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Orienteering Problems (OPs) are used to model many routing and trip planning problems. OPs are a vari-
ant of the well-known traveling salesman problem where the goal is to compute the highest reward path
that includes a subset of vertices and has an overall travel time less than a specified deadline. However,
the applicability of OPs is limited due to the assumption of deterministic and static travel times. To that
end, Campbell et al. extended OPs to Stochastic OPs (SOPs) to represent uncertain travel times [Campbell
et al. 2011]. In this paper, we make the following key contributions: (1) We extend SOPs to Dynamic SOPs
(DSOPs), which allow for time-dependent travel times; (2) we introduce a new objective criterion for SOPs
and DSOPs to represent a percentile measure of risk; (3) we provide non-linear optimization formulations
along with their linear equivalents for solving the risk-sensitive SOPs and DSOPs; (4) we provide a local
search mechanism for solving the risk-sensitive SOPs and DSOPs; and (5) we provide results on existing
benchmark problems and a real-world theme park trip planning problem.
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1. BACKGROUND
In this section, we briefly describe the Sample Average Approximation (SAA) method
often employed to solve stochastic optimization problems.

1.1. Sample Average Approximation (SAA)
The Sample Average Approximation (SAA) technique is often used to solve stochastic
optimization problems [Pagnoncelli et al. 2009]. SOPs are an instance of such stochas-
tic optimization problems, where the risk-sensitive behavior is often encoded in the
form of chance constraints. An example of such an optimization problem is given be-
low:

min
x∈X

EP

[
G(x,W )

]
such that (1)

Pr
(
F (x,W ) ≤ 0

)
≥ 1− α (2)
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where X is the feasible parameter space, W is a random vector with probability distri-
bution P and α ∈ (0, 1). The above stochastic optimization problem is called a chance
constrained problem [Pagnoncelli et al. 2009]. Notice that the objective function is an
expectation due to the unobserved random variable W . Similarly, the constraint func-
tion F ( ) is also a random variable due to its dependence on W . The parameter α can
be interpreted as the parameter to tune the risk-seeking or risk-averse behavior.

It may seem that such an optimization problem is too unwieldy to solve. Fortunately,
a number of techniques do exist that can transform such stochastic optimization prob-
lem into a deterministic problem in a principled manner. One such technique is the
SAA method. Interestingly, the SAA technique can also provide stochastic bounds on
the solution quality and, thus, provides a principled approximation.

We now briefly describe SAA and refer readers to [Pagnoncelli et al. 2009] for further
details. The main idea behind SAA is to generate N samples for the random vector W ,
where W i denotes the i-th sample. Based on these samples, we define the approximate
probability of constraint violation for a particular point x as follows:

P̂rN (x) =
1

N

N∑
i=1

I
(
F (x,W i)

)
(3)

where

I(t) =

{
1 if t > 0

0 if t ≤ 0
(4)

is an indicator-like function that returns 1 if the argument is positive and 0 otherwise.
Therefore,

Pr
(
F (x,W ) ≤ 0

)
= 1− Pr

(
F (x,W ) > 0

)
(5)

≈ 1− P̂rN (x) (6)

and the stochastic optimization can be reformulated (approximately) as the following
deterministic optimization problem:

min
x∈X

1

N

N∑
i=1

G(x,W i) such that (7)

P̂rN (x) ≤ α′ (8)

The parameter α′ plays the role of α in the above optimization problem. Usually, we
set α′ < α to get a feasible solution. Often, the above optimization problem can be
formulated as a mixed-integer program and, thus, can be solved using any available
MIP solver . Based on the number of samples and the parameter α′, several bounds for
the solution quality and feasibility can be derived [Pagnoncelli et al. 2009].

2. SOLVING RISK-SENSITIVE SOPS AND DSOPS USING LOCAL SEARCH
In this section, we describe a local search algorithm that solves SOPs and DSOPs.

2.1. Solving Risk-Sensitive SOPs
2.1.1. Approximating the Completion Probability of a Path. In a SOP, distribution for the

completion probability of a path is equivalent to the sum of the probability distribu-
tions for travel times on the edges in the path. For the probability distributions (asso-
ciated with travel times on individual edges) of interest in this paper, namely normal
and gamma distribution, the sum of distributions over the edges in a path remains
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normal and gamma distributions, respectively. Hence, computing the completion prob-
ability for a path is a trivial operation. For a normal distribution:∑

i

N (µi, σ
2
i ) = N

(∑
i

µi,
∑
i

σ2
i

)
Similarly, for a gamma distribution:∑

i

Γ(ki, θ) = Γ

(∑
i

ki, θ

)
For other complex distributions, including the case for gamma distribution, where

θ for individual edges is different, we can employ a sampling-based approach. That is
to say, we generate a large number of samples from the distributions and check for
the completion probability within the deadline by aggregating the result over a large
number of samples.

2.2. Solving Risk-Sensitive DSOPs
The local search algorithm described for risk-sensitive SOPs can also be used to solve
risk-sensitive DSOPs. The only change necessary is the computation of the completion
probability of a path, which we now elaborate.

We describe two ways of approximating the completion probability Pr(an ≤ H).
Given the order π = 〈v1, v2, . . . , vk, vn〉, we can use the following expression to com-
pute Pr(an ≤ H):

Pr(an ≤ H) =∫ H

an=0

∫ an

ak=0

∫ ak

ak−1=0

· · ·
∫ a2

a1=0

T ak
k,n(an − ak)T

ak−1

k−1,k(ak − ak−1) · · ·T a1
1,2(a2 − a1)

d(a1) d(a2) . . . d(ak) d(an) (9)

where an is the arrival time at the sink vertex, and we capture the dependencies on
arrival times at each of the vertices by reducing the range of feasible arrival times (for
the integrals) based on the previous activities in the order of vertices. Unfortunately,
the computation of the expression is expensive since the integrals have to be computed
sequentially. To provide an intuition for the time complexity, computing triple integrals
takes around 30 minutes with the exponential distribution (the most scalable of all
distributions with integration) on our machine using the Matlab software. To address
this issue of scalability, we employ two approximation approaches – a sampling-based
approach and a matrix-based approach.

2.2.1. Sampling-based Approximation of the Completion Probability. One can approximate
the completion probability Pr(an ≤ H) of a path by randomly sampling the travel
time distributions for each edge along the path, and checking if the arrival time an at
the last vertex exceeds H. For example, assume that we want to compute Pr(an ≤ H)
for the path π = 〈v1, v2, . . . , vk, vn〉. Using the starting time a1, we generate a travel
time sample from the distribution T a1

1,2 to represent the travel time from vertex v1 to
vertex v2, which is also the arrival time a2 at vertex v2. We then generate a travel time
sample from the distribution T a2

2,3 to represent the travel time from vertex v2 to vertex
v3. The arrival time a3 at vertex v3 is thus the sum of both travel times. We continue
this process until we generate a travel time sample to represent the travel time from
vertex vk to vertex vn, and the arrival time an is thus the sum of all travel times. We
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count this entire process as a single sample. We can then approximate

Pr(an ≤ H) ≈ P̂r(an ≤ H) =
N+

N
(10)

where N+ is the number of samples whose arrival time an ≤ H is no larger than
the deadline H and N is the total number of samples. Unfortunately, this approach
does not provide any theoretical guarantees on completion probability. However, as we
increase the number of samples, the approximation for the actual distribution becomes
tighter.

2.2.2. Matrix-based Approximation of the Completion Probability. Alternatively, one can ex-
ploit the fact that the dependencies are primarily due to arrival time at a vertex and
not on the entire order of vertices before the current vertex. At a higher level, it implies
that the underlying problem is Markovian and, hence, we can decompose the expres-
sion of Equation 9. We also make conservative estimates of the probability such that
we can provide theoretical guarantees.

The key ideas here are (1) to divide the possible arrival times ai at vertex vi into a
finite number of ranges ri,1, ri,2, . . . , ri,k, where ri,j is the j-th range of arrival time at
vertex vi and (2) to pre-compute for all pairs of vertices vi and vj a conservative esti-
mate P̂r(aj ∈ rj,q | ai ∈ ri,p) of the probability Pr(aj ∈ rj,q | ai ∈ ri,p) of transitioning
between ranges of arrival times ri,p and rj,q. Thus, we can now decompose the expres-
sion of Equation 9 to an expression that exploits the Markovian property along with
ranges of arrival times:

Pr(an ≤ H) =∑
i

Pr(a1 ∈ r1,i) ·
∑
j

Pr(a2 ∈ r2,j | a1 ∈ r1,i)

· · ·
∑
y

Pr(ak ∈ rk,y | ak−1 ∈ rk−1,x)

·
∑
z

Pr(an ∈ rn,z | ak ∈ rk,y)

and conservatively approximate it by

P̂r(an ≤ H) =∑
i

P̂r(a1 ∈ r1,i) ·
∑
j

P̂r(a2 ∈ r2,j | a1 ∈ r1,i)

· · ·
∑
y

P̂r(ak ∈ rk,y | ak−1 ∈ rk−1,x)

·
∑
z

P̂r(an ∈ rn,z | ak ∈ rk,y)

It is clear that P̂r(an ≤ H) ≤ Pr(an ≤ H) is a conservative estimate if P̂r(aj ∈ rj,q |
ai ∈ ri,p) ≤ Pr(aj ∈ rj,q | ai ∈ ri,p) are all conservative estimates. P̂r(a1 ∈ r1,i) depends
on the starting time at vertex v1, which is provided as an input. We now describe how
to compute the other probabilities P̂r(aj ∈ rj,q | ai ∈ ri,p). If the range ri,p contains
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only a single point ai, then

Pr(aj ∈ rj,q | ai ∈ ri,p) = Pr(aj ∈ rj,q | ai)

=

∫
aj∈rj,q

T ai
i,j(aj − ai) d(aj) (11)

However, the realization of the random variable ai only occurs at runtime, and com-
puting the integral in Equation 11 at runtime is expensive. Thus, we would like to
compute a conservative estimate P̂r(aj ∈ rj,q | ai ∈ ri,p) of probability Pr(aj ∈ rj,q |
ai ∈ ri,p) for all possible realizations of ai ∈ ri,p. We thus compute them as follows:

P̂r(aj ∈ rj,q | ai ∈ ri,p) = min
ai∈ri,p

∫
aj∈rj,q

T ai
i,j(aj − ai) d(aj) (12)

The value in the integral is the probability of the arrival time aj to be in the range
rj,q for a given value of ai. Thus, by taking the minimum of these probabilities over
all possible values of ai in the range ri,p, the conditional probability P̂r(aj ∈ rj,q | ai ∈
ri,p) ≤ Pr(aj ∈ rj,q | ai ∈ ri,p) is a conservative estimate of the true probability.

Once all the probabilities are pre-computed, they form transition matrices

Pi,j =(
P̂r(aj ∈ rj,1) | ai ∈ ri,1) P̂r(aj ∈ rj,2) | ai ∈ ri,1) · · ·
P̂r(aj ∈ rj,1) | ai ∈ ri,2) P̂r(aj ∈ rj,2) | ai ∈ ri,2) · · ·

· · · · · · · · ·

)
(13)

which represent the transition probabilities from vertices vi to vj . Finally, to compute
P̂r(an ≤ H), we compute the multiplication of matrices P1 · P1,2 · P2,3 · · ·Pk−1,k · Pk,n

and in the resultant matrix, sum up all the probabilities for ranges of arrival times an
that are less than or equal to the deadline H.

2.2.3. Optimizing the Local Search by Reusing Matrix Computations. One can optimize the
local search algorithm described in Algorithm 1 (of the main paper), when it is used to
solve risk-sensitive DSOPs by reusing matrix computations from previous iterations.
Specifically, we re-compute the probability P̂r(an ≤ H) of reaching the sink vertex
whenever we make a local move during the search, that is, when (a) two vertices are
swapped, (b) a vertex is removed, or (c) a vertex is inserted. To compute these probabil-
ities efficiently, we store the results of the products of transition matrices for subsets
of vertices. For example, in a path π = 〈v1, v2, . . . , vi, . . . , vj , . . .〉, if we swap vertices vi
and vj , then the product of transition matrices for the vertices before vi, the product
of matrices for the vertices between vi+1 and vj−1, and the product of matrices for the
vertices after vj+1 remain unchanged. By storing all of these intermediate results, it is
possible to make the computation of probabilities very efficient. However, it requires
a significant amount memory for larger problems. In this paper, we store only the
products of matrices for the vertices between the source vertex and every subsequent
vertex in the path except for the sink vertex. For example, for a path π = 〈v1, v2, v3, vn〉,
we store the product of matrices for vertices v1 and v2, which is P̂r(a2 ≤ H), and the
product of matrices for vertices v1, v2 and v3, which is P̂r(a3 ≤ H). While this is not
the most efficient approach, it provides a good tradeoff between memory requirements
and efficiency.

3. EXPERIMENTAL RESULTS
We now show empirical comparisons between linear optimization formulations solved
using CPLEX and our local search algorithm for both risk-sensitive SOPs and DSOPs
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on a synthetic benchmark as well as a real-world theme park data set. We ran our
experiments on a 1.8GHz Intel i5 CPU with 8GB memory.

We used the following parameters for the local search algorithm:
maxIterNoImprove = 50, maxIterations = 1500, T = 0.1, and ∆T = 0.99. We di-
vided each travel time distribution to 100 ranges for the matrix-based computations
and used 1000 samples for the sampling-based computations. We tried a large number
of combinations of parameters and these settings provided the best tradeoff between
runtime and solution quality.

We used the following parameters for our optimization-based MILP-SAA algorithm:
The number of samples |Q| = 〈25, 30, 35, 40〉, and the number of sample sets generated
for each problem is 15. This corresponds to the number of initial random seeds used to
sample the travel time from the gamma distribution.

3.1. SOP Results
We measure the performance of our approach with respect to the solution quality and
the probability of violating the deadline by varying various problem parameters.

3.1.1. Synthetic Benchmark Set. We use the graph structures introduced by [Campbell
et al. 2011] and create our synthetic benchmark by varying the following parameters:
• We vary the number of vertices |V | = 〈20, 32, 63〉 and set the reward Ri obtained

from visiting a vertex vi to a random integer between 1 and 10.
• We vary the probability of constraint violation α = 〈0.3, 0.25, 0.2, 0.15, 0.11〉 . Corre-

sponding to each setting of α, we use the parameter α′ = 〈0.2, 0.15, 0.1, 0.05, 0.01〉.
• We employ a gamma distribution f(x; k, θ) for modeling the travel time of an edge

or the random variable Ti,j , where

f(x; k, θ) =
1

θk
1

Γ(k)
xk−1e

x
θ , x > 0, k, θ > 0 (14)

We randomly set k for each edge and varied θ = 〈1, 2, 3〉.
• Finally, we vary the deadlines H by setting it to a fraction of the total time required

to visit all the vertices. We use the following fractions: 〈20%, 25%, 30%, 35%〉.
While we obtained results for all combinations of parameters, we only show a repre-

sentative set of results where we varied only one parameter and set the other param-
eters to their default values:

θ = 1; α = 0.3; α′ = 0.2; H = 25% · total time; |Q| = 40 (15)

The local search algorithm always provides a solution with the specified limit α.
For the MILP-SAA algorithm, we empirically determine the actual probability of con-
straint violation for a particular solution π, say β, by generating 1000 complete samples
for edge duration and computing the fraction of samples for which the solution violated
the deadline H. Ideally, the probability β should be less than α for the solution to be
valid, which is indeed the case in most problem instances.

Comparison against MILP-Percentile:. In this section, we show the performance
comparison between Local Search, MILP-SAA and MILP-Percentile as deadline per-
centage is varied, while keeping |Q| (number of samples) = 40, α′ = 0.2, and α = 0.3.
With respect to runtimes, we made the following observations:

— On 20 vertex problems, irrespective of the deadline percentage, local search takes less
than 100 milliseconds and MILP-Percentile finished in less than 150 milliseconds.
On the other hand, MILP-SAA took anywhere from 315 to 37000 milliseconds as the
deadline percentage is decreased from 35% to 20%.
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(a) |V | = 20

Deadline Local Search MILP-SAA MILP-Percentile
αPercentage Quality Std. Dev. Quality Std. Dev. β Quality Std. Dev. β

0.20 58.90 17.37 89.90 0.83 0.32 66.50 2.62 0.042 0.30
0.25 76.30 10.14 74.90 1.30 0.27 61.10 2.26 0.019 0.30
0.30 68.40 2.20 85.60 2.15 0.17 79.90 2.77 0.016 0.30
0.35 101.00 0.00 97.80 3.49 0.15 92.30 3.55 0.008 0.30

(b) |V | = 32

Deadline Local Search MILP-SAA MILP-Percentile
αPercentage Quality Std. Dev. Quality Std. Dev. β Quality Std. Dev. β

0.20 80.10 2.26 142.30 0.78 0.49 111.40 2.73 0.013 0.30
0.25 155.00 0.00 145.20 2.32 0.35 123.60 3.35 0.006 0.30
0.30 118.10 0.30 147.20 2.82 0.27 139.40 2.80 0.005 0.30
0.35 136.20 8.09 173.30 1.56 0.14 166.70 2.97 0.002 0.30

(c) |V | = 63

Deadline Local Search MILP-SAA MILP-Percentile
αPercentage Quality Std. Dev. Quality Std. Dev. β Quality Std. Dev. β

0.20 171.40 18.94 308.60 2.50 0.56 248.90 8.12 0.003 0.30
0.25 207.20 11.57 311.50 5.52 0.35 282.20 11.17 0.001 0.30
0.30 257.90 23.08 355.50 14.82 0.23 343.70 9.58 0.001 0.30
0.35 252.60 7.14 306.60 1.96 0.20 301.90 8.30 0.000 0.30

Table I: Comparison between Local Search, MILP-SAA and MILP-Percentile, where (1 − α′)
percentile durations are considered for MILP-Percentile.

— On 32 vertex problems, irrespective of the deadline percentage, local search takes less
than 150 milliseconds and MILP-Percentile finished in less than 450 milliseconds.
On the other hand, MILP-SAA took anywhere from 800 to 39000 milliseconds as the
deadline percentage is decreased from 35% to 20%.

— On 63 vertex problems, irrespective of the deadline percentage, local search takes less
than 200 milliseconds and MILP-Percentile finished in less than 1200 milliseconds.
On the other hand, MILP-SAA took anywhere from 2800 to 82000 milliseconds as
the deadline percentage is decreased from 35% to 20%.

Comparison results with respect to solution quality among all three approaches are
provided in Table I. Each subtable shows the average and standard deviation of the
solution quality for each of the three approaches, the β value the MILP-based ap-
proaches, and the α value. Overall, the key observations from the three tables are as
follows:

— In most of the cases, MILP-Percentile provides solution qualities that are higher than
local search and lower than MILP-SAA.

— MILP-Percentile has much smaller standard deviation than local search and has
standard deviation values that are on par with that of MILP-SAA.

— As expected, the probability of failure obtained β by using MILP-Percentile is much
lower than α value in all cases.

Overall, MILP-Percentile provides a good tradeoff approach with respect to the com-
bination of runtime and solution quality. In terms of runtime, it is better than MILP-
SAA and in terms of solution quality, it is (much) better than local search.
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Local Search Horizon = 2 Horizon = 4 Horizon = 6 Horizon = 8 Hoirizon = 10
50, 1500 474 485 507 549 558

500, 3500 490 515 521 568 575

Table II: Solution Quality as Local Search Parameters are Changed on Real-World Theme Park
(Peak Days).

Local Search Horizon = 2 Horizon = 4 Horizon = 6 Horizon = 8 Horizon = 10
50, 1500 620 620 620 621 624

500, 3500 641 645 647 647 651

Table III: Solution Quality as Local Search Parameters are Changed on Real-World Theme
Park (Non Peak Days).

Local Search Horizon = 2 Horizon = 4 Horizon = 6 Horizon = 8 Hoirizon = 10
2-Exchange 474 485 507 549 558
3-Exchange 474 515 524 562 571

Table IV: Solution Quality as Local Search Parameters are Changed on Real-World Theme
Park (Peak Days).

3.2. DSOP Results
Improving Local Search: Unlike in SOPs, local search gets trapped in bad local
optima in DSOPs particularly for the real-world problems. In order to address this
issue, we have tried the following two options:
• Increased the values of numIterNoImprove and maxIterations: For small values of

increase, there was little or no improvement. However, when we increased these
values to 500 and 3500, there was a small yet noticeable difference. We did not
increase it further as the time taken now was on-par with that taken by linear
formulations. We show the results in Table II and Table III.
As can be noted here, the maximum improvement even with such significant
changes in parameter values is less than 30 in all cases of peak and non-peak days.
• Considered 3-Exchange operations instead of 2-Exchange operations: We also con-

sidered a 3-way exchange of vertices to consider an increased size neighbor-
hood. This, however, resulted in a very similar performance as the increase in
numIterNoImprove. We show the results in Table IV and Table V.
The reason for this result is that 3-Exchange can be represented as two 2-
Exchange operators. Given sufficient number of chances to find the right sequence
of 2-Exchange operations, 3-Exchange based local search is simulated using
2-Exchange based local search.

Reward Functions based on Field Test: Apart from the data provided by the theme
park operator, we also did a field test to understand people’s movement trajectories at
the same theme park. We surveyed and studied trajectories of 50 groups of people in-
cluding (a) individuals/families without children; and (b) families with children. Each
of these two main categories of people have different set of preferences for attractions.
For instance, families with children prefer kid and wet rides more than thrill (large
roller coasters) rides. Through the use of trajectories and surveys of the groups, we
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Local Search Horizon = 2 Horizon = 4 Horizon = 6 Horizon = 8 Horizon = 10
2-Exchange 620 620 620 621 624
3-Exchange 621 645 645 645 651

Table V: Solution Quality as Local Search Parameters are Changed on Real-World Theme Park
(Non Peak Days).
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(a) Reward 1 (Families without Children)
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(b) Reward 2 (Families with Children)

Fig. 1: Solution Quality: Comparisons of Local Search and MILP-Percentile on Two Real Reward
Configurations. X-axis represents the time horizon and Y-axis represents the solution quality or
reward. Weα = 0.3 and α′ = 0.2.

created our reward values that reflect the preferences for attractions.1 These rewards
values are normalized to be between 0 - 100.

We show the results of the performance on the two reward configurations in
Figure 1. We considered the default α = 0.3 and α′ = 0.2 setting. MILP-Percentile was
cutoff after 1000 seconds and local search was able to finish within 200 seconds on
both configurations. As earlier, MILP-Percentile completely outperforms Local Search
in both cases in terms of the overall solution reward. This further strengthens our
argument that our results are not biased based on reward configurations and hence
any preference elicitation approach to eliciting rewards is complimentary.

Approximating DSOP by Merging Consecutive Intervals: Here we evaluate the
performance if multiple intervals are merged together on both real and synthetic data
sets. In terms of the method, we essentially take the (1−α′) percentile on the expected
durations of all the intervals that get merged.2 Table VI provides the solution quality,
as the number of intervals used for the same problem are reduced on synthetic data
set. In all cases, the probability of failure was well below the given α when intervals
were merged. Here are some of the important observations:

— Since we consider a limit of 1000 seconds to compute the solution, it should be noted
that reduction in number of intervals does not imply lower solution quality. In fact,
with fewer intervals, CPLEX can potentially explore more of the search space and get

1More specifically, reward values are considered as a weighted linear combination of preferences for kid,
thrill, dark and wet factors of rides, which are obtained from the initial survey. We then tuned the importance
for the four factors (kid, thrill, dark and wet) for the two main categories of people based on the observed
trajectories for them on the ground.
2It should be noted that when we have one interval for every vertex, DSOP is equivalent to SOP
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Number of Horizon = 20 Horizon = 40 Horizon = 60 Horizon = 80 Horizon = 100
Intervals

10 32 65 85 140 164
7 36 79 115 139 156
4 35 96 121 176 155
1 - - - - -

Local Search 29 83 132 193 240

Table VI: Solution Quality as Number of Intervals is Reduced on Synthetic Problem.

better solutions within the time limit. This is observed with both real and synthetic
data sets.

— Even after reducing the number of intervals from 11 to 3, the solution quality ob-
tained by using MILP-Percentile is well above the local search method for the real
data sets for all horizon values.

— On the synthetic data, MILP-Percentile was able to outperform local search with
number of intervals = 4, a time limit of 1000 seconds and horizon ≤ 60. In other
cases, local search was able to outperform MILP-Percentile. Local search could be
performing better in most cases because the reduction is more significant in the syn-
thetic case (from 100 to 10, 7, 4 and 1).

— On the synthetic data, MILP-Percentile could not find a feasible solution when we
merged all intervals into one interval.

Overall, MILP-Percentile seems to provide better solution than local search if the
reduction in intervals is not significant (as observed in the real-world example). On
the other hand, when the reduction is significant (as in synthetic case), local search
seems to perform better especially for higher horizons.

4. RELATED WORK
There are four threads of research that are of relevance to the research presented in
this paper.

4.1. Deterministic, Stochastic, and Dynamic Orienteering Problems
OPs have a long history and have been known by a variety of other names including the
selective TSP [Laporte and Martello 1990], the maximum collection problem [Kataoka
and Morito 1988] and the bank robber problem [Arkin et al. 1998]. [Vansteenwegen
et al. 2011] recently presented a broad overview of the problem, its variants and as-
sociated solution methods. Unfortunately, in many problems the assumptions of deter-
ministic and time independent travel times are not reasonable (as motivated in the
introduction) and hence the focus of this paper on those issues.

Stochasticity and time dependent travel times have received less attention in OPs.
Aside from the work on SOPs [Campbell et al. 2011], two closely related problems with
stochastic travel times are the time-constrained TSP with stochastic travel and service
times [Teng et al. 2004] and the stochastic selective TSP [Tang and Miller-Hooks 2005].
There has also been work on dynamic or time dependent travel times in the context
of team orienteering problems by [Li 2012]. Our work extends on this line of existing
work in OPs to account for stochastic and time dependent (dynamic) travel times.

Lastly, aside from travel time, researchers have also investigated stochasticity in
the reward values of vertices [Ilhan et al. 2008]. The difference between our work
and theirs is that they seek to maximize the expected reward without considering
risk sensitivity and also they assume that the traveling time between vertices is time
independent.
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4.2. Stochastic and Dynamic Traveling Salesman and Purchaser Problems
Recently, there has been work on considering stochasticity in traveling salesman prob-
lems [Cheong and White 2012; A. Toriello and Poremba 2014]. While this line of work
is similar, the following key characteristics are different from the research presented
in this paper:

— Dynamism (time dependence) in travel times is not considered.
— There is no budget on travel time in standard traveling salesman problems.
— Constraints on risk arising due to the stochasticity (and dynamism) are not consid-

ered.

An experimental result highlighted in this line of existing work that also resonates
with our experimental results is that with stochasticity (not even including dy-
namism), the size of problems that can be solved are much smaller (10-45 vertices)
than their deterministic counterparts.

Given a list of marketplaces, the cost of traveling between different marketplaces,
and a list of available goods together with the price of each such good at each mar-
ketplace, the Traveling Purchaser Problem (TPP) is to find for a given list of articles,
the route with the minimum combined cost of purchasing and traveling. The traveling
salesman problem is a special case of TPP. Researchers have not considered stochas-
tic [Seungmo and Ouyang 2011] and dynamic [Angelelli et al. 2011a; Angelelli et al.
2011b] variants of TPP together. These differences coupled with the lack of a budget
in TPP provide distinguishing factors for our contributions.

4.3. Risk-Sensitive Decision Making
With respect to modeling and accounting for different risk preferences, there are gener-
ally the following three approaches: (1) Stochastic dominance, whose theory was devel-
oped in statistics and economics [Lehmann 1955; Hanoch and Levy 1969]. Stochastic
dominance defines partial orders on the space of random variables and allow for pair-
wise comparison of different random variables. (2) Mean-risk analysis, whose mod-
els originate from finance. They include the well known mean-variance optimization
model in portfolio optimization, where the variance of the return is used as the risk
functional [Markowitz 1952]. (3) Chance constraints or percentile optimization, whose
models were initiated and developed in operations research [Miller and Wagner 1965;
Prekopa 1973]. Recently, researchers have provided a thorough overview of the state-
of-the-art of the optimization theory with chance constraints [Prekopa 2003]. Our ap-
proach of defining a risk-sensitive measure that allows the user to specify a level of
risk (failure tolerance) is along the lines of using chance constraints to model and ac-
count for different risk preferences. While it has been applied to solve planning and
scheduling problems [Beck and Wilson 2007; Chen et al. 2008; Fu et al. 2012], to the
best of our knowledge, it has yet to be applied to solve OPs.

4.4. Graphical Models and Markov Decision Processes
SOPs also bear some similarity with Markov random fields (MRFs) [Wainwright and
Jordan 2008] and Bayesian networks [Russell and Norvig 1995]. They are both graph-
ical models, where vertices in a graph correspond to random variables and edges in
a graph correspond to potential functions between pairs of random variables. While
MRF graphs can be cyclic, Bayesian network graphs are strictly acyclic. The goal in
these two models is to compute the maximum a posteriori (MAP) assignment, which
is the most probable assignment to all the random variables of the underlying graph
in MRFs [Wainwright and Jordan 2008; Kumar and Zilberstein 2010; Sontag et al.
2011] and Bayesian networks [Park and Darwiche 2003; Huang et al. 2006; Yuan
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and Hansen 2009]. Thus, the main difference between MAP assignment problems and
SOPs is that MAP assignment problems are inference problems while SOPs are plan-
ning problems.

Markov decision processes (MDPs) [Puterman 1994] are commonly used to model
planning problems under transition uncertainty. In fact, MDPs can potentially be used
to represent SOPs and DSOPs. However, this mapping is non-trivial. We now provide
four key attributes that make it difficult to use MDP solvers to solve risk-sensitive
SOPs and DSOPs:
1. Semi Continuous-Time Distributions: The presence of semi continuous time

distributions for travel times between vertices in SOPs and DSOPs requires the
state space in MDPs to be continuous as well.

2. Budget on Time: Because of the time budget, we have to consider the constrained
MDPs framework and not the basic MDP framework.

3. Open-Loop Solutions: Approaches for solving MDPs often compute closed-loop
policies, that is, policies that are dependent on the current state. In a DSOP, this
would imply that a solution needs to provide a different destination vertex based
on the time of arrival at the current vertex.

4. Risk-Sensitive Solutions: The objective in MDPs is usually to maximize the ex-
pected reward of a policy and it does not consider risk sensitivity.

While there exists research in MDPs that individually addresses continuous state
spaces [Marecki and Tambe 2008; Boyan and Littman 2001; Li and Littman 2005],
open-loop policies [Weinstein and Littman 2013; Yeoh et al. 2013], constrained
MDPs [Altman 1999] and risk-sensitive objectives [Yu et al. 1998; Liu and Koenig
2008; Hou et al. 2014], we are not aware of research that considers all four aspects at
the same time.

In addition, for an MDP corresponding to (D)SOP, the state space would have to
contain all the vertices that have been visited previously along with time elapsed. In
order to make a decision about the next vertex to visit, we have to know all the vertices
that have been visited previously. This is because of time dependence (in DSOP) and
time budget (in SOP and DSOP). Because of this exponential complexity of state space
(all combinations of vertices) and time budget, the computational complexity will be
significant and scalability will be severely limited.

Appendices
A. LINEAR OPTIMIZATION FORMULATIONS FOR DSOP
The overall optimization problems for solving risk-sensitive DSOPs assuming that T aj

j,i

is a constant number and a random variable are provided in Tables VII and VIII,
respectively.

B. TIME WINDOWS AND PRECEDENCE CONSTRAINTS
Time windows and precedence constraints are interesting and important aspects in
the domains of interest in this paper. We can account for both of them in our MILP
formulation with minimal changes.

For a precedence constraint – vertex i should be visited before vertex j – to be con-
sidered, all we need to have as constraint is that arrival time at vertex i is lower than
arrival time at vertex j. It is represented as follows in our MILP formulations:

— MILP-Percentile:

ai ≤ aj
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max
π

∑
i,j

πi,jRi such that

Fπ ≤ 0

Cr ≤ 0

ai =
∑
j

[
bj,i + T̂j,i

]
∀vi ∈ V \ {v1}

a1 = 0

an ≤ H
bj,i ≤ aj ∀(vj , vi) ∈ E
bj,i ≤ πj,iM ∀(vj , vi) ∈ E
aj ≤ bj,i +

(
1− πj,i

)
M ∀(vj , vi) ∈ E

T̂j,i =
∑
p

T pj,i ∀(vj , vi) ∈ E

T pj,i ≤ πj,iD
p
j,i ∀p ∈ P, (vj , vi) ∈ E

T pj,i ≤ sl
p
j D

p
j,i ∀p ∈ P, (vj , vi) ∈ E

Dp
j,i − T

p
j,i ≤ (2− slpj − πj,i)D

p
j,i ∀p ∈ P, (vj , vi) ∈ E

1− slpj ≥
šl
p
j − aj
M

∀p ∈ P, vj ∈ V

1− slpj ≥
aj − ŝl

p

j

M
∀p ∈ P, vj ∈ V∑

p

slpj = 1 ∀vj ∈ V

ai ∈ [0,M ] ∀vi ∈ V
bj,i ∈ [0,M ] ∀(vj , vi) ∈ E
slpi ∈ {0, 1} ∀p ∈ P, vi ∈ V

T̂j,i ∈ [0,max
p

Dp
j,i] ∀(vj , vi) ∈ E

T pj,i ∈ [0, Dp
j,i] ∀p ∈ P, (vj , vi) ∈ E

πj,i = [0, 1] ∀vi, vj

Table VII: Risk-Sensitive DSOP Formulated as a Mixed Integer Linear Program, with T ajj,i is a
normal variable.

— MILP-SAA:
aqi ≤ a

q
j + zq ·M

Similarly for a time window [tmin
i , tmax

i ] for an attraction i, we have the following
additional constraints:

— MILP-Percentile:
ai ≤ tmax

i

ai ≥ tmin
i

— MILP-SAA:
aqi ≤ t

max
i + zq ·M
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max
π

∑
i,j

πi,jRi such that

Fπ ≤ 0

Cr ≤ 0

aqi =
∑
j

[
bqj,i + T̂ qj,i

]
∀vi ∈ V \ {v1}, q ∈ Q

aq1 = 0 ∀q ∈ Q

zq ≥ aqn −H
H

∀q ∈ Q∑
q z

q

|Q| ≤ α
′

bqj,i ≤ a
q
j ∀(vj , vi) ∈ E, q ∈ Q

bqj,i ≤ πj,iM ∀(vj , vi) ∈ E, q ∈ Q
aqj ≤ b

q
j,i +

(
1− πj,i

)
M ∀(vj , vi) ∈ E, q ∈ Q

T̂ qj,i =
∑
p

T p,qj,i ∀(vj , vi) ∈ E, q ∈ Q

T p,qj,i ≤ πj,iD
p,q
j,i ∀p ∈ P, (vj , vi) ∈ E, q ∈ Q

T p,qj,i ≤ sl
p,q
j Dp,q

j,i ∀p ∈ P, (vj , vi) ∈ E, q ∈ Q
Dp,q
j,i − T

p,q
j,i ≤ (2− slp,qj − πj,i)D

p,q
j,i ∀p ∈ P, (vj , vi) ∈ E, q ∈ Q

1− slp,qj ≥
šl
p
j − aqj
M

∀p ∈ P, vj ∈ V, q ∈ Q

1− slp,qj ≥
aqj − ŝl

p

j

M
∀p ∈ P, vj ∈ V, q ∈ Q∑

p

slp,qj = 1 ∀vj ∈ V, q ∈ Q

aqi ∈ [0,M ] ∀vi ∈ V, q ∈ Q
bqj,i ∈ [0,M ] ∀(vj , vi) ∈ E, q ∈ Q

T̂ qj,i ∈ [0,max
p

Dp,q
j,i ] ∀(vj , vi) ∈ E, q ∈ Q

T p,qj,i ∈ [0, Dp,q
j,i ] ∀p ∈ P, (vj , vi) ∈ E, q ∈ Q

slp,qi ∈ {0, 1} ∀p ∈ P, vi ∈ V, q ∈ Q
zq ∈ {0, 1} ∀q ∈ Q
πj,i = [0, 1] ∀vi, vj

Table VIII: Risk-Sensitive DSOP where T
aj
j,i is a Random Variable Formulated as a Mixed

Integer Linear Program

aqi ≥ t
min − zq ·M

Note the use of zq in MILP-SAA. If these constraints are not satisfied, they will add
to the overall set of violations.

For time windows, since our travel times are derived from past wait time data, our
current approach already captures such time windows. In times when there is no show,
there would be no edge from any other vertex to the vertex where a show is being held.
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When there is no edge, the travel time there is infinite. Only before the show time,
there would be an edge and hence travel time data available from other vertices.

Since time windows and precedence constraints are not the main focus of the paper,
we do not explore time windows and precedence constraints to great depth in the paper.
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