A. Ng and M. Jordan, “PEGASUS: A policy search method
for large MDPs and POMDPs,” in Proceedings of UAI, 2000,
pp. 406–415.

[9] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and
Games. Cambridge University Press, 2006.

[10] P. Velagapudi, P. Varakantham, P. Scerri, and K. Sycara, “Dis-
tributed model shaping for scaling to decentralized POMDPs
with hundreds of agents,” in Proceedings of AAMAS, 2011,
pp. 955–962.

[11] E. Balas, “The prize collecting traveling salesman problem,”
Networks, vol. 19, pp. 621–636, 1989.

[12] M. Held, P. Wolfe, and H. Crowder, “Validation of subgradi-
ent optimization,” Mathematical Programming, vol. 6, no. 1,
pp. 62–88, 1974.

[13] C. Kaskavelis and M. Caramanis, “Efficient Lagrangian re-
laxation algorithms for industry size job-shop scheduling
problems,” IIE Transactions, vol. 30, no. 11, pp. 1085–1097,
1998.

[14] Q. Zhai, X. Guan, and J. Cui, “Unit commitment with iden-
tical units successive subproblem solving method based on
Lagrangian relaxation,” IEEE Transactions on Power Systems,
vol. 17, no. 4, pp. 1250–1257, 2002.

[15] J.-P. Callies and G. Gordon, “No-regret learning and a mech-
anism for distributed multiagent planning,” in Proceedings of
AAMAS, 2008, pp. 509–516.

[16] S. A. Hong and G. Gordon, “Optimal distributed market-
based planning for multi-agent systems with shared re-
sources,” in Proceedings of AISTATS, 2011, pp. 351–360.

[17] S. Koenig, C. Tovey, M. Lagoudakis, E. Markakis, D. Kempe,
P. Keskinocak, A. Kleywegt, A. Meyerson, and S. Jain, “The
power of sequential single-item auctions for agent coordi-
nation [Nectar Paper],” in Proceedings of AAAI, 2006, pp.
1625–1629.

[18] S. Singh and D. Cohn, “How to dynamically merge markov
decision processes,” in Proceedings of NIPS, 1998, pp. 1057–
1063.

[19] N. Meuleau, M. Hauskrecht, K. E. Kim, L. Peshkin, L. Kael-
bling, T. Dean, and C. Boutilier, “Solving very large weakly
coupled Markov decision processes,” in Proceedings of AAAI,
1998, pp. 165–172.

