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Abstract

This paper considers the problem of allocating an object between two players in an en-

vironment with one sided asymmetric information when their reservation payoffs depend on

the type of the informed player, causing the reservation payoff of the uninformed player to

be unobservable to her. Inefficiency arises naturally in this setting and can be characterized

by a simple condition on the reservation payoffs that is necessary and sufficient. I derive the

necessary and sufficient condition for the existence of an implementable allocation that at

least weakly dominates the reservation payoffs. Under a mild assumption on the distribution

of types, I characterize the surplus maximizing mechanism in the second best setting. I argue

that the model applies to an environment where property rights over the object are not well

defined and are subject to costly enforcement. In such cases, type dependent reservation pay-

offs arise naturally as the uninformed player’s expectation from the enforcement process. The

model can explain why the best ways of avoiding costly dispute resolution, such as arbitration

as a way of avoiding litigation, typically involve a degree of inefficiency.

JEL Codes: D82, D74, D61

1 Introduction

This paper considers the problem of efficiently allocating an object between two players in

an environment where it is clear which of the two values the object more. I present a model

where the valuation of one of the two players is observable and known to be higher than that
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of the other. When the reservation payoff of one of the two players is zero, like in the buyer-

seller case (Myerson and Satterthwaite 1983), this problem is trivial as the object can be

allocated to the player with the higher valuation, in exchange for a transfer that satisfies the

IR constraint of the other player. However, this first best solution may not be implementable

under budget balance even with one-sided private information when the reservation payoffs of

the two players depend on the type of the player who observes his type privately. Such type

dependence in the reservation payoffs arises naturally in settings with incomplete property

rights where partial claims over an object lead to the type of both players influencing what

each receives in the event the inefficient reservation payoffs are triggered.1 I show that the first

best solution is implementable under budget balance if and only if the reservations payoffs

satisfy a simple condition (Lemma 1).

This paper introduces a new and potentially interesting mechanism design problem and

its solution. Taking the dependence of reservation payoffs on the type of the informed player

as exogenous, the main results of this paper derive the surplus maximizing mechanism when

the first best is not implementable (Proposition 2) and the necessary and sufficient condition

for its existence (Lemma 2). The technical difficulty in characterizing the surplus maximizing

mechanism comes from the fact that the reservation payoffs depend on the type that is not

publicly observed. Consequently, in contrast to the standard mechanism design problem

where the IR constraint typically binds for only one type, in this case both the incentive and

IR constraints may bind at several sub intervals of the type space.

It is possible to cast the inefficiency result of this model in the Myerson and Satterthwaite

(1983) framework. I depart from the standard Myerson and Satterthwaite (1983) framework

in the following ways: First, unlike, Myerson and Satterthwaite (1983), there is only one-sided

private information. Second, there is no uncertainty about which of the two players values

the object more. Third, the distribution of valuation of the player with private valuation

is left unspecified and need not be continuous. However in a stronger assumption relative

to Myerson and Satterthwaite (1983), I assume that the reservation payoffs depend on the

privately observed type. In the Myerson and Satterthwaite (1983) world since property rights

are well defined, the seller walks away with an undisputed ownership over the object in case

there is no trade. Consequently the reservation payoff of the seller is simply her valuation and

the reservation payoff of the buyer is zero. This is in contrast to the application in section 4

where the reservation payoffs for both players depend on their opponent’s type through the

choice of equilibrium effort in a game that determines their property rights over the object.2

Following this interpretation, the inefficiency result presented here indicates that when

reservation payoffs represent the payoffs from conflict, mechanisms that help players avoid

conflict may not be fully efficient. An example of this is arbitration as a mechanism to avoid

litigation. Although the costs of arbitration are significantly lower than litigation, parties

1An application of this model on these lines is presented in section 4.
2For a somewhat different treatment of incomplete property rights see Schmitz (2001) where the lack of property

rights worsens the reservation payoffs leading to full efficiency in the Myerson and Satterthwaite (1983) framework.
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to arbitration typically hire lawyers to argue their case, and this is costly for both parties.

The results rationalize the phenomenon of dispute resolution mechanisms such as arbitration

involving a smaller but positive degree of inefficiency.

The inefficiency that arises from games such as a contest under complete information,

disappears as soon as parties are allowed to meet each other costlessly at a stage prior to the

contest as this leads to efficient bargaining that avoids the costs of the contest.3 On the other

hand inefficiencies arising in the problem of allocating an object disappear when it is clear

who values the object more, even when the exact valuations are unobservable (Myerson and

Satterthwaite 1983). This paper attempts to incorporate both these elements into one model.

I consider the case when the reservation payoffs arise in a way that allows the informed player’s

type to enter the reservation payoff of the uninformed player. This induces a change in the

character of the informational asymmetry from private values to an environment similar to

interdependent preferences. Consequently the inefficiency that arises here is neither subsumed

by our usual understanding of the inefficiencies arising from informational asymmetry with

private values nor from surplus losses associated with inefficient games such as a contest.

This paper is related to the growing literature on mechanism design when the reservation

payoff of a player is type dependent. Jehiel, Moldovanu, and Stacchetti (1996) analyze a

mechanism design problem when the final payoffs of the players are not solely determined

by whether or not they are allocated the good. Figueroa and Skreta (2009) study this

problem further in the context of a revenue maximizing auction. In these settings the optimal

mechanism must take into account the externalities arising from any allocation. In contrast

to these papers, in my setting the type dependence of the reservation payoffs does not arise

as a result of externalities of the allocation, and indeed there is common knowledge about

what the first best is – It is always optimal to allocate the object to the uninformed player

regardless of the type of the informed player. The inefficiency in this setting arises from

the inability of the uninformed player to accurately know her own reservation payoff due

to the unobservability of the informed player’s type. This leads to the surplus maximizing

mechanism allocating the object to the lower valuation player with positive probability.

Another related paper is Jullien (2000) where the contracting problem between a principal

and agent is analyzed in a setting where the reservation payoff of the agent is dependent on

his type, which is his private information. The focus there is on characterizing the profit

maximizing allocation rule for the principal. In contrast, I will solely focus on inability of

efficient mechanisms to deliver ex-post efficiency. Finally this paper is also related to Aney

(2012), which shows the conditions under which inefficient reservation payoffs are always

strictly preferred over any allocation that can be implemented using a mechanism. The key

difference is that Aney (2012) assumes that parties cannot commit to a mechanism, and this

implies that they must take into account how truth telling at the mechanism stage modifies

their reservation payoff in the event one of the players vetoes the mechanism ex-post. In

3On the other hand if bargaining prior to the contest involves positive costs, it is possible to construct an
equilibrium where players will forgo bargaining even when the contest is costlier. See Anderlini and Felli (2001).
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contrast, this paper shows that when parties can commit to the outcome of the mechanism,

although they can improve over their reservation payoffs, they may not be able to attain the

first best.

The next section presents the model and shows how inefficiency arises naturally in this

setting. A simple condition turns out to be both necessary and sufficient for the first best

to be implementable (Lemma 1). Section 3 analyses the case when the first best is not

implementable. For the existence of a surplus maximizing mechanism we need to derive the

set of functions that are ‘proximate’ to the reservation payoffs that can be implemented, and

we need to ensure this set is compact. Lemma 2 derives the necessary and sufficient condition

required on this set for the existence of an allocation that is preferred to the reservation

payoffs. Proposition 1 shows that, under mild condition on the reservation payoffs, we can

construct such a set by following the procedure described in the appendix, and ensure its

compactness. The main result of the paper is Proposition 2, which characterizes the surplus

maximizing mechanism. This result is derived under a mild condition on the distribution of

types.

Section 4 shows an application of the model where the dependence in the reservation

payoffs on the privately observed type arises endogenously when the reservation payoffs arise

from a contest. Since the reservation payoffs arise from the equilibrium of a Bayesian game (a

Tullock contest), the overall game becomes a multi-stage game that must be solved using an

appropriate equilibrium concept namely that of the perfect Bayesian equilibrium. I show that

the solution to the mechanism design problem in section 3 is preserved under a restriction on

the off-equilibrium beliefs. I discuss the ramifications of the assumption that the reservation

payoffs arise as equilibrium payoffs from a Bayesian game in section 4.5. Finally section 5

concludes.

2 Model

There are two players with preferences that can be represented by the usual quasi linear utility

functions. The players wish to allocate an object that may be divisible among themselves.

The object is valued at θ1 by player 1 (female) and θ1 is publicly observed. Player 2 (male)

privately observes his valuation θ2. Since player 1 is uninformed about player 2’s type, she

treats it as a random variable Θ2 that takes values between [θ2, θ2] with a cdf F (θ2). For now

we need not impose any restriction on this distribution which may be continuous, discrete,

or mixed. I assume that

θ1 > θ2 > θ2 ≥ 0 (1)

Unless both players agree to allocate the object using a mechanism, they both end up with

their reservation payoffs. If each player chooses to participate in the mechanism, both forgo

their reservation payoffs. Consequently the expected payoff from the mechanism must be
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weakly greater than the reservation payoff for each player (the IR constraint).

The reservation payoffs, which are assumed to be dependent on player 2’s type, are denoted

by

E(v1(Θ2)) ≥ 0 and v2(θ2) ≥ 0 (2)

for player 1 and 2 respectively. Note that E(v1(Θ2)), the reservation payoff for player 1, is

an expectation since it depends on player 2’s type, which she does not observe. On the other

hand player 2 does observe his own type and his reservation payoff is simply v2(θ2). This

formulation captures the idea that both players’ reservation payoffs depend on the state of

the world θ2, which happens to be the willingness to pay of player 2. Nature chooses θ2

according to an unspecified probability distribution. Player 1 does not learn θ2 but player 2

does. Therefore, player 2 knows his willingness to pay and his reservation payoff but player 1

does not. Player 1’s willingness to pay on the other hand is θ1 and this is common knowledge.

The reservation payoffs of the two players may also depend on θ1. However since θ1 is common

knowledge, the presence or absence of dependence of the reservation payoffs on θ1 will not

play any role in the results.

Before going further it is important to restrict our attention to the case where it is inef-

ficient for players to receive their reservation payoffs. If on the other hand the reservation

payoffs are large enough, the first best would involve the players simply accepting their reser-

vation payoffs, rather than attempting to forgo them by agreeing to an allocation of the object

and transfers. I assume

∀θ2 v1(θ2) + v2(θ2) < θ1. (3)

This states that the sum of the ex-post reservation payoffs generates lower surplus than

allocating the object to player 1 for all realization of θ2. To focus on the interesting case

where the reservation payoffs feature this inefficiency, and it is indeed efficient for players to

participate in the mechanism and forgo their reservation payoffs, I will assume inequality (3)

holds throughout the paper.

Even when the reservation payoffs satisfy inequality (3), it is possible that

∃θ2 such that E(v1(Θ2)) + v2(θ2) > θ1. (4)

This is because the informational asymmetry constrains player 1’s expected payoff to be

E(v1(Θ2)) without regard to the actual realizations of θ2. This will be the key to the ineffi-

ciency showcased in this model. In section 4 I construct an example where type dependent

reservation payoffs arise as the equilibrium payoffs from a lottery contest. Although a contest

is clearly inefficient, and consequently the equilibrium payoffs from a contest will endogenously

satisfy the inequality in (3), we will find that the inequality in (4) may still hold.
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2.1 First Best

In this model inefficiency arises in a natural and simple way. I characterize this in Lemma

1 and illustrate it in section 4 with the help of an example. The main result of the paper,

namely the mechanism design problem, will be introduced and solved in section 3.

Observation 1. Ex-post efficiency is attained only if the object is allocated to player 1.

As argued earlier, when inequality (3) is satisfied, there is an inefficiency when the players

end up with their reservation payoffs. Since player 1 always values the object more, it is

more efficient to allocate it to her in exchange for a transfer to player 2. This allocation

problem can be tackled using a mechanism design approach. Let the expected payoffs from

the mechanism be µ1 and µ2(θ2) for players 1 and 2 where

µ1 = β1θ1 + t1 and µ2(θ2) = β2(θ2)θ2 + t2(θ2). (5)

β1 and β2(θ2) are the probabilities with which the object is allocated to player 1 and 2

respectively and t1 and t2(θ2) are the corresponding transfers. As the object could be divisible,

β1 and β2(θ2) may also be interpreted as the share of allocated to player 1 and 2. These payoffs

are the interim expected payoffs from the mechanism. The ex-post payoffs would typically

differ from these. For instance, the actual transfer that player 1 makes may depend on the

declaration of player 2. However since there is full commitment, once the players agree on a

mechanism to allocate the surplus they must accept the ex-post allocation.4 The allocations

will need to satisfy the IC constraint for player 2 and the interim IR constraints for the two

players. If player 1 unilaterally refuses to participate in the mechanism she expects to receive

E(v1(Θ2)). Hence the IR constraint for player 1 is µ1 ≥ E(v1(Θ2)). Similarly if player 2

unilaterally refuses to participate in the mechanism he expects to receive v2(θ2) and hence

his IR constraint is µ2(θ2) ≥ v2(θ2).

Since player 1’s valuation of the object is always greater than that of player 2, for full

efficiency β2(θ2) = 0, ∀θ2 or conversely β1 = 1 is necessary.5 More generally we will assume

ex-post surplus feasibility and ex-post budget feasibility throughout the paper.

Definition 1. Allocation is defined to be ex-post surplus feasible when

β1(θ2) + β2(θ2) ≤ 1 ∀θ2 (6)

and ex-post budget feasible when

t1(θ2) + t2(θ2) ≤ 0 ∀θ2 (7)

4Without full commitment, player 2 must consider the impact his declaration has on the ex-post reservation
payoffs. This model is analyzed in Aney (2012).

5The object being allocated to player 1 is necessary but not sufficient for full efficiency since part of the transfers
made by the players may be burnt.
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Ex-post surplus feasibility implies that the probability or share of the object cannot add

to greater than one across the two players for any realization of θ2. Second, the sum of

transfers made to the two players can never be positive since this implies the presence of a

third party subsidy. Note that budget feasibility subsumes budget balance but allows some

transfers to be burnt. However we will see in the surplus maximizing mechanism in section 3

that this is never optimal.

Lemma 1. First best under ex-post surplus and budget feasibility is implementable if and

only if

E(v1(Θ2)) + v2(θ2) ≤ θ1 ∀θ2 ∈ [θ2, θ2]. (8)

Proof. To start with note that since we require β2(θ2) = 0 for all θ2 in the first best, t2(θ2)

must some constant t2 to ensure incentive compatibility. If not, player 2 will make the

declaration that yields the highest transfer. Hence we have t2(θ2) = t2 for all θ2.

I will first prove sufficiency. Set t2 = max{v2(θ2)}. This satisfies IR constraint of player

2 for any type θ2. Since E(v1(Θ2)) ≤ θ1 −max{v2(θ2)} the IR constraint of player 1 is also

satisfied. This shows that the first best is implementable.

I will now prove necessity. Consider the case when there exists a θ2 such that E(v1(Θ2))+

v2(θ2) > θ1. To ensure the IR constraint is satisfied for player 2 of any type we need

t2 ≥ max{v2(θ2)}. This however violates the IR constraint for player 1. To see this note that

ex-ante budget feasibility implies t2 ≤ −t1. Hence we must at least have −t1 ≥ max{v2(θ2)}.
Substituting this into the IR constraint of player 1 we find that E(v1(Θ2)) > θ1−max{v2(θ2)}.
This shows that the first best is not implementable.

This observation shows that if the overestimation of her reservation payoff by player 1 is

large enough, it is impossible to allocate the object to her while satisfying the IR constraint

of player 2. It is worth noting that the condition under which the first best is possible does

not rely directly on the distribution of player 2’s type, which could be discrete or continuous.6

There is a connection between this inefficiency result and the one presented in the litera-

ture on interdependent valuations. Define net valuations as the difference between valuations

and the reservation payoff. Then the net valuations of player 1 and 2 are

θ1 − E(v1(Θ2)) and θ2 − v2(θ2) (9)

and these depend on the type of the player 2. Jehiel and Moldovanu (2001) show in a

related environment that efficiency is hard to get with interdependent valuations. Mezzetti

(2004) critiques their paper and shows that efficiency is always possible if transfers can be

conditioned on players’ observation of their payoffs after an outcome is decided. However

there are important differences between these results and the result in Lemma 1. First, the

interdependence here is at the level of net valuations, not valuations. In particular, efficiency

6Condition in (8) is reminiscent of the condition in Makowsky and Mezzetti (1994) who show that this condition
is necessary and sufficient for ex-post efficiency in a private values setting with several players. However for this
the distribution of Θ2 needs to satisfy a richness property that is not required here.
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here does not mean assigning the object to the player with the highest net valuation, but the

one with the highest valuation. As a result the inefficiency result here does not follow from

Jehiel and Moldovanu (2001). Second, efficiency requires that the object be given to player

1 and the reservation payoffs are never realized. Consequently player 1 does not discover

anything about player 2’s type. Hence the innovation of the two stage mechanism used in

Mezzetti (2004) would not work here.7

To see the intuition for this result note that the object must always be allocated to player 1

in exchange for a transfer to player 2 to attain the first best. Consequently the only incentive

compatible transfer schedule is one that is flat in the declaration of player 2. However if

v2(θ2) is large enough for some θ2, it will not be possible to transfer enough to player 2 while

satisfying the IR constraint of player 1. As a consequence of this whenever there exists a θ2

such that E(v1(Θ2)) + v2(θ2) > θ1, we will find in section 3 that there exists some inefficiency

as we will need β2(θ2) > 0 for some θ2.

Corollary 1. First best is implementable whenever ex-post budget feasibility is relaxed.

Proof. Since player 1 values the object more than player 2, allocating the object to player 1

along with a transfer to player to of t2(θ2) = max{v2(θ2)}, ∀θ2 will ensure the first best. These

transfers are feasible if budget feasibility is relaxed since the constraint t2(θ2) ≤ θ1−E(v1(Θ2))

no longer applies.

This corollary follows from the results in Groves (1973), Arrow (1979) and d’Aspremont

and Gerard-Varet (1979) that prove the feasibility of the first best in this environment when-

ever budget feasibility is relaxed.

In this section I have constructed an example where type dependent reservation payoffs

arise as the equilibrium payoffs from a default game that is clearly inefficient but still satisfies

(4). This clarifies the point that the reservation payoffs could arise from a class of inefficient

games, that yield payoffs that satisfies inequality (3) and consequently players prefer to avoid.

However since the payoffs also satisfy inequality (4), the first best allocation is not attainable.

Moreover, this section shows how this model applies to a situation with incomplete property

rights.

3 Second best

In this section I will derive the main results of the paper. Since we are concerned with the

second best, we can restrict our attention to the case where there exists a θ2 such that

E(v1(Θ2)) + v2(θ2)− θ1 > 0. (10)

When this condition is satisfied, we are in the second best where player 2 must be allocated

the object with positive probability.

7I thank Claudio Mezzetti for pointing this out.
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In this section I first derive the necessary and sufficient condition for the existence of

an implementable allocation in Lemma 2. Even though this guarantees that players can do

better than their reservation payoffs, it falls short of providing us the surplus maximizing

mechanism. This question is tackled in Propositions 1 and 2. For characterizing the surplus

maximizing mechanism we need to characterize the set of implementable functions that are

‘proximate’ to the reservation payoff of player 2. More importantly we need to ensure that

this set is compact since this set is the domain over which the optimization yielding the

surplus maximizing mechanism is conducted. In Proposition 1 I show that using a procedure

described in the appendix, it is possible to recover such a set as long as the reservation payoff

of player 2 satisfies some mild conditions. Moreover, this result also proves that the resulting

set is compact. In Proposition 2, the surplus maximizing mechanism is derived using the set

of functions derived in Proposition 1. Finally in section 4 present an application of the model,

show the impossibility of reaching the first best, and solve for the second best mechanism.

To proceed further it is necessary to specify the distribution of θ2. For now I assume that

θ2 is drawn from a continuous distribution with a probability density function f(θ2) on the

interval [θ2, θ2]. As a result of the revelation principle we can restrict our attention to a direct

mechanism where player 2 makes a declaration θ̃2 and gets a payoff

µ2(θ̃2) = θ2β2(θ̃2) + t2(θ̃2) (11)

where β2(θ̃2) ∈ [0, 1]. Since quasi linear payoffs of this form satisfy the single crossing property,

θ2β
′
2(θ2) + t′2(θ2) = 0 and β′2(θ2) ≥ 0 ∀θ2, (12)

are each necessary, and together sufficient, to ensure that the incentive compatibility con-

straint for player 2 is satisfied.8 Using the well known procedure first introduced in Mirrlees

(1971) we know that

∂µ2(θ2)

∂θ2
= β2(θ2) + θ2β

′
2(θ2) + t′2(θ2) = β2(θ2) (13)

implying that under incentive compatibility the expected payoff from negotiations for player

2 of type θ2 is

µ2(θ2) = µ2(θ2) +

∫ θ2

θ2

β2(w)dw. (14)

From (14) we have µ′2(θ2) = β2(θ2) ∈ [0, 1]. Using this and (14) we can rewrite the constraints

in (12) as constraints on µ2(θ2) as

µ′2(θ2) ∈ [0, 1] and µ′′2(θ2) ≥ 0. (15)

The constraints in (15) are merely a restatement of constraints that are known to be necessary

8See chapter 2.3.3.1 in Bolton and Dewatripont (2005).
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and sufficient for incentive compatibility. In addition to the IC constraints in (15), player 2’s

payoff must also satisfy the IR constraint, which is

µ2(θ2) ≥ v2(θ2). (16)

Since player 1’s type is publicly observed we only need to satisfy her IR constraint, which is

µ1 ≥ E(v1(Θ2)). Once we find a µ2(θ2) satisfying the constraints in (15) we can recover

β2(θ2) = µ′2(θ2) and t2(θ2) = µ2(θ2)− θ2µ
′
2(θ2). (17)

The key problem of deriving the surplus maximizing mechanism that is unique to this

setting is the following. Since we have not imposed any restriction on v2(θ2), it may be the

case that v2(θ2) does not satisfy the conditions in (15), that is, we may not have v′2(θ2) ∈ [0, 1]

and v′′2(θ2) ≥ 0. As a result of this we need to find the function that is ‘closest’ to v2(θ2) but

does satisfy (15), so that we may implement it while minimizing the inefficiency arising from

allocating the object to player 2.

This problem may be solved in the following three steps. First we find a function or

functions that satisfy the IC constraints in (15) and the IR constraint in (16) for player 2.

Second, we restrict our attention to those functions, which if implemented, would also satisfy

the IR constraint of player 1. Finally, if there are two or more functions that satisfy these

constraints we need to identify the one that minimizes the inefficiency that arises in the second

best. Let us consider the first step and construct a set Ψ composed of all functions that satisfy

the IR and IC constraints of player 2. We call such a function a proximate implementable

function.

Definition 2. A proximate implementable function η(θ2) for v2(θ2) is defined on θ2 in the

interval [θ2, θ2]. It is differentiable except at finitely many points, continuous, and convex,

with

η′(θ2) ∈ [0, 1], and η(θ2) ≥ v2(θ2) (18)

and there does not exist another function η̃(θ2) satisfying the same constraints such that

η(θ2) ≥ η̃(θ2) for all θ2 and η(θ2) > η̃(θ2) for some θ2. Let Ψ be the set of all proximate

implementable functions for v2(θ2).

Since we allow proximate functions to be non-differentiable at finitely many points, we

need to appropriately define η′(θ2) to ensure its existence for all θ2. For each η(θ2), let S be

the set of points where η(θ2) is non differentiable. Since the derivative of η(θ2) is not defined

at points s ∈ S, define

η′(θ2) =

{
limθ2→s−

η(θ2)−η(s)
θ2−s if θ2 = s ∈ S

∂η(θ2)
∂θ2

otherwise.
(19)

This definition merely ensures that η′(θ2) is well defined at all points in the interval [θ2, θ2].
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We can now proceed to the second step of restricting our attention to those elements of Ψ

that also satisfy the IR constraint for player 1 when implemented.

Lemma 2. For any v2(θ2) defined on the interval [θ2, θ2], an allocation satisfying ex-post

budget and surplus feasibility, IC and IR constraints exists if and only if there exists an

η(θ2) ∈ Ψ such that

E(η(Θ2))−
∫ θ2

θ2

(θ1 − θ2)η′(θ2)f(θ2)dθ2 ≤ θ1 − E(v1(Θ2)). (20)

Proof. By definition 2 we know that Ψ is the collection of functions η(θ2) that satisfy the IC

and IR constraint of player 2. Moreover, these function cannot be improved upon since we

rule out η(θ2) if there exists a η̃(θ2) that satisfies the constraints in (18) and η(θ2) ≥ η̃(θ2)

for all θ2 and η(θ2) > η̃(θ2) for some θ2.

Using (17), we can construct the corresponding allocation for a given η(θ2), and we have

β2(θ2) = η′(θ2) and t2(θ2) = η(θ2)− θ2η
′(θ2) for player 2. For player 1 we can at most have

β1 = 1 − E(β2(Θ2)) and t1 = −E(t2(Θ2)). Hence, when the payoff of player 2 is η(θ2), the

payoff of player 1 is at most β1θ1 + t1, which equals

θ1 − E(η(Θ2))−
∫ θ2

θ2

(θ1 − θ2)η′(θ2)f(θ2)dθ2. (21)

This satisfies the IR constraint if and only if (20) is satisfied.

This result shows the necessary and sufficient condition for the existence of an incentive

compatible and ex-post budget feasible allocation that makes both players, at least weakly

better off. This is what the inequality in (20) ensures. In general the function η(θ2) need not

be unique. Although all functions η(θ2) that satisfy inequality in (20), make the two players

better off, typically there will be one element that dominates the others – namely the surplus

maximizing mechanism. This will be characterized in Proposition 2. Before turning to this

problem, we need to know how the set Ψ is derived, and ensure its compactness. This is what

Proposition 1 does.

Proposition 1. When v2(θ2) is twice differentiable and either concave or convex, the set Ψ

may be recovered using the procedure described in steps 1 – 8 in the appendix. Furthermore,

under these conditions, the set Ψ is compact.

Proof. Proof in the appendix.

Proposition 1 shows that following the procedure described in the appendix we can recover

the set Ψ which includes all proximate implementable functions for a given v2(θ2) under the

assumption that v2(θ2) is twice differentiable and either concave or convex. In particular

when v2(θ2) is convex, Ψ has only one element. This is established in step 5 of the procedure
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in the appendix. If v2(θ2) is concave, there are infinitely many proximate implementable

functions that are potential candidates to be used for the construction of the surplus maxi-

mizing mechanism. The characterization of the surplus maximizing mechanism that follows

in Proposition 2 requires optimization over the set Ψ. For this optimization exercise to yield

a solution, we need Ψ to be compact. From Proposition 1 we know that this is guaranteed

as long as v2(θ2) is either concave or convex.

Proposition 2. Assume v2(θ2) is twice differentiable and either concave or convex, (θ1 −
θ2)f(θ2) is non-increasing in θ2, and there exists an η(θ2) satisfying (20). The surplus max-

imizing mechanism must take the form

β2(θ2) = µ′2(θ2) and t2(θ2) = µ2(θ2)− θ2µ
′
2(θ2) if θ2 ≥ θ2 > θ̂2,

β2(θ2) = 0 and t2(θ2) = µ2(θ̂2) if θ̂2 ≥ θ2 ≥ θ2,

β1 = 1− E(β2(Θ2)) and t1 = −E(t2(Θ2)).

(22)

where

µ2(θ2) = argmax
η(θ2)∈Ψ

(∫ θ2

θ̂2

(θ2 − θ1)η′(θ2)f(θ2)dθ2

)
(23)

and θ̂2 is the highest value of θ2 that satisfies

E(v1(Θ2)) = θ1 − F (θ̂2)η(θ̂2)−
∫ θ2

θ̂2

(θ1 − θ2)η′(θ2)f(θ2)dθ2. (24)

Proof. The social planner’s problem is to maximize µ1 + E(µ2(Θ2)) subject to the IR con-

straints for the two players and the IC constraint for player 2. To begin with note that in the

surplus maximizing mechanism we must have

β1 = 1− E(β2(Θ2)) and t1 = −E(t2(Θ2)). (25)

This is because

β1 > 1− E(β2(Θ2)) or t1 > −E(t2(Θ2)) (26)

will violate budget or surplus feasibility and

β1 < 1− E(β2(Θ2)) or t1 < −E(t2(Θ2)) (27)

can always be improved upon by allocating the unused expected surplus or expected transfers

to player 1 without violating any constraints, thereby increasing total surplus. Using these

two constraints, the social planner’s problem modifies to

min
β2(θ2)

∫ θ2

θ2

(θ1 − θ2)β2(θ2)f(θ2)dθ2, (28)

subject to the IR constraints of the two players, and the IC constraint of player 2.
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Ignoring for now the problem of identifying the optimal η(θ2) ∈ Ψ, and assuming that

the optimal η(θ2) is known, we must have µ2(θ2) ≥ η(θ2) for all θ2 since µ2(θ2) < η(θ2) will

violate either the participation or the IC constraints of player 2. Given (14), for each θ2 we

need ∫ θ2

θ2

β2(x)dx ≥ η(θ2)− µ2(θ2). (29)

We will see that the solution to (28), will correspond to the solution of minimizing

∫ θ2

θ2

β2(x)dx (30)

with respect to β2(x) subject to (29). To minimize (30) while ensuring that (29) is satisfied,

we can see that µ2(θ2) must be set as high as possible as this allows us to lower
∫ θ2
θ2
β2(x)dx.

Let θ̂2 be the value of θ2 ∈ [θ2, θ2] such that η(θ̂2) = µ2(θ2) is the highest value of µ2(θ2)

feasible due to budget feasibility. For a player 2 with a type θ2 > θ̂2 the constraint (29)

modifies to ∫ θ2

θ̂2

β2(x)dx ≥ η(θ2)− η(θ̂2). (31)

The lowest possible β2(θ2) that satisfies this is

β2(θ2) = η′(θ2) for θ2 > θ̂2. (32)

By construction this satisfies the IR constraint and the IC constraint for player 2 with type

θ2 > θ̂2. For θ2 ≤ θ̂2 we can simply set β2(θ2) = 0 and µ2(θ2) = t2(θ2) = η(θ̂2). This satisfies

the IR and IC constraints for a player 2 with type θ2 ≤ θ̂2. Since
∫ θ2
θ̂2
β2(θ2)dθ2 is decreasing

in θ̂2 we can solve for the highest possible θ̂2 that satisfies equation (24), which is the IR

constraint for player 1. This gives us the allocation in (22).

We will now see that the solution we have derived corresponds to the solution for (28).

Consider a b(θ2) 6= β2(θ2) such that

∫ θ2

θ2

(θ1 − θ2)b(θ2)f(θ2)dθ2 <

∫ θ2

θ2

(θ1 − θ2)β2(θ2)f(θ2)dθ2. (33)

I will show by contradiction that an implementable b(θ2) cannot exist since (θ1 − θ2)f(θ2) is

non-increasing in θ2. First note that β2(θ2) minimizes
∫ θ2
θ2
β2(x)dx subject to the constraint

in (29). Hence we must have

∫ θ2

θ2

b(x)dx >

∫ θ2

θ2

β2(x)dx. (34)

Second note that we must have b(θ2) > 0 for some interval in [θ2, θ̂2]. If not, following from
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(33), we must have

∫ θ2

θ̂2

(θ1 − θ2)b(θ2)f(θ2)dθ2 <

∫ θ2

θ̂2

(θ1 − θ2)β2(θ2)f(θ2)dθ2. (35)

But since β2(θ2) is determined when the constraint in (29) binds for θ2 > θ̂2, b(θ2) must

violate this constraint for the inequality in (35) to be satisfied, and consequently such a b(θ2)

is not implementable. Hence we must have an interval in [θ2, θ̂2] where b(θ2) > 0. However,

recall that (θ1 − θ2)f(θ2) is non-increasing in θ2. This implies that (33) cannot be true. To

see this construct c(θ2) such that

∫ θ2

θ2

b(x)dx =

∫ θ2

θ2

c(x)dx, (36)

and c(θ2) = 0 for θ2 ≤ θ̂2. The total inefficiency with c(θ2) must satisfy

∫ θ2

θ̂2

(θ1 − θ2)c(θ2)f(θ2)dθ2 <

∫ θ2

θ2

(θ1 − θ2)b(θ2)f(θ2)dθ2, (37)

since (θ1 − θ2)f(θ2) is non-increasing in θ2. However since
∫ θ2
θ2
c(x)dx =

∫ θ2
θ2
b(x)dx >∫ θ2

θ2
β2(x)dx, and c(θ2) = β2(θ2) = 0 for θ2 ≤ θ̂2, we must have

∫ θ2

θ2

(θ1 − θ2)c(θ2)f(θ2)dθ2 >

∫ θ2

θ2

(θ1 − θ2)β2(θ2)f(θ2)dθ2. (38)

This contradicts (33), proving that β2(θ2) is optimal given the optimal η(θ2).

Finally the optimal η(θ2) ∈ Ψ is found by choosing η(θ2) that minimizes the inefficiency

resulting from the second best allocation, which is equivalent to the solution of (23). A

solution to (23) is guaranteed to exist by the Weierstrass theorem since the integral is a

continuous function over the domain Ψ, which is guaranteed to be compact by Proposition 1

when v2(θ2) is either concave or convex.

Proposition 2 characterizes the surplus maximizing mechanism. We see that in the surplus

maximizing mechanism, a player 2 with type θ2 less than a threshold θ̂2 will be allocated the

object with zero probability. The threshold θ̂2 is endogenously determined, and is set as

high as possible at the point where the IR constraint of player 1 binds. This result relies on

(θ1 − θ2)f(θ2) being non-increasing in θ2. If this assumption is violated, it is not possible to

impose a structure on the surplus maximizing mechanism and the shape of β2(θ2) will vary

with the distribution of θ2. In general, it may then become optimal to allocate surplus to

player 2 with type lower than θ̂2 with positive probability. However, although it is not possible

to characterize the surplus maximizing mechanism in this case, Lemma 2 shows that as long

as there exists at least one η(θ2) in the set Ψ that satisfies (20), it is possible to implement
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an allocation that at least weakly dominates the reservation payoffs for both players.

The result in Proposition 2 also relies on v2(θ2) being twice differentiable and either con-

cave or convex. This is a simplifying assumption that is needed in Proposition 1 to ensure

that Ψ is compact. Compactness is sufficient (although not necessary) for the optimization

exercise in Proposition 2 to yield the surplus maximizing mechanism.9 In the absence of

compactness we are left only with the result in Lemma 2 that guarantees at least one imple-

mentable allocation that dominates the reservation payoffs, but without the certainty about

the existence the surplus maximizing mechanism. In particular in the the absence of com-

pactness of Ψ it may be possible that for any η(θ2) ∈ Ψ that satisfies the IR constraint of

player 1, there may exist another element in Ψ that generates more total surplus.

4 An Application

Consider an intellectual property dispute between two firms. The two firms are using a

technology that each firm claims to have patented. Since the scope of the patent held by

each firm is somewhat broad, both firms have a plausible claim over the technology they are

using. Firm 1 is a large publicly listed firm with expected profits that are publicly observable.

Consequently it is known that if firm 1 operates the technology exclusively, it will lead to

expected profits of θ1. Firm 2 is a small new firm and certain aspects of its production process

are not publicly observable. However it is known that since it is a smaller firm, it does not

enjoy economies of scale, and is consequently less efficient than firm 1. If firm 2 has the

exclusive right to operate the technology, its profits are either θ2 with probability q ∈ (0, 1)

or θ2 = 0 with probability 1 − q. If either of the two firms chooses not to negotiate, the

dispute will be resolved by the court. Assume for now that the refusal to negotiate reveals

nothing about the type of player 2 and that the posterior beliefs of firm 1 are the same as its

prior. We will see in section 4.3 that refusal to negotiate is off-equilibrium and we are free to

specify off-equilibrium beliefs in this way. To simplify things further, assume that the market

value of the technology is zero and this implies that neither firm wants to acquire exclusive

right to it for its resale value. We can treat this dispute as a multi-stage game where the

stages are specified as follows:

Timeline:

1. The two firms independently choose whether to litigate or negotiate.

2. If both firms have chosen to negotiate, their payoffs are determined by the surplus

maximizing mechanism in Proposition 3 and the game ends.

3. If either of the two firms has chosen not to negotiate, litigation is triggered. In this case

firm 1 updates its belief about firm 2 and the two firms simultaneously choose litigation

effort. The court determines the allocation and the game ends.

9For a formal statement of the Weierstrass Theorem see Ok (2007).
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We can solve this game backwards by starting with the litigation sub-game. The payoff from

litigation will become the reservation payoffs that define the IR constraints of the firms in

stage 1. In the following section I model litigation as a contest. In section 4.4 the results are

extended to the case where litigation is an unspecified Bayesian game and the distribution of

types for firm 2 is continuous.

4.1 Litigation Game

Following a large literature10 that models litigation as a contest, I assume that the two firms

face the following objective functions in court.

θ1P(x̃1, x̃2)− x̃1 and θ2(1− P(x̃1, x̃2))− x̃2

where

P(x̃1, x̃2) =

 1 if x̃1 = x̃2 = 0
x̃λ1

x̃λ1+x̃λ2
otherwise, where λ ∈ (0, 1).

(39)

The Tullock contest11 has been used extensively for modeling litigation.12 Firm 1 and 2

non-cooperatively choose x̃1 and x̃2 respectively. These are the amounts the two firms spend

on litigation, for example the costs of legal counsel. Since the patent is indivisible, ex-post it

must be allocated to one of the two firms. P(x̃1, x̃2) is the probability with which the court

decides in favor of firm 1. We see that the probability with which the court allocates the

patent to a firm is increasing in its effort and decreasing in the effort of its opponent.13 This

could reflect the fact that lawyers who are more persuasive in court, are also more expensive

as they help their client win with a higher probability.14

We can solve for the equilibrium litigation payoffs for the firms. These will become

E(v1(Θ2)) and v2(θ2), the reservation payoffs of the firms, and any expected allocation at the

mechanism design stage must be greater than these to satisfy the IR constraints of the two

firms. To derive the equilibrium payoffs we must first compute the Bayesian Nash equilibrium

effort levels x1 and x2(θ2).

10See Cooter and Rubinfeld (1989) and Hay and Spier (1998) for a review.
11This is a close variant of the Tullock “lottery” contest function that has been studied in the contest literature.

See Skaperdas (1996) for its axiomatic foundations. The slight variation comes from the fact that P(x̃1, x̃2) = 1
rather than 1/2 when x̃1 = x̃2 = 0. This helps in avoiding issues of existence of equilibrium but is otherwise
innocuous. λ ∈ (0, 1) guarantees that the objective function is concave which ensures that we can rely on the first
order conditions to characterize the optimal efforts of the firms.

12Hirshleifer and Osborne (2001), uses the same function as the one used here. Farmer and Pecorino (1999), and
Katz (1988) also use the Tullock form while allowing for the court to treat the two parties asymmetrically. It is easy
to generalize the results presented here to the case when one of the two firms has a stronger claim to the technology
and consequently the court is more likely to rule in its favor. Since this doesn’t add anything substantial to this
example, I opt for the simpler formulation where the two sides are symmetric before the court. Finally Garfinkel
and Skaperdas (2007), and Robson and Skaperdas (2008), also use a generalization of the Tullock contest function
in the context of litigation.

13Since the firms bear their own costs, in this example the court follows the US fee shifting rule rather than
English one where it is not uncommon for the loser to be made to pay part of the winner’s costs.

14See Skaperdas and Vaidya (2009) for the axiomatic foundation for how persuasion may be modeled as a contest.
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First note that x2(0) = 0 as firm 2 is strictly worse off by exerting any positive effort

when its valuation is zero. This implies that the equilibrium payoff v2(0) = 0 irrespective of

the effort of firm 1. Hence the optimal effort levels for firm 1 and high value firm 2 are

x1 = argmax
x̃1

(
θ1q

x̃λ1

x̃λ1 + x2(θ2)
λ

+ (1− q)θ1 − x̃1

)
(40)

and

x2(θ2) = argmax
x̃2

(
θ2

x̃λ2
x1
λ + x̃λ2

− x̃2

)
. (41)

The first order conditions of the two firms give us

qθ1

θ2

=
x1

x2(θ2)
. (42)

Substituting this into the objective functions, and setting θ
λ
2

(qθ1)λ+θ
λ
2

=: γ, we have

E(v1(Θ2)) = θ1q(1−γ)(1−λγ)+θ1(1−q), v2(0) = 0, and v2(θ2) = θ2γ(1−λ(1−γ)).

(43)

Since γ is a function of q, we observe that v2(θ2) depends on the belief of firm 1.

4.2 Negotiations

In this section we will see that the first best outcome, that of allocating the surplus to firm 1

in exchange for a transfer to firm 2, is not implementable under budget balance. I will also

derive the surplus maximizing mechanism.

Before we do this we need to be mindful of the following issue when defining the IR

constraints of the two firms. In Bayesian games the equilibrium payoffs of the players are a

function of the beliefs of the other players. With the Tullock contest in (39), we see from

the expressions in (43) that the equilibrium payoffs for both firms are a function of q, the

prior with which firm 1 believes firm 2 to be a high type. This is not a problem when firm

1 contemplates a refusal to negotiate – in case of refusal to negotiate firm 1 learns nothing

about firm 2’s type and the reservation payoff of firm 1 is correctly computed to be E(v1(Θ2)).

However it is possible that refusal to negotiate by firm 2 conveys some information about

the type of firm 2. Since the Tullock contest equilibrium effort levels x1 and x2(θ2) depend

on this belief, this modifies v2(θ2). In other words, to compute the correct reservation payoff

that defines its IR constraint, firm 2 needs to consider what its reservation payoff would be

under the belief of firm 1 that is induced by firm 2’s refusal to negotiate. This issue does

not arise in section 2 and 3 since there the reservation payoff of player 2 does not depend on

player 1’s beliefs.

To deal with this issue I use perfect Bayesian equilibrium as the solution concept to
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solve this multi-stage game. In short this problem is resolved by adopting the following off-

equilibrium belief for firm 1– whenever firm 2 refuses to negotiate, firm 1’s posterior is equal

to its prior. Since in equilibrium firm 2 always negotiates, this restriction on off-equilibrium

beliefs will imply that the beliefs of firm 1 remain the same regardless of whether firm 2

negotiates, and this allows us to pin down the IR constraint of firm 2 to v2(θ2) in (43),

allowing us to solve for the surplus maximizing mechanism.

4.2.1 First Best

Before we verify that the first best is not implementable, note that condition (3) is satisfied

here and it is efficient to avoid litigation. To see this note

v1(θ2) + v2(θ2) < θ1 and v1(0) + v2(0) < θ1 (44)

where

v1(θ2) = θ1P(x1, x2(θ2))− x1 and v1(0) = θ1P(x1, x2(0))− x1. (45)

Noting that x2(θ2) and x1 are strictly positive it is easy to see that the inequalities in (44) are

satisfied. This is because both firms burn resources during litigation and this is a standard

inefficiency associated with contests. As a result it is more efficient to avoid litigation by

allocating the object to firm 1 in exchange for a transfer to firm 2. To see that this first best

allocation is not implementable we check that inequality in (4) may also hold in this example.

For this it is sufficient to show that

E(v1(Θ2)) + v2(θ2) >θ1 (46)

⇔ θ1q(1− γ)(1− λγ) + θ1(1− q) + θ2γ(1− λ(1− γ)) >θ1 (47)

⇔ θ1q(1− γ)(1− λγ) + θ2γ(1− λ(1− γ)) >qθ1 (48)

⇔ θ2(1− λ(1− γ)) >qθ1(2− λγ). (49)

Since γ is decreasing in q, the left hand side of (49) also decreases in q, while the right hand

side is increasing in q. Moreover γ → 1 as q → 0 and consequently as q → 0, the left hand

side goes to θ2 and the right hand side goes to zero. The continuity and monotonicity of the

two sides in q implies that there must exist a threshold q̂ ∈ (0, 1) such that inequality (4) is

satisfied for all q < q̂. Using Lemma 1 we can state the following.

Observation 2. It is not possible to allocate the patent to firm 1 in exchange for a transfer

to firm 2 when q < q̂.

To summarize, in this example we find that if the probability with which firm 2 is a high

type is low enough, it will not be possible for the two firms to reach the first best by allocating

the right to use the technology to firm 1 with probability one, in exchange for a transfer to

firm 2.
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4.2.2 Second Best

We can solve for the surplus maximizing mechanism in this application for the case when the

first best is not implementable. The reservation payoffs that define the firm’s IR constraint

are E(v1(Θ2)) and v2(θ2) from (43). Since the distribution of types here is discrete, the result

in this section is not subsumed in the result in Proposition 2 which was derived under the

assumption that the distribution of θ2 is continuous.

Proposition 3. The surplus maximizing mechanism always exists and comprises of

β2(θ2) = E(v1(Θ2))+v2(θ2)−θ1
θ2−qθ1

and t2(θ2) = v2(θ2)− β2(θ2)θ2

β2(0) = 0 and t2(0) = v2(θ2)− β2(θ2)θ2

β1 = 1− qβ2(θ2) and t1 = β2(θ2)θ2 − v2(θ2).

(50)

Proof. The IR constraints for firm 1 and 2 are

β1θ1 + t1 ≥ E(v1(Θ2)), β2(θ2)θ2 + t2(θ2) ≥ v2(θ2), and t2(0) ≥ 0 (51)

The IC constraints are

(β2(θ2)− β2(0))θ2 ≥ t2(0)− t2(θ2) ≥ (β2(θ2)− β2(0)) · 0. (52)

To minimize the inefficiency of the second best allocation we need to minimize β2(θ2). The

inequalities in (52) indicate that we can simultaneously reduce β2(θ2) and β2(0) while keeping

IC constraints intact. Hence we can set β2(0) = 0. The IC constraints simplify to t2(0) =

t2(θ2) = t2.

In the surplus maximizing mechanism we must have

β1 = 1− E(β2(Θ2)) and t1 = −E(t2(Θ2)) (53)

since

β1 > 1− E(β2(Θ2)) or t1 > −E(t2(Θ2)) (54)

are ruled out by surplus and budget feasibility and

β1 < 1− E(β2(Θ2)) or t1 < −E(t2(Θ2)) (55)

can be improved by allocating the excess surplus to firm 1 without violating any constraint.

Substituting β1 = 1 − E(β2(Θ2)) = 1 − qβ2(θ2) and t1 = −E(t2(Θ2)) = −t2 into the IR

constraints of two firms in (51) we have

(1− qβ2(θ2))θ1 − t2 ≥ E(v1(Θ2)), β2(θ2)θ2 + t2 ≥ v2(θ2), and t2 ≥ 0. (56)

The IR constraint of firm 1 and high type firm 2 indicate that we can keep both intact if
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we simultaneously decrease β2(θ2) and increase t2 till both constraints hold with an equality.

Once we do this we can solve for β2(θ2) and find that

β2(θ2) =
E(v1(Θ2)) + v2(θ2)− θ1

θ2 − qθ1

. (57)

To check that β2(θ2) ∈ (0, 1) note first that inequality (4) simplifies to inequality in (49) when

the reservation payoffs arise as the equilibrium payoffs from the contest in this example. Since

2−λγ > 1− 1λ(1− γ), inequality (49) implies that θ2 > qθ1 must hold when the first best is

not attainable. This implies that the denominator in (57) is positive. For β2(θ2) < 1 we need

θ2 + (1− q)θ1 > v1 + v2(θ2). To see this always holds, use expressions in (43) for E(v1(Θ2))

and v2(θ2), and note that

θ2 + (1− q)θ1 >E(v1(Θ2)) + v2(θ2) (58)

⇔ θ2 + (1− q)θ1 >qθ1(1− γ)(1− λγ) + (1− q)θ1 + θ2γ(1− λ(1− γ)) (59)

⇔ θ2(1 + λγ) >qθ1(1− λγ), (60)

which always holds since we have just shown that inequality (49) implies θ2 > qθ1. This

shows that β2(θ2) always exists. We can derive β1, t1, and t2 = t2(0) = t2(θ2) as

t2 = v2(θ2)− β2(θ2)θ2 t1 = −t2 and β1 = 1− qβ2(θ2)

Proposition 3 shows the best the two firms can do in this setting. Although this mechanism

involves some inefficiency since β2(θ2) > 0, it still pareto dominates the reservation payoffs.

At the optimal allocation, the IR constraint of firm 1 and a high type firm 2 bind and

consequently they must receive E(v1(Θ2)) and v2(θ2) respectively. However a low type firm

2 receives t2 > 0 and this is strictly greater that its payoff under the contest which is zero.

This illustrates the point that in this setting it is the low valuation firm 2 that receives an

informational rent. This appears to be a robust feature in this model as we also see it in

Proposition 2.

4.3 Equilibrium

Finally, using the allocations from the surplus maximizing mechanism derived in Proposition

3 we can derive the equilibrium of this game. I use perfect Bayesian equilibrium as the

solution concept. As is well known, such an equilibrium is defined by two elements – first,

the strategy of each firm must be sequentially rational, and second, the beliefs of firm 1 must

be updated using the Bayes rule wherever possible. The strategy for each firm comprises

of a unilateral decision of whether or not to negotiate and a litigation effort if litigation is

triggered. In addition to this we need to fully specify the beliefs of firm 1 about firm 2’s type

given the actions of firm 2 at each node.
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Observation 3. The following is a perfect Bayesian equilibrium of the game.

1. Firm 1 chooses to negotiate. If firm 2 chooses litigation (off-equilibrium) firm 1 chooses

effort x1 derived in equation (40).

2. Firm 2 chooses to negotiate. If firm 1 chooses litigation (off-equilibrium) it chooses

effort 0 if θ2 = 0 and the effort derived in equation (41) if θ2 = θ2.

3. Firm 1’s posterior is equal to its prior when firm 2 chooses to negotiate or litigate.

We can see that negotiation is an equilibrium by noting that given firm 1 chooses to

negotiate, a low type firm 2 is strictly better off by choosing to negotiate, and a high type

firm 2 is indifferent between negotiation and litigation. Hence negotiation is a best response

for firm 2. Similarly if firm 2 chooses to negotiate, it is a best response for firm 1 to negotiate

since it does not gain by triggering litigation. This is because we know from Proposition 3 that

firm 1 and high type firm 2 are pushed to their reservation payoffs in the surplus maximizing

mechanism whereas a low type firm 2 receives rents. Since firm 2 always negotiates, in

equilibrium the posterior belief of firm 1 must remain the same as its prior by Bayes rule.

The equilibrium satisfies this as the prior of firm 1 is used as the distribution to derive the

surplus maximizing mechanism in Proposition 3.

Note that it is also an equilibrium for both firms to choose litigation since conditional on

one firm triggering litigation, it is a best response for the other firm to also choose litigation.

However this equilibrium is less plausible since it involves the firms playing weakly dominated

strategies.

4.4 Extension

In this section I allow the litigation sub-game to be an unspecified Bayesian game. Moreover

instead of a discrete distribution, now firm 2’s type is drawn from a continuous distribution

with a probability density function f(θ2) on the interval [θ2, θ2] where (θ1 − θ2)f(θ2) is non-

increasing in θ2. The timeline of the game is the same as the one we used at the start of

section 4. We will see that the surplus maximizing mechanism exists in this setting and is

characterized by the one in Proposition 2.

Let the equilibrium payoffs of the two firms in the litigation sub-game, under the prior

belief of firm 1, be E(v1(Θ2)) and v2(θ2). Assume that the Bayesian game is ex-post inefficient

in that these payoffs satisfy the inefficiency condition in (3). Assume for now that the posterior

belief of firm 1 about firm 2’s type remains the same as the prior if firm 2 chooses to litigate.

Just as before, litigation will be off-equilibirum here and we will be free to specify the belief

this way in the perfect Bayesian equilibrium that follows. If E(v1(Θ2)) and v2(θ2) satisfy the

condition in (4), then the first best will not be implementable since Lemma 1 applies. Hence

the patent cannot always be allocated to firm 1. The following Proposition shows that in this

setting the surplus maximizing mechanism from Proposition 2 applies.
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Proposition 4. Assume that (θ1 − θ2)f(θ2) is non-increasing in θ2, and the reservation

payoffs arise from an inefficient Bayesian game where v2(θ2) is twice differentiable. The

surplus maximizing mechanism is characterized by the one in Proposition 2.

Proof. To prove this I will first show that η(θ2) = v2(θ2) is unique. Next we will see that

v2(θ2) must satisfy the inequality in (20) since it represents the equilibrium payoff from a

Bayesian game that is inefficient. Finally the assumption that (θ1−θ2)f(θ2) is non-increasing

in θ2 ensures that all conditions in Proposition 2 are satisfied and it follows that the surplus

maximizing mechanism is the one characterized there.

First, we will see that when v2(θ2) arises from a Bayesian game and the preferences of

the firms are quasi-linear, we must have v′2(θ2) ∈ [0, 1] and v′′2(θ2) ≥ 0. By the revelation

principle, for any equilibrium of a Bayesian game there exists an equivalent direct mechanism

where firm 2 declares its true type. The equilibrium payoff v2(θ2) can be represented as

v2(θ2) = θ2α(θ2) + x(θ2), (61)

where α(θ2) is equilibrium probability with which the patent is allocated to firm 2 of type

θ2 and x(θ2) is the corresponding equilibrium transfer in the direct mechanism. Let firm 2

declare a type θ̃2 in the direct mechanism. Hence while playing the direct mechanism firm 2

maximizes

max
θ̃2∈[θ2,θ2]

(θ2α(θ̃2) + x(θ̃2)) (62)

For θ̃2 = θ2 to be the equilibrium, the first and second order conditions simplify to

α(θ2) ≥ 0 and α′(θ2) ≥ 0. (63)

Since α(θ2) must take a value in the interval [0, 1], and v′2(θ2) = α(θ2), we find that v′2(θ2) ∈
[0, 1]. Similarly since v′′2(θ2) = α′(θ2), we must have v′′2(θ2) ≥ 0. This implies that v2(θ2) =

η(θ2) is unique.

Second, we have assumed that the Bayesian game is inefficient in that condition (3) is

satisfied. This implies that we must have

E(v1(Θ2)) + E(v2(Θ2)) < θ1 (64)

which is sufficient for the inequality in (20) to be satisfied since η(θ2) = v2(θ2). Finally, we

have assumed that (θ1 − θ2)f(θ2) is non-increasing in θ2. This ensures all three conditions

required for the surplus maximizing mechanism in Proposition 2 are satisfied.

Proposition 4 shows that we can use the surplus maximizing mechanism from Proposition 2

when reservation payoffs arise from an inefficient Bayesian game. Using this we can construct

a perfect Bayesian equilibrium such that both firms prefer to negotiate and receive these

allocations rather than choosing to litigate.
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To make this point clearly define σ1 and σ2(θ2) as the equilibrium strategies in the liti-

gation sub-game when it is played under the prior beliefs of firm 1. These are the strategies

that lead to the equilibrium payoffs E(v1(Θ2)) and v2(θ2). We must remain agnostic about

what these strategies are since we have not specified the litigation sub-game. In particular

they may represent pure or mixed strategies. Moreover the litigation sub-game could be a

simultaneous or a sequential game played over one or many periods with moves and coun-

termoves. In this case σ1 and σ2(θ2) would represent the entire equilibrium profile for each

firm that specify the strategy and beliefs conditional on each node of the litigation sub-game

being reached.

Observation 4. The following is a perfect Bayesian equilibrium of the game.

1. Firm 1 chooses to negotiate. If firm 2 chooses litigation (off-equilibrium) firm 1 chooses

action σ1.

2. Firm 2 chooses to negotiate. If firm 1 chooses litigation (off-equilibrium) firm 2 chooses

action σ2(θ2).

3. Firm 1’s posterior is equal to its prior when firm 2 chooses to negotiate or litigate.

This observation shows that given the existence of a surplus maximizing mechanism we can

construct an equilibrium where the firms choose to negotiate.15 As before firm 1’s posterior

being equal to its prior is consistent in equilibrium since firm 2 always negotiates.

4.5 Discussion

The negotiation equilibrium derived here relies on the assumption that the posterior belief

of firm 1 is equal to its prior in the event firm 2 chooses the off-equilibrium action of trig-

gering litigation. It is possible that the surplus maximizing mechanism changes when this

assumption is changed and that allocations that were previously not implementable become

implementable and vice versa. This assumption is made to micro-found the idea that the

reservation payoffs can arise as equilibrium payoffs from a Bayesian game. However, deriving

the surplus maximizing mechanism while allowing the posterior of firm 1 to be affected by

firm 2’s choice of triggering litigation in a more general way is an interesting avenue for future

work.

A firm chooses to negotiate only when it expects to receive an allocation that weakly

dominates its payoff from litigation. This is true as long as the firms expect negotiations to

yield a pareto dominating outcome relative to their reservation payoffs. However in the real

world there are situations where this may not be true. If for example, the negotiations are

constrained by a particular bargaining protocol, the expected allocation from negotiation will

be generally inferior to the one in the surplus maximizing mechanism and may even be lower

than the litigation payoff for at least one of the two firms.

15To be precise the existence of a surplus maximizing mechanism is sufficient but not necessary for constructing
such an equilibrium. We merely need that the reservation payoffs satisfy the condition in (20) which guarantees
the existence of at least one allocation that weakly dominates the reservation payoffs.
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It is also possible that ex-post, once firm 2 declares its type, firm 1’s modified reservation

payoff (now foregone) is actually greater than its ex-post allocation under the mechanism.

Since the firms commit to forgoing the default game once they agree to negotiate, the possibil-

ity of a change in the reservation payoffs induced by firms 2’s declaration does not create any

problems. However, if firms lacked the ability to commit, this imposes additional constraints

on the surplus maximizing mechanism possibly leading it its non-existence.16 Hence there is

an important implicit assumption in this framework – that negotiations between the firms as

captured by the mechanism are only constrained by IR constraints of the two firms and the

IC of firm 2 and moreover when a surplus maximizing allocation exists, then the firms expect

it to be picked when they choose to negotiate.

5 Conclusion

This paper embeds the Myerson and Satterthwaite (1983) model in a setting where prop-

erty rights are insecure. This insecurity allows for ex-post inefficiency under much weaker

conditions, in particular even when there is no uncertainty about which player values the

object more. This inefficiency arises when the reservation payoffs of the players depend on

the type of the informed player. This causes the reservation payoff of the uninformed player

to become unobservable to her. Consequently there are states where the uninformed player

overestimates her reservation payoff. I have shown that even when the reservation payoffs

involve some inefficiency, if this overestimation is large enough, it is impossible to implement

the first best. Taking type dependent reservation payoffs as given, the paper characterizes

the surplus maximizing mechanism and the necessary and sufficient condition required for its

existence. Finally I show an application of the model to a case of an intellectual property

dispute between two firms where type dependent reservation payoffs arise endogenously as a

consequence of property rights not being well defined.

This paper can be seen as an attempt to characterize a failure of the Coase theorem in the

environment where parties attempt to resolve their disputes efficiently when their reservation

payoffs are determined by conflict. The paper shows that even the best alternatives to conflict

may not deliver ex-post efficiency.
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Appendix

I now describe a procedure that will allow us to construct the set Ψ for a given v2(θ2), under

the assumption that v2(θ2) is twice differentiable, and either concave or convex on the interval

[θ2, θ2].

1. Check if there exists a θ2 such that v′′2(θ2) < 0. If yes, proceed to step 6. If no, then

proceed to step 2.

2. Construct a function η0(θ2) = v2(θ2) for all θ2. If η0(θ2) is non-decreasing, relable η0(θ2)

as η3(θ2) and proceed to step 5. If not, proceed to step 3.

3. Since η0(θ2) is convex, the lowest point in [θ2, θ2] where η0(θ2) is decreasing must be θ2.

Set

η1(θ2) = η0(θ2) ∀θ2. (65)

Check if η1(θ2) ≥ η0(θ2). If yes, then relabel η1(θ2) as η3(θ2) and proceed to step 5. If

no, then proceed to step 4.

4. Find the point a ∈ [θ2, θ2] such that η0(a) = η1(a) and η1(θ2) < η0(θ2) for all θ2 ∈ (a, θ2]

and set
η2(θ2) = η1(θ2) θ2 ≤ a
η2(θ2) = η0(θ2) θ2 > a

(66)

Since η0(θ2) is convex, η2(θ2) must be convex and we must have η2(θ2) ≥ v2(θ2). Proceed

to step 5.

5. Using (19) check if η′2(θ2) ≤ 1. If yes, then relabel η2(θ2) as η(θ2) and the procedure

finishes. If no, then identify the highest point a such that a+ η2(θ2)− θ2 = η2(a). If no

a ∈ [θ2, θ2] exists then construct the function η(θ2) such that

η(θ2) = θ2 + η2(θ2)− θ2 θ2 ∈ [θ2, θ2] (67)

and the procedure ends. If a ∈ [θ2, θ2] does exist then set

η(θ2) = θ2 + η2(θ2)− θ2 θ2 ∈ [a, θ2]

η(θ2) = η2(θ2) θ2 < a.
(68)
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Now we must have η′(θ2) ≤ 1 for all θ2 and the procedure ends.

6. Construct a function η0(θ2) = v2(θ2) for all θ2. If η0(θ2) is non-decreasing, relable η0(θ2)

as η1(θ2) and proceed to step 7. If η0(θ2) is non-increasing, set η(θ2) = η0(θ2) for all

θ2 and the procedure ends. If η0(θ2) increases and then decreases, then find a ∈ [θ2, θ2]

where η0(θ2) attains its maximum and set

η1(θ2) = η0(θ2) θ2 < a

η1(θ2) = η0(a) θ2 ≥ a.
(69)

and proceed to step 7.

7. Check if η′1(θ2) ≤ 1. If yes, relabel η1(θ2) as η2(θ2) and proceed to step 8. If not, identify

the point a ∈ [θ2, θ2] such that η′1(a) = 1. Due to concavity of η1(θ2) we must have

η′1(θ2) > 1 for θ2 < a. Construct

η2(θ2) = θ2 + η1(a)− a θ2 < a

η2(θ2) = η1(θ2) θ2 ≥ a.
(70)

Proceed to step 8.

8. For each point x ∈ [θ2, θ2] construct a function

η(θ2) = θ2η
′
2(x) + η2(x)− xη′2(x) (71)

and assign each η(θ2) to the set Ψ, and this procedure ends.

Proof of Proposition 1. When v2(θ2) is convex, steps 3 and 4 ensure that η(θ2) is increasing,

and step 5 ensures that 1 ≥ η′(θ2) ≥ 0. Note that in step 5 η′(θ2) < 1 for θ2 > a is not

possible since η(θ2) must be continuous and η′(θ2) < 1 for some θ2 > a implies that we must

also have η′(θ2) > 1 for some θ2 > a to satisfy the IR constraint η(θ2) ≥ η2(θ2). Hence the

lowest possible η(θ2) is defined by (67) and (68). We see from step 5 that η(θ2) is unique

when v2(θ2) is convex. When v2(θ2) is concave, step 6 ensures that η(θ2) is increasing and

step 7, like step 5 in case of convex v2(θ2), ensures that 1 ≥ η′(θ2) ≥ 0. In this case we have

a set of functions Ψ with elements η(θ2) which may be denoted as η(θ2;x) that correspond

to each point x ∈ [θ2, θ2].

I will now prove that Ψ is compact. When v2(θ2) is convex, η(θ2) is unique, and the set Ψ is

trivially compact. Consider the case when v2(θ2) is concave. In this case Ψ may be populated

with a continuum of functions. Let ψ : [θ2, θ2]→ Ψ, be defined by ψ(x)(θ2) = η(θ2;x) for all

x ∈ [θ2, θ2]. This function maps [θ2, θ2] onto Ψ since for all η ∈ Ψ, there exists an x ∈ [θ2, θ2]

such that ψ(x) = η(·;x). To see this note from step 8 that for each x ∈ [θ2, θ2], there exists

an η(θ2;x) that is constructed as a tangent to η2(θ2) at x.

Hence as [θ2, θ2] is compact, if ψ(x) is continuous for all x ∈ [θ2, θ2], then Ψ which is the

image of ψ is compact. By definition, ψ(x) is continuous at x ∈ [θ2, θ2] if for any ε > 0 there

exists a δ such that ‖ψ(x) − ψ(y)‖ < ε for all y ∈ [θ2, θ2] such that |x − y| < δ, where ‖·‖
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is the uniform norm. Therefore, by the definitions of ψ and η, we need to show that for any

ε > 0, there exists a δ such that for all y ∈ [θ2, θ2] such that |x− y| < δ,

‖ψ(x)− ψ(y)‖ = sup
θ2∈[θ2,θ2]

|η(θ2;x)− η(θ2; y)| (72)

= sup
θ2∈[θ2,θ2]

|θ2η
′
2(x) + η2(x)− xη′2(x)− θ2η

′
2(y)− η2(y) + yη′2(y)| (73)

≤ |η2(x)− η2(y)|+ θ2|η′2(x)− η′2(y)|+ |xη′2(x)− yη′2(y)| < ε . (74)

From step 8, we know that η2(θ2), η′2(θ2), and hence θ2η
′
2(θ2), are continuous when v2(θ2)

is twice differentiable and concave for all θ2 ∈ [θ2, θ2]. Hence, for any x ∈ [θ2, θ2] and any

ε/3 > 0 we can find δ1, δ2, δ3 such that |η2(x)−η2(y)| < ε/3 for all y ∈ [θ2, θ2] with |x−y| < δ1,

θ2|η′2(x) − η′2(y)| < ε/3 for all y ∈ [θ2, θ2] with |x − y| < δ2, and |xη′2(x) − yη′2(y)| < ε/3 for

all y ∈ [θ2, θ2] with |x− y| < δ3. Let δ := min(δ1, δ2, δ3). Then for any y ∈ [θ2, θ2] such that

|x− y| < δ, the inequality in (74) is satisfied, since each of the three terms in the sum is less

than ε/3, showing that ψ(x) is indeed continuous at any x ∈ [θ2, θ2].
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