
Distributed Model Shaping for Scaling to Decentralized
POMDPs with Hundreds of Agents

Prasanna Velagapudi
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15217, USA

pkv@cs.cmu.edu

Pradeep Varakantham
Singapore Management Univ.

80 Stamford Road
Singapore 178902

pradeepv@smu.edu.sg

Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15217, USA

katia@cs.cmu.edu
Paul Scerri

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15217, USA
pscerri@cs.cmu.edu

ABSTRACT
The use of distributed POMDPs for cooperative teams has
been severely limited by the incredibly large joint policy-
space that results from combining the policy-spaces of the
individual agents. However, much of the computational cost
of exploring the entire joint policy space can be avoided by
observing that in many domains important interactions be-
tween agents occur in a relatively small set of scenarios, pre-
viously defined as coordination locales (CLs) [11]. Moreover,
even when numerous interactions might occur, given a set
of individual policies there are relatively few actual interac-
tions. Exploiting this observation and building on an existing
model shaping algorithm, this paper presents D-TREMOR,
an algorithm in which cooperative agents iteratively gen-
erate individual policies, identify and communicate possible
interactions between their policies, shape their models based
on this information and generate new policies. D-TREMOR
has three properties that jointly distinguish it from previous
DEC-POMDP work: (1) it is completely distributed; (2) it
is scalable (allowing 100 agents to compute a “good” joint
policy in under 6 hours) and (3) it has low communication
overhead. D-TREMOR complements these traits with the
following key contributions, which ensure improved scala-
bility and solution quality: (a) techniques to ensure conver-
gence; (b) faster approaches to detect and evaluate CLs;
(c) heuristics to capture dependencies between CLs; and (d)
novel shaping heuristics to aggregate effects of CLs. While
the resulting policies are not globally optimal, empirical re-
sults show that agents have policies that effectively manage
uncertainty and the joint policy is better than policies gen-
erated by independent solvers.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

Cite as: Distributed Model Shaping for Scaling to Decentralized
POMDPs with hundreds of agents, Prasanna Velagapudi, Pradeep Varakan-
tham, Katia Sycara and Paul Scerri, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011),
Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Tai-
wan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

General Terms
Algorithms; Experimentation

Keywords
DEC-POMDP, Uncertainty, Multi-agent systems

1. INTRODUCTION
Cooperative decision making in the presence of uncer-

tainty is a problem that is encountered in many domains
such as sensor networks and disaster rescue [6, 11]. Given the
desire for representational accuracy of uncertainty in these
domains, rich models such as Decentralized Partially Ob-
servable MDPs (DEC-POMDPs) are imperative. However,
the NEXP complexity of solving DEC-POMDPs [2] limits
their application to problems with two or three agents.

Recently, a model shaping approach called TREMOR was
proposed to solve a sub-class of DEC-POMDPs [11]. It ex-
ploits dynamic locality, in which interactions are assumed to
happen primarily in certain “coordination locales” (CLs), to
scale to problems with ten agents. For example, two robots
might be able to move freely across an open room, but inter-
act by colliding in a narrow corridor. TREMOR computes
the joint policy by iterating between (a) shaping of indi-
vidual agent models to account for the active coordination
locales ; and (b) resolving the models to obtain new policies.
In addition to solving of POMDPs, the computation of ac-
tive coordination locales and their value to the team (used
for shaping) are both computationally expensive operations,
which preclude its scalability to larger problems.

In this paper, we present the Distributed TREMOR (D-
TREMOR) algorithm, a distributed planning approach that
focuses computation on the most valuable interactions, to al-
low scale-up to hundreds of agents. The key to distributing
the planning effort is being able to compute interaction val-
ues, without having to perform the exponential operation of
comparing individual agent policies. In D-TREMOR, after
computing an individual local policy, each agent creates a
list of the CLs that have non-zero probability of occurrence
and orders that list by the expected reward (or cost) of an-
other agent being in that CL. For example, if an agent’s
local policy took it into a narrow corridor with high proba-
bility and another agent being there at the same time would

lead to a dramatic drop in its expected utility, that CL will
appear near the top of the list. The highest value CLs are
communicated to other agents who compare them against
their own policy to find CLs with high value (or cost) inter-
actions. Those are communicated back to the sending agent
which uses them to shape rewards and recompute, similar to
the shaping mechanism used in TREMOR. Notice that this
mechanism differs conceptually from TREMOR because in-
stead of comparing whole policies for interactions it focuses
the search towards more likely and more important interac-
tions. While this potentially reduces solution quality by a
small amount, it leads to dramatic computational and com-
munication savings.

However, distributed computation alone is not sufficient to
reach good solutions, as the concurrent computation of poli-
cies can lead to impractical amounts of information exchange
between agents, undesirable dynamics such as oscillations,
and complexities in the dependencies between interactions.
Thus, in combination with the distributed computation of
important CLs, we introduce the following techniques which
significantly improve the performance (both run-time and
solution quality) of D-TREMOR. Firstly, we propose intelli-
gent communication heuristics to reduce overhead. Secondly,
unlike TREMOR, D-TREMOR employs heuristics – agent
prioritization and probabilistic shaping – to ensure conver-
gence, a property imperative for avoiding oscillations in dis-
tributed algorithms. In fact, for certain classes of CLs, D-
TREMOR is proven to converge in a number of iterations
equal to the size of the team. Thirdly, apart from being
distributed, the algorithm employed for detecting and eval-
uating CLs uses a sampling technique to improve run-time
without sacrificing quality. Next, in domains where there are
a large number of CLs, shaping corresponding to a CL can
have non-trivial effects on occurrence probability and value
of other CLs, which in turn can affect the computation of
the final joint policy. We provide mechanisms to capture
these dependencies in computing improved policies. Finally,
in TREMOR, the model shaping heuristics employed to cap-
ture the effects of one CL can potentially overwrite shaping
performed for another. To address this, we introduce new
shaping heuristics in D-TREMOR that aggregate the prob-
abilities and values of multiple CLs that may occur when an
agent has a particular local state and action.

D-TREMOR is evaluated on a simulated search and rescue
task in which agents must work together to rescue victims
while avoiding interfering with each other. Experiments are
performed to measure performance as the size of the team
and the number of potential interactions in the team are
increased and the number of communications is decreased.
Results show that D-TREMOR is able to find effective solu-
tions in problems of up to 100 agents while remaining com-
putationally tractable.

2. ILLUSTRATIVE RESCUE DOMAIN
We employ an illustrative disaster rescue problem similar

to the one introduced in [11]. In this problem, a team of het-
erogeneous robots need to save victims trapped in a building
where debris impedes robot movement. There are two types
of robots available: (a) rescue robots provide medical atten-
tion to victims; while (b) cleaner robots remove debris from
building corridors to allow easy passage for rescue robots.
All robots must reason about uncertainty in their actual po-
sitions, slippages (action failures) when moving to locations
and incomplete knowledge about the safety of locations.

The building is modeled as a discrete grid with narrow
corridors and debris in certain grid cells (examples can be
seen in Figure 3 in Section 5). The goal of the robots is to
save as many victims as possible within the time available.
Narrow corridors allow for only one robot to pass through;
when multiple robots try to pass through, a collision (mod-
eled as negative reward and the failure of one of the robots
to enter the cell) occurs. On the other hand, cells containing
debris let rescue robots pass through with only low proba-
bility. When a cleaner robot passes through, the debris is
removed with certainty. If a robot passes through an unsafe
cell, it incurs damage (modeled as negative reward). This
creates a rich environment of conflicting positive and nega-
tive interactions and situations where modeling uncertainty
is critical to team performance, making this a challenging
problem in which to test decision-making. Interestingly, in
our experiments we find that this simplification of modeling
collisions and unsafe cells as negative rewards means that
when these rewards are sufficiently large enough to impact
policies, it is possible for policies that avoid risk to achieve
higher values than policies that successfully rescue many
victims, leading to unintuitive rankings of solutions.

3. BACKGROUND
In this section, we briefly describe the DPCL model and

the TREMOR algorithm.
DPCL: We employ the Distributed POMDPs with Coordi-
nation Locales, DPCL model introduced in [11] to represent
the problems of interest in this paper. DPCL is similar to the
DEC-POMDP model and it is represented using the tuple of
〈S,A,P,R,Ω,O〉, where S,A,Ω are the joint states, actions
and observations over all the agents and P,R,O are the joint
transition, reward and observation functions respectively.

DPCL differs from DEC-POMDPs in two aspects:
(a) The state space in DPCL consists of global states and

local states for the individual agents, with global states rep-
resenting the status of tasks.

(b) The interactions among agents are limited and in this
regard, DPCL assumes that there can exist two types of
interaction between agents:

(i) Same Time Coordination Locales (STCLs): STCLs
represent situations where the effect of simultaneous execu-
tion of actions by a subset of agents cannot be described
by the local transition and reward functions of these agents.
Example: In the illustrative Rescue domain mentioned ear-
lier, if two robots attempt to enter the same narrow corridor
simultaneously, the robots would collide and one of them
would be forced to transition back to its starting state.

(ii) Future Time Coordination Locales (FTCLs): FT-
CLs represent situations where actions of one agent impact
actions of others in the future. Informally, because agents
modify the global state sg as they execute their tasks, they
can have a future impact on other agents’ transitions and
rewards since both Pn and Rn depend on sg.

A CL is defined as the tuple of 〈t, sg, {si}m1 , {ai}m1 ,Γ〉,
where t is the decision epoch, sg and si are global and local
states of agent i respectively, ai is the action taken by agent
i and Γ is the type of the coordination locale (either STCL
or FTCL). The set of coordination locales is computed from
the joint transition and reward functions. This can be per-
formed automatically as described in [11]. Informally, a CL
is “active” for an agent when it has a significant probability
of entering the states and actions described by the CL.
TREMOR: We now describe the TREMOR (Teams RE-

shaping of MOdels for Rapid execution) algorithm [11]. The
goal in TREMOR is to find an optimal task allocation,
and provide a policy for each of the agents to accomplish
their tasks. TREMOR performs an approximate branch and
bound search over the set of all task allocations using MDP-
based heuristics. The actual value of a specific task allo-
cation is computed by solving the DPCL model for that
allocation (Algorithm 1). In Algorithm 1, firstly, the poli-

Algorithm 1 ComputeValueofAllocation()

1: π∗ ← SolveIndividualPOMDPs({Pi}i≤N)
2: π ← φ
3: iter ← 0
4: while π 6= π∗&&iter < MAX ITERATIONS do
5: ActiveCLs←ComputeActiveCLs({Pi}i≤N , AllCLs)
6: for all cl ∈ ActiveCLs do
7: {vala}a∈cl.agents ← EvaluateCL(cl)
8: {Pa} ← ShapeModels(cl, 〈{vala}, {Pa}〉a∈cl.agents)
9: π∗ ← π

10: π ← SolveIndividualPOMDPs({Pi}i≤N)
11: iter ← iter + 1

cies are computed for individual agents assuming no other
agents exist in the environment (line 1). Given the policies,
the probability of occurrence of coordination locales is de-
termined by propagating beliefs for the individual POMDPs
and only the ones that are “active” (having a probability of
occurrence > ε) are considered for next stages in the algo-
rithm (line 5). All the active CLs are evaluated for every
agent involved in those CLs and these valuations along with
the probability of occurrence of CLs are used to shape the
POMDP models for the individual agents (lines 6-8). The
updated models are solved to obtain new policies for the
agents (line 10) and these steps are continued until conver-
gence or for a maximum number of iterations (line 4).

The shaping of models in TREMOR is done in two steps:
(a) Firstly, the individual transition and reward functions
are modified in such a way that the joint policy evaluation
is equal (or nearly equal) to the sum of individual policy
evaluations; and (b) Secondly, incentives or hindrances are
introduced in the individual agent models based on whether
a CL accrues extra reward or is a cost to the team members.
This incentive/hindrance is the difference in policy value for
the team with the Coordination Locale.

By starting from individual POMDPs and incrementally
modifying the model to accommodate most likely interac-
tions, TREMOR was able to scale to problems that were not
feasible with earlier approaches for Distributed POMDPs.
However, the centralized detection and evaluation of interac-
tions with all other agents limits the scalability of TREMOR.
Towards addressing this problem with TREMOR, we intro-
duce D-TREMOR.

Several other approaches exploit problem structures sim-
ilar to DPCL to improve planning efficiency. Becker et al. [1]
provided approaches for solving transition independent DEC-
POMDPs, while ND-POMDPs [5] extend this transition-
independence with network structure interactions. Oliehoek
et al. [7] provide efficient algorithms for factored DEC-POMDPs
assuming static interactions between agents. Seuken et al. [10]
provide memory bounded dynamic programming (MBDP)
approaches for solving general DEC-POMDPs. While MBDP
and its variants solve considerably higher horizon problems,
they have been primarily limited to two agent problems.
There exist numerous other relevant approaches for solving
DEC-MDPs/DEC-POMDPs, however, we differ from those

through the distributed planning and the scale of problems
solved by D-TREMOR.

4. DISTRIBUTED TREMOR
In this paper, our focus is primarily on the computation

of a joint policy given an allocation of tasks to agents. Any
existing distributed role allocation algorithm [9, 8, 3] can be
used to compute the allocation of tasks to agents in DPCL.
Distributed TREMOR (D-TREMOR) avoids the scalability
problems inherent in TREMOR and other approaches for
solving DEC-POMDPs by distributing the planning effort
between agents and employing heuristics in CL communica-
tion and model shaping. We describe the basic distributed
planning algorithm of D-TREMOR and then detail the var-
ious heuristics employed to improve its performance.

In D-TREMOR, each agent after initializing to a starting
policy iterates over the following two steps until convergence
(or a maximum number of iterations):
Step 1: Exchange messages with other agents indicating
relative impact of coordination locales given the current in-
dividual policies.
Step 2: Use received messages to shape individual models
and re-compute policies.

Algorithm 2 provides the pseudo code executed at each
agent in performing these two steps. In Step 1, each agent

Algorithm 2 D-TREMOR(Agent i)

1: πi ← ObtainInitialPolicy(Mi, allCLs)
2: iter ← 0
3: while iter < MAX ITERATIONS do
4: αCLs← ComputeActiveCLs(Mi, allCLs, πi)
5: for all cl ∈ αCLs do
6: vali,cl ← EvaluateCL(cl,Mi, πi)
7: CommunicateCL(i, cl, pri,cl, vali,cl)
8: recCLs← ReceiveCLs()
9: Mi ← ShapeModel(recCLs,Mi)

10: πi ← SolveIndividualPOMDP(Mi)
11: iter ← iter + 1

computes the set of CLs which could be active given its own
policy, i.e., αCLs =
{cl|cl = 〈t, sg, {si}m1 , {ai}m1 ,Γ〉 , P rπi((sg, si), ai) > ε}. For
ease of explanation, we will refer to Prπi((sg, si), ai) as Prcli .
Since the interaction between agents is determined by the
CLs active for all the agents concerned, each agent com-
municates its set of active CL Messages to all the relevant
agents.

A CL Message is defined as the tuple: 〈id, cl, P rcli , Vcli〉.
It contains the agent ID, the coordination locale (which also
contains the time of interaction), probability of occurrence
of the coordination locale for the agent, and the value as-
sociated by the agent for the coordination locale. For a CL
between two agents, given a particular pair of messages, it
is thus possible to approximate the utility and probabil-
ity of the event occurring. Given 〈idi, cli, P rcli , Vcli〉 and〈
idj , clj , P rclj , Vclj

〉
, the joint utility of the action can be

estimated as Vcli + Vclj , while the probability of the event
is Prcli ∗ Prclj . From this, the expected joint utility can be
computed to be Prcli · Prclj · (Vcli + Vclj).

In Step 2, each agent shapes the transition and reward
function of its individual model upon receiving CL messages
from other agents. Each agent i that receives a CL message
from j computes the probability of occurrence of cl, Prcli
and the value of the CL, Vcli . The probability of occurrence

of a coordination locale with respect to both agents is then
computed, i.e. ĉcl = Prcli ∗ Prclj .

In TREMOR, the new transition probability P ′ei at de-
cision epoch e for STCLs is computed by using a shaping
heuristic. According to this heuristic, we take the weighted
average of Pei,cls and Pei,¬cls . Pei,¬cls is the transition proba-
bility without any interactions, i.e. Pi. In D-TREMOR, we
provide a new improved heuristic as described in Section 4.6.
While the expressions below are for STCLs, the expressions
for FTCLs are similar as explained in [11].

Pei,cl((sg , si), ai, (s
′
g , s
′
i))←∑

s′∈S:s′=(s′i,s
′
j)

P ((sg , si, sj), (ai, aj), (s
′
g , s
′
i, s
′
j)) (1)

P ′ei ← ĉcl · Pei,cl + (1− ĉcl) · Pei,¬cl (2)

Rei,cl((sg , si), ai, (s
′
g , s
′
i))←∑

s′∈S:s′=(s′i,s
′
j)

R((sg , si, sj), (ai, aj), (s
′
g , s
′
i, s
′
j)) (3)

R′ei ← ĉcl · Rei,cl + (1− ĉcl) · Rei,¬cl (4)

We now explain the key contributions made by the D-
TREMOR algorithm, which considerably improve its per-
formance over existing algorithms. As we will show in the
experimental results, the combination of these ideas helps
D-TREMOR scale to hundred agent DPCL problems, at
least an order of magnitude larger than the scale of problems
solved previously.

4.1 Distributed computation
As with all distributed algorithms, there needs to be par-

allelism in computation to get improved performance. In D-
TREMOR, we ensure that this parallelism is exploited in all
the key bottleneck computations:

(a) Computing Prcli : Every agent i only needs to com-
pute the probability of all distinct (e, (sg, si), ai) pairs (given
its current policy) out of all possible CLs. Thus for a cl :
〈(e, (sg, si, sj), (ai, aj)〉, agent i computes the probability for
(e, (sg, si), ai) given its policy πi and agent j computes the
probability for (e, (sg, sj), aj) given its policy πj . Therefore,
there is independence (or parallelism) in this computation
of probability of CL occurrence or Prcli .

(b) Evaluation of CLs: As with probability of occurrence
of CLs, the value of a CL for that agent can also be computed
independent of other agents, thus allowing parallelism.

(c) Solving individual POMDPs: After the shaping of mod-
els is performed corresponding to the received messages,
the individual POMDP models are solved. Since there is
no dependence between agents in solving these models, par-
allelism is exploited. Specifically, as the complexity of the
individual model increases (i.e. more states, actions, obser-
vations), run-time benefits due to distributed computation
also increase.

4.2 Communication heuristics
In its simplest form, D-TREMOR completely communi-

cates CL messages across the team. That is, every active
CL can be converted into a CL message and sent to every
team member. This ensures that every agent is aware of
any teammate it might interact with, but also means that
agents send n messages for every active CL, quickly leading
to thousands of messages being exchanged over the team. It
is possible that not all of the messages need to be exchanged,
as many of them may describe interactions that are of little
value or unlikely to actually occur.

One approximation of the usefulness of a CL message is
its local expected value. This is the product Prcl · Vcl. Fig-
ure 1 shows a distribution of these values compiled from
D-TREMOR runs on the scaling dataset described in Sec-
tion 5. It appears that a majority of CLs have relatively low
value, and a small number have very high value. It therefore
seems that communication could be made more efficient by
prioritizing the delivery of high-valued CL messages while
dropping some lower-valued messages. A best-first commu-

−20 −10 0 10 20
0

5

10

15
x 10

4

Expected value of CL

F
re

q
u

e
n

c
y

Figure 1: Distribution of expected CL value over
scaling dataset

nication heuristic, in which agents order CL messages by ab-
solute local expected value, can be applied to this task. Each
agent selects up to the top k messages from their ordered
list and sends these CLs to the team. Under this scheme,
the CLs that have highest potential impacts on the value
of the team should be sent first, but overall, communica-
tions should be reduced. While intuitive, experimental re-
sults with this heuristic reveal the sensitivity of D-TREMOR
to communications loss.

4.3 Convergence heuristics
As it involves multiple agents concurrently planning, D-

TREMOR faces the challenge of avoiding oscillations that
can occur when multiple agents simultaneously correct for
a common interaction. These oscillations delay the explo-
ration of policy space, and in the worst case, can prevent
the discovery of other solutions altogether. Though not the-
oretically guaranteed for all cases, empirically (as we show
in our experimental results) D-TREMOR is typically able
to break out of oscillations and converge to a solution. This
is obtained by using a combination of two heuristics:

(a) Probabilistic model shaping: This heuristic is inspired
by the approach adopted by the Distributed Stochastic Algo-
rithm (DSA) for solving Distributed Constraint Satisfaction
Problems [13]. It is governed by a parameter δ, which rep-
resents the probability that an agent will shape its model
given messages from other agents. Upon receiving messages
from other agents at each iteration of D-TREMOR, an agent
generates a random number (between 0 and 1) and only if
the generated random number is greater than δ, that agent
shapes its model to account for the received CL messages.

(b) Agent prioritization: This heuristic is specifically de-
signed to handle negative interactions (i.e. CLs with nega-
tive expected value). In negative interactions, the penalty is
avoided if all agents except one avoid the interaction. For in-
stance, in the example problem of Section 2, an interaction
where two robots collide in a corridor, it is sufficient if we
allow only one agent to pass through the corridor. As part of
this heuristic, each agent is initially (before start of the al-
gorithm) assigned a priority value randomly and an agents’
model is shaped corresponding to a negative CL message
unless it has the highest priority of all the agents involved.

Proposition 1. D-TREMOR will converge within n (num-
ber of agents) iterations for any DPCL problem with only

negative coordination locales if the agent prioritization heuris-
tic is employed.

Proof. Without loss of generality let us assume a DPCL
problem with n agents and priorities, {ri}n1 , such that r1 >
r2 > r3... > rn. At the first iteration of D-TREMOR, all the
agents would compute their individual policies. According
to the agent prioritization heuristic, agent 1 would continue
its course (i.e. not shape its model) irrespective of any CL
messages it would have received from other agents. Thus,
agent 1 would not change from its initial policy and conse-
quently, communicates the same set of CL messages to other
agents in all the iterations.

Agent 2 only needs to shape its model corresponding to CL
messages from agent 1. Therefore it would have a new policy
in iteration 2. Since it receives the same set of messages from
agent 1, agent 2 would not have to change its policy after
iteration 2. Therefore, agent 2 communicates the same set
of CL messages to other agents after iteration 2.

Continuing this reasoning, agent 3 would not have to mod-
ify its policy in iteration 3 and so on. Therefore, the D-
TREMOR algorithm will converge within n number of iter-
ations with agent prioritization heuristic.

In the motivating domain of Section 2, collisions in narrow
corridors represent negative coordination locales primarily
because (a) There is a cost to collision of robots; and (b)
collisions cause robots to return to their original position
with certain probability; Thus from the above proposition,
D-TREMOR with agent prioritization converges for prob-
lems where there are only narrow corridors.

4.4 Computing Prcli and Vcli efficiently
While parallelism in the computation of Prcli and Vcli

improves performance significantly, the exponential compu-
tational complexity involved in computing Prcli and Vcli is
still a bottleneck at each agent. This is because an exact
computation of Prcli and Vcli requires evaluation over all
possible combinations of the occurrence of previous CLs. To
improve the efficiency of these computations, we provide an
approach inspired from the sampling approach developed
for solving large Markov Decision Processes by Kearns et
al [4]. The main idea is that in problems where there ex-
ists a generative model, the value function can be computed
efficiently by using a set of samples generated with the gen-
erative model. Algorithm 3 provides the sampling method
to compute the probability of a CL for an agent i. In this
approach, we generate execution samples corresponding to
the current policy and agent model. Finally, we obtain the
average number of times the coordination locale is active
over the total number of execution samples. Depending on
the time horizon and the desired accuracy of Prcli , the to-
tal number of samples can be modified. A similar algorithm
is used for computing Vcli . We also provide a preprocessing

Algorithm 3 ComputePrCl(i, cl, p̂ii, b
0)

1: iter ← 0
2: val = 0
3: while iter < NUM − SAMPLES do
4: πi ← π̂i; s← GetSimState(b0); τ ← 0
5: while τ < cl.t do
6: act← πi.a
7: s′ ← GetSimFutureState(s, act)
8: ω ← GetSimObs(s′, act)
9: πi ← πi(ω); s← s′

10: if s = cl.si and act = cl.ai then
11: val← val + 1
12: return val

NUM−SAMPLES

step to detect CLs which can be completely eliminated from
consideration at future iterations of the algorithm. For in-
stance, a robot on the first floor of a building should not
have to worry about the robots on the 10th floor if the time
horizon is small. For each agent, the part of interest in a CL
is its state, s and action, a which can lead to an interaction
with other agents. The key idea here is to solve maximization
and minimization problems on the belief update expressions
and eliminate the consideration of CLs where the state s (of
the agent in consideration) is unreachable, i.e. bs < ε (where
ε is close to zero) given the time horizon. Given an action
a and observation ω, the maximization problem for belief
probability of state st (state s at decision epoch t) is given
by:

max
bt−1∈Bt−1

Ot(st, a, ω)Σst−1Pt−1(st−1, a, st)bt−1(st−1)∑
st

Ot(st, a, ω)Σst−1Pt−1(st−1, a, st)bt−1(st−1)

This is solved in polynomial time using the lagrangian tech-
niques presented in [12].

4.5 Capturing dependencies between CLs
In TREMOR, each CL is treated independently of oth-

ers, i.e. assuming that model shaping corresponding to one
CL does not affect any other CL. In weakly coupled do-
mains, i.e., ones with few CLs, such an assumption is per-
fectly reasonable. However in tightly coupled domains, these
dependencies are non-trivial. To obtain better coordination
between agents, it is imperative that such dependencies are
accounted for. However, capturing dependencies between all
CLs would entail searching for an optimal policy in the joint
policy space and hence would be prohibitively expensive.

Therefore, we are interested in capturing dependencies be-
tween CLs which improve performance without incurring a
significant computational cost. One such set of dependen-
cies are the ones between CLs occurring at different deci-
sion epochs. In our rescue domain, for example, there may
be a case where having a collision in one epoch (an STCL)
might prevent a cleaner robot from clearing some debris in
a later epoch (an FTCL). In order to capture these depen-
dencies over decision epochs, we make the following modi-
fications: Firstly, we sort the received set of messages with
respect to the decision epoch, cl.e. Secondly, while comput-
ing Prcli and Vcli , we consider the modifications made to
the model for CLs with decision epochs, cl′.e < cl.e. Using
such an approach, we are able to capture dependencies be-
tween CLs and obtain accurate estimates of Prcli and Vcli ,
while not sacrificing efficiency. Such accurate estimates of
Prcli and Vcli essentially reduce the difference between the
shaped models and the joint model and hence provide im-
proved solutions.

4.6 Shaping Heuristics
In the context of the expressions in Equation 2 and Equa-

tion 4, consider a scenario where two CLs, cl1 and cl2 have
the same e, si and ai (but different sg, sj and aj). If the
model for agent i is updated corresponding to cl1 first and
cl2 next, it should be noted that the model update corre-
sponding to cl1 could potentially be overwritten by model
update due to cl2. To address such inconsistencies in model
updates, we propose new model shaping heuristics. We use
the set CLis,a to correspond to all CLs which have the same
state s and same action a corresponding to agent i. Instead
of considering the occurrence and non occurrence of each
CL separately, we aggregate corresponding to all CLs which
have the same state and action pair for the agent. There-
fore, the new heuristics for shaping of transition and reward
functions are:

P ′′ei ←
∑

cl∈CLi
s,a

ĉcl · Pei,cl + (1−
∑

cl∈CLi
s,a

ĉcl) · Pei,¬cl (5)

R′′ei ←
∑

cl∈CLi
s,a

ĉcl · Rei,cls + (1−
∑

cl∈CLi
s,a

ĉcl) · Rei,¬cls (6)

In these expressions, we compute new transition and reward
values by accounting for effects of all the CLs at once and
hence effects of a CL are not overwritten.

4.7 Policy Initialization
Given the local optimal moves made at each agent, the ini-

tial policy assumes significance in D-TREMOR. In TREMOR,
the best local policy (obtained by solving the initial individ-
ual model) is the starting point for the algorithm. Due to
local optimization, such a policy may not traverse states
and actions where the joint rewards are higher than indi-
vidual rewards. For instance, in the illustrative domain of
Section 2, consider the example in Figure 2. If we assume
there is no reward for the cleaner robot to clean the de-
bris, the best policy for the cleaner robot is to stay in its
cell, and for the rescue robot, it is to go around the debris.
With such a starting policy, the CL corresponding to the
debris would never be detected in TREMOR. To account

Figure 2: Policy initialization example.

for such positive interactions, we introduce an optimistic
policy. We modify the model of each agent to account for
the optimistic assumption, i.e. assuming that all positive re-
ward CLs occur at every decision epoch. That is to say:
For every agent i, ∀cl ∈ CLs, if R(sg, (si, sj), (ai, aj)) >
Ri(sg, si, ai) +Rj(sg, sj , aj), then Prei,cl = 1.

These updated models are solved to obtain the optimistic
policy. While, it is not guaranteed to account for all pos-
sible interactions, empirically it is able to identify all the
important interactions.

5. EVALUATION
Two datasets were created to test the performance of D-

TREMOR under various conditions, a scaling dataset and a
density dataset. In the scaling dataset, the total number of
agents is varied from 10 to 100 agents. Maps are constructed
randomly, with salient features fixed proportionally to the
number of agents. Maps are square, with a ratio of approxi-
mately 2 map cells per agent. 35% of the cells are narrow and
only 50% of the remaining are safe. The team is half rescue
agents and half cleaner agents. Debris and victims are added
to the map of the same numbers as cleaner and rescue agents,
respectively. Figure 3(a) shows a sample of the maps gener-
ated for this dataset. The purpose of this dataset is to test
the overall performance and scalability of D-TREMOR on
complex environments with multiple types of interactions.
However, due to the long computation time (up to 15 min.
per iteration), only three randomly generated map sets could
be evaluated. In this small of a dataset, some maps can have
pathologically extreme interaction, sometimes never requir-
ing agents to interact and sometimes requiring tremendous
interaction in order to accomplish anything. Because this
variation in maps translates to high variance in performance
measures, we focus on qualitative overall trends in the data,
rather than the quantitative values of individual data points.

(a) Scaling map, 50 agents

(b) Density, 1 ring (c) Density, 2 rings (d) Density, 3 rings

Figure 3: Examples of the maps generated for the
scaling and density datasets.

In the density dataset, a square 9× 9 map is constructed
with 100 rescue agents located on the outer perimeter, and
100 victims located in the center of the map. As seen in
Figures 3(b), 3(c) and 3(d), the victims are surrounded by
1, 2, or 3 rings of narrow corridors, forcing the agents to
negotiate passage through an increasingly crowded map. The
purpose of this dataset is to test D-TREMOR in handling
increasingly dense STCL interactions.

Due to the large size of these state spaces, other state-
of-the-art POMDP solvers cannot be used for comparison,
including the original TREMOR algorithm (demonstrated
only in problems of up to 10 agents [11]). D-TREMOR is
thus compared against several heuristic strategies, indepen-
dent planning, optimistic planning, a do-nothing policy, and
a random policy. In independent planning, n independent
POMDP solvers are executed in parallel, with no coordi-
nation between agents, and with each agent assuming that
the environment will remain exactly as specified a priori. In
optimistic planning, n independent planners are used again,
but agents assume the optimistic policy introduced in Sec-
tion 4.7. That is, rescue agents assume that all narrow corri-
dors are unobstructed, and all debris will be cleared. Cleaner
agents assume that all narrow corridors are unobstructed,
and that any debris that is successfully cleared will allow a
rescue agent to reach a victim, yielding a net reward exactly
equal to the reward of rescuing the victim (i.e. ignoring the
movement costs of a rescue robot, etc.). In the do-nothing
policy, agents do not move from their original locations, and
in the random policy, each agent independently selects their
action uniformly randomly from the set of possible actions.

Several performance measures are taken from each run to
study the performance of the algorithms. The policies gen-
erated by each agent are jointly simulated 2000 times to
empirically compute an expected joint reward. This is used
as the primary measure of task performance. Empirical av-
erages of the numbers of collisions, victims saved and debris
cleared are also recorded. The planning times and number of
activated CLs for each agent are also totaled and averaged.
As the D-TREMOR algorithm consists of multiple iterations
(of message communication and shaping), these measures

can be computed at each iteration or averaged over entire
runs. In these experiments, D-TREMOR performs a greedy
role assignment in the first iteration, and communicate CLs
fully during subsequent iterations. An iteration limit of 20
is used for all of the maps. All experiments were performed
on a 104 CPU computing cluster, with each POMDP solver
running as a single thread on an available CPU.

Because D-TREMOR has agents individually approximate
the joint value at each iteration, it is possible for the team
to find good solutions but not be able to detect it. Thus,
it is sensible to provide two measures of the overall per-
formance of the algorithm: (a) the value of the joint policy
generated by D-TREMOR at the end of the last iteration (D-
TREMOR); and (b) the highest joint-valued policy among
all the D-TREMOR iterations (Max D-TREMOR). The lat-
ter requires some additional communication and computa-
tion overhead, as it necessitates exchanging policies and per-
forming a joint evaluation every iteration, but this is rela-
tively small compared to the cost of POMDP planning.

The results of the scaling dataset can be seen in Figure 4.
Data are normalized to independent planning by subtract-
ing its performance from that of the other algorithms. Fig-
ure 4(b), compares the average joint value of the various
solution policies. The maximum iteration of D-TREMOR
outperforms or matches the other techniques in every case.
This establishes the ability of the algorithm to find good
joint solutions in complex environments. However, the value
of the last iteration of D-TREMOR underscores the fact
that in its current form, it cannot always detect when it has
reached a good solution. In a single run (Figure 4(i)), we see
that overall, joint value trends upward, but over individual
iterations joint value can decrease.

Examining the components of the value function, it is pos-
sible to determine how the D-TREMOR achieves its value.
In looking at the number of victims rescued (Figure 4(c)),
it is apparent that there is not much difference between the
independent, optimistic, and D-TREMOR algorithms, while
random and do-nothing policies manage very few rescues. In
avoiding collisions (Figure 4(d)), however, D-TREMOR has
fewer collisions than independent or optimistic, performing
similarly to the random policy. Optimistic collides very fre-
quently by comparison, while do-nothing avoids collisions
trivially by never moving.

While cleaner robots clear many debris under the opti-
mistic policies (Figure 4(f)), their number of rescue robots
colliding with debris is higher than that of the independent
policies (Figure 4(e)) as optimistic rescue robots assume de-
bris is clear before it can be cleared. D-TREMOR is more
targeted, clearing only a few more debris than the indepen-
dent and random policies, which clear debris only when it
is self-serving (independent), or by chance (random), while
reducing the number of debris collisions to often be below
that of the independent policies.

Next, we consider the time scalability of the algorithm.
The computing cluster used in this experiment had over 1
virtual core per agent, making it is possible to directly com-
pare the running times across the scaling dataset, as agents
need not compete for CPU resources. Figure 4(h) shows a
linear trend in average time per iteration. Deviations from
this trend appear to correspond to maps that cause a large
number of activated CLs (Figure 4(g)).

Results of the density dataset are seen in Figure 5. As ex-
pected, increasing the density of narrow corridors decreases
the performance of all policies except the do-nothing policy

(Figure 5(a)). The abundance of narrow corridors causes op-
timistic and independent policies to suffer a very high num-
ber of collisions (Figure 5(b)), dropping their overall value
despite the fact that they manage to secure some victims
(Figure 5(c)). The do-nothing and random policies do not
rescue any victims, but have relatively few collisions, leaving
them with high overall joint values. The random policy has
only a one in eight chance of entering narrow corridors at all,
while the do-nothing policy never attempt to, so their values
differ by the expected penalty of the random policy causing
a collision. D-TREMOR’s policies, in value alone, straddle
this region, but other measures suggest that it reaches this
region through a vastly different behavior than the previous
two policies. D-TREMOR rescues more victims than any of
the other policies, and while it drastically reduces, it cannot
eliminate collisions between agents. However, despite rescu-
ing many more victims, the failure of D-TREMOR to resolve
the remaining collisions leads to a poorer overall value than
the do-nothing policy, a counter-intuitive effect of the re-
ward/penalty functions constructed for this domain.

The number of CLs activated (Figure 5(d)) indicate that
while there are many possible collisions in the map, relatively
few must actually be resolved. Agents consider on average
only 40 to 90 joint state-action pairs. Part of this, and the
intuition behind the drop in CLs between 2 rings and 3 rings,
is because in the initial few iterations, many agents realize
that they cannot all fit through the narrow corridors, and
decide to stay clear entirely, ceasing to generate CLs.

1000 1500 2000 2500 3000
1

1.1

1.2

1.3

1.4

1.5
x 10

6

Maximum messages per agent (k)

T
o

ta
l
m

e
s
s
a

g
e

s
 s

e
n

t

Complete

Best−First

(a) Number of sent messages

0 5 10 15 20
−350

−300

−250

−200

−150

−100

−50

0

Iteration

A
v
e

ra
g

e
 J

o
in

t
V

a
lu

e

Complete

k=1000

k=2000

k=3000

(b) Joint value

Figure 6: Results of best-first communications.

An experiment was performed to determine if using the
best-first heuristic could reduce communications over the
team without sacrificing performance. Using the heuristic,
a maximum number of messages per agent, k, was set on a
50 agent map from the scaling dataset. Adjusting k led to
a smooth reduction in total message exchange, as seen in
Figure 6(a), while maintaining performance–up to a critical
point. In Figure 6(b), the joint value of the D-TREMOR
algorithm is plotted for various k. The change in perfor-
mance is minimal for k ≥ 2000, but between k = 2000 and
k = 1000, the algorithm no longer converges anywhere near
the complete communication solution. This suggests that
the convergence of D-TREMOR is extremely sensitive to
the message exchange between agents, and that selecting
messages by local expected value, while effective in reducing
communication, may not be a stable mechanism controlling
message exchange across the team.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present D-TREMOR, a fully distributed

DEC-POMDP algorithm capable of computing policies for
100 agents in around five hours. This represents a dramatic
increase in the size of problem that can be solved. The al-
gorithms gets its scalability by taking advantage of the fact
that although agents might interact in a very large number

Independent Optimistic Do−NothingMax D−TREMOR D−TREMOR RandomLast

0 20 40 60 80 100
−500

−400

−300

−200

−100

0

100

Number of Agents

N
o

rm
a

liz
e

d
 J

o
in

t
V

a
lu

e

(b) Joint value

0 20 40 60 80 100
−40

−30

−20

−10

0

10

Number of Agents

N
o

rm
a

liz
e

d
 #

 o
f

V
ic

ti
m

s
 R

e
s
c
u

e
d

(c) Number of victims rescued

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

Number of Agents

N
o

rm
a

liz
e

d
 #

 o
f

C
o

lli
s
io

n
s

(d) Number of collisions

0 20 40 60 80 100
−80

−60

−40

−20

0

20

40

Number of Agents

N
o

rm
a

liz
e

d
 #

 o
f

D
e

b
ri
s
 H

it
s

(e) Number of debris collisions

0 20 40 60 80 100
−10

0

10

20

30

Number of Agents

N
o

rm
a

liz
e

d
 #

 o
f

D
e

b
ri
s
 C

le
a

re
d

(f) Number of debris cleared

0 20 40 60 80 100
30

40

50

60

70

Number of Agents

#
 o

f
C

L
s
 A

c
ti
v
e

 (
p

e
r

a
g

e
n

t)

(g) Number of activated CLs

0 20 40 60 80 100
0

5

10

15

20

Number of Agents

T
im

e
 P

e
r

It
e

ra
ti
o

n
 (

m
in

)

(h) Time per iteration

0 5 10 15 20
−400

−350

−300

−250

−200

−150

−100

Iteration

A
v
e

ra
g

e
 J

o
in

t
V

a
lu

e

(i) Joint value per iteration (50
agents)

Figure 4: Performance measures for algorithms on the scaling dataset.

1 1.5 2 2.5 3
−2500

−2000

−1500

−1000

−500

0

Number of Rings

A
v
e

ra
g

e
 J

o
in

t
V

a
lu

e

Max & Last

D-TREMOR

Indep.

& Optim.

(a) Joint value

1 1.5 2 2.5 3
0

100

200

300

400

Number of Rings

A
v
e

ra
g

e
 #

 o
f

C
o

lli
s
io

n
s

Indep.

& Optim.

Max & Last

D-TREMOR

(b) Number of collisions

1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

Number of Rings

A
v
e

ra
g

e
 #

 o
f

V
ic

ti
m

s
 R

e
s
c
u

e
d

Max & Last

D-TREMOR

Indep.

& Optim.

Do-Nothing

& Random

(c) Number of victims rescued

1 1.5 2 2.5 3
40

50

60

70

80

90

Number of Rings

A
v
e

ra
g

e
 #

 o
f

C
L

s
 A

c
ti
v
e

 (
p

e
r

a
g

e
n

t)

(d) Number of CLs activated

Figure 5: Performance measures for algorithms on the density dataset.

of ways, for any particular choices of individual actions they
will interact in relatively few coordination locales. Several
additional techniques are applied to assure convergence and
allow agents to discover high-quality solutions efficiently.

While this work represents a significant step towards mak-
ing DEC-POMDPs a practically useful tool, much more work
is required. Our immediate focus will be to find more effec-
tive ways of reaching convergence and reducing the message
traffic of the algorithm. Since D-TREMOR uses an off-the-
shelf POMDP solver, we can also exploit technical advances
in POMDP-solving to further increase the size and complex-
ity of the problems that can be addressed.

7. ACKNOWLEDGMENTS
This research has been funded in part by the AFOSR

MURI grant FA9550-08-1-0356. This material is based upon
work supported under a National Science Foundation Grad-
uate Research Fellowship.

8. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Solving transition independent decentralized Markov
decision processes. JAIR, 22:423–455, December 2004.

[2] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Math. Oper. Res.,
27(4):819–840, 2002.

[3] B. Gerkey and M. Mataric. Multi-robot task allocation:
Analyzing the complexity and optimality of key
architectures. In ICRA, 2003.

[4] M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling
algorithm for near-optimal planning in large Markov
decision processes. Machine Learning, 49(2-3):193–208,
2002.

[5] J. Marecki, T. Gupta, P. Varakantham, M. Yokoo, and
M. Tambe. Exploiting coordination locales in distributed
POMDPs via social model shaping. In ICAPS, 2009.

[6] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed pomdps: A synthesis of distributed
constraint optimization and POMDPs. In AAAI, 2005.

[7] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and
N. Vlassis. Exploiting locality of interaction in factored
Dec-POMDPs. In AAMAS, 2008.

[8] P. V. Sander, D. Peleshchuk, and B. J. Grosz. A scalable,
distributed algorithm for efficient task allocation. In
AAMAS, 2002.

[9] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe.
Allocating tasks in extreme teams. In AAMAS, 2005.

[10] S. Seuken and S. Zilberstein. Improved memory-bounded
dynamic programming for decentralized POMDPs. In UAI,
2007.

[11] P. Varakantham, J. Y. Kwak, M. Taylor, J. Marecki,
P. Scerri, and M. Tambe. Exploiting coordination locales in
distributed POMDPs via social model shaping. In ICAPS,
2009.

[12] P. Varakantham, R. Maheswaran, and M. Tambe.
Exploiting belief bounds: Practical POMDPs for personal
assistant agents. In AAMAS, 2005.

[13] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg.
Distributed stochastic search and distributed breakout:
properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial
Intelligence, 161(1-2):55–87, 2005.

