
Proactive and Reactive Coordination of Non-dedicated Agent Teams Operating in
Uncertain Environments

Pritee Agrawal, Pradeep Varakantham
School of Information Systems, Singapore Management University, Singapore 188065

priteea.2013@phdis.smu.edu.sg, pradeepv@smu.edu.sg

Abstract
Domains such as disaster rescue, security patrolling etc.
often feature dynamic environments where allocations of
tasks to agents become ineffective due to unforeseen con-
ditions that may require agents to leave the team. Agents
leave the team either due to arrival of high priority tasks
(e.g., emergency, accident or violation) or due to some
damage to the agent. Existing research in task alloca-
tion has only considered fixed number of agents and in
some instances arrival of new agents on the team. How-
ever, there is little or no literature that considers situa-
tions where agents leave the team after task allocation. To
that end, we make the following key contributions. First,
we provide a general model to represent non-dedicated
teams. Second, we provide a proactive approach based on
sample average approximation to generate a strategy that
works well across different feasible scenarios of agents
leaving the team. Furthermore, we also provide a 2-stage
approach that provides a 2-stage closed loop policy that
changes allocation based on observed state of the team.
Third, we provide a reactive approach that rearranges the
allocated tasks to better adapt to leaving agents. Finally,
we provide a detailed evaluation of our approaches on
existing benchmark problems.

1 Introduction
In delivery of services or goods [Dantzig and Ramser, 1959;
Dolgov and Durfee, 2006], task allocations to individual vehi-
cles are based on uncertain travel times to delivery locations.
Also, in disaster rescue scenarios [Varakantham et al., 2014;
Velagapudi et al., 2011; Varakantham et al., 2009], victims
have to be allocated to robots while considering the uncer-
tainty in travelling through disaster prone areas. Furthermore,
in large warehouses [Hazard et al., 2006; Wurman et al.,
2007] of online portals such as Amazon, movement of au-
tomated robots fetching goods based on online orders (uncer-
tainty) have to be coordinated in the usage of pathways (re-
sources). Finally, in problems associated with safety and se-
curity, recent research [Brown et al., 2014; Shieh et al., 2014;
Varakantham et al., 2013] has considered patrolling problems
where a team of defenders coordinate to secure a set of targets
against an observing adversary (e.g., traffic police coordina-
tion for patrolling roads in order to reduce violations).

These domains have the following common characteristics:
(a) A team of agents (e.g., ambulances/fire trucks) coordi-

nate plans to achieve a goal or to optimize a certain crite-
rion (e.g., save victims); (b) There is transition uncertainty
in planning problems of individual agents, either due to trav-
elling on roads (due to traffic) or due to uncertain demand
(online orders) or physical constraints (e.g., robots); (c) Ac-
tions of agents either require the availability of resources
(roads, paths, tools, etc.) or completion of tasks allocated (tar-
get surveillance, delivery of items, etc.). Furthermore, there
is usually a hard constraint on the number of tasks/resources
available and this causes agent plans to be dependent on each
other; and most importantly (d) The individual agents have a
chance of leaving the team at any time step due to either a
breakdown (e.g., in the case of large warehouses, individual
robots leave the system either to get charged or because of
malfunction) or to address a higher priority task (e.g., in case
of traffic patrolling problems, traffic police have to attend to
incidents/accidents in addition to patrolling roads).

We are interested in application problems with above men-
tioned characteristics. Due to the non-dedicated nature of the
team members (as agents can leave the team at any time),
we refer to these teams as non-dedicated agent teams. The
notion of non-dedicated teams was introduced and studied
extensively in the context of Belief Desire Intention (BDI)
frameworks [Cohen and Levesque, 1991; Grosz and Kraus,
1996; Tambe, 1997] for multi-agent planning. However, those
works relied on existence of plan libraries and considered pri-
marily deterministic outcomes to actions. In this work, we
generate plans automatically and in domains where there are
probabilistic outcomes to actions.

Another closely related thread of research is on adhoc
teams [Barrett et al., 2017], where the focus is on a newly
added team member that cooperates with teammates coming
from a variety of sources without directly altering the behav-
ior of teammates. We focus on non-dedicated teams where
the configuration of the team is altered to accommodate the
leaving of a team member. More recently, Shieh et al. [Shieh
et al., 2014] re-introduced the notion of non-dedicated teams
in the context of defender teams patrolling against an ob-
serving adversary. While Shieh et al.’s work considered non-
deterministic outcomes to actions, they provide an exhaustive
offline approach that is not scalable.

To that end, we first provide a general model for the study
of non-dedicated agent teams that operate in uncertain envi-
ronments. We then provide multiple proactive and reactive



approaches to generate policies for individual agents in non-
dedicated agent teams. One of our main contributions is a
proactive approach that relies on sampling and decomposi-
tion to efficiently generate policies for individual agents while
considering agent exits from the team. Another major con-
tribution involves the formulation of a two stage approach
where the state of the team at the end of first stage is in-
put for the second stage to provide a two stage policy for
the agents. Finally, we provide an exhaustive evaluation on
the performance of our proactive and reactive approaches on
benchmark problems.

2 Model: ND-TasC-MDP
We now present a model to represent problems with non-
dedicated teams operating in uncertain environments. Specif-
ically, we build on the TasC-MDP model introduced by
Dolgov et al. [Dolgov and Durfee, 2006] and extended by
Agrawal et al. [Agrawal et al., 2016]. We refer to this model
as Non Dedicated TasC-MDP (ND-TasC-MDP) and is char-
acterised by the tuple:〈

Ag,Γ, C, D, 〈Mi〉i∈Ag , {∆i}i∈Ag, H
〉

• Ag is the set of agents.
• Γ is the different types of tasks.
• C =

⋃
τ∈Γ C(τ) corresponds to the set of all tasks, where

C(τ) is the set of tasks of type τ . |C(τ)| is the capacity
bound for tasks of type τ .

• D = {τ1 ≺ τ2, τ1 ‖ τ2, . . .} represent the set of alloca-
tion constraining dependencies and temporal dependen-
cies(refer [Agrawal et al., 2016] for more details). For
purposes of easy exposition, we focus on problems with
independent tasks, however, all our approaches are easily
extendable to cases with dependencies.

• Mi =
〈
Si, Ai, Pi, Ri, ρi, α

0
i

〉
is the MDP model for agent

i along with the task associations of actions.
- Si, Ai,Pi, Ri are the standard MDP elements.
- ρi : Ai × Γ → R{0,1} is a function that specifies the
binary task association of all actions. In states where tasks
can be accomplished, there are task specific actions.
- α0

i is the starting probability distribution for agent i.
• ∆i: Vector of probabilities for agent i leaving the system

at different times. Specifically, ∆t
i represents the proba-

bility of agent i leaving the team at time t and
∑
t ∆t

i = 1.
• H is the time horizon for the decision problem.

The key distinction in ND-TasC-MDP is the presence of
a probability distribution for each agent, ∆i that represents
the non-dedication of each agent. The goal is to compute a
joint policy π∗ that has the highest expected reward among all
joint policies given that agents can leave the team according
to probability distribution ∆:

π∗ = argmax
π

∑
i

Vi(πi, α
0
i ) s.t.∑

i∈Ag

|δi(τ)| ≤ |C(τ)| ∀τ ∈ Γ (1)

f(πi,∆i, τ) ≤ δi(τ) ∀i ∈ Ag,∀τ ∈ Γ (2)

where πi is the individual policy of agent i in the joint pol-
icy π, δi is the set of tasks allocated to agent i with δi(τ)

Variables: ∀si, σi ∈ Si;∀ai ∈ Ai; ∀τ ∈ Γ;∀i ∈ Ag; ∀t ∈ H

Maximize:
∑

i,t,si,ai

xti(si, ai) ·Rti(si, ai) (3)

Subject to:∑
ai

xt+1
i (σi, ai) =

∑
si,ai

xti(si, ai)P
t
i (si, ai, σi), ∀σi, t, i (4)

∑
ai

x0i (si, ai) = αi(si), ∀si, i (5)

∑
t,i

δti(τ) ≤ C(τ), ∀τ (6)

1

X

∑
ai

ρi(ai, τ)
∑
si

xti(si, ai) ≤ δti(τ), ∀τ, t, i (7)

xti(si, ai) ≥ 0, δit(τ) ∈ {0, 1} (8)

Table 1: Optimal MILP for Dedicated Team

indicating the number of tasks of type τ . Vi(πi, α0
i ) is the ex-

pected value for the individual policy, πi on model Mi. The
task-based interactions are explicitly modelled in Equation 1,
which ensures that number of tasks executed is less than the
total number of tasks. The individual task accomplishments
are modelled using the constraints (2). The function f is used
to compute the number of tasks type τ completed by using a
policy πi for agent i given the non-dedication parameter, ∆.

2.1 Optimization Formulation for a Dedicated Team

For the case where no agent leaves the system (represented
as ∆H

i = 1 for all agents), previous work [Dolgov and Dur-
fee, 2006; Agrawal et al., 2016] has provided mixed inte-
ger formulations to address different types of resource and
task interactions. We provide this mixed integer linear pro-
gram(MILP) for a dedicated agent team in table 1. Objective
maximizes the sum of expected rewards over all agents [Put-
erman, 1994] where xti(si, ai) represents the occupation mea-
sure of agent i for state action pair (s, a). Equation 4 ensures
outgoing flow from a state σi by taking any action is equal
to the incoming flow into that state from other states. For the
initial state, Equation 5 ensures the flow at the beginning for
an agent is equal to its starting distribution. Equation 6 con-
strains the number of executed tasks for any given type, τ to
be less than the number of tasks of that type. A task can be
executed only if there is a positive flow associated with the
right state and action. This is enforced in Equation 7.

3 Approaches
We provide both reactive (online) and proactive (offline)
approaches to facilitate coordination among the remaining
agents over the tasks left undone by the agents leaving the
team. In addition, we also provide heuristics that benchmark
the performance of our approaches.

3.1 Benchmarking Heuristics

We first outline two benchmarking heuristics that will be em-
ployed to benchmark the performance of our approaches in-
troduced in later sections.



Ignore the leaving agent, ILA: In this heuristic, we solve the
MILP of Table 1 and obtain solution assuming agents will
not leave the system. When some agents leave the system,
other agents ignore their departure and execute the policies
computed by solving the MILP. This provides a good lower
bound on solution quality that has to be achieved by any new
proposed approach.
Online Revamp, O-Rev: In this heuristic, the agents execute
their policies obtained from solving the MILP of Table 1 until
one or more agents leave the system. At the decision epoch t
where at least one of the agents leaves, the problem is solved
again for the remaining agents and time steps. The informa-
tion of leaving agents and the starting probability distribution
over states for agents at the leaving time is input to the MILP.
The new policy obtained from re-solving is executed by the
agents until there is a change in the system (i.e. some agent
leaves the system). Even though this approach is not feasible
for online decision making (due to the computational com-
plexity of solving the MILP), this revamp approach provides
a good upper bound on the desired performance for our pro-
posed approaches.

3.2 Proactive Expected Flow Optimization
Expected flow optimization(EFO) is a proactive approach that
given the probability distribution for agents leaving the sys-
tem, i.e., ∆, we update the formulation of Table 1. Specif-
ically, we replace the actual flow with expected flow given
”probability of staying back” in the flow preservation con-
straint of Equation 4. That is to say,∑
ai

xt+1
i (σi, ai) =

∑
si

∑
ai

xti(si, ai) · P ti (si, ai, σi) · (1−∆t
i)

All other constraints in the optimization problem of Table 1
remain exactly the same. As will be noted in our experiments,
such an approach though easy to implement performs poorly
in comparison with other approaches.

3.3 Reactive Assignment of Tasks
We now describe Reactive Assignment of Tasks(ReacT) that
performs reactive updates to the current solution as agents
leave the system. Initially, we start with the joint policy ob-
tained by solving the MILP of Table 1. When one or more
agents leave the team, the tasks of leaving agents must be
assigned to the remaining agents. Each remaining agent eval-
uates the value of changing the current allocation (i.e., taking
on some of the newly available tasks and discarding some of
the currently assigned tasks) given the newly available tasks.
The agent which obtains the highest value by changing its
allocation is first assigned tasks from the newly available list
and tasks discarded by that agent are added to the newly avail-
able task list. This process is repeated with the remaining
agents who evaluate the value of changing their current al-
location until the new task list is exhausted or all agents have
changed their allocation once. Evaluating value of taking on
additional tasks at the cost of discarding some of the current
tasks is performed by solving an MDP over the remaining
horizon. The starting distribution of the agents are updated to
consider the distribution of states at the current time step. Al-
gorithm 1 provides the pseudocode for ReacT where inputs
to the algorithm are the set of agents leaving the system, F ,

Algorithm 1 REACTIVE TASK ASSIGNMENT( F, δ̃, t)
1: repeat
2: 〈i∗, Vi∗〉 ← maxi∈Ag\F Vi(π

∗
i , α

t
i, δi ∪ δ̃)

3: δ+
i∗ ← GETNEWLYALLOCATEDTASKS(πi∗ , δi)

4: δ−i∗ ← GETDISCARDEDTASKS(πi∗ , δi)

5: δ̃ ← (δ̃ \ δ+
i∗) ∪ δ−i∗

6: F ← F ∪ {i∗}
7: until δ̃ = ∅ OR Vi∗ = 0

the newly available tasks, δ̃ and the current time step, t. The
algorithm finds the agent with largest expected reward(line 2)
where each of the remaining agents are allowed to consider
all tasks from the list δ̃ ∪ δi. The newly available tasks as-
signed to the agent with highest reward are determined in line
3 and the discarded tasks are determined in line 4. The list
of newly available tasks δ̃ is then updated to remove the as-
signed tasks and add the tasks discarded by agent i∗ on line
5. F is updated to include i∗. This process is continued until
either of the termination conditions are met.

3.4 Proactive Planning through SAA+LR
We now describe a sample average approximation based La-
grangian relaxation(SAA+LR) approach that computes a pol-
icy for each of the agents for multiple scenarios of agent
availability over the entire time horizon. Since it is impossi-
ble to consider all the samples of agent availability on larger
problems, this is primarily an approximate approach that op-
timizes the expected value given the probability distributions
of agents leaving.

A sample of agent availability is generated by sampling
from a biased coin with probability pi independently for ev-
ery agent i. At every time step t, the coin is tossed to decide
if the agent i either leaves or stays in the team depending on
the value of associated probability in ∆i. Therefore, in every
sample of agent availability ξk, we know the availability hori-
zon ξk(i) of every agent i. The MILP in table 2(referred to as
OPT-ND-TasC) provides an optimal offline solution for the
optimization problem of a non dedicated team over K sam-
ples with a different solution (allocation of tasks and policy)
for each sample.

For transition function, we have P t,ki instead of just Pi.
Similarly, for reward,Rt,ki instead ofRi. They are defined as:

Rt,ki (si, ai) =

{
Ri(si, ai) if ξk(i) > t

0 otherwise

P t,ki (si, ai, σi) =

{
Pi(si, ai, σi) if ξk(i) > t− 1

0 otherwise

Intuitively, these indicate that once the agent leaves the sys-
tem (at ξk(i)) reward and transitions are set to 0. To ensure
conciseness in expressions, we will use the following short
form for the objective employed in Table 2:

K∑
k=1

fk(xk) =
∑
k

∑
i,si,ai,t

xt,ki (si, ai) ·Rt,ki (si, ai)

The MILP for non dedicated team(OPT-ND-TasC) is sepa-
rable over the number of samples. However, it can provide a



Variables: ∀si, σi ∈ Si; ∀ai ∈ Ai;∀i ∈ Ag; ∀t ∈ ξk(i)

Minimize: − 1

K

∑
k

∑
i,si,ai,t

xt,ki (si, ai) ·Rt,ki (si, ai) (9)

Subject to:∑
ai

xt+1,k
i (σi, ai)

=
∑
si

∑
ai

xt,ki (si, ai) ·P t,ki (si, ai, σi), ∀σi, t, i, k (10)

∑
ai

x0,ki (si, ai) = αi(si), ∀si, i, k (11)

∑
t,i

δt,ki (τ) ≤ C(τ), ∀τ, k (12)

1

X

∑
ai

ρi(ai, τ)
∑
si

xt,ki (si, ai) ≤ δt,ki (τ), ∀τ, t, i, k (13)

xt,ki (si, ai) ≥ 0, δt,ki (τ) ∈ {0, 1} (14)

Table 2: Optimal MILP for Non Dedicated Team

usable solution only if the agent availability sample is known
beforehand. But due to the dynamic nature of the problem,
agent availability information is not available offline. There-
fore, we modify the optimization problem in table 2 to pro-
vide an offline allocation of tasks that works well across all
K samples using global task allocation variables, d :

δt,ki (τ) = dti(τ), ∀τ, t, i, k (15)

That is to say, task allocations for all samples should agree
on the same solution. This constraint links the optimization
of allocations across all samples. Lagrangian dual for the op-
timization problem of Table 2 while considering the common
allocation constraint of Equation 15 is given by:

L(x, δ, d) =
−1

K

K∑
k=1

f
k
(x
k
) +

∑
τ,t,i,k

λ
t,k
i (τ)

(
d
t
i(τ)− δt,ki (τ)

)

=
−1

K

K∑
k=1

(
f
k
(x
k
) +

∑
τ,t,i

λ
t,k
i (τ) · δt,ki (τ)

)
+
∑
τ,t,i,k

λ
t,k
i (τ) · dti(τ)

(16)

where λ is the dual vector associated with constraints in
Equation 15. A solution with respect to a given vector λ is
given by G(λ) = minx,δ L(x, δ,d). The variable dti(τ) is
unconstrained, which may lead to an unbounded dual. There-
fore, to avoid unboundedness, the price variables must satisfy
the following constraints:

Λti(τ) = {λt,ki (τ)|
∑
k

λt,ki (τ) = 0} (17)

λt,ki (τ) ∈ Λti(τ), ∀τ, t, i

The above condition further simplifies the dual G(λ), as
the last term in Equation 16 vanishes leading to the below
dual which is separable over K samples:

G(λ) =
∑
k

min
x,δ

(
fk(xk) +

∑
τ,t,i

λt,ki (τ) · δt,ki (τ)
)

(18)

Maximizing the Dual Function
We now address the master problem of maximizing the La-
grangian lower bound over the price variables λ, which
can be solved by using projected sub-gradient ascent[Bert-
sekas, 1999]. The gradient w.r.t. a variable λki (τ) is given by
∇G(λt,ki (τ)) = δt,ki (τ) where δt,ki (τ) denotes the solution of
inner minimization problem of Eq.(18) for sample k which is
used to update the price variables as follows:

λt,ki,n∗(τ) = λt,ki,n(τ) + γn∗

[
δt,ki,n(τ)−

∑K
k′=1 δ

t,k′

i,n (τ)

K

]
,∀τ, t, i, k

(19)

Here, n and n∗ represent the current and next iteration, re-
spectively. The second term is the projection into the feasible
that ensures that

∑
k λ

t,k
i (τ) = 0 as indicated in Eq.(17).

Extraction of Feasible Primal Solution
The dual solution obtained by solving the individual samples
may be inconsistent due to violation of the common alloca-
tion constraint of Eq.(15) among different copies of the task
allocation variable δ, resulting in δt,ki (τ) 6= δt,k

′

i (τ) for any
two samples k and k′. To obtain a consistent task allocation
to agents over K samples, we find the best-agent i∗ for ev-
ery task τ ∈ Γ. The best-agent is nominated by choosing the
agent with highest number of assignments of task τ over all
samples. We obtain the best-agent for all tasks and formu-
late a reduced version of the OPT-ND-TasC MILP(table 2)
by using the unique task allocation obtained over all samples.
This reduced MILP is easy to solve and provides a consistent
policy assignment for every agent of the non dedicated team
irrespective of the sample. The solution obtained is the primal
solution Primaln which is employed in the updation of step
parameter γn∗ = Primaln−Dualn

||∇gk||2 in Eq.(19) where Dualn is
the dual value for iteration n.

3.5 Two Stage MILP for Non-Dedicated Team
The SAA+LR computes one allocation of tasks for the en-
tire duration. In this section, we extend the underlying MILP
formulation of SAA+LR to compute an initial allocation and
then change the allocation once before the time horizon based
on the current state of the system (agents available). Since, we
consider the state before changing the allocation, this formu-
lation improves team utility when compared to a single stage
allocation. It should be noted that the dual decomposition ap-
proach described in the previous section is also directly ap-
plicable for this extended formulation. Due to the similarity,
we do not describe the dual decomposition approach here and
furthermore, we refer to two-stage MILP and Lagrangian re-
laxation of two-stage MILP synonymously.

State of the system (of relevance to task allocation) is the
set of agents leaving the system. In this extended MILP, we
compute an initial allocation and then at an observation time,
t′ compute a new allocation based on the observation, o ∈ O
of the state of the system. The samples of agent availability
< ξ1, ξ2, ..., ξk > provide the set of possible observations at
t′ that marks the beginning of second stage. An observation
belief < b1, b2, ..., bk > is maintained over the sample set ξ
for every observation o at the observation time t′. It must be



V ariables : xt,ki,n ≥ 0, δt,ki,n ∈ {0, 1}, d
t
i,n ∈ {0, 1}

yti,n ≥ 0, n ∈ {1, 2}

max
1

K

∑
k,i,si,ai

(∑
t≤t′

xt,ki,1 (si, ai) ·Rt,ki,1 (si, ai)+

+
∑
o

∑
t>t′

xt,ki,2 (si, ai, o) ·Rt,ki,2 (si, ai)
)

(20)

∑
i

∑
t≤t′

δt,ki,1 (τ) +
∑
o

∑
t>t′

δt,ki,2 (τ, o)

≤ C(τ), ∀τ, k (21)

∀t ≤ t′, i,k :∑
ai

x0,ki,1 (si, ai) = αi,1(si) (22)∑
ai

xt+1,k
i,1 (σi, ai) =

∑
si,ai

xt,ki,1 (si, ai)P
t,k
i (si, ai, σi), ∀σi

(23)
1

X

∑
ai

ρi(ai, τ)
∑
si

xt,ki,1 (si, ai) ≤ δt,ki,1 (τ), ∀τ (24)∑
a

xt,ki,1 (si, ai) =
∑
a

yti,1(si, ai), ∀si (25)

δt,ki,1 (τ) = dti,1(τ), ∀τ (26)
∀si, i,o,k :∑
ai

xt
′+1,k
i,2 (si, ai, o)=

∑
si,ai

xt
′,k
i,1 (si, ai)P

t,k
i (si, ai, σi) (27)

∀t > t′, i,o,k :∑
ai

xt+1,k
i,2 (σi, ai, o)=

∑
si,ai

xt,ki,2 (si, ai, o)P
t,k
i (si, ai, σi), ∀σi

(28)
1

X

∑
ai

ρi(ai, τ)
∑
si

xt,ki,2 (si, ai, o) ≤ δt,ki,2 (τ, o),∀τ (29)∑
a

xt,ki,2 (si, ai, o) =
∑
a

yti,2(si, ai, o), ∀si (30)

δt,ki,2 (τ, o) = dti,2(τ, o),∀τ (31)

Table 3: Two-Stage MILP for Non Dedicated Team

noted that any sample ξk, k ∈ K will have a non-zero be-
lief for at most one observation and zero for the remaining
set of observations. This reduces the number of samples to be
solved at observation level, thereby, reducing the complexity
of the problem at second stage to solving maximum K sam-
ples instead of K × |O|.

The objective is to maximize the total value over all sam-
ples ξ where the first and second term denote the objectives
for the two stages, respectively. The variables xt,ki,1(si, ai) and
xt,ki,2(si, ai, o) denote the visitation frequency for agent i at
time t for sample k with observation o in stages 1 and 2 re-
spectively. dti,n and yti,n represent the common task allocation
and policy assignment variables for the two stages n ∈ {1, 2}
over all samples.

The constraints 22 to 26 are the constraints for stage 1
where equations 22 and 23 are the flow constraints and equa-
tion 24 is the task assignment/execution constraint. The equa-
tions 25 and 26 are required to provide a unique policy and

task allocation over all samples in the first stage. Similarly,
constraints 27 to 31 are the second stage constraints. For ev-
ery observation o ∈ O, equations 27 and 28 are the flow con-
straints. The initial flow for every observation in the second
stage at t′ + 1 is the outflow from the last time-step t′ of the
first stage as shown in 27. Equation 29 provides the task as-
signment constraint. Equations 30 and 31 provide a unique
policy and unique task allocation over all samples for an ob-
servation. For every sample, the task assignment constraint
21 ensures that a task can be done only in either of the stages.

4 Experiments

We evaluate1 the performance of our reactive and proactive
approaches. While there are no benchmark problems to study
performance of non-dedicated teams, we rely on the bench-
mark problems available for multi-agent coordination in un-
certain domains and augment them with probability distribu-
tions that represent the non-dedicative nature of agents.

4.1 Experimental Setup
We employ a generic setting that can be easily adapted to
the domains described in introduction. Specifically, we em-
ploy the Urban Consolidation Center problems that deal with
allocation of tasks and have to consider transitional uncer-
tainty [Handoko et al., 2014]. We evaluate the performance of
all the approaches on various metrics: (a) solution quality; (b)
runtime; (c) quality of bounds provided by dual solution; and
(d) percentage of optimality with increasing training samples
and varying observation time.

Experimental results are averaged over 15 randomly gen-
erated grid maps that randomly place the delivery locations
(tasks) and walls. Grids are described using a single param-
eter m that represents number of rows and columns (i.e., m
x m grid). The actions are classified into movement actions
(stay, left, right, up and down) and task actions. Rewards are
generated only for task actions using a pseudo-random func-
tion dependent on the task location and task id. We generate
1500 samples of agent availability and divide it into training
and testing sets of 1000 and 500 samples, respectively. To ob-
tain a fair comparison over all online and offline approaches,
we compare the solution quality and runtime on the same test
set for the following approaches.
(1) Ignore the leaving agent, ILA - Section 3.1.
(2) Online revamp, O-Rev - Section 3.1.
(3) Expected Flow Optimization, EFO - Section 3.2.
(4) Reactive assignment of tasks (ReacT) - Section 3.3.
(5) Sample Average Approximation based Lagrangian Relax-
ation (SAA + LR) - Section 3.4. Due to repetition of sam-
ples, we assign frequency-specific weights to distinct train-
ing samples and select the 10 best samples for computing the
joint policy with SAA+LR. The number of training samples
is fixed to 10 best samples unless mentioned specifically.
(6) OPT-ND-TasC - This corresponds to solving all the cho-
sen test samples offline. This is not really an approach that
can be employed, but serves as a benchmark on the best pos-
sible performance achievable.
(7) Two Stage MILP for Non-Dedicated Team (MILP-2S) -

1All our optimization problems are run on CPLEX v12.5
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Figure 1: Quality comparison w.r.t. (a) Agents and (b) Grid-size
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Figure 2: Quality Comparison with increasing samples

Section 3.5. The training set, obtained similar to SAA+LR, is
used to find the set of possible observations O beforehand for
the second stage in MILP-2S. For any observation outside O
in the testing set, we employ ReacT to obtain the solution of
second stage for the samples. The observation time is fixed to
t′ = 6 for a horizon H = 10 unless specifically mentioned.

4.2 Results

We compare the approaches with respect to average team util-
ity in Figure 1(a) as the number of agents |Ag| is increased.
Specifically, we consider grids with m = 5, tasks C(τ) = 20
and horizon H = 10. Similarly, in Figure 1(b), we com-
pare for different grid-size m for a fixed number of agents
|Ag| = 6, tasks C(τ) = 20 and horizon H = 10. The key
observations are summarized as following:
(1) EFO provides low team utility solutions. In the best case,
EFO performs similar to ReacT but in the worst case, the per-
formance is even lower than ILA.
(2) Since ILA ignores the leaving agents which impacts the
scope of improvement in the rewards, ReacT performs bet-
ter. Moreover, ReacT allocates high valued tasks of leaving
agents to improve its utility.
(3) SAA+LR typically provides better performance than Re-
acT, but in some cases(e.g., 6 agents in Figure 1(a)), ReacT
performs slightly better. O-Rev provides better utility than
ReacT, ILA and SAA+LR but requires a lot of ”online” cy-
cles to solve the MILP at every stage of leaving agents.
(4) Finally, we observe that OPT-ND-TasC provides the best
utility but it requires the knowledge of samples before-hand.
MILP-2S provides comparable or better performance than O-
Rev. O-Rev does not provide the optimal solution, because
it does not reason about future scenarios of agents leaving
while planning at a time step. Overall, amongst all the rele-
vant and reasonable approaches, MILP-2S provides the best
performance with respect to solution quality.

With respect to runtime, there are offline and online run-
times. Since EFO, ILA, SAA+LR and MILP-2S are offline
approaches, online runtime is minimal (milliseconds). ReacT
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Figure 3: Optimality w.r.t. (a) Samples (b) Observation Time

is an online approach and takes less than 30 seconds to gener-
ate a new allocation. O-Rev is an online approach but takes a
long time (10-30 minutes) to generate results and hence is not
applicable. For all offline approaches, we provide a maximum
of three hours for training.

Figure 2 shows the convergence graph for the training sam-
ples of SAA+LR where the primal and dual evolve with in-
creasing iterations and the number of training samples. A
key observation is that SAA+LR provides near optimal so-
lution very early and converges quickly even with increas-
ing samples. The solution quality of the primal(calculated as
Primal ∗ 100/Dual) is atleast 90% of the optimal.

Figure 3 shows the comparison of optimality (calculated
as U(approach)∗100/U(OPT-ND-TasC) where U(approach)
represents the utility obtained using specified approach) on
the test set. Figure 3(a) shows the comparison of MILP-
2S, SAA+LR and O-Rev with increasing training samples
for MILP-2S and SAA+LR. Notice that O-Rev requires
no training being online and it’s performance remains un-
changed. We observe that the percentage of optimality im-
proves with increasing training samples for both MILP-2S
and SAA+LR to a certain extent after which it may not im-
prove significantly and remains approximately constant. This
is because for higher sample sizes(ordered in decreasing fre-
quency weights), few samples with lower weights would be
given preference in training which may not even occur in the
test set at all, thereby reducing the performance. Similarly, in
Figure 3(b), we vary the observation time for MILP-2S from
t′ = 3 to t′ = 8 for a horizon H = 10 in training to ob-
tain a two stage offline policy for every observation time t′.
We simulate each of the policies on same test set and ob-
serve that MILP-2S performs approximately as good as O-
Rev(benchmark heuristic not dependent on observation time)
with different observation times, but performs extremely well
towards the centre.

5 Conclusion
In this work, we focussed on the problem of task allocation
for a non-dedicated agent team. We provided both proac-
tive (SAA+LR, MILP-2S) and reactive (ReacT) approaches
for handling agents leaving the team in an effective manner.
Our extensive experiments on benchmark problems demon-
strate that the offline approach, MILP-2S provides the best
solutions that are on par with benchmarks that compute
upper bound on performance. Furthermore, our two stage
approach(MILP-2S) can be easily extended to multiple stages
to handle both leaving and returning agents simultaneously
given the distribution of leaving/returning of agents.
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