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A Proof of Propositions

A.1 Proof of Proposition 1

Applying the definition of dot algebra (ẏt+1 ≡ yt+1/yt) to (10) yields (22). Applying the dot

algebra to (13) and using (14) yields:

Ṗ nj
t+1 =

∑o

(
κnj,oj
t+1 xoj

t+1

)−θj (
Aoj

t+1

)γojθj∑
o

(
κnj,oj
t xoj

t

)−θj (
Aoj

t

)γojθj

− 1

θj

=

∑
o

(
κnj,oj
t+1 xoj

t+1

)−θj (
Aoj

t+1

)γojθj∑
o

(
κnj,oj
t xoj

t

)−θj (
Aoj

t

)γojθj

− 1

θj

=

[∑
o

(
κ̇nj,oj
t+1 ẋoj

t+1

)−θj
(
Ȧoj

t+1

)γojθj

πnj,oj
t

]− 1

θj

,
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which is (23). Applying the dot algebra to (14) gives:

π̇nj,oj
t+1 =

(
κ̇nj,oj
t+1 ẋoj

t+1

)−θj
(
Ȧoj

t+1

)γojθj
∑

o

(
κnj,oj
t xoj

t

)−θj (
Aoj

t

)γojθj∑
o

(
κnj,oj
t+1 xoj

t+1

)−θj (
Aoj

t+1

)γojθj

=
(
κ̇nj,oj
t+1 ẋoj

t+1

)−θj
(
Ȧoj

t+1

)γojθj

∑o

(
κnj,oj
t+1 xoj

t+1

)−θj (
Aoj

t+1

)γojθj∑
o

(
κnj,oj
t xoj

t

)−θj (
Aoj

t

)γojθj

−1

,

which leads to (24) by using (23). The change in the price index Ṗ n
t+1 in (28) follows from

its definition.

For (26), we simply use (16) and replace wnjs
t+1L

njs
t+1 with ẇnjs

t+1L̇
njs
t+1w

njs
t Lnjs

t . For (27), we

use (17) and (6), and replace rnt+1K
n
t+1 with ṙnt+1K̇

n
t+1r

n
t K

n
t . Equation (25) simply follows

from the definition of Xnj
t+1.

We use (12), (20), (21) and the definition of γL,njh to obtain:

(
χ̇njh
t+1

)1−ξnjh

=
ζnj3

(
wnj3

t+1

)1−ξnjh

+ ζnjK
(
rnt+1

)1−ξnjh

ζnj3
(
wnj3

t

)1−ξnjh

+ ζnjK (rnt )
1−ξnjh

=
γL,nj3
t

γL,njh
t

(
ẇnj3

t+1

)1−ξnjh

+
γK,nj
t

γL,njh
t

(
ṙnt+1

)1−ξnjh

.

Then by (11), (18), (19) and the definition of γL,njh, we have:

(
χ̇nj
t+1

)1−ξnj

=
γL,nj1
t

γnj

(
ẇnj1

t+1

)1−ξnj

+
γL,nj2
t

γnj

(
ẇnj2

t+1

)1−ξnj

+
γL,njh
t

γnj

(
χ̇njh
t+1

)1−ξnj

.

Finally,
{
γ̇L,njs
t+1

}3

s=1
, γ̇L,njh

t+1 , and γ̇K,nj
t+1 follow directly from (18)–(21) by applying the dot

algebra.

A.2 Proof of Proposition 2

Given the definition of unjs
t ≡ eV

njs
t , applying the dot algebra to (3) yields:

µ̇njs,nki
0 =e

βδ(V nki
1 −V nki

0 )
ν

∑J
k=0

∑3
i≥s e

βδV nki
0 −ρnjs,nki

ν∑J
k=0

∑3
i≥s e

βδV nki
1 −ρnjs,nki

ν
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=
e

βδ(V nki
1 −V nki

0 )
ν

∑J
k=0

∑3
i≥s e

βδV nki
1 −ρnjs,nki

ν e

βδV nki
0 −ρnjs,nki

ν

e

βδV nki
0 −ρnjs,nki

ν∑J
k=0

∑3
i≥s e

βδV nki
0 −ρnjs,nki

ν

=
e

βδ(V nki
1 −V nki

0 )
ν∑J

k=0

∑3
i≥s

e
βδ(V nki

1 −V nki
0 )

ν e
βδV nki

0 −ρnjs,nki

ν∑J
k=0

∑3
i≥s e

βδV nki
0 −ρnjs,nki

ν

=

(
u̇nki
1

)βδ
ν∑J

k=0

∑3
i≥s (u̇

nki
1 )

βδ
ν µnjs,nki

−1

,

which is (29) at t = −1. The proof applies to general t. The derivations above also imply

that: ∑J
k=0

∑3
i≥s e

βδV nki
t+1−ρnjs,nki

ν∑J
k=0

∑3
i≥s e

βδV nki
t+2−ρnjs,nki

ν

=

[
J∑

k=0

3∑
i≥s

(
u̇nki
t+2

)βδ
ν µnjs,nki

t

]−1

.

Using (2) and the above equation, we have:

V njs
1 − V njs

0 = ln ω̇njs
1 + ν ln

∑J
k=0

∑3
i≥s e

βδV nki
2 −ρnjs,nki

ν∑J
k=0

∑3
i≥s e

βδV nki
1 −ρnjs,nki

ν

= ln ω̇njs
1 + ν ln

J∑
k=0

3∑
i≥s

(u̇nki
2 )

βδ
ν µnjs,nki

0 ,

which implies (30) for t = 0. The proof applies to general t.

We can solve for {Kn
t }

∞
t=1, given the temporary allocations

{
ṙnt , Ṗ

n
t

}∞

t=1
, and the initial

values of Kn
0 and φn

0 . By (9) and the definition of unK
t ≡ eV

nK
t , we obtain:

u̇nK
t+1 =ĊnK

t+1

(
u̇nK
t+2

)β
.

Equations (7) and (8) further imply:

CnK
t =

1− β

β
Kn

t+1.

Equation (31) then follows by combining the equations above.

Equations (32)–(34) simply restate the laws of motion for labor in (4) and (5), and for

capital in (8).
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A.3 Proof of Proposition 3

Equations (41) and (43) are obtained by simply applying the definition of ŷt+1 ≡ ẏ′t+1/ẏt+1

to (22) and (24), respectively. To derive (42), note that we can write the counterfactual

version of (23) as:

Ṗ ′nj
t+1 =

[∑
o

(
κ̇′nj,oj
t+1 ẋ′oj

t+1

)−θj
(
Ȧ′oj

t+1

)γojθj

π′nj,oj
t

]− 1

θj

=

[∑
o

(
κ̂nj,oj
t+1 x̂oj

t+1

)−θj
(
Âoj

t+1

)γojθj

π′nj,oj
t

(
κ̇nj,oj
t+1 ẋoj

t+1

)−θj
(
Ȧoj

t+1

)γojθj
]− 1

θj

=

[∑
o

(
κ̂nj,oj
t+1 x̂oj

t+1

)−θj
(
Âoj

t+1

)γojθj

π′nj,oj
t

(
Ṗ nj
t+1

)−θj

π̇nj,oj
t+1

]− 1

θj

,

where (24) is used in the last step. Equation (42) then follows by rearranging the terms.

The counterfactual change in the price index P̂ n
t+1 in (47) follows from its definition.

For (45), we simply write the counterfactual version of (26) and replace ẇ′njs
t+1 L̇

′njs
t+1w

′njs
t L′njs

t

with its equivalent ŵnks
t+1L̂

nks
t+1w

′nks
t L′nks

t ẇnks
t+1L̇

nks
t+1. For (46), we use the counterfactual version of

(27) and replace ṙ′nt+1K̇
′n
t+1r

′n
t K

′n
t with r̂nt+1K̂

n
t+1r

′n
t K

′n
t ṙnt+1K̇

n
t+1. Equation (44) simply follows

from the definition of X ′nj
t+1.

Using the expression of χ̇njh
t+1 in Proposition 1, we have:

(
χ̂njh
t+1

)1−ξnjh

=
γL,njh
t

γL,njh′
t

γL,nj3′
t

(
ẇnj3′

t+1

)1−ξnjh

+ γK,nj′
t

(
ṙn′t+1

)1−ξnjh

γL,nj3
t

(
ẇnj3

t+1

)1−ξnjh

+ γK,nj
t

(
ṙnt+1

)1−ξnjh

=
1

γL,njh′
t

γL,nj3′
t (ẇnj3′

t+1 )
1−ξnjh

γ̇L,njh
t+1 (ẇnj3

t+1)
1−ξnjh γ̇L,njh

t+1

(
ẇnj3

t+1

)1−ξnjh

+
γK,nj′
t (ṙn′

t+1)
1−ξnjh

γ̇L,njh
t+1 (ṙnt+1)

1−ξnjh γ̇
L,njh
t+1

(
ṙnt+1

)1−ξnjh

γL,nj3
t

γL,njh
t

(
ẇnj3

t+1

)1−ξnjh

+
γK,nj
t

γL,njh
t

(
ṙnt+1

)1−ξnjh

=
1

γL,njh′
t

γL,nj3′
t

(
ẇnj3′

t+1

)1−ξnjh

γ̇L,njh
t+1

(
ẇnj3

t+1

)1−ξnjh γ̇L,nj3
t+1 +

1

γL,njh′
t

γK,nj′
t

(
ṙn′t+1

)1−ξnjh

γ̇L,njh
t+1

(
ṙnt+1

)1−ξnjh γ̇
K,nj
t+1

=
1

γL,njh′
t γ̇L,njh

t+1

[
γL,nj3′
t γ̇L,nj3

t+1

(
ŵnj3

t+1

)1−ξnjh

+ γK,nj′
t γ̇K,nj

t+1

(
r̂nt+1

)1−ξnjh
]
.

Similarly, based on the expression of χ̇nj
t+1 in Proposition 1, we have:

(
χ̂nj
t+1

)1−ξnj

=

γ′L,nj1
t

γnj

(
ẇ′nj1

t+1

)1−ξnj

+
γ′L,nj2
t

γnj

(
ẇ′nj2

t+1

)1−ξnj

+
γ′L,njh
t

γnj

(
χ̇′njh
t+1

)1−ξnj

γL,nj1
t

γnj

(
ẇnj1

t+1

)1−ξnj

+
γL,nj2
t

γnj

(
ẇnj2

t+1

)1−ξnj

+
γL,njh
t

γnj

(
χ̇njh
t+1

)1−ξnj
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=

γ′L,nj1
t

γnj

(
ẇnj1

t+1

)1−ξnj (
ŵnj1

t+1

)1−ξnj

+
γ′L,nj2
t

γnj

(
ẇnj2

t+1

)1−ξnj (
ŵnj2

t+1

)1−ξnj

+
γ′L,njh
t

γnj

(
χ̇njh
t+1

)1−ξnj (
χ̂njh
t+1

)1−ξnj

γL,nj1
t

γnj

(
ẇnj1

t+1

)1−ξnj

+
γL,nj2
t

γnj

(
ẇnj2

t+1

)1−ξnj

+
γL,njh
t

γnj

(
χ̇njh
t+1

)1−ξnj

=
γ′L,nj1
t

γnj
γ̇L,nj1
t+1

(
ŵnj1

t+1

)1−ξnj

+
γ′L,nj2
t

γnj
γ̇L,nj2
t+1

(
ŵnj2

t+1

)1−ξnj

+
γ′L,njh
t

γnj
γ̇L,njh
t+1

(
χ̂njh
t+1

)1−ξnj

.

Finally,
{
γ̇′L,njs
t+1

}3

s=1
, γ̇′L,njh

t+1 and γ̇′K,nj
t+1 follow from the expressions of

{
γ̇L,njs
t+1

}3

s=1
, γ̇L,njh

t+1 and

γ̇K,nj
t+1 in Proposition 1 by applying the hat algebra.

To obtain (35), apply the hat algebra to (29) to obtain:

µ̂njs,nki
t+1 =

(
ûnki
t+2

)βδ
ν

∑J
k=0

∑3
i≥s

(
u̇nki
t+2

)βδ
ν µnjs,nki

t∑J
k=0

∑3
i≥s

(
u̇′nki
t+2

)βδ
ν µ′njs,nki

t

=

(
ûnki
t+2

)βδ
ν

∑J
k=0

∑3
i≥s

(u̇′nki
t+2)

βδ
ν µ′njs,nki

t∑J
k=0

∑3
i≥s(u̇nki

t+2)
βδ
ν µnjs,nki

t

=

(
ûnki
t+2

)βδ
ν

∑J
k=0

∑3
i≥s

(u̇nki
t+2)

βδ
ν (u̇′nki

t+2)
βδ
ν µ′njs,nki

t (u̇nki
t+2)

−βδ
ν

∑J
k=0

∑3
i≥s(u̇nki

t+2)
βδ
ν µnjs,nki

t

.

Applying (29) to the denominator above yields:

µ̂njs,nki
t+1 =

(
ûnki
t+2

)βδ
ν∑J

k=0

∑3
i≥s µ̇

njs,nki
t+1 µ′njs,nki

t

(
ûnki
t+2

)βδ
ν

,

which is equivalent to (35). To obtain (36), apply the hat algebra to (30) to obtain:

ûnjs
t+1 =ω̂njs

t+1

∑J
k=0

∑3
i≥s µ

′njs,nki
t

(
u̇′nki
t+2

)βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
t

(
u̇nki
t+2

)βδ
ν

ν

=ω̂njs
t+1

 J∑
k=0

3∑
i≥s

µnjs,nki
t

(
u̇nki
t+2

)βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
t

(
u̇nki
t+2

)βδ
ν

µ′njs,nki
t

µnjs,nki
t

(
u̇′nki
t+2

)βδ
ν(

u̇nki
t+2

)βδ
ν

ν

.

Applying (29) to the above equation yields:

ûnjs
t+1 =ω̂njs

t+1

 J∑
k=0

3∑
i≥s

µnjs,nki
t+1

µ′njs,nki
t

µnjs,nki
t

(
u̇′nki
t+2

)βδ
ν(

u̇nki
t+2

)βδ
ν

ν
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=ω̂njs
t+1

 J∑
k=0

3∑
i≥s

µnjs,nki
t+1

µnjs,nki
t

µ′njs,nki
t

(
u̇′nki
t+2

)βδ
ν(

u̇nki
t+2

)βδ
ν

ν

=ω̂njs
t+1

[
J∑

k=0

3∑
i≥s

µ̇njs,nki
t+1 µ′njs,nki

t

(
ûnki
t+2

)βδ
ν

]ν
,

which corresponds to (36).

The welfare dynamics for capital owners in (37) follows by applying the hat algebra to

(31). Equations (38)–(40) are simply the counterfactual versions of the laws of motion for

labor in (4)–(5), and for capital in (8). Since the counterfactual allocations at t = 0 are the

same as in the baseline economy, we can recover φ̇′n
t+1 from φ̂n

t+1 implied by the solutions of

(41)–(47), given φn
0 , K

n
0 , and φ̇n

t+1.

The above derivations handle the change of endogenous variables between t and t +

1 in general. Special treatment is required for ûnjs
1 and µ′njs,nki

1 , because the shocks to

fundamentals start at t = 1 and the decisions made at t = 0 by agents are taken as given.

First, by (2), we have:

u′njs
1 = ω′njs

1

(
J∑

k=0

3∑
i≥s

(u′nki
2 )

βδ
ν e−

ρnjs,nki

ν

)ν

,

unjs
0 = ωnjs

0

(
J∑

k=0

3∑
i≥s

(unki
1 )

βδ
ν e−

ρnjs,nki

ν

)ν

.

Because the shocks to fundamentals start at t = 1, it follows that u̇′njs
1 ≡ u′njs

1

u′njs
0

=
u′njs
1

unjs
0

and

ω̇′njs
1 ≡ ω′njs

1

ω′njs
0

=
ω′njs
1

ωnjs
0

. Combining these observations and defining ϕnki
1 ≡

(
unki
1

u′nki
1

)βδ
ν
, we have:

u̇′njs
1 = ω̇′njs

1

∑J
k=0

∑3
i≥s (u

′nki
2 )

βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s (u

nki
1 )

βδ
ν e−

ρnjs,nki

ν

ν

= ω̇′njs
1

 J∑
k=0

3∑
i≥s

(u′nki
2 )

βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s ϕ

nki
1 (u′nki

1 )
βδ
ν e−

ρnjs,nki

ν

ν

.

Next, given (3) and the definition of ϕnki
1 , we have:

µnjs,nki
0 =

(
unki
1

)βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s (u

nki
1 )

βδ
ν e−

ρnjs,nki

ν
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=
ϕnki
1

(
u′nki
1

)βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s ϕ

nki
1 (u′nki

1 )
βδ
ν e−

ρnjs,nki

ν

.

Combining µnjs,nki
0 and u̇′njs

1 yields:

u̇′njs
1 = ω̇′njs

1

 J∑
k=0

3∑
i≥s

(u′nki
2 )

βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s ϕ

nki
1 (u′nki

1 )
βδ
ν e−

ρnjs,nki

ν

ν

= ω̇′njs
1

 J∑
k=0

3∑
i≥s

ϕnki
1 (u′nki

1 )
βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s ϕ

nki
1 (u′nki

1 )
βδ
ν e−

ρnjs,nki

ν

(u′nki
2 )

βδ
ν

(u′nki
1 )

βδ
ν

1

ϕnki
1

ν

= ω̇′njs
1

(
J∑

k=0

3∑
i≥s

µnjs,nki
0

ϕnki
1

(u̇′nki
2 )

βδ
ν

)ν

.

Note that (30) at t = 0 gives us:

u̇njs
1 = ω̇njs

1

[
J∑

k=0

3∑
i≥s

µnjs,nki
0 (u̇nki

2 )
βδ
ν

]ν
.

Using the definition of µnjs,nki
0 , we therefore have:

ûnjs
1 = ω̂njs

1

 J∑
k=0

3∑
i≥s

µnjs,nki
0

ϕnki
1

(u̇′nki
2 )

βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
0 (u̇nki

2 )
βδ
ν

ν

= ω̂njs
1

 J∑
k=0

3∑
i≥s

(ûnki
2 )

βδ
ν

ϕnki
1

µnjs,nki
0 (u̇nki

2 )
βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
0 (u̇nki

2 )
βδ
ν

ν

= ω̂njs
1


J∑

k=0

3∑
i≥s

(ûnki
2 )

βδ
ν

ϕnki
1

(unki
1 )

βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s(unki

1 )
βδ
ν e−

ρnjs,nki
ν

(u̇nki
2 )

βδ
ν

∑J
k=0

∑3
i≥s

(unki
1 )

βδ
ν e−

ρnjs,nki
ν∑J

k=0

∑3
i≥s(unki

1 )
βδ
ν e−

ρnjs,nki
ν

(u̇nki
2 )

βδ
ν


ν

= ω̂njs
1

 J∑
k=0

3∑
i≥s

(ûnki
2 )

βδ
ν

ϕnki
1

(unki
2 )

βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s (u

nki
2 )

βδ
ν e−

ρnjs,nki

ν

ν

,

= ω̂njs
1

(
J∑

k=0

3∑
i≥s

(ûnki
2 )

βδ
ν

ϕnki
1

µnjs,nki
1

)ν

,

= ω̂njs
1

(
J∑

k=0

3∑
i≥s

µnjs,nki
1 (ûnki

1 )
βδ
ν (ûnki

2 )
βδ
ν

)ν

,

7



which is the expression used in (B.2). Note that we have used the fact that

1

ϕnki
1

=

(
u′nki
1

unki
1

)βδ
ν

=

(
u′nki
1 /u′nki

0

unki
1 /unki

0

)βδ
ν

= (ûnki
1 )

βδ
ν .

Next, we examine the sector-skill transition probability. Given (3), we have:

µ′njs,nki
1

µnjs,nki
1

=

(u′nki
2 )

βδ
ν e−

ρnjs,nki

ν∑J
k=0

∑3
i≥s(u′nki

2 )
βδ
ν e−

ρnjs,nki
ν

(unki
2 )

βδ
ν e−

ρnjs,nki
ν∑J

k=0

∑3
i≥s(unki

2 )
βδ
ν e−

ρnjs,nki
ν

=

(u′nki
2 )

βδ
ν

(unki
2 )

βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
1

(u′nki
2 )

βδ
ν

(unki
2 )

βδ
ν

=

(
ûnki
2

)βδ
ν (u′nki

1 )
βδ
ν

(unki
1 )

βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
1 (ûnki

2 )
βδ
ν
(u′nki

1 )
βδ
ν

(unki
1 )

βδ
ν

⇒ µ′njs,nki
1 =

µnjs,nki
1

(
ûnki
1

)βδ
ν
(
ûnki
2

)βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
1 (ûnki

1 )
βδ
ν (ûnki

2 )
βδ
ν

,

where we have again used the fact that
(

u′nki
1

unki
1

)βδ
ν

=
(

u′nki
1 /u′nki

0

unki
1 /unki

0

)βδ
ν

= (ûnki
1 )

βδ
ν . The above

result corresponds to the expression used in (B.1).

B Implementation Algorithm of the Simulations

We first construct a baseline economy during 1995 – 2050 based on observed data. For

counterfactual simulation, we use the allocations in the baseline economy ẏt and Proposition

3 to recover the counterfactual allocations ẏ′t as ẏ
′
t = ŷtẏt. Throughout this section we refer

to 1995 as the initial year and denote by t = 0, and to 1996 as the “shock year” wherein the

unexpected shock kicks in.

8



B.1 Constructing Baseline Economy

The construction of baseline economy come in three parts. We first use the data of value-

added, tradeflow, labor allocation and capital in the initial year to compute the model-

consistent counterparts of value-added and tradeflow using a similar approach to Proposition

1. We refer to this constructed allocation as the base year allocation. Then we combine

the base year allocations with observed capital stock in 1995, the level of real rental rate in

1995 implied by the observed change in capital stock from 1995 to 1996, and the observed

labor allocations and bilateral tariffs during 1995 – 2007 to construct changes in temporary

allocations following Proposition 1 and capital dynamic (34). The allocations after 2008

are then computed using the allocations in 2007 following Propositions 1 and 2. The whole

computed series for 1995 – 2050 are referred to as the baseline economy.

B.1.1 Computing Base Year Allocation

Our data in 1995 include country level capitalKn
0,data, labor allocations L

njs
0,data, country-sector

labor value-added V ALnj
0,data ≡ wnj

0,dataL
nj
0,data, country-level capital value-added V AKn

0,data ≡
rn0,dataK

n
0,data, cost shares of input factors γL,njs

0,data, γ
K,nj
0,data, country-sector value-added share

γnj, and bilateral tradeflow πnj,oj
0,data. The cost share of input factors are obtained as follows.

First we compute capital share in value-added for 1995 at country-sector level using the

value-added and gross output retrieved from TiVA ICIO, which implies the labor share to

value-added at country-sector level. By multiplying the labor shares to wage-bill share of

workers at country-sector-skill in 1995 obtained from WIOD 2013 we recover the country-

sector-skill share to value-added. Dividing it by γnj yields γL,njs
0,data. The cost share of capital is

similarly obtained by dividing the capital share to value-added with γnj. These information

also allows us to compute value-added of labor at country-sector-skill level V ALnjs
0,data, and

value-added of capital at country-sector level V AKnj
0,data.

Our objective is to compute model-consistent
{
V ALnjs

0 ≡ wnjs
0 Lnjs

0 , V AKn
0 ≡ rn0K

n
0 , γ

L,njs
1995 , γK,nj

1995 , π
nj,oj
0 , Xnj

0

}
given the same labor allocations, capital stock and fundamental parameters such as technol-

ogy A and tariffs τ . To speed-up computation, we normalize the observed value-added such

that ∑
n

∑
j

∑
s

V ALnjs
0,data +

∑
n

V AKn
0,data = 1.

The temporary allocation of our model is exactly a static Eaton-Kortum (2002) model.

Suppose that the observed data also follows the same data generating process, we can apply a

hat-algebra-like approach that is isomorphic to Proposition 1 to recover the model-consistent

base year allocations. Let x0,data denote the observed allocation in 1995, and x0,data ≡

9



x0/x0,data as the relative difference between the base year allocation and data observation.

It is readily verified that

xnj
0 ≡

(
χnj
0

)γnj
J∏

k=1

(
P

nk

0

)γnj,nk

P
nj

0 =

[∑
o

πnj,oj
0,data

(
κnj,oj
0 xoj

0

)−θj
(
A

0j

t

)γijθj
]− 1

θj

πnj,oj
0 =

(
κnj,oj
0 xoj

0

P
nj

0

)−θj (
A

oj

0

)γijθj

πnj,oj
0,data

Xnj
0 =

J∑
k=1

γnk,nj

N∑
o=1

πok,nk
0 Xok

0

1 + τok,nk0

+ αnj

(
J∑

k=1

3∑
s=1

wnks
0 L

nks

0

[
wnks

0,dataL
nks
0,data

]
+ rn0K

n

0

[
rn0,dataK

n
0,data

])

+ αnj

(
J∑

k=1

N∑
o=1

τnk,ok0

πnk,ok
0 Xnk

0

1 + τnk,ok0

+Dn
t

)

Dn
t ≡ιnt

J∑
k=1

N∑
o=1

Xok
t

wnks
0 L

nks

0

[
wnks

0,dataL
nks
0,data

]
=γL,njs

0

N∑
o=1

πoj,nj
0 Xoj

0

1 + τoj,nj0

≡ V ALnjs
0

rn0K
n

0

[
rn0,dataK

n
0,data

]
=

J∑
j=1

γK,nj
0

N∑
o=1

πoj,nj
0 Xoj

0

1 + τoj,nj0

≡ V AKn
0

[
χnjh
0

]1−ξnjh

=
γL,nj3
0,data

γL,njh
0,data

[
wnj3

0

]1−ξnjh

+
γK,nj
0,data

γL,njh
0,data

[rn0 ]
1−ξnjh

[
χnj
0

]1−ξnj

=
γL,nj1
0,data

γnj

(
wnj1

0

)1−ξnj

+
γL,nj2
0,data

γnj

(
wnj2

0

)1−ξnj

+
γL,njh
0,data

γnj

(
χnjh
0

)1−ξnj

γL,nj1
0 =

(
wnj1

0

χnj
0

)1−ξnj

γL,nj1
0,data

γL,nj2
0 =

(
wnj2

0

χnj
0

)1−ξnj

γL,nj2
0,data

γL,nj3
0 =

(
wnjh

0

χnj
0

)1−ξnj (
wnj3

0

χnjh
0

)1−ξnjh

γL,nj3
0,data

10



γL,njh
0 =γnj − γL,nj1

0 − γL,nj2
0

γK,nj
0 =γnj − γL,nj1

0 − γL,nj2
0 − γL,nj3

0

where we have κnj,ij
0 = A

ij

0 = L
nks

0 = K
n

0 = 1.

The algorithm is as follows:

1. Guess a vector of
{
wnjs

0 (0) , rn0 (0)
}
such that

∑
n

∑
j

∑
s V ALnjs

0 +
∑

n V AKn
0 = 1.

Then solve for
{
χnj
0 (0) , γL,njs

0 (0) , γK,nj
0 (0)

}
with the initial guesses and

{
γL,njs
0,data, γ

K,nj
0,data

}
.

2. Guess a vector of P
nj

0 to obtain xnj
0 along using χnj

0 (0), then iterate with P
nj

0 until

convergence. Denote the converged outcome by P
nj

0 (0) and xnj
0 (0).

3. Solve for πnj,oj
0 (0) using

{
P

nj

0 (0) , xnj
0 (0) , πnj,oj

0,data

}
.

4. Use
{
wnjs

0 (0) , rn0 (0) , γ
L,njs
0 (0) , γK,nj

0 (0) , πnj,oj
0 (0) , V AKn

0,data, V ALnjs
0,data

}
to solve for

Xnj
0 (0) from the goods market clearing conditions.

5. Use
{
γL,njs
0 (0) , γK,nj

0 (0) , πnj,oj
0 (0) , Xnj

0 (0)
}
to obtain value-added of labor and capital

for the base year allocation
{
V ALnjs

0 , V AKn
0

}
, then use

{
V ALnjs

0 , V AKn
0 , V ALnjs

0,data, V AKn
0,data

}
to recover

{
wnjs

0 (1) , rn0 (1)
}
from the factor market clearing conditions.

6. Check whether
{
wnjs

0 (1) , rn0 (1)
}
≈
{
wnjs

0 (0) , rn0 (0)
}
. If yes, stop iteration and return

the outcome. If not, form a new initial guess for factor prices based on
{
wnjs

0 (1) , rn0 (1)
}

following Alvarez and Lucas (2007) and repeat steps 2 to 6 until convergence.

B.1.2 Computing Allocations for Data Years (1995 – 2007)

We use the base year allocations
{
V ALnjs

0 , V AKn
0 , γ

L,njs
0 , γK,nj

0 , πnj,oj
0 , Xnj

0

}
as a starting

point, and combine with the actual labor allocation series
{
Lnjs
t,data

}12
t=0

and capital alloca-

tions
{
Kn

0,data, K
n
1,data

}
hence the implied φn

0 from (34),
{
rnt,data ≡ V AKn

t,data/K
n
t,data

}12
t=0

and

implied
{
P n
t,data

}12
t=0

from {φn
t }

12
t=1, actual bilateral trade shares

{
πnj,oj
t,data

}12
t=0

, actual changes

in factor cost shares
{
γ̇L,njs
t,data, γ̇

K,nj
t,data

}
, and actual changes in tariff rates

{
τnj,ojt,data

}12
t=0

to com-

pute the series
{
ẇnjs

t , ṙnt , Ṗ
n
t , ϕ

n
t , K

n
t , V ALnjs

t , V AKnj
t , γL,njs

t γK,nj
t , πnj,oj

t , Xnj
t

}12

t=1
for 1996 –

2007 using equations (41) - (47) in Proposition 3 and (40). We define ŷt+1 ≡ ẏt+1/ẏt+1,data,

where ẏt+1 is the model-consistent allocations implied by the data allocations ẏt+1,data. The

algorithm starts by using allocations at period t = 0 to compute the allocations for t = 1,

and then using the computed allocations for t = 1 as the starting point to compute the
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allocations for t = 2 and so on. For each t ∈ {0, ..., 11} we compute the allocations for t+ 1

as follows:

1. Use observed
{
Lnjs
t,data

}12
t=1

to compute L̇njs
t+1 hence

{
µnjs,nki
t,data

}11

t=1
.

2. Guess a vector of changes in factor prices
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0)

}
such that

V Aworld
t+1 (0) =

∑
n

∑
j

∑
s

wnjs
t+1 (0)L

nj,s
t+1 +

∑
n

rnt+1 (0)K
n
t+1 = 1.

Then solve for
{
χ̇nj
t+1 (0) , γ

L,njs
t+1 (0) , γK,nj

t+1 (0)
}
with the initial guesses and

{
γL,njs
t , γK,nj

t

}
.

3. Guess a vector of P̂ nj
t+1 to obtain x̂nj

t+1 using χ̇nj
t+1 (0) from (41), then iterate (42) along

with πnj,oj
t and π̇nj,oj

t+1,data until P̂
nj
t+1 converges. Denote the converged outcome by P̂ nj

t+1 (0)

and x̂nj
t+1 (0).

4. Solve for πnj,oj
t+1 (0) using

{
P̂ nj
t+1 (0) , x̂

nj
t+1 (0) , π

nj,oj
t , π̇nj,oj

t+1,data

}
from (43).

5. Use
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0) , π

nj,oj
t+1 (0) , V ALnjs

t , V AKnj
t , L̇njs

t+1 (0) , K̇
n
t+1 (0)

}
to solve forXnj

t+1 (0)

from (44), where V ALnjs
t+1 ≡ ẇnjs

t+1L̇
njs
t+1V ALnjs

t and V AKn
t+1 ≡ ṙnt+1K̇

n
t+1V AKn

t .

6. Use
{
γL,njs
t+1 (0) , γK,nj

t+1 (0) , πnj,oj
t+1 (0) , Xnj

t+1 (0)
}
to obtain

{
V ALnjs

t+1 (0) , V AKn
t+1 (0)

}
as

the RHS of (45) and (46). Then combine with
{
V AKn

t , V ALnjs
t , L̇njs

t+1, K̇
n
t+1

}
to recover{

ẇnjs
t+1 (1) , ṙ

n
t+1 (1)

}
using (45) and (46).

7. Check whether
{
ẇnjs

t+1 (1) , ṙ
n
t+1 (1)

}
≈
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0)

}
. If not, form a new initial

guess for factor prices based on
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0)

}
following Alvarez and Lucas (2007)

and repeat steps 2 to 7 until convergence. If yes, enter the next step.

8. Use Ṗ nj
t+1,data and P̂ nj

t+1 to compute Ṗ n
t+1. Then use ṙnt+1 and ẇnjs

t+1 and Ṗ n
t+1 to compute

φ̇n
t+1 and ω̇njs

t+1. Recover φ
n
t+1 = φ̇n

t+1φ
n
t .

9. Use Kn
t and φn

t to compute Kn
t+1 hence K̇n

t+1 from (34).

B.1.3 Computing Allocations after 2007

For the allocations beyond the data period we assume that the economy fundamentals such

as bilateral tariffs are fixed at the levels in 2007. In other words, ẋt+1 = 1 for these economy

fundamentals. Then we use the computed allocations in 2007 (t = 12) to compute the time

series during 2008 – 2050 (t ∈ {13, ..., 55}). The algorithm comes in two layers. The outer

layer computes the labor transition, while the inner layer computes the temporary allocations
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given the labor transition using exactly the same algorithm that computes the allocations

for the data years. The algorithm is as follows:

1. Guess a vector of
{
u̇njs
t (0)

}55
t=13

such that u̇njs
55 (0) = 1, i.e., the economy no longer

adjusts since 2051. Then we use the initial guess to compute
{
µnjs,nki
t (0)

}54

t=12
and{

Lnjs
t (0)

}55
t=13

by (29), (32) and (33) along with
{
µnjs,nki
11 , Lnjs

12

}
observed in the data.

2. Given
{
µnjs,nki
t (0)

}54

t=12
and

{
Lnjs
t (0)

}55
t=13

we compute the temporary allocations for

t = {13, ..., 55} with the following algorithm to obtain the series of real wages
{
ωnjs
t (0)

}54
t=13

:

Use t = 12 as the starting point, we compute the allocations for t+ 1 ∈ {13, ..., 55} as

follows:

(a) Guess a vector of changes in factor prices
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0)

}
such that

V Aworld
t+1 (0) =

∑
n

∑
j

∑
s

wnjs
t+1 (0)L

nj,s
t+1 +

∑
n

rnt+1 (0)K
n
t+1 = 1.

Then solve for
{
χ̇nj
t+1 (0) , γ

L,njs
t+1 (0) , γK,nj

t+1 (0)
}
with the initial guesses and

{
γL,njs
t , γK,nj

t

}
.

(b) Guess a vector of Ṗ nj
t+1 to obtain ẋnj

t+1 using χ̇nj
t+1 (0) from (22), then iterate (23)

along with πnj,oj
t until Ṗ nj

t+1 converges. Denote the converged outcome by Ṗ nj
t+1 (0)

and ẋnj
t+1 (0).

(c) Solve for πnj,oj
t+1 (0) using

{
Ṗ nj
t+1 (0) , ẋ

nj
t+1 (0) , π

nj,oj
t

}
from (24).

(d) Use
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0) , π

nj,oj
t+1 (0) , V ALnjs

t , V AKnj
t , L̇njs

t+1 (0) , K̇
n
t+1 (0)

}
to solve for

Xnj
t+1 (0) from (25).

(e) Use
{
γL,njs
t+1 (0) , γK,nj

t+1 (0) , πnj,oj
t+1 (0) , Xnj

t+1 (0)
}
to obtain

{
V ALnjs

t+1 (0) , V AKn
t+1 (0)

}
as the RHS of (26) and (27). Then combine with

{
V AKn

t , V ALnjs
t , L̇njs

t+1, K̇
n
t+1

}
to recover

{
ẇnjs

t+1 (1) , ṙ
n
t+1 (1)

}
using (26) and (27).

(f) Check whether
{
ẇnjs

t+1 (1) , ṙ
n
t+1 (1)

}
≈
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0)

}
. If not, form a new

initial guess for factor prices based on
{
ẇnjs

t+1 (0) , ṙ
n
t+1 (0)

}
following Alvarez and

Lucas (2007) and repeat steps 2 to 7 until convergence. If yes, enter the next

step.

(g) Use Ṗ nj
t+1 to compute Ṗ n

t+1. Then use ṙnt+1 and ẇnjs
t+1 and Ṗ n

t+1 to compute φ̇n
t+1 and

ω̇njs
t+1. Recover φ

n
t+1 = φ̇n

t+1φ
n
t .

(h) Use Kn
t and φn

t to compute Kn
t+1 hence K̇n

t+1 from (34).
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3. Use
{
µnjs,nki
t (0)

}53

t=12
,
{
ωnjs
t (0)

}54
t=13

and
{
u̇njs
t (0)

}55
t=14

to compute
{
u̇njs
t (1)

}54
t=13

fol-

lowing (30). Check if
{
u̇njs
t (1)

}54
t=13

≈
{
u̇njs
t (0)

}54
t=13

. Note that u̇njs
55 (1) = u̇njs

55 (0) = 1

by construction. If u̇ converges, return the temporary allocations,
{
µnjs,nki
t

}54

t=12
,{

Lnjs
t

}55
t=13

, and
{
u̇njs
t

}55
t=13

as the dynamic equilibrium path. If not, use
{
u̇njs
t (1)

}55
t=13

to construct a new initial guess and repeat steps 1 to 3 until convergence.

B.2 Computing Counterfactual Economy

Consider a counterfactual change in economy fundamentals that kicks-in in the “shock year”

1996, the resulting counterfactual changes in allocations ẋ′
t during 1995 – 2050 can be recov-

ered using the constructed baseline changes ẋt and hat algebra x̂t following Proposition 3.

Since the shock is unexpected, the allocations before 1995 are identical between the counter-

factual and baseline economy. Following the proof for Proposition 3, it implies that µ̂njs,nki
1

and ûnjs
1 satisfy

µ′njs,nki
1 =

µnjs,nki
1

(
ûnki
1

)βδ
ν
(
ûnki
2

)βδ
ν∑J

k=0

∑3
i≥s µ

njs,nki
1 (ûnki

1 )
βδ
ν (ûnki

2 )
βδ
ν

(B.1)

ûnjs
1 =ω̂njs

1

(
J∑

k=0

3∑
i≥s

µnjs,nki
1 (ûnki

1 )
βδ
ν (ûnki

2 )
βδ
ν

)ν

. (B.2)

The algorithm is similar to that used to compute the baseline allocations after the data

years. Idea wise, we first guess û and compute counterfactual labor dynamics {µ′, L′} using

their baseline counterparts. Then we use {L,K} to construct
{
L̂, K̂

}
, and then combine

with the baseline economy to compute the counterfactual temporary allocations from period

to period. Then we take the implied ω̂ to check the convergence of û. The algorithm is

detailed as follows.

1. Guess
{
ûnjs
t (0)

}55
t=1

such that ûnjs
55 (0) = 1. Then compute

{
µ′njs,nki
t (0)

}54

t=1
and{

L′njs
t (0)

}55
t=1

with
{
µnjs,nki
t

}54

t=1
from (35), (B.1), (38) and (39). Note that L′njs

1 (0) =

Lnjs
1 since µ0 and L0 are the same.

2. Compute temporary equilibrium for the counterfactual economy given
{
L′njs
t (0)

}55
t=1

,

φn
0 = φ′n

0 ,K
n
0 = K ′n

0 , γL,njs
0 = γ′L,njs

0 , γK,nj
0 = γ′K,nj

0 , πnj,oj
0 = π′nj,oj

0 , V ALnjs
0 = V AL′njs

0

and V AKnj
0 = V AK ′nj

0 for each t ∈ {1, ..., 55}:
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(a) Guess a vector of changes in factor prices
{
ẇ′njs

t+1 (0) , ṙ
′n
t+1 (0)

}
such that

V A′world
t+1 (0) =

∑
n

∑
j

∑
s

w′njs
t+1 (0)L

′nj,s
t+1 +

∑
n

r′nt+1 (0)K
′n
t+1 = 1.

Then solve for
{
ŵnjs

t+1 (0) , r̂
n
t+1 (0) , χ̂

nj
t+1 (0) , γ

′L,njs
t+1 (0) , γ′K,nj

t+1 (0)
}

with the initial

guesses and
{
ẇnjs

t+1, ṙ
n
t+1, γ̇

L,njs
t+1 , γ̇K,nj

t+1 , γ′L,njs
t , γ′K,nj

t

}
.

(b) Guess a vector of P̂ nj
t+1 to obtain x̂nj

t+1 using χ̂nj
t+1 (0) from (41), then iterate (42)

along with
{
π′nj,oj
t , π̇nj,oj

t+1

}
until P̂ nj

t+1 converges. Denote the converged outcome

by P̂ nj
t+1 (0) and x̂nj

t+1 (0).

(c) Solve for π′nj,oj
t+1 (0) using

{
P̂ nj
t+1 (0) , x̂

nj
t+1 (0) , π

′nj,oj
t , π̇nj,oj

t+1

}
from (43).

(d) Use
{
ẇ′njs

t+1 (0) , ṙ
′n
t+1 (0) , π

′nj,oj
t+1 (0) , V AL′njs

t , V AK ′nj
t , L̇′njs

t+1 (0) , K̇
′n
t+1 (0)

}
to solve

for X ′nj
t+1 (0) from (44).

(e) Use
{
γ′L,njs
t+1 (0) , γ′K,nj

t+1 (0) , π′nj,oj
t+1 (0) , X ′nj

t+1 (0)
}
to obtain

{
V AL′njs

t+1 (0) , V AK ′n
t+1 (0)

}
as the RHS of (26) and (27). Then combine with

{
V AK ′n

t , V AL′njs
t , L̇′njs

t+1 (0) , K̇
′n
t+1 (0)

}
to recover

{
ẇnjs

t+1 (1) , ṙ
n
t+1 (1)

}
using (26) and (27).

(f) Check whether
{
ẇ′njs

t+1 (1) , ṙ
′n
t+1 (1)

}
≈
{
ẇ′njs

t+1 (0) , ṙ
′n
t+1 (0)

}
. If not, form a new

initial guess for factor prices based on
{
ẇ′njs

t+1 (1) , ṙ
′n
t+1 (1)

}
following Alvarez and

Lucas (2007) and repeat steps (a) to (g) until convergence. If yes, enter the next

step.

(g) Use Ṗ n
t+1 and P̂ nj

t+1 to recover Ṗ ′n
t+1. Then use ṙ′nt+1 and ẇ′njs

t+1 and Ṗ ′n
t+1 to compute

φ̇′n
t+1 and ω̇′njs

t+1 . Recover φ
′n
t+1 = φ̇′n

t+1φ
′n
t .

(h) Use K ′n
t and φ′n

t to compute K ′n
t+1 hence K̇ ′n

t+1 from (40).

3. Construct
{
ω̂njs
t

}55
t=1

using the outcome from step 2 and the baseline allocations. Then

compute
{
ûnjs
t (1)

}54
t=1

using
{
ω̂njs
t

}54
t=1

,
{
µ̇njs,nki
t

}54

t=1
,
{
µ′njs,nki
t (0)

}53

t=1
and

{
ûnjs
t (0)

}55
t=1

following (36). Note that ûnjs
55 (0) = ûnjs

55 (1) = 1 by construction. Check if
{
ûnjs
t (0)

}55
t=1

≈{
ûnjs
t (1)

}55
t=1

. If yes return the results as the counterfactual equilibrium path. If not,

construct a new initial guess based on
{
ûnjs
t (1)

}55
t=1

then repeat steps 1 to 3.

B.3 Welfare Computation

The long-run welfare change for workers in country n with sector-skill combination js in

1995 is given by the compensation variation. Following Caliendo, Dvorkin and Parro (2019)
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the welfare change is given by:

Ŵ njs =
∞∑

t=1995

(βδ)t−1995 ln

(
ω̂njs
t(

µ̂njs,njs
t

)ν
)
.

Note that the allocations in 1995 are identical for both the baseline and the counterfactual

economies, the welfare change formula can be equivalently stated as:

Ŵ njs = (1− βδ)
∞∑

t=1995

(βδ)t−1995 ln

(
ω′njs
t /ωnjs

t(
µ′njs,njs
t /µnjs,njs

t

)ν
)
.

As we simulate the model up to year 2050, we assume that the allocations are fixed at the

2050 levels ever after so that the resulting welfare formula is given by:

Ŵ njs =(1− βδ)

[
2049∑

t=1995

(βδ)t−1995 ln
(ωt/ω

′
t)

(µt/µ′
t)

v + (βδ)2050−1995 ln
(ω2050/ω

′
2050)

(µ2050/µ′
2050)

v

+
∞∑

t=2051

(βδ)t−1995 ln
(ω2050/ω

′
2050)

(µ2050/µ′
2050)

v

]

=(1− βδ)

[
2049∑

t=1995

(βδ)t−1995 ln
(ωt/ω

′
t)

(µt/µ′
t)

v +
(βδ)55

1− βδ
ln

(ω2050/ω
′
2050)

(µ2050/µ′
2050)

v

]
.

Our implementation inspects the welfare changes at both broad sector and skill levels up

to 2020. For this purpose, the welfare changes are defined as the sum of components during

1995–2020. Then we aggregate the njs-level welfare changes up to the relevant levels using

labor value-added shares in 1995 as weight.

The welfare formula for the capital owner is similarly derived. Using (7)–(9), we obtain

the expected lifetime welfare as:

V nK
t = ln (1− β)

[
φn
t +

(
1− δK

)]
Kn

t + βV nK
t+1

= ln (1− β)
Kn

t+1

β
+ βV nK

t+1

= ln

(
1− β

β

)
+ lnKn

t+1 + β

[
ln

(
1− β

β

)
+ lnKn

t+2 + βV nK
t+2

]
=(1 + β) ln

(
1− β

β

)
+ lnKn

t+1 + β lnKn
t+2 + β2V nK

t+2

=
∞∑
s=t

βs−t ln

(
1− β

β

)
+

∞∑
s=t

βs−t lnKn
s+1.
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Let ∆nK be the compensation variation in 1995, defined by:

V ′nK
t =V nK

t +
∞∑
s=t

βs−t ln∆nK .

It follows that:

ln∆nK =(1− β)
(
V ′nK
t − V nK

t

)
=(1− β)

∞∑
s=t

βs−t ln
K ′n

s+1

Kn
s+1

=
∞∑
s=t

βs−t ln
K ′n

s+1

Kn
s+1

−
∞∑
s=t

βs−t+1 ln
K ′n

s+1

Kn
s+1

= ln
K ′n

t+1

Kn
t+1

+ β ln
K ′n

t+2

Kn
t+2

+ β2 ln
K ′n

t+3

Kn
t+3

+ β3 ln
K ′n

t+4

Kn
t+4

+ ...

− β ln
K ′n

t+1

Kn
t+1

− β2 ln
K ′n

t+2

Kn
t+2

− β3 ln
K ′n

t+3

Kn
t+3

+ ...

= ln
K ′n

t+1

Kn
t+1

+ β ln K̂n
t+2 + β2 ln K̂n

t+3 + ...

= ln
K ′n

t+1

Kn
t+1

+
∞∑

s=t+1

βs−t ln K̂n
s+1.

Because the shock occurs unexpectedly in the year (t = 1996) following the initial year, the

start-of-year capital stock K1996 remains the same, given K1995 and φ1995. It follows that:

Ŵ nK ≡ ln∆nK =
∞∑

s=1996

βs−1995 ln K̂n
s+1

=
2049∑

s=1996

βs−1995 ln K̂n
s+1 + β2050−1995K̂n

2051 +
∞∑

s=2051

βs−1995K̂n
2051

=
2049∑

s=1996

βs−1995 ln K̂n
s+1 +

β55

1− β
K̂n

2051.

C Model Extension: Time-varying Sector-Skill Tran-

sition Costs

We have assumed the sector-skill transition costs to be time-invariant in the benchmark. This

appendix shows that the dynamic hat algebra can be generalized to allow for time-varying

sector-skill transition costs. This alternative framework can be used to accommodate changes
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to the sector-skill transition costs in a counterfactual such as that analyzed in Section 6.2 of

the paper. In general, it can also be used to study the effects of supply-side shocks such as

education reforms that change the costs of skill upgrading.

Let an individual’s objective function be given by:

vnjst = lnCnjs
t + max

{k,i}J,3k=0,i=1

{
βδV nki

t+1 − ρnjs,nkit + νϵkit

}
.

The objective function is similar to (1) in the benchmark except that the transition cost

ρnjs,nkit is now time-varying. The assumption that ϵ is drawn i.i.d. from the Type-I extreme

value distribution implies that the value function and transition probability are respectively

given by:

V njs
t = lnCnjs

t + ν ln
J∑

K=0

3∑
I≥s

e
βδV nKI

t+1 −ρ
njs,nKI
t

ν ,

µnjs,nki
t =

e
βδV nki

t+1−ρ
njs,nki
t

ν∑J
K=0

∑3
I≥s e

βδV nKI
t+1 −ρ

njs,nKI
t

ν

.

The laws of motion for the labor pool in each sector-skill combination are unaffected. As

the conditions on the production side remain the same, Proposition 1 is also unaffected.

Both µ̇njs,nki
t+1 and u̇njs

t+1 are derived using exactly the same technique as for (29) and (30)

in the benchmark. Let ϱnjs,nkit ≡ eρ
njs,nki
t . It can be readily checked that both the changes

across time periods in utility and in transition probability are identical to the benchmark

model up to the inclusion of the change in ϱnjs,nkit :

u̇njs
t+1 =ω̇njs

t+1

[
J∑

K=0

3∑
I≥s

µnjs,nKI
t

(
u̇nKI
t+2

)βδ
ν

(
ϱ̇njs,nKI
t+1

)− 1
ν

]ν
,

µ̇njs,nki
t+1 =

(
u̇nki
t+2

)βδ
ν

(
ϱ̇njs,nkit+1

)− 1
ν

∑J
K=0

∑3
I≥s µ

njs,nKI
t

(
u̇nKI
t+2

)βδ
ν

(
ϱ̇njs,nKI
t+1

)− 1
ν

.

The dynamic hat algebra can also be derived with the same technique as for (35) and

(36). For t > 1, we have:

µ̂njs,nki
t+1 ≡

µ̇′njs,nki
t+1

µ̇njs,nki
t+1

18



=

(
ûnki
t+2

)βδ
ν

(
ϱ̂njs,nkit+1

)− 1
ν

∑J
K=0

∑3
I≥s µ

′njs,nKI
t µ̇njs,nKI

t+1

(
ûnKI
t+2

)βδ
ν

(
ϱ̂njs,nKI
t+1

)− 1
ν

,

and

ûnjs
t+1 ≡

u̇′njs
t+1

u̇njs
t+1

,

=ω̂njs
t+1

[
J∑

K=0

3∑
I≥s

µ′njs,nKI
t µ̇njs,nKI

t+1

(
ûnKI
t+2

)βδ
ν

(
ϱ̂njs,nKI
t+1

)− 1
ν

]ν
.

Since the path of counterfactual fundamentals is observed only at t = 1 while the decisions

are made in t = 0, we need to derive µ′njs,nki
1 and ûnjs

1 differently from the general case

of t > 1. Recall that the allocations at t = 0 are such that ûnjs
0 = 1 , µ′njs,nki

0 = µnjs,nki
0

and L′njs
1 = Lnjs

1 . Also note that ϱ′njs,nki0 = ϱnjs,nki0 since we assume that the shocks to the

fundamentals occur unexpectedly at t = 1. Following the approach for Proposition 3 as

detailed in Appendix A.3 yields:

ûnjs
1 =ω̂njs

1

[
J∑

K=0

3∑
I≥s

υnjs,nKI
0

(
ûnKI
2

)βδ
ν

(
ϱ̂njs,nKI
1

)− 1
ν

]ν
,

µ′njs,nki
1 =

υnjs,nki
0

(
ûnki
2

)βδ
ν

(
ϱ̂njs,nki1

)− 1
ν

∑J
K=0

∑3
I≥s υ

njs,nKI
0 (ûnKI

2 )
βδ
ν

(
ϱ̂njs,nKI
1

)− 1
ν

,

where υnjs,nKI
0 ≡ µnjs,nKI

1 (ûnki
1 )

βδ
ν .

D Model Extension: Skill-Job Disparity

In the paper, we have assumed that jobs and skills are paired perfectly, such that a worker

with a given skill level always does a job that requires exactly the skill level. Therefore, a

high-skilled worker is always assigned to an occupation that requires a high skill level. In

this appendix, we consider setups where workers might not end up with jobs that match

their skill levels. For example, a middle-skilled worker may choose to upgrade his skill level

but end up doing a job that requires a low skill level in the next period. The following

analysis aims to generalize the model by allowing workers to undertake jobs with lower skill

requirement than the worker’s current skill level.

When a worker of a given skill level can choose a job of lower skill requirement, the
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number of jobs that requires the given skill level to perform does not necessarily equals

the number of workers of that skill level. We therefore need to distinguish between skill

requirement of jobs and skill attainment of workers. Let at denotes the skill attainment of

an individual at time t, and st denotes the skill requirement of the individual’s job at time

t. We assume that at ≥ st holds for each individual so that workers can “match downwards”

to jobs in terms of skill level. The Bellman equation becomes:

vnjs;at≥s
t = lnCnjs;at≥s

t + max
{k,i}J,3k=0,i=1

{
βδV

nki;at+1=max{at,i}
t+1 − ρnjs,nki;at≥s + νϵkit

}
,

such that:

ρnjs,nki;at≥s = ρnjs,nki;at≥s
job + ρat,i

ρat,i = 0 if at ≥ i.

The parameter ρnjs,nki;at≥s
job governs the cost to choose a job in sector k that requires skill level

i given the worker’s skill attainment as at. The parameter ρat,i is the cost of skill cultivation,

which occurs when the worker chooses a job that requires a higher skill level than his current

skill attainment. In other words, if a worker with a skill attainment at chooses a job with a

skill requirement i > at, then he bears an additional cost to upgrade his skill attainment to i

in the next period. Note that the setup reduces to the benchmark case when ρnjs,nki;at≥s
job = ∞

for s ̸= at and i < s.

Following similar analysis as in the main text, the probability of switching between sector-

job combinations and the lifetime utility are, respectively:

µnjs,nki;at≥s
t =

e
βδV

nki;at+1=max{at,i}
t+1 −ρnjs,nki;at≥s

ν∑J
k=0

∑3
i=1 e

βδV
nki;at+1=max{at,i}
t+1 −ρnjs,nki;at≥s

ν

, (D.3)

V njs;at≥s
t = lnCnjs;at≥s

t + ν ln
J∑

k=0

3∑
i=1

e
βδV

nki;at+1=max{at,i}
t+1 −ρnjs,nki;at≥s

ν . (D.4)

Equations (D.3) and (D.4) are pretty much the same as those in the benchmark model,

except that workers can do jobs with lower skill requirements than their skill attainment.

Because skill attainment is weakly greater than the skill requirement of jobs, the number

of workers choosing a sector-job combination js is no longer identical to the workers with skill

attainment a in sector j. The laws of motion (4) and (5) need to be replaced by equations

(D.5)–(D.8) below. In particular, the laws of motion for the numbers of workers choosing a
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sector-job combination js, with skill attainment at+1 in the next period are given by:

L
njs;at+1>s
t+1 = δ

J∑
k=0

i<at∑
i=1

µnki,njs;at>i
t |s<atL

nki;at>i
t (D.5)

+δ
J∑

k=0

µnki,njs;at=i
t |s<atL

nki;at=i
t

L
njs;at+1=s
t+1 = δ

J∑
k=0

i<at∑
i=1

µnki,njs;at>i
t |s≥atL

nki;at>i
t (D.6)

+δ
J∑

k=0

µnki,njs;at=i
t |s≥atL

nki;at=i
t

L
n01;at+1=1
t+1 = δ

J∑
k=0

µnk1,n01;at=1
t Lnk1;at=1

t + (1− δ)Ln (D.7)

Lnjs
t+1 =

3∑
at+1>s

L
njs;at+1>s
t+1 + L

njs;at+1=s
t+1 . (D.8)

Equation (D.5) governs the motion of workers with skill attainment at that eventually

choose a sector-job combination js with a lower skill requirement than his skill attainment.

There are two possibilities: the worker with a skill attainment at currently taking a job

with a skill requirement i < at, and the worker with a skill attainment at currently taking

a job with exactly the same skill requirement i = at. These workers choose the sector-job

combination js where s is still lower than their own skill attainment at with a probability

µnki,njs;at>i
t |s<at , and µnki,njs;at=i

t |s<at , respectively. There are Lnki;at>i
t and Lnki;at=i

t of these

types of workers, respectively.

Equation (D.6) refers to the case where the worker chooses to take a sector-job combi-

nation js in the next period, with the skill requirement (weakly) greater than his current

skill attainment. In this case, this worker experiences a skill upgrading and his skill attain-

ment improves from at to s in the next period. The probability for this worker to do so is

µnki,njs;at>i
t |s≥at when the worker’s skill attainment is strictly higher than the skill require-

ment of his current job, and µnki,njs;at=i
t |s≥at when his skill attainment is exactly the same

as the skill requirement of his current job.

Equations (D.5) and (D.6) characterize the labor supply to sector-job combination js

in the next period conditional on the worker’s current skill attainment. For labor market

clearing, we require equation (D.8), where the LHS denotes the total labor demand of sector-

job combination js in the next period, and the RHS corresponds to the total labor supply

to sector-job combination js in the next period with agents of skill attainment at+1 in the
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next period.

Equation (D.7) plays the same role as (5) in the benchmark model. The second term

follows from our setting that the population growth rate is zero and all newborns begin with

skill attainment 1 and start with sector-job combination 01. The first term represents the

mass of agents with skill attainment 1 in the current period who decide to take sector-job

combination 01 for the next period. Since skill attainment is nondecreasing, we do not need

to worry about other possibilities of at in this case. Therefore, (D.7) and (5) are equivalent.

We can also characterise the laws of motion in terms of worker skill attainment at for

each sector. Let Mnj;at=s
t be the number of workers currently working in sector j with a skill

attainment at = s. From (D.5)–(D.8), it follows that:

M
nj;at+1=s
t+1 = δ

[
J∑

k=0

µnki,njs;at=i
t |s>atL

nki;at=i
t +

J∑
k=0

i<at∑
i=1

µnki,njs;at>i
t |s>atL

nki;at>i
t

]

+δ

[
J∑

k=0

i<at∑
i=1

µnki,njs;at>i
t |s=atL

nki;at>i
t +

J∑
k=0

i<at∑
i=1

µnki,njh;at>i
t |h<s=atL

nki;at>i
t

]

+δ

[
J∑

k=0

µnks,njs;at=s
t |s=atL

nks;at=s
t +

J∑
k=0

µnks,njh;at=s
t |h<s=atL

nks;at=s
t

]
. (D.9)

The first line represents the agents that experience skill upgrading from at < s to at+1 = s

by taking a job of skill requirement s in sector j, who currently work in sector k with a skill

requirement i ≤ at. The second line and third lines denote agents who already have the skill

attainment at = s in the current period and do not experience skill upgrading. In particular,

the second line consists of agents who take jobs with skill requirements strictly less than

s currently, but choose to take jobs with skill requirements either equal or less than s for

the next period. The third line sums up agents who currently have jobs with exactly skill

requirement s, but choose jobs that require either equal or less than s in the next period.

Equations (10)–(17) in the paper continue to hold in this alternative setup. Therefore,

the same temporary equilibrium conditions (22)–(28) continue to hold, except that Lnjs
t is

now governed by (D.8) and that the wage now depends on skill requirement instead of skill

attainment. For the sequential equilibrium, equations (29) and (30) remain to hold but with

an additional superscript at ≥ s. The skill attainment at does not affect the derivation, as

can be verified following the proof in Appendix A.2. The laws of motion are replaced by

(D.5)–(D.7). Because the techniques of derivation are unaffected by the superscript at, it is

obvious that the dynamic hat algebra (35)–(47) continues to hold here except for the laws

of motion (38) and (39). The laws of motion are replaced by the counterfactual versions of

(D.5)–(D.7).
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The above discussion shows that we can solve for the entire path of equilibrium once

initial points are given. This gives us the demand for jobs of different skill requirement in

different sectors and economies. These information allows us to obtain the skill attainment

in each economy-sector-job combination by plugging the equilibrium outcome into (D.9).

The probability for an agent with a given skill attainment to “under match” with a job that

requires a lower skill level can also be obtained in the same manner as for (D.9).
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