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Abstract

Emergency Medical Systems (EMSs) are an important
component of public health-care services. Improving in-
frastructure for EMS and specifically the construction
of base stations at the ”right” locations to reduce re-
sponse times is the main focus of this paper. This is
a computationally challenging task because of the: (a)
exponentially large action space arising from having
to consider combinations of potential base locations,
which themselves can be significant; and (b) direct im-
pact on the performance of the ambulance allocation
problem, where we decide allocation of ambulances to
bases. We present an incremental greedy approach to
discover the placement of bases that maximises the ser-
vice level of EMS. Using the properties of submodular
optimisation we show that our greedy algorithm pro-
vides quality guaranteed solutions for one of the ob-
jectives employed in real EMSs. Furthermore, we val-
idate our derived policy by employing a real-life event
driven simulator that incorporates the real dynamics of
EMS. Finally, we show the utility of our approaches on
a real-world dataset from a large asian city and demon-
strate significant improvement over the best known ap-
proaches from literature.

Introduction
Emergency Medical Systems (EMSs) are an integral part of
public health-care services. A typical EMS employs a set of
Emergency Response Vehicles, ERVs (ex: ambulances, fire
rescue vehicles) that provide timely care to patients (with
injuries or illnesses) who seek immediate attention. In an
EMS, a set of base stations are strategically placed through-
out the city and a fixed number of ERVs are allocated to
each base. On arrival of an emergency request, an ambulance
from the nearest base is dispatched to assist the victim. The
ambulance returns back to the same base after transferring
the patient to a nearby hospital.

In order to sustain and maintain the efficiency of an EMS,
there are typically two levels of decision making: (a) Oper-
ational Level, i.e., day-to-day decisions associated with am-
bulance dispatching and allocation policy; and (b) Strategic
Level, i.e., long-term decisions on number of ambulances,
number of bases and locations of bases.
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Most papers (Yue, Marla, and Krishnan 2012; Saisub-
ramanian, Varakantham, and Chuin 2015; Andersson and
Värbrand 2007; Bjarnason et al. 2009) in improving EMSs
have focussed on operational level decision making and de-
velop strategies to improve the system efficiency by op-
timising performance metrics such as bounded time re-
sponse (ex: percentage of requests served within 15 min-
utes) and bounded risk response (ex: least response time
within which 80% of the requests are assisted). Although
facility location problems in large-scale disaster response
systems for rare and catastrophic events (ex: earthquake
and hurricane) enjoy a rich history (Toregas et al. 1971;
Church and Velle 1974; Jia, Ordóñez, and Dessouky 2007;
Huang, Kim, and Menezes 2010), progress remains slow for
strategic planning in EMSs. Unlike decision making in large
scale disaster response systems for rare and catastrophic
events, we are focussed on strategic level planning for EMSs
where incidents happen everyday and the patterns of how in-
cidents happen change over time.

Specifically, we are interested in the problem of setting
up new bases (how many and where?). It is an extension
of k-center facility location problem which is a well known
NP-Hard problem (Hochbaum and Shmoys 1985). Given the
exponentially large space of possibilities (subsets of poten-
tial base stations that can be built in a given budget) and the
direct dependence of the selected base set on optimal alloca-
tion of ambulances to bases, this is a computationally chal-
lenging problem. Furthermore, the budget for resources (ex:
expense for setting up new bases or funds for new ambu-
lances) is dynamic and arrives over time in different chunks
and thus makes it difficult to plan all base locations well in
advance.

Towards addressing the above mentioned challenges, our
key contributions are as follows:

• We provide an incremental greedy algorithm where bases
are added as long as the marginal gain is significant. We
also show that for one of the objectives typically em-
ployed in EMS, the optimisation function is monotone
submodular, there by guaranteeing atleast 63% of optimal
performance.

• We present an accelerated version of the greedy algo-
rithm, referred to as lazy greedy and show that it can
be utilised to optimise widely used performance objec-



tives, namely bounded time response and bounded risk
response.

• We employ a real-life event driven simulator to evaluate
the performance of our approaches in comparison with
existing benchmark approaches.

Extensive empirical results on real-world dataset from a
large asian city demonstrate that our techniques (that utilise
a significantly smaller number of bases) either outperform
or provide highly competitive results in comparison with the
best known approaches from literature.

Related Work
Given the practical importance, a wide range of disci-
plines have studied problems associated with EMSs. We
focus on three relevant threads of research in this pa-
per. The first thread of papers focus on improving opera-
tional strategies for EMS. (Andersson and Värbrand 2007;
Schmid 2012) develop techniques to optimally generate dis-
patching policy for ambulances and also provide a reloca-
tion model that dynamically suggests a destination base for
ambulances after job completion. However due to inher-
ent complexity of the process (such as congestion of am-
bulances at certain bases or problem with conceiving the
critically of request by the operator), many EMSs prefer a
fixed allocation of ambulances and follow the nearest ambu-
lance dispatch policy. (Brotcorne, Laporte, and Semet 2003;
Gendreau, Laporte, and Semet 2006) exploit mathematical
models by incorporating performance metrics as a param-
eter of the model and provide optimisation or local search
based heuristics to solve the allocation problem. (Maxwell et
al. 2010) focus on optimal allocation and dynamic redeploy-
ment model for single ambulance. But optimisation models
often fail to capture the dynamics of EMS such as conges-
tion pattern in road or response time from base to scene that
varies over time. Recent works (Saisubramanian, Varakan-
tham, and Chuin 2015; Yue, Marla, and Krishnan 2012;
Restrepo, Henderson, and Topaloglu 2009) overcome these
caveats by employing a real-life event-driven simulator to
evaluate the resulting policy. All the papers in this thread
presume a fixed set of bases, while we consider the am-
bulance allocation problem in conjunction with discovering
optimal placement for bases.

The second thread of research focuses on strategic plan-
ning for rare and large-scale disaster response (ex: fire, ve-
hicle accident or natural disaster). The traditional model for
facility location in large scale disaster response is based on
the covering problem such as location set covering problem
[LSCP] (Toregas et al. 1971), that aims to provide cover-
age to all the demand points; and maximal covering loca-
tion problem [MCLP] (Church and Velle 1974), that max-
imises the coverage for a given a budget. P -median (Hakimi
1964) (minimises average distance between demand point
and nearest facility) and P -center (Sylvester 1857) (min-
imises the worse case response time) models are also widely
adopted in literature. Recently, (Jia, Ordóñez, and Dessouky
2007; Huang, Kim, and Menezes 2010) propose mathemati-
cal model for large-scale disaster response and solve it using
optimisation method or dynamic programming. Due to the

rare occurrence of the catastrophic events, these papers are
focussed on robust objectives that plan for the absolute worst
case. In contrast, incidents in EMSs happen every day and
objectives consider softer notions of robust decision making
(ex: maximise number of requests served within 15 minutes,
minimise time taken to serve 80% of requests). We take a
data-driven approach to find the minimal set of bases in EMS
and evaluate the performance of solution on a diverse set of
demand scenarios.

The last thread of research which is complimentary to
this work is on optimisation of monotone submodular func-
tions (Leskovec et al. 2007; Nemhauser, Wolsey, and Fisher
1978). Some popular application domains are: dynamic con-
servation planning (Golovin et al. 2011), maximising in-
formation gain in sensor placement (Krause, Singh, and
Guestrin 2008) and content recommendation (Yue and
Guestrin 2011). The key reason behind this extensive adop-
tion is that a greedy approach provides (1 − 1

e ) approxima-
tion guarantee in case of monotone submodular functions.

Ambulance Allocation Problem
Ambulance allocation problem can be formally defined us-
ing following tuple:

< R,B,A,T , L >

R denotes a set of emergency requests, where each request
r ∈ R is tagged with a tuple< t, s, h >. t is the arrival time,
s is origin location and h is destination hospital of the re-
quest r. B denotes the set of possible base locations. A fleet
of ambulances is represented by A. T is a two-dimensional
matrix that provides travel time between any two base loca-
tions. More specifically, Tl1,l2 is the time required to move
from source location l1 to destination l2.L is the utility func-
tion which will be explained in details later.

In this paper, we consider two main objectives:
(a) Maximise number of requests that are satisfied within a
given threshold response time (ex: 15 minutes), referred to
as Bounded Time Response;
(b) Minimise the response time for a fixed percentage (ex:
80%) of requests, referred to as Bounded Risk Response.

Bounded Time Response
Given a sample of training requests, our goal with this ob-
jective is to find an allocation policy for ambulances A into
given set of bases such that maximum number of requests
can be served efficiently. For this objective, the optimisation
model for finding an optimal allocation of ambulances to a
given set of bases B is compactly represented using a Mixed
Integer Linear Program [MILP] in Table (1); a simple ex-
tension of the MILP provided in (Yue, Marla, and Krishnan
2012). A request r ∈ R can be served from a feasible set
of nearby bases {Br ∪⊥}, where ⊥ denotes the null assign-
ment or lost request. xrl is a binary decision variable and is
set to 1 if request r is served from base l ∈ {Br ∪ ⊥}. al
denotes the number of ambulances allocated to base l ∈ B.

Intuitively, one unit of reward is provided if a request is
served within 15 minutes. Let L be a function that facilitates



this reward and is defined as follows:

Lrl =

{
1 if Tl,r.s ≤ 15 minutes
0 Otherwise

max
a,x

∑
r∈R

∑
l∈Br

xrlLrl (1)

s.t.
∑

l∈{Br∪⊥}

xrl = 1, ∀r ∈ R (2)

xrl +
∑
j∈P l

r

xjl ≤ al, ∀r ∈ R, l ∈ Br (3)

∑
l∈B

al = |A| (4)

al ≥ 0, xrl ∈ {0, 1} (5)

Table 1: FINDALLOCATION(R,B,A)

Our objective (delineated in equation (1)) is to maximise
the number of requests that are assisted within 15 minutes.
Constraints (2) ensure that a request can be served from one
base station only. P l

r denotes the set of parents of request
r for base l. A request j ∈ P r

l is considered as the par-
ent of request r if it arrives before r, completes after r has
arrived and base l belongs to both the feasible base set Br
and Bj . Therefore, constraints (3) enforce the condition that
a request can only be served from a base station if there is
an available ambulance. Finally, constraints (4) ensure the
equivalence between total number of allocated and available
ambulances.

Bounded Risk Response
The notion of bounded risk (Saisubramanian, Varakantham,
and Chuin 2015) is an important and alternative performance
metric which is employed by many real world EMSs. The
optimisation model for calculating the utility for a given set
of bases is compactly represented using the MILP in Ta-
ble (2) and is a more efficient variant of the one provided
in (Saisubramanian, Varakantham, and Chuin 2015). δr de-
notes the response time for request r ∈ R. δ denotes the
α-response time or alternatively the percentage of requests
whose response time is greater than δ should be less than the
input parameter α. zr is a binary variable that is set to 1 if
response time for request r is greater than δ.

Our goal is to find an allocation of ambulances to a given
set of bases, B such that α-response time is minimised. M
represents a sufficiently large number such that objective
value is always positive. We set the objective function (de-
lineated in equation (6)) positive such that it is consistent
with the objective of MILP of Table (1). Constraints (7) en-
sure that zr is set to 1 if response time for request r ex-
ceeds δ. Constraints (8) enforce that the percentage of re-
quests whose response time exceeding δ is less than the
input parameter α. Another key differentiating constraints
that has not been used earlier is constrains (12). These con-
straints ensure that the response time for request r is equals

max
a,x

M − δ (6)

s.t. δ
r − δ
M

≤ zr, ∀r ∈ R (7)∑
r∈R zr

|R| ≤ α (8)∑
l∈{Br∪⊥}

xrl = 1, ∀r ∈ R (9)

xrl +
∑
j∈P l

r

xjl ≤ al, ∀r ∈ R, l ∈ Br (10)

∑
l∈B

al = |A| (11)

δr ≥
∑
l∈Br

xrl · Tl,r.s + xr⊥ · M̂, ∀r ∈ R (12)

al ≥ 0, xrl ∈ {0, 1}, zr ∈ {0, 1}, δ, δr ≥ 0 (13)

Table 2: RISKALLOCATION(R,B,A, α)

to the travel time from base (dispatched ambulance location)
to scene or a relatively high number M̂ for null assignment.

Theoretical Analysis of Objectives
In this section, we show that bounded time response objec-
tive is monotone submodular and bounded risk response ob-
jective is not submodular. Let B denotes a set of bases and
F (A) denotes the objective function for a given subset of
bases A ∈ 2B, where objective function, F : 2B → R is
defined for a given set of requests R, a fleet of ambulances
A and a set of bases A.

Let A and B be two set of bases where A ⊂ B ⊆ B. Let
∆(A|b) denotes the marginal gain in function F for adding
a new base b ∈ B \ B to the current set of bases A. So,
∆(A|b) = F (A ∪ {b}) − F (A). The objective function F
is submodular if the marginal gain for adding a new base b
in subset A is always higher than the gain for adding b in
superset B, i.e.,

∆(A|b)−∆(B|b) ≥ 0

.

Proposition 1 F function is monotone submodular for
bounded time response objective.

Proof Sketch. Let Si ⊆ R denotes the set of requests that
can be served within 15 minutes from base i, then bounded
time response function F (A) for a given set of bases A and
for optimal allocation of ambulances to A (analogous to the
objective of MILP of Table (1)) is equivalent to | ∪i∈A Si|.

Let us have two sets of bases A and B, where B is the
superset of A and represented as {A ∪ a}, then Figure (1)
shows the graphical proof of submodularity of bounded time
response function F by employing simple properties of set



union. Formally,

∆(A|b)−∆(B|b)
= F (A ∪ {b})− F (A)− F (A ∪ a ∪ {b}) + F (A ∪ a)

= F (a ∩ {b})− F (A ∩ a ∩ {b}) ≥ 0

Hence, the bounded time response function F for a given set
of requestsR is submodular. �

∆(A|b)−∆(A ∪ a|b)

F(A)

F(b)

F(A)

F(a)

F(b)∆(A ∪ a|b)

∆(A|b)

Figure 1: Bounded time response objective is Submodular

We now show that the bounded risk response objective
is monotone but non-submodular. In Figure (2), we provide
a simple counter example to show the non-submodularity
of risk-based objective. For the ease of understanding we
consider 5 requests each of which is represented by a circle.
We have 3 bases represented as square. We consider a fleet
of 5 ambulances. Numbers associated with each line denote
the response time from the base to scene location. Let A
denotes the subset and A ∪ {a} represents the superset. We
are interested to find the marginal gain in α-response time
for adding a new base b in both the cases. Let the tuneable
parameter α is given as 0.2, therefore 80% (or 4) requests
have to be served within δ. We assume the value of M as
100.
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Figure 2: Non-submodularity of risk-based objective

Using only baseA, we can serve 4 requests within 15 min-
utes, so, the value of δ is 15 and our objective, F (A) is 85. If
we add the new base b to A, then we observe the following
optimal assignment; request 1, 2 and 5 are served from base
b and request 3, 4 are served from baseA. The above assign-
ments indicate that 4 requests are served within 7 minutes,

so, F (A∪{b}) is 93. The marginal gain denoted by ∆(A|b)
is (93-85)=8. In case of superset (A∪ {a}), request 1, 2 and
5 are served from base A and request 3, 4 are served from
base a. So, 4 requests are assisted within 15 minutes and
F (A ∪ {a}) is 85. If we add the base b in superset, then re-
quest 1, 2 and 5 are served from base b while request 3, 4 are
served from base a. In this case, 4 requests are served within
5 minutes, thus, F (A ∪ {a} ∪ {b}) is 95. The marginal gain
∆(A ∪ {a}|b) is 10. Therefore, ∆(A|b) < ∆(A ∪ {a}|b),
which proves that the bounded risk response objective is not
submodular.

Strategic Planning using Greedy Approach
In this section, we outline our approach for strategic plan-
ning to decide on the number and the exact set of bases to
be used. We employ the well known greedy algorithm that
guarantees to provide 63% of optimal objective (Nemhauser,
Wolsey, and Fisher 1978) for monotone submodular func-
tions. Algorithm (1) provides the details of the greedy al-
gorithm. We start with a null base set E. In each iteration
we calculate the utility µs and optimal allocation of ambu-
lances, A for adding each of the possible bases s ∈ B to
active base set E. Then we add the base s∗ (that provides
maximum marginal gain) into E and remove it from possi-
ble base set B. The process continues until the marginal gain
for adding a new base is significantly higher.

Algorithm 1: SolveGreedy(R,B,A)

Initialize: E ← {⊥}, it← 0;
repeat

µs,A←FindAllocation(R, E ∪ {s},A),∀s∈B;
s∗ ← argmax

s∈B
µs;

E ← E ∪ {s∗};
B ← B − {s∗};

until (max
s∈B

µs ≤ ε);

return E,A

Minor modification to the greedy approach can easily
tackle the real-life deployment issues such as political in-
fluences that are bound to occur in the planning of EMS.
Because of the political influences, a subset of bases might
already be determined before the planning process. In that
scenario, we need to initialise the active base set E with the
pre-determined set of bases rather than an empty set and in-
crementally add the best possible bases until the given bud-
get constraint is satisfied.

Lazy Greedy Algorithm
Evaluating F function or FindAllocation() (which requires
solving MILP of Table (1)) is typically expensive even with
a subset of bases and thus applying greedy algorithm (which
requires evaluation of F function for every bases) can be
computationally very expensive. Therefore, we employ a
variant of greedy algorithm called lazy greedy (Minoux
1978) to accelerate the convergence.



The details of lazy greedy process is shown in Algo-
rithm (2). Let B be the set of available base stations and
E be the current set of active bases. We initialise E with
a default base {⊥} where assignment of a request to ⊥ in-
dicates a null assignment. In the first iteration we calculate
the gain µs for every possible bases s ∈ B (analogous to
the greedy approach). We insert the base s∗ with maximum
marginal gain into E and remove s∗ from available base set
B. In the subsequent iterations instead of computing gain
∆(E|s) for every base s∈B (which requiresO(|B|) compu-
tations of function F ), the lazy greedy keeps an upper bound
µs for every available base. In each iteration it extracts the
base (s ∈ argmax

s′∈B
µs′ ) with highest upper bound. Then it

computes the marginal gain, ∆(E|s) for adding base s to
existing base set E (i.e., the difference between the utilities
F (E ∪ {s}) = git and F (E) = git−1 ) and update the upper
bound µs as ∆(E|s). After this update if µs ≥ µs′ for all
s′ ∈ B, then greedy finds the best element with maximum
gain (without computing gain for a large number of elements
s′) and insert base s into resulting base set E. This process
iterates until there are no available bases whose marginal
gain is higher than a predefined threshold value ε.

Algorithm 2: SolveLazyGreedy(R,B,A)

Initialize: E ← {⊥}, it← 0;
µs,A← FindAllocation(R, E ∪ {s},A), ∀s ∈ B;
g0 ← max

s∈B
µs ;

s∗ ← argmax
s∈B

µs;

E ← E ∪ {s∗};
B ← B − {s∗};
repeat

it← it+ 1;
repeat

s∗ ← argmax
s∈B

µs;

git,A← FindAllocation(R, E ∪ {s∗},A);
µs∗ ← git − git−1;
if {µs∗ ≥ µs,∀s ∈ B} then

E ← E ∪ {s∗};
B ← B − {s∗};
Break;

until True;
until (max

s∈B
µs ≤ ε);

return E,A

Proposition 2 (Leskovec et al. 2007) For a placement of
bases E ∈ B with a given fleet of ambulances A, re-
quest log R, and for each base s ∈ {B \ E} let ∆s =
F (E ∪ s)− F (E). Then

max
B,A,R

F (B) ≤ F (E) +
∑

s∈{B\E}

∆s

By using Proposition (2) we can compute how far any given
solution F (E) is from the optimal solution, which can also
be utilised for determining convergence.

We apply a similar lazy greedy approach to solve the
bounded risk response objective, except that we calculate the
F function using MILP of table (2). Even without the sub-
modularity property of bounded risk response objective, we
empirically show that lazy greedy is highly competitive with
existing benchmark approaches and provide a good quality
solution by utilising a significantly less number of bases.

Experimental Settings
We conduct experiments on a real world dataset1 from a
large asian city (adopted from (Yue, Marla, and Krishnan
2012)). The dataset contains a fleet of 58 ambulances and
58 base stations. We have 1500 weeks of request logs which
are generated using Poisson distribution (Ross 1983) with
the parameters estimated from real usage data over a period
of one month. Each request log contains the following infor-
mation (a) Origin location; (b) Arrival time; (c) A set of fea-
sible nearby bases from where the request can be assisted;
(d) Response time from each of the feasible base to scene
location; and (e) Total time required for an ambulance to re-
turn back to the origin base after serving the request. In case
of real deployment, the above mentioned details may not be
readily available for new base locations, however, it is pos-
sible to estimate them using a straightforward method. We
know the geographical locations of the requests and hospi-
tals from the historical data. The geographical locations of
the set of possible bases are also provided by the respective
authority. Therefore, we can find the set of feasible nearby
bases for each request and estimate the expected response
and round off time for each of the possible nearby bases.

We evaluate the performance of our policy by employ-
ing a real-life event-driven simulation model (Yue, Marla,
and Krishnan 2012) based on the nearest ambulance dispatch
policy. We use Sample Average Approximation [SAA] (Ver-
weij et al. 2003) for validation and performance estimation.
Specifically, we generate 10 policies using a training dataset
consisting of request logs for 10 weeks. Then we identify the
policy with best validation performance over 500 weeks of
request logs. Finally, we evaluate the performance of the val-
idated policy on 3 test datasets each of which contains 300
weeks of request logs. We compare our approach with three
existing benchmark approaches from literature (a) Greedy
approach provided by (Yue, Marla, and Krishnan 2012); (b)
Risk-based optimisation approach [RBO] (Saisubramanian,
Varakantham, and Chuin 2015); and (c) A baseline approach
where 1 ambulance is allocated to every base.

Simulation Model
We evaluate the performance of ambulance allocation pol-
icy on the resulting base set using a real-life event-driven
simulation model (courtesy: (Yue, Marla, and Krishnan
2012)) based on the nearest ambulance dispatch policy. The
pseudo code for the event-driven simulator is shown in Al-
gorithm (3). We start with an event set ξ where each element

1http://projects.yisongyue.com/ambulance allocation/



e ∈ ξ represents a request and the list is sorted based on
arrival order of requests. I denotes the set of available am-
bulances that are allocated according to given policy A. ar
denotes the ambulance id that is assigned for request r∈R.
Initially each request is tagged as null assignment. In each
iteration we pop the first element e from the event list ξ.
If the event e is a new request then we dispatch the near-
est available ambulance ar for the request and remove the
ambulance from available ambulance set I . We also insert a
job-completion event in the event list at time tr(ar), where
tr(ar) denotes the time when ambulance ar will return back
to base after completing the job r . On the other hand, if the
popped element e is a job completion event for request r,
then we add the ambulance ar to the set I such that it can
be used to serve a new request. This process continues until
the event list becomes empty. Once the process is finished,
we can use the assignment results to measure the respon-
siveness of the system such as bounded time response or
bounded risk response time for the given sample requests.
We use this simulation model to compute the performance
metrics for all the benchmark algorithms.

Algorithm 3: EDSimulator(R,B,A)

Initialize: it← 0 ;
I ← A // Initialise set of available ambulance;
ξ ← R sorted in arrival order;
a = {ar|ar←⊥} //Initialise as null assignment ;
repeat

Pop next arriving event e from ξ;
if e =New Request r then

ar ← Dispatch(r, I) // Dispatch nearest free
ambulance;
I ← I − {ar} // Update available ambulance;
Push job completion event at time tr(ar) into ξ;

else if e=job completion event for r then
I←I ∪{ar} // Update available ambulance;

until (|ξ| > 0);
return {ar}

Sample Average Approximation (SAA)

We employ Sample Average Approximation (Verweij et al.
2003) for policy validation and performance estimation. We
generate M minimal base sets B1, ..., BM and allocation
policies A1, ..., AM for M sample of request logs. Then
we validate those policies on Nvalid samples and select the
best allocation policy A∗ and base placement B∗, which
has maximum validation performance. Finally we test the
performance of policy (A∗, B∗) on a separate collection
of Ntest samples and report the performance statistics. We
measure the performance metrics by taking average over all
the samples. For e.g., if we have N sample of request logs
R = {R1, ..., RN}, then the expectation is computed using

Equation (14) by taking average over all the N samples.

FR(A∗, B∗) =
1

N

N∑
i=1

∑
r∈Ri

Fr(A∗, B∗) (14)

Benchmark 1: (Yue, Marla, and Krishnan 2012) The pri-
mary goal of this paper is to efficiently allocate an entire
fleet of ambulances to a predetermined set of bases such that
the percentage of requests served within a certain threshold
time bound is maximised. They used a greedy approach to
find the optimal allocation for ambulances in each iteration
using a real-life event driven simulator and incrementally
added the ambulances until the entire fleet is allocated effi-
ciently. In addition,they showed that the proposed allocation
policy can be effectively utilised for the dynamic redeploy-
ment of free ambulances.
Benchmark 2: (Saisubramanian, Varakantham, and
Chuin 2015) This paper proposes to minimise the bounded
risk (i.e., the time bound within which α% requests are
served), a metric employed by many EMSs, by efficiently al-
locating a fleet of ambulances to a given set of bases. Due to
the inherent complexity of the introduced MILP w.r.t. num-
ber of requests, they employ Lagrangian Dual Decompo-
sition (LDD) to improve the scalability and approximately
solve the assignment problem by considering a large sample
of requests. Finally, they evaluate the performance of their
allocation policy using an event driven simulator.

Experimental Results
We compare our approach with respect to performance
metrics such as (a) Runtime; (b) Bounded time response:
percentage of requests served within 15 minutes; and (c)
Bounded risk response: α-response time (unless otherwise
stated we use α value as 0.2). We provide five thread of
results on real world dataset (a) Gain in runtime for lazy
greedy over general greedy approach; (b) Experimental val-
idation of the submodularity of bounded time response and
non-submodularity of bounded risk response; (c) Effect of
external parameter such as risk tolerance level [α] on strate-
gic planning; (d) Effect of external budget such as size of
ambulance fleet on two objective functions as well as on
the strategic planning (number of required bases); and (e)
Performance comparison with the benchmark approaches on
three test datasets, each contains 300 weeks of requests.

Runtime Results : Figure (3) plots the runtime compari-
son between lazy greedy and general greedy approach. Fig-
ure 3(a) depicts the runtime for bounded time response ob-
jective on a sample of around 3000 requests. X-axis denotes
the iteration number and Y-axis represents the runtime in
seconds in a logarithmic scale. Greedy approach is unable
to finish more than 20 iterations within the cut-off time of
2 hours, while lazy greedy approach provides a significant
gain over greedy and completes the process within 10 min-
utes. Figure 3(b) shows the runtime for bounded risk re-
sponse objective. While greedy approach is unable to com-
plete 18 iterations within the threshold time of 2 hours,
lazy greedy significantly accelerates it and finish the process
within the cut-off time. Note that the runtime for both the
greedy and lazy greedy for initial 12 iterations was equal.
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Figure 3: Runtime: Greedy vs. Lazy greedy (a) Iterations wise for Bounded time response; (b) Iterations wise for Bounded risk
response; (c) With varying request for Bounded time response; (d) With varying request for Bounded risk response
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Figure 4: (a) Iteration-wise gain for bounded time response; (b) Iteration-wise gain for bounded risk response; (c) Effect of α
on strategic planning.

This is so because we cannot serve 80% of the requests (i.e.,
α = 0.2) using less than 13 base stations (because a re-
quest can only be assisted from a subset of nearby bases),
and therefore in the initial iterations upper bound was equal
for every possible bases (i.e., µs = M,∀s ∈ B). So, the lazy
greedy essentially search over all the possible bases, which
is equivalent to general greedy approach.

Figure 3(c) demonstrates the gain in runtime for lazy
greedy approach where we vary the number of requests
in the X-axis. The complexity of greedy approach grows
exponentially as the number of requests increases. This is
so because the dependency between requests increases for
densely populated request logs. Greedy cannot solve prob-
lems with more than 1000 requests within the cut-off time,
while lazy greedy solves the problem with 1500 requests
within 2 minutes. In the same direction, Figure 3(d) demon-

strates that lazy greedy significantly outperforms greedy ap-
proach in case of bounded risk response objective.

Submodularity Results : Figure 4(a),4(b) depict the
marginal gain for adding a base in each iteration for both the
objective functions. Figure 4(a) clearly shows that marginal
gain decreases monotonically in each iteration which val-
idates the submodularity property of the bounded time re-
sponse objective. Figure 4(b) delineates the iteration wise
gain of α-response time in a logarithmic scale. As expected,
due to the non-submodularity, in few cases the marginal gain
in later iteration is slightly higher.

Effect of external parameter α: Figure 4(c) depicts the
effect of parameter α in strategic planning for the bounded
risk response objective on a fixed sample of requests. Note
that increasing α value indicates that less number of requests
need to be served within α-response time. Therefore, the
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size of resulting base set reduces as we increase the α value.

Results on varying budget : Our model can be employed
to find the right location for a small set of new ambulances
in addition to an existing fleet of ambulances. For e.g., if a
new budget arises for p ambulances at certain point of time,
and q number of ambulances already exists in system, then
we can use our algorithm with (p + q) ambulances to find
the minimal subset of bases such that the entire fleet can be
allocated efficiently. Figure (5) show the performance with
respect to varying fleet size on a sample of around 3000 re-
quests. We show the effect of varying fleet size in the strate-
gic planning (ex: number of required bases) as well as in
objective value (ex: bounded time response or α-response
time). We vary the ambulance fleet size in X-axis, while Y-
axis shows the size of active base set and Z-axis denotes the
utility. We observe the pattern is consistent, i.e., bounded
time response increases with number of ambulances (Figure
5(a)) and bounded risk response is inversely proportional to
fleet size (Figure 5(b)). For both the objectives, as we in-
crease the number of ambulances, we need additional bases
to effectively allocate the entire fleet of ambulances.

Results on test cases : The last and most important thread
of results demonstrate the performance comparison between
all the benchmark approaches on the test instances. We pro-
vide performance for two of our allocation policies. LG-49
represents an allocation policy (generated using lazy greedy)
where the process continues until the marginal gain is pos-
itive and it produces a resulting base set of size 49. LG-43
symbolises an allocation policy with 43 bases where we stop
the process if the marginal gain is less than or equals to 2.
It indicates a crucial advantage of our approach in strate-
gic planning as we have the flexibility to generate strategy
based on the expectation of EMS operators and the availabil-
ity of budget to construct the base stations. Figure 6(a) plots
the normalised bounded time response value for all the test
cases. Y-axis represents the percentage of requests served
within 15 minutes. As each of the test cases involves 300
weeks of request logs, we report the average utility using
SAA. In all the test cases our allocation policy (even with
lesser number of bases) outperforms the existing benchmark
approaches and provide almost 2% gain in bounded time re-
sponse.



Figure 6(b) illustrates the performance comparison on α-
response time. LG-39 symbolises an allocation policy with
39 bases that is generated using lazy greedy. Interestingly
by utilising less than 70% of total bases, our approach sig-
nificantly outperforms the baseline approach and is highly
competitive with other two benchmark approaches.

Conclusion
In this paper we present a promising approach for placement
of bases and ambulances in EMS. We employ an incremen-
tal greedy approach that identifies the base with maximum
marginal gain in each iteration and add it to the resulting
base set. A lazy greedy approach is further utilised to ac-
celerate the convergence and the derived policy is evaluated
using a real-world event driven simulator. We show that our
approach can be utilised to optimise crucial performance
metrics such as bounded time response and bounded risk re-
sponse. The empirical results on real-world dataset demon-
strate that our approach significantly improves the service
level of EMS over existing benchmark approaches.
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