
Social Model Shaping for Solving Generic DEC-POMDPs

Pradeep Varakantham
School of Information Systems

Singapore Management University
Singapore

pradeepv@smu.edu.sg

Abstract—Decentralized Partially Observable Markov Deci-
sion Problem, DEC-POMDP is a popular model to represent
multi-agent decision making under uncertainty. However, the
significant computational complexity involved in solving DEC-
POMDPs has limited their application. Recently, social model
shaping (TREMOR and D-TREMOR algorithms) was intro-
duced as an alternative to solve a sub-class of DEC-POMDPs.
While scalability has been improved to even solve hundred
agent problems, social model shaping has been restricted
to solving a sub-class of DEC-POMDPs called Distributed
POMDPs with Coordination Locales (DPCL). To that end, we
make two significant contributions: (a) Firstly, we enhance the
model shaping approach to solve general DEC-POMDPs where
there is no restriction on the agent dependencies; and (b) Sec-
ondly, we provide theoretical justification for the model shaping
heuristics. The key intuition is that not all interactions between
agents occur at every time step. In addition to solving 100 agent
problems in weakly coupled domains (due to extension from
TREMOR and D-TREMOR), we are able to show that social
model shaping achieves comparable performance to leading
DEC-POMDP solvers (such as IMBDP, MBDP-OC, PBIP-IPG
etc.) on tightly coupled benchmark problems.

I. INTRODUCTION

Decentralized Partially Observable Markov Decision
Problems (DEC-POMDPs) have been used to represent
decision problems in domains such as disaster rescue,
phenomenon observing sensor webs and autonomous rover
exploration [10], [12], [14]. Unfortunately, computing op-
timal solutions for DEC-POMDPs is NEXP-Complete [3].
Existing research has focused on two methods to ad-
dress this complexity: (a) Computing approximate solu-
tions [11], [1], [5] for general DEC-POMDPs. Leading
algorithms in this category have typically been able to
solve problems with two agents. (b) Optimally or approxi-
mately solving useful sub-classes of DEC-POMDPs, such
as transition-independent DEC-MDPs [2], Network Dis-
tributed POMDPs, ND-POMDPs [10], Transition Decoupled
POMDPs (TD-POMDPs) [14] and Distributed POMDPs
with Coordination Locales (DPCLs) [12]. While, some of
these approaches scale to problems with tens of agents, they
cannot solve general DEC-POMDPs.

We introduce GenTREMOR, a model shaping mechanism
that (a) is applicable to general DEC-POMDPs with tight
coordination between agents; and (b) has significant scal-
ability (similar to TREMOR and D-TREMOR) due to its

ability to exploit structure in sparse coordination problems.
Our approach builds over TREMOR (Team’s REshaping of
MOdels for Rapid execution) and D-TREMOR (Distributed
TREMOR), algorithms that were developed to solve large
DPCLs. DPCL is a sub-class of DEC-POMDP, where obser-
vation independence and sparse coordination are assumed.
GenTREMOR is based on the core intuition that even when
there are many possible locales of coordination between
agents, given specific policies of agents there are only few
active coordination locales (CLs). The following enhance-
ments in GenTREMOR make it suitable for solving tightly
coupled DEC-POMDP problems : (a) Shaping heuristics for
handling CL dependencies and observation dependence; and
(b) Computation of probability of occurrence of CLs;

While the scalability of model shaping has been illustrated
in Varakantham et al. [12] and more significantly in Prasanna
et al. [13], there has been no justification for the shaping
heuristics. In this paper, we take a step towards addressing
this issue by providing a theoretical justification for the
model shaping heuristics. Finally, we experimented on a
set of standard DEC-POMDP benchmark problems where
agents are tightly coupled. We were able to show that not
only was GenTREMOR able to outperform leading ap-
proaches for solving generic DEC-POMDPs on some of the
problems, it was able to achieve comparable performance on
all the problems. These results validate our claim that social
model shaping performs well both in tightly coordinated and
sparsely coordinated problems.

II. BACKGROUND

We briefly describe the DEC-POMDP and DPCL models
along with the TREMOR and D-TREMOR algorithms for
solving DPCLs in this section.

A. DEC-POMDP and DPCL

Decentralized POMDP is represented using the tuple of
〈S,A,P,R,Ω,O〉. S,A,Ω are the joint states, actions and
observations over all the agents and P,R,O are the joint
transition, reward and observation functions respectively.
The joint functions represent the coordination that exists
between agents. If there is at least one state, s ∈ S where
state transition depends on the individual states and actions
of the agents involved, then there is transition dependence

between the agents. Similarly, we define the reward and
observation dependence. Given this tuple, the goal is to
maximize the overall expected reward over all agents.

Distributed POMDPs with Coordination Locales, DPCL
model was introduced by Varakantham et al. [12] to repre-
sent problems where there are only a few scenarios in which
coordination is required between agents. A coordination sce-
nario or locale is defined using the tuple

〈
e, (si)

M
1 , (ai)

M
1

〉
.

It represents the decision epoch, e at which a sub-set
(M ≤ N) of agents take actions ai in states si. DPCL is
similar to the DEC-POMDP model, except with respect to
the following aspects:
(a) It assumes a state space consisting of global states and
local states, with global states representing the status of
tasks, i.e. S := Sg×S1× . . .×SN where Sn is a set of local
states of agent n for 1 ≤ n ≤ N and Sg is a set of task
states that keep track of the execution of tasks. However, in
DEC-POMDPs there is no restriction on what a state can
represent.
(b) The interactions between agents are limited to Same
Time Coordination Locales (STCLs) and Future Time Co-
ordinational Locales (FTCLs) with respect to transition and
reward function. STCLs represent situations where the effect
of simultaneous execution of actions by a subset of agents
cannot be described by the local transition (Pn) and reward
(Rn) functions of these agents. FTCLs represent situations
where actions of one agent affects other agents at a future
decision epoch. More specifically, such interactions are
caused due to changes in global state by an agent.

Algorithm 1 SOLVEDPCL()
1: π∗ ← SOLVEINDIVIDUALPOMDPS({Mi}i≤N)
2: π ← φ
3: iter ← 0
4: while π 6= π∗&&iter < MAX ITERATIONS do
5: ActiveCLs← GETACTIVECLS({Mi}i≤N , AllCLs)
6: for all cl ∈ ActiveCLs do
7: {vali}i∈cl.n ← EVALCL(cl)
8: {Mi} ← SHAPEMODELS(cl, 〈{vali}, {Mi}〉i∈cl.n)
9: π∗ ← π

10: π ← SOLVEINDIVIDUALPOMDPS({Mi}i≤N)
11: iter ← iter + 1

B. TREMOR and D-TREMOR

The goal in TREMOR [12] is to find an optimal task
allocation and a policy for each of the agents to accomplish
their tasks. TREMOR performs an approximate branch and
bound search over the set of all task allocations by using
MDP based heuristics. The actual value of a specific task
allocation is computed by solving the Distributed POMDPs
with Coordination Locale (DPCL) model for that alloca-
tion(Algorithm 1). Algorithm 1 provides the pseudo code for

solving the DPCL model for a specific allocation. There are
three crucial steps performed at each iteration (a) Compute
active interactions or CLs given current policies; (b) Shape
models to account for the interactions; and (c) Solve updated
models to obtain new policies.

We first describe the procedure employed for computing
the occurrence probability of a CL for agent i. For a
cl = 〈(e, (si)n1 , (ai)n1 〉, the probability that it would be
active when executing policy π is defined as

Prtcl(b) =
∏
i Pr

t
i,cl(bi), where

Prti,cl(bi) ={
bi(si)πi(bi, a) t = e ,∑
a∈Ai πi(bi, a)

∑
ω∈Ωi

P ai (ω|b) · Pr(t+1)
i,cl (Ga,ωi (bi)) t ≤ e

,

Ga,ω(b)(s′) = 1
Pa(ω|b)Oi(s

′, a, ω)
∑
s∈S Pi(s, a, s′)b(s),

P a(ω|b) =
∑
s′∈S [Oi(s′, a, ω)

∑
s∈S Pi(s, a, s′)b(s)]

In the above expressions, Pi and Oi refer to the individual
agent models (i.e. when other agents are not present in the
environment. πi(bi, a) refers to the probability of executing
action a in belief bi when using policy πi. Intuitively, these
expressions are obtained by traversing through the policy
tree of an agent (starting from belief b0) and computing
the probability of being in a state and executing a certain
action at a decision epoch. As for the second step of shaping
models to account for interactions, we will explain the
details of shaping in TREMOR/D-TREMOR in the next
section. Finally, solving of updated models can be performed
using any of the existing single agent POMDP solvers.

By starting from individual POMDPs and incrementally
modifying the model to accommodate most likely interac-
tions, TREMOR was able to scale to problems that were not
feasible with earlier approaches for solving DEC-POMDPs.
D-TREMOR [13] improved significantly upon TREMOR
by firstly proposing a distributed mechanism to exploit the
structure and proposing approximations in identifying and
evaluating CLs to improve efficiency. This enhanced social
model shaping algorithm was shown to scale to problems
with hundred agents while providing high quality solutions.

Figure II-B provides examples of the illustrative rescue
problems employed to test D-TREMOR algorithm [13].
The goal for the rescue robots is to rescue victims (in
red) while avoiding collisions with other robots in narrow
corridors. The goal for the cleaner robots is to clean debris
(shown as rocks) if they are obstructing rescue robots from
reaching their victims. Rescue robots and cleaner robots
have to accomplish their goals in the presence of transition
uncertainty (uncertainty in movements) and observational
uncertainty (unable to know exactly if there has been move-
ment). Prasanna et al. [13] show that D-TREMOR scales

Figure 1. Maps employed to evaluate the performance of D-TREMOR

to problems with upto 100 agents in such DPCL problems
(as shown in Figure II-B). Not only, was the scalability
improved many folds, the solution quality was better than
benchmark solution methods.

Independent Optimistic Do−NothingMax D−TREMOR D−TREMOR RandomLast

0 20 40 60 80 100
−500

−400

−300

−200

−100

0

100

Number of Agents

N
or

m
al

iz
ed

 J
oi

nt
 V

al
ue

Figure 2. Scalability and solution quality results for D-TREMOR on
Rescue Problem

TREMOR and D-TREMOR, however are applicable in
domains where: (a) there is an explicit definition of roles
or tasks to be accomplished by agents; and (b) there is
observation independence, i.e. observations received by an
agent are not dependent on actions taken by other agents.
To address these deficiencies, we first propose a coordination
locale based representation of a DEC-POMDP.

III. CL REPRESENTATION OF DEC-POMDP

We provide a coordination locale (CL) based representa-
tion to the DEC-POMDP tuple (described in Section II-A).
Firstly, we assume that the individual agent models, i.e.,
the model of an agent without other agents in the environ-
ment is available. This is not a strict assumption because
understanding the coordination between agents in a domain
requires understanding of individual agent models. Individ-
ual model for an agent i,Mi, is represented using the tuple

〈Si, Ai,Ωi,Pi,Ri,Oi, H〉. Therefore, S = ×iSi,A = ×iAi
and Ω = ×iΩi. In problems, where there are “global state”
or “unaffected state” features, the state space of every agent
will have those features. The dependencies between agents
due to these features are captured using CLs (as described
below).

Secondly, we assume all the interactions that could hap-
pen between agents are described in terms of coordination
locales. A CL is defined as a tuple of states and actions
for all the n agents involved in the interaction and is repre-
sented as 〈e, (si)n1 , (ai)n1 ,Γ〉. This set of CLs are obtained
from the joint model and the individual models. A CL,
〈e, (si)n1 , (ai)n,Γ〉 exists if either of the following conditions
hold for any e < H:

Pe((si)n1 , (ai)n1 , (s′i)n1) 6= ×i≤nPei (si, ai, s
′
i),Γ = 0, (1)

Re((si)n1 , (ai)n1 , (s′i)n1)) 6= ⊕i≤nRei (si, ai, s′i),Γ = 0, (2)
Oek((si)

n
1 , (ai)

n
1 , ωk) 6= Oek(sk, ak, ωk),∀k,Γ = 1 (3)

CLs detected by using Equation 1, Equation 2 and Equa-
tion 3 are appropriately referred to as the Transition CLs,
Reward CLs or Observation CLs. Γ is used to make the
distinction between Transition/Reward CLs (Γ = 0)and
Observation CLs (Γ = 1). We make the distinction between
CLs, because states s1, s2 in Transition or Reward CLs refer
to the source states, but in Observation CLs they refer to the
destination states.

Since we assume a generic DEC-POMDP model where
there are transition, observation and reward dependencies,
the Future Time Coordination Locales (FTCLs) as intro-
duced in Varakantham et al. [12] can be represented using
STCLs. FTCLs arise because modification of global state
by one agent can affect other agents. Because we consider a
generic DEC-POMDP model, observation dependencies are
present and hence FTCLs can be represented using STCLs.
Since we only have STCLs, henceforth, we refer to them as
CLs. Furthermore, we assume that n-ary interactions (CLs
involving n-agents) can be modeled using multiple binary
interactions (CLs with two agents). Thus, the shaping heuris-
tics are provided with respect to two interacting agents.

IV. GENERIC TREMOR

Due to the generic nature of the problems being solved,
unlike in TREMOR (or D-TREMOR), there is no role allo-
cation at every iteration of the algorithm. Instead, the goal
is to compute a joint policy that maximizes expected value.
The core algorithm remains the same as the one described
in Algorithm 1. The key differences are the enhancements
that make GenTREMOR suitable for application to generic
DEC-POMDPs are:
(i) Updated Model shaping heuristics to account for CL
dependencies and observation dependence .
(ii) Computation of CL occurrence probability, Pr0

i,cl.

A. Updated Model Shaping Heuristics

There are two key steps in which shaping of individual
agent models occurs in TREMOR(and D-TREMOR) and
consequently in GenTREMOR:

Step 1: Firstly, in updating the individual models to account
for the effects of active CLs; and

Step 2: Secondly, depending on the utility of the CLs to
the team as a whole, incentivizing (in terms of extra reward
accrued by the team) or hindering (penalties incurred by the
team) the occurrence of CLs in the agent models.

In evaluating a CL (line 7 of Algorithm 1), Step 1 is
employed. While on line 8, both steps are used in shaping
of models. We provide new heuristics for shaping models
in Step 1. This is an important modification which dictates
the quality of the final joint policy. Step 1 was performed
in TREMOR using the following update expressions.

Pr0
j,cl represents the probability of occurrence of cl with

respect to agent j, where cl = 〈e, (si, sj), (ai, aj),Γ〉.

Pecl(si, ai, s′i)←
∑

s′∈S:s′=(s′i,s
′
j)

P((si, sj), (ai, aj), (s
′
i, s
′
j))

P ′ei ← Pr0
j,cl · Pecl + (1− Pr0

j,cl) · Pei (4)

Recl(si, ai)← R((si, sj), (ai, aj))

R′ei ← Pr0
j,cl · Recl + (1− Pr0

j,cl) · Rei (5)

In the above expressions, the transition and reward func-
tions were updated according to the probability of a CL
being active. While there was no theoretical justification
provided [12] on the suitability of the above update expres-
sions, the above heuristics were shown to provide improved
performance on loosely coupled disaster rescue problems.

However, in tightly coupled problems, the above update
expressions can have undesirable effects. For instance, con-
sider the scenario where there are two cls, cl1 and cl2
with the same e, si and ai and different sj and aj . Now,
if the model for agent i is updated corresponding to cl1
first and cl2 next, then the model update corresponding to
cl1 could potentially be overwritten by the model update
for cl2. To address such inconsistencies in model updates,
we propose new model shaping heuristics. We use the set
CLis,a to represent all CLs which have the same state s and
action a corresponding to agent i. Instead of considering
the occurrence and non occurrence of each CL separately,
we aggregate corresponding to all CLs which have the same
state and action pair for the specific agent. Considering this,
the new shaping heuristics for shaping of transition and

reward functions are as follows:

P̃ei ←
∑

cl∈CLis,a

Pr0
j,cl · Pecl + (1−

∑
cl∈CLis,a

Pr0
j,cl) · Pei

(6)

R̃ei ←
∑

cl∈CLis,a

Pr0
j,cl ·

Recl
2

+ (1−
∑

cl∈CLis,a

Pr0
j,cl) · Rei

(7)

In these expressions, we compute new transition and reward
values by accounting for affects of all the CLs (with same
state, action pairs) at once and hence effects of a CL
are not overwritten. Our model shaping also accounts for
CLs related to observation dependencies and the shaping of
observation probabilities is performed in a similar manner.

Oecl(si, ai, ωi))← Oi((si, sj), (ai, aj), ωi)

Õei ←
∑

cl∈CLis,a

Pr0
j,cl ·Oecl + (1−

∑
cl∈CLis,a

Pr0
j,cl) · Oei

(8)

B. Computation of Pri,cl

In the computation of CL occurrence probability,
Pri,cl, there are two key changes that we introduce in
GenTREMOR. Firstly, we modify the procedure employed
in TREMOR (and D-TREMOR) to compute Pri,cl, so that
it is applicable to tightly coupled problems. The goal of
model shaping is to enable the sum of expected reward
computed using individual shaped models to be equal the
joint value computation for the DEC-POMDP. When there
are dependencies between CLs (a key characteristic of
tightly coupled problems, as mentioned in the previous
section), the computation of Pri,cl as employed in
TREMOR does not accomplish the model shaping goal. To
address this, we introduce a modified procedure:
Prti,cl(bi) ={
bi(si)πi(bi, a) t = e ,∑
a∈Ai πi(bi, a)

∑
ω∈Ωi

P ai (ω|bi) · Pr(t+1)
i,cl (Ga,ω,ti (bi)) t ≤ e

,

Ga,ω,ti (bi)(s
′) =

Oi(s′, a, ω)
∑
s∈S Pi(s, a, s′)bi(s)

P ai (ω|bi)
,∀t > 0

Ga,ω,0i (bi)(s
′) =

Oi(s′, a, ω)

P ai (ω|bi)
,

P ai (ω|bi) =
∑
s′∈S

[Oi(s′, a, ω)
∑
s∈S
Pi(s, a, s′)bi(s)]

The key change from the computation employed in
TREMOR (described in Section II) is the introduction of a
separate expression for Ga,ω(b0)(s′) to account for the de-
pendencies between CLs at different decision epochs which
lead to b0 getting multiplied many times. By introducing
this factor, we are discounting such computations. As we

will demonstrate in Section V, this leads to equivalence of
individual expected rewards and joint expected reward.

Secondly, the computation of occurrence probability for
an Observation CL is different from that of a Transition
or Reward CL. As mentioned earlier, this is because in
an Observation CL, 〈e, (si, sj), (ai, aj), 1〉, si and sj refer
to destination states from taking the action ai and aj
respectively. However for Transition and Reward CLs, they
refer to source states from which the actions are being
taken. To that end, we update the procedure as follows:
Prti,cl(bi) =
bi(si)πi(bi, a) t = e,Γ = 0,

πi(bi, a) ∗
∑

s̃i
bi(s̃i)P(s̃i, a, si) t = e,Γ = 1,

∑
a∈Ai

πi(bi, a)
∑

ω∈Ωi
P a
i (ω|bi) · Pr(t+1)

i,cl (Ga,ω,t
i (bi)) t ≤ e

V. THEORETICAL RESULTS

In this section, we provide theoretical justification on
why the model shaping performed in Step 1 using the new
heuristics of Equations 6 and 7 is accurate. We prove
the accuracy of Step 1 when only transition and reward
dependencies are present. While, this does not prove the
general case, it is a first step towards understanding shaping
heuristics and for developing formal procedures to construct
new heuristics.

Henceforth, we will use the following notation corre-
sponding to cl = 〈τ − 1, (s1, s2), (a1, a2), 0〉:

Iτ−1
cl ← I〈τ−1,(s1,s2),(a1,a2),0〉∈CLs

Iτ−1
¬cl ← I〈τ−1,(s1,s2),(a1,a2),0〉/∈CLs

where Icond is 1 if cond is true and 0 otherwise.

Pr0
i,cl ← Prτ−1

πi (sτ−1
i , aτ−1

i)

Tτ−1
cl ← Tτ−1((sτ−1

1 , sτ−1
2), (a1, a2), (sτ1 , s

τ
2))

T τ−1
i ← Ti(sτ−1

i , aτ−1
i , sτi)

Oτ−1
cl ← Oτ−1((sτ1 , s

τ
2), (aτ−1

1 , aτ−1
2), (ωτ1 , ω

τ
2))

Oτ−1
i,cl ← Oτ−1

i ((sτi , s
τ
j), (aτ−1

i , aτ−1
j), ωτi)

Oτ−1
i ← Oτ−1

i (sτi , a
τ−1
i , ωτi)

Rτ−1
cl ← Rτ−1((sτ−1

1 , sτ−1
2), (aτ−1

1 , aτ−1
2), (sτ1 , s

τ
2))

Rτ−1
i ← Rτ−1

i (sτ−1
i , aτ−1

i)

For the two agent case, the value for a joint policy, π is
computed as follows:

V(π1,π2)((b
τ−1
1 , bτ−1

2)) = ER((bτ−1
1 , bτ−1

2), (π1.a, π2.a))+

sτ−1
1 ,sτ−1

2 ,sτ1∑
sτ2 ,ω

τ
1 ,ω

τ
2

Tτ−1 ·Oτ−1 · b1(sτ−1
1)

· b2(sτ−1
2) · V(π1(ωτ1),π2(ωτ2))((s

τ
1 , s

τ
2))
(9)

For each of the agents (i ∈ {1, 2}), the value of a policy
(without considering the other agent) is computed as follows:

Vπi
(b
τ−1
i

) = ER(b
τ−1
i

, πi.a) +

ωτi∑
sτ
i
,s
τ−1
i

T τ−1
i

· Oτ−1
i

· bτ−1
i

· Vπi(ωτi)(s
τ
i)

The heuristics for computing new transition (T̂i) and
reward (R̂i) and observation(Ôi) values are as follows:

T̂ τ−1
1 =

∑
cl

Pr0
2,clT

τ−1
cl + (1−

∑
cl

Pr0
2,cl)T τ−1

1 (10)

=

aτ−1
2∑

sτ−1
2 ,sτ2

Prτ−1
π2

(sτ−1
2 , aτ−1

2)[Iτ−1
cl · Tτ−1

cl + Iτ−1
¬cl · T

τ−1
1]

R̂τ−1
1 =

∑
cl

Pr0
2,cl

Rτ−1
cl

2
+ (1−

∑
cl

Pr0
2,cl)Rτ−1

1 (11)

=

aτ−1
2∑
sτ−1
2

Prπ2
(sτ−1

2 , aτ−1
2)[Iτ−1

cl ·
Rτ−1
cl

2
+ I¬cl · Rτ−1

1]

For ease of explanation, we provide the theoretical
justification for two agents, however, it naturally extends to
multiple agents.

Proposition 1: Given policies π1 and π2 of two agents,
Equations 10 and 11 provide for accurate compution of
joint value, i.e.,

Vπ1,π2
(bτ−1

1 , bτ−1
2) = V̂π1

(bτ−1
1) + V̂π1

(bτ−1
1) (12)

where i ∈ {1, 2} and V̂πi(b
τ−1
i) represents the value

function corresponding to agent i’s shaped model.

Proof. We employ mathematical induction over time horizon
to prove this proposition.
Base Case: Time Horizon, H = 1
Since time horizon is 1, we show that the joint policy
immediate reward is equal to the sum of individual policy
immediate rewards with model shaping. The expression for
computing joint policy value is as follows:

Vπ(b0) = ER(b0, (π1.a, π2.a))

=
∑

(s01,s
0
2)

b01(s0
1)b02(s0

2){I0
cl · R0

cl + I¬cl · [R0
1 +R0

2]}

(13)

The value for agent 1 due to shaping of reward function is:

V̂π1
(b01) =

∑
s01

b01(s0
1)R̂0

1

Substituting expression for R̂0
1 from Equation 11

=
∑
s01

b01(s0
1)
∑
s02

{Pr0(s0
2, π2.a){I0

cl ·
R0
cl

2
+ I0
¬clR0

1}

Since Pr0(s0
2, π2.a) = b02(s0

2) for T = 0

=
∑

(s01,s
0
2)

b01(s0
1)b02(s0

2){I0
cl ·

R0
cl

2
+ I¬clR0

1} (14)

By summing Eqn 14 for both agents, we obtain the expres-
sion in Equation 13. Therefore, it is proved for problems
with horizon = 1.
Inductive Step: Now, we assume the proposition holds for
problems with horizon = τ , and prove it for horizon = τ+1.
The joint value function for horizon = τ+1 (extending from
Equation 9) is:

Vπ(b0) = ER(b0, (π1.a, π2.a))+∑
s11,s

1
2,s

0
1,s

0
2,ω

1
1 ,ω

1
2

{I0
cl · T0

cl + I0
¬cl · T 0

1 · T 0
2 } ·O0

· b01(s0
1) · b02(s0

2) · Vπ1(ω1
1),π2(ω1

2)(s
1
1, s

1
2) (15)

The first part of RHS in Equation 15 can be divided into two
value components one for each agent as proved above for
the case when horizon is 1. Therefore, we will only focus on
showing that the second part of RHS in Equation 15 can be
expressed as sum of value components one for each agent.
We begin from the value function of agent 1:

V̂π1
(b01) = ER(b01, π1.a) +

∑
s11,s

0
1,ω

1
1

T̂ 0
1 · Ô0

1 · b01(s0
1) · Vπ1(ω1

1)(s
1
1)

Substituting Equation 10,

= ER(b01, π1.a) +
∑

s11,s
0
1,ω

1
1

∑
s02

Pr(s0
2, π2.a)

· {I0
cl ·
∑
s12

T0
cl + I0

¬cl · T 0
1 } · O0

1 · b01(s0
1) · Vπ1(ω1

1)(s
1
1)

Since
∑
s12
T 0

2 = 1,

= ER(b01, π1.a) +
∑

s11,s
0
1,ω

1
1

∑
s02

b02(s0
2) · b01(s0

1)

{I0
cl ·
∑
s12

T0
cl + I0

¬cl · T 0
1 ·
∑
s12

T 0
2 } · O0

1 · Vπ1(ω1
1)(s

1
1)

= ER(b01, π1.a) +
∑

s11,s
0
1,ω

1
1 ,s

0
2,s

1
2

b02(s0
2) · b01(s0

1)

{I0
cl · T0

cl + I0
¬cl · T 0

1 · T 0
2 } · O0

1 · Vπ1(ω1
1)(s

1
1)

Substituting expression for (i) probability of occurrence of
all state, action pairs (

∑
ω1

2
O0

2) at second decision epoch
given the policy and initial belief state in (ii) providing
expression for future value, Vπ1(ω1

1)(s
1
1) to account for CLs

at second decision epoch,

= ER(b01, π1.a) +
∑

s11,s
0
1,ω

1
1 ,s

0
2,s

1
2

b02(s0
2) · b01(s0

1)

{I0
cl · T0

cl + I0
¬cl · T 0

1 · T 0
2 } · O0

1·∑
ω1

2

O0
2 · V 1

π1(ω1
1),π2(ω1

2)(s1, s2) (16)

The new future value function, V 1
π1(ω1

1),π2(ω1
2)

represents
value of agent 1 given policy trees for horizon τ given the
observations ω1

1 and ω1
2 at the first decision epoch. We first

substitute the assumption due to mathematical induction in
Equation 15 for the future value term for a state. Then, by
summing Equation 16 for both agents, we obtain the updated
Equation 15. Hence proved. �

VI. EXPERIMENTAL RESULTS

D-TREMOR scales with respect to number of agents (up
to 100 agents), time horizon and state space in domains with
sparse interactions between agents. Since the core algorithm
and the approximations are the same as in D-TREMOR,
GenTREMOR exhibits similar scale up and behavior. In fact,
on rescue problems introduced in Prasanna et al [13], we
are able to reproduce similar performance as D-TREMOR
(as illustrated in Figure II-B). Our focus in this section
is to evaluate GenTREMOR’s performance(with respect to
runtime and solution quality) on standard DEC-POMDP
benchmark problems, where agents are tightly coupled.

We consider four of the standard DEC-POMDP bench-
mark problems, namely the tiger [9], multi-agent channel
broadcast [11], box pushing [11] and finally the meet-
ing of agents on a three by three grid [1]. We mention
the number of joint states (|S|), individual agent actions
(|Ai|)and individual agent observations (|Ωi|) below the
name of the problem in Tables I and VI. Furthermore,
in all the four problems, agents are tightly coupled due to
transition, observation and reward dependencies.

Meeting on a grid
〈81, 4, 9〉

H GenTREMOR Existing(#)
3 0.131 0.133 (*)
4 0.429 0.433 (*)
5 0.893 0.896 (*)
10 4.647 3.85

100 93.77 92.12

Table II
COMPARISON ON THE MEETING IN A GRID (3X3) PROBLEM.

While, there have been many algorithms that have been
developed to solve DEC-POMDPs, we focus on some of the

Horizon 3 4 5 6 7 8 9 10 20 50 100
MABC GenTREMOR 2.91 3.81 4.71 5.61 6.51 7.41 8.31 9.21 18.21 45.21 90.21
〈2, 3, 2〉 Existing Best(#) 2.99 3.89 4.79 5.69 6.59 7.49 8.39 9.29 18.29 45.29 90.29

Tiger GenTREMOR 5.18 4.8 7.4 11.07 10.82 12.77 16.26 16.57 27.74 55.56 100.25
〈2, 3, 2〉 Existing Best(#) 5.19 4.8 5.38 9.91 9.67 9.42 12.57 13.49 - - 93.24

Box Pushing GenTREMOR 66.1 93.2 102.2 112.8 123.2 149.2 159.6 179.4 366.3 907.8 1810.9
〈100, 4, 5〉 Existing Best(#) 66.1 98.6 100.6 117.6 133.1 182.9 187.0 189.3 415.2 1051.8 2112.1

Table I
COMPARISON OF GENTREMOR AGAINST EXISTING APPROACHES ON THE MABC, TIGER AND BOX PUSHING PROBLEMS. (#) BEST KNOWN RESULT

OF APPLYING EITHER OF IMBDP, PBIP-IPG, MBDP-OC.

leading algorithms: IMBDP [11], PBIP-IPG [1] and MBDP-
OC [4]. We primarily compare solution quality obtained by
GenTREMOR and these competing algorithms. We do not
have access to the algorithm implementations for the above
mentioned algorithms, hence we compare against quality
values reported in the publications. Similar to PBIP-IPG [1],
we also employ a runtime cut-off of 10 CPU hours1.

The maximum time horizon considered was 100. There
is stochasticity involved in computation of a GenTREMOR
joint policy, hence we further average over 50 initial seeds.
In addition, the expected solution quality corresponding
to a GenTREMOR joint policy is computed by simulat-
ing on the underlying DEC-POMDP model. For each of
the problems, we averaged over 10000 simulations. The
MAX ITERATIONS in Algorithm 1 was set to 10.
Table I and Table VI provide the comparison of solution
quality. Since, not all approaches have reported on all the
four benchmark problems, we compare against the best
reported value amongst all approaches2. Here are the main
results:

• GenTREMOR took less than two minutes on all prob-
lems when the time horizon was less than or equal to
10. For larger horizons, GenTREMOR finished much
within the pre-specified cutoff time of 10 hours for all
the problems.
• MABC : while IMBDP provides the best quality values

(Table I), GenTREMOR provides quality values which are
very close to it even for a horizon of 100.
• Tiger: GenTREMOR obtained optimal policies until

horizon 4 and consistently outperformed existing ap-
proaches irrespective of the time horizon employed.
• Box Pushing: We obtained optimal solution quality for

horizon 3 and performed better than existing approaches
at horizon 5. However, for all other horizons, IMBDP out
performed GenTREMOR.
• Meeting on a 3x3 grid: We obtained optimal solution

quality for horizon less than or equal to five. Not only
that, GenTREMOR outperformed existing approaches for

1All our experiments were run on a Intel Core 2 Duo 2.40 GHz CPU
with 3 GB RAM

2Existing approaches provided optimal solutions for H <= 4

other horizon values3.

These results emphasize our claim that GenTREMOR
not only exploits structure in CLs, but also is suited for
computing joint policies in tightly coupled problems.

VII. RELATED WORK

We will now discuss relevance of approaches – other
than social model shaping – employed for solving DEC-
POMDPs. Becker et al (2004) provided approaches for solv-
ing transition independent DEC-MDPs. ND-POMDPs [10],
[8], [7] extend transition-independence with network struc-
ture interactions. TD-POMDPs [14] exploit structure in
transition function. While these approaches have improved
the scalability considerably, they only solve a sub-class of
DEC-POMDPs.

Guestrin et al. [6] have provided approaches for exploiting
weak dependencies between agents for solving multiple
MDP systems. The key difference from our work is their
assumption of full communication between agents.

Seuken et al. [11] provide a memory bounded dynamic
programming (MBDP) technique with linear space com-
plexity for solving general DEC-POMDPs. Point Based
Incremental Pruning (PBIP) by Dibangoye et al. [5] extends
MBDP by replacing exhaustive backup with a branch and
bound search in the space of joint policy trees. Amato et
al. [1] extend PBIP to efficiently perform dynamic pro-
gramming backups. While all the above mentioned leading
approaches for solving DEC-POMDPs are able to solve
problems with long horizons, they have been primarily
limited to two agent problems even when there is sparse
coordination. On the other hand, GenTREMOR is able to
solve problems with reasonably long horizons (upto 100)
as well as exploit sparse coordination to scale to 100 agent
problems.

REFERENCES

[1] C. Amato, J. S. Dibangoye, and S. Zilberstein. Incremental
policy generation for finite-horizon dec-pomdps. In Interna-
tional Conference on Automated Planning and Scheduling,
2009.

3We provided results for this example in a separate table, because we do
not have results for benchmark algorithms on all the time horizons.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solv-
ing Transition Independent Decentralized Markov Decision
Processes. JAIR, 22:423–455, December 2004.

[3] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.
The complexity of decentralized control of markov decision
processes. Math. Oper. Res., 27(4):819–840, 2002.

[4] A. Carlin and S. Zilberstein. Value-based observation com-
pression for dec-pomdps. In International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 2008.

[5] J. S. Dibangoye, A. Mouaddib, and B. Chaib-draa. Pointbased
incremental pruning heuristic for solving finite-horizon dec-
pomdps. In International Joint Conference on Autonomous
Agents and Multi-Agent Systems, 2009.

[6] C. Guestrin and G. Gordon. Distributed planning in hierar-
chical factored mdps. In Uncertainty in Artificial Intelligence,
2002.

[7] A. Kumar and S. Zilberstein. Event-detecting multi-agent
mdps: Complexity and constant-factor approximation. In In-
ternational Joint Conference on Artificial Intelligence, 2009.

[8] J. Marecki, T. Gupta, P. Varakantham, M. Yokoo, and
M. Tambe. Not all agents are equal: Scaling up distributed
pomdps for agent networks. In International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 2008.

[9] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella.
Taming decentralized pomdps: Towards efficient policy com-
putation for multiagent settings. In International Joint Con-
ference on Artificial Intelligence, 2003.

[10] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Net-
worked distributed pomdps: A synthesis of distributed con-
straint optimization and pomdps. In American Association of
Artificial Intelligence, 2005.

[11] S. Seuken and S. Zilberstein. Improved memory-bounded
dynamic programming for decentralized POMDPs. In Un-
certainty in Artificial Intelligence, 2007.

[12] P. Varakantham, J. Y. Kwak, M. Taylor, J. Marecki, P. Scerri,
and M. Tambe. Exploiting coordination locales in distributed
pomdps via social model shaping. In International Confer-
ence on Automated Planning and Scheduling, 2009.

[13] P. Velagapudi, P. Varakantham, P. Scerri, and K. Sycara. Dis-
tributed model shaping for scaling to decentralized pomdps
with hundreds of agents. In International Joint Conference
on Autonomous Agents and Multi-Agent Systems, 2011.

[14] S. J. Witwicki and E. H. Durfee. Influence-based policy
abstraction for weakly-coupled dec-pomdps. In International
Conference on Automated Planning and Scheduling, 2010.

