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Abstract—Defects are prevalent in software systems. In order
to understand defects better, industry practitioners often catego-
rize bugs into various types. One common kind of categorization
is the IBM’s Orthogonal Defect Classification (ODC). ODC
proposes various orthogonal classification of defects based on
much information about the defects, such as the symptoms and
semantics of the defects, the root cause analysis of the defects,
and many more. With these category labels, developers can better
perform post-mortem analysis to find out what the common
characteristics of the defects that plague a particular software
project are. Albeit the benefits of having these categories, for
many software systems, these category labels are often missing.
To address this problem, we propose a text mining solution that
can categorize defects into various types by analyzing both texts
from bug reports and code features from bug fixes.

To this end, we have manually analyzed the data about
500 defects from three software systems, and classified them
according to ODC. In addition, we propose a classification-based
approach that can automatically classify defects into three super-
categories that are comprised of ODC categories: control and
data flow, structural, and non-functional. Our empirical evaluation
shows that the automatic classification approach is able to label
defects with an average accuracy of 77.8% by using the SVM
multiclass classification algorithm.

I. INTRODUCTION

Defects are common in software systems. There are various
kinds of defects. Some kinds correspond to wrong control
flows or data flows in a software system; others are related to
structural defects in the linkages of various classes, attributes,
and methods; yet others are non-functional defects. To ensure
reliability of software systems, the management of defects is
important. Understanding defect types and managing recurring
defects can help to suggest corresponding mitigation actions,
such as the deployment of an automated bug finding tool,
additional testing, developer retraining, etc., to prevent such
defects from recurring in the future. For example, IBM has
proposed a defect classification scheme referred to as Orthog-
onal Defect Classification (ODC) [11], [12] which has been
applied to various software systems in various industries [28],
[47]. ODC contains many orthogonal classifications based on
defect types, impact, and many more.

Despite the benefit of categorizing defects into types and
performing post-mortem analysis on the defects, many defects
are often not grouped into categories as such categorization
potentially involves much manual effort and the hectic sched-
ule of development teams may not have time budgeted for
bug categorization. Thus, there is a need for an automated
approach that could help developers in assigning category
labels to defects during post-mortem analysis.

In this paper, we propose a classification-based approach
that categorizes defects into three families: control and data
flow, structural, and non-functional. Our goal is to automatical-
ly classify a defect into one of the three families according to
the content of the bug report and the associated code changes
made to fix the bug. Given a large set of data about known
defects and their fixes, various textual features corresponding
to stemmed non-stop words are extracted from the bug de-
scriptions. Also, various code features corresponding to the
counts of various program elements are extracted from the
bug-fixing code. Based on these pieces of information, we train
a discriminative model that can classify a defect into one of the
three families. Since there are three classes, we use a multi-
class classification algorithm to establish the discriminative
model. We can then use the resultant discriminative model to
realize our goal of automatically labeling defect types.

We have evaluated our solution on 500 defects collected
from the JIRA repositories of three software systems. We
manually assign defect types to these 500 defects and use
them as ground truths. Our results show that our classification
model is promising. Measured in terms of average accuracy,
which is often used in other studies involving multi-class
classification [16], [46], our model could achieve an average
accuracy of 77.8%.

Our work enriches the existing studies that classify bug
reports and change requests. Antoniol et al. classify change
requests into defect reports or feature requests [2]. Menzies
and Marcus, and Lamkanfi et al. classify the severity of a
bug report [24], [31]. Huang et al. classify bug reports based
on their impact [22]. Orthogonal to these studies, our work
assigns defects into one of the three defect categories, namely
control and data flow, structural, and non-functional.

The contributions of this work are as follows:
1) We propose a solution that automatically classifies defects

into categories. These categories are used to tag defects
and could be used for post-mortem analysis. We leverage
both textual and code features, and multi-class classifica-
tion to infer these categories.

2) We have performed an empirical evaluation of our au-
tomated defect classification approach. The results based
on 500 manually labeled defects show that our model can
achieve an average accuracy of 77.8%.

The structure of this paper is as follows. In Section II, we
describe some preliminary materials on defect classification.
We present our overall framework in Section III. We elaborate
our pre-processing strategies in Section IV. We present the



TABLE I
DEFECT TYPES AND THEIR DESCRIPTIONS BASED ON ODC [1]

Defect Type Family Description
Algorithm/Method Control and Data Flow “Efficiency or correctness problems that affect the task and can be fixed by (re)implementing

an algorithm or local data structure without the need for requesting a design change ...”
Assignment/Initialization Control and Data Flow “Value(s) assigned incorrectly or not assigned at all ...”
Checking Control and Data Flow “Errors caused by missing or incorrect validation of parameters or data in conditional

statements ...”
Timing/Serialization Control and Data Flow “Necessary serialization of shared resource was missing, the wrong resource was serialized,

or the wrong serialization technique was employed ...”
Function/Class/Object Structural “The error should require a formal design change, as it affects significant capability, end-user

interfaces, product interfaces, interface with hardware architecture, or global data structure(s)
...”

Interface/O-O Messages Structural “Communication problems between modules, components, device drivers, objects, or func-
tions ...”

Relationship Structural “Problems related to associations among procedures, data structures and objects. Such
associations may be conditional ...”

list of textual and code features that we use to characterize a
bug in Section V. We describe our model learning and label
prediction steps in Section VI. We present the results of our
empirical evaluation in Section VII. We discuss related work
in Section VIII. Section IX concludes with future work.

II. DEFECT CLASSIFICATION

We describe preliminary materials on Orthogonal Defect
Classification (ODC) and state our problem definition.

A. Orthogonal Defect Classification

Orthogonal defect classification (ODC) is a classification of
defects proposed by Chillarege et al. at IBM and widely used
in the industry [11], [12], [22], [28], [47]. Within ODC, there
are various categories; each category groups defects based on
a particular criterion. Various criteria are proposed, including
defect types, impact, defect removal activities, triggers, targets,
qualifiers, ages, sources, etc.

In this work, we focus on the criterion with de-
fect types. ODC defines 7 defect types, including As-
signment/Initialization, Checking, Algorithm/Method, Func-
tion/Class/Object, Timing/Serialization, Interface/O-O Mes-
sages, and Relationship. These defect types and their mean-
ing, extracted from IBM’s ODC website1, are shown in
Table I. Further, we group these defect types into two fam-
ilies: control and data flow and structural. Defect types
Assignment/Initialization, Checking, Algorithm/Method, and
Timing/Serialization belong to the control and data flow fam-
ily, while defect types Function/Class/Object, Interface/O-O
Messages, and Relationship belong to the structural family.

In addition to ODC defect types, we find that there are
many entries in bug tracking systems explicitly marked as
defects that do not affect system code. For example, many
systems involve configuration files and defects could occur in
these configuration files. We find that a sizable proportion of
defects tracked in bug tracking systems belong to this kind.
Furthermore, during software evolution, often developers also
fix inconsistencies in program documentations, e.g., Javadocs,
comments, etc. These fixes are also often tracked in bug

1http://www.research.ibm.com/softeng/ODC/DETODC.HTM

tracking systems in a way similar to fixes for code defects.
Thus, we introduce an additional defect type family: non-
functional defects. This defect family captures errors that do
not affect the correct functioning of a software system or are
even not in the code.

B. Problem Definition

Given the three defect family labels (control and data
flow, structural, and non-functional), we aim to establish a
discriminative model that can automatically assign a defect
family label to a defect based on its bug reports containing
texts and its fixes containing code changes.

In this study, we predict one of the 3 defect families rather
than one of the 7 original ODC defect types. A multi-class
classification problem gets more difficult as the number of
classes (i.e., in our setting, possible defect labels) increases.
Thus, in our first study, we start with 3 defect labels, with the
goal of achieving reasonable average accuracy.

III. OVERALL FRAMEWORK

Our proposed approach is based on classification algorithms
and illustrated in Figure 1. The classification framework
consists of two phases: training and deployment.

In the training phase, we take a set of defects with known
defect family labels as input. Each defect is also associated
with its textual bug reports and bug fixing code. The output
of the training phase is a discriminative model that is able
to differentiate the 3 defect families: data and control flow,
structural, and non-functional.

In the testing phase, given a defect associated with its textual
reports and bug fixing changes but with no defect family
labels, we apply the discriminative model generated from the
training phase to automatically infer the defect family to which
the defect belongs.

A. Training Phase

The training phase has 4 components: text
preprocessor, code preprocessor, feature
extractor, and model learner. These components
would process defects with known defect family labels.
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Fig. 1. Our Classification Framework

Each defect is represented by two pieces of data: a textual
bug report and its bug fixing code. We need to convert these
pieces of data into a representation suitable to be used as input
to a machine learning algorithm. To that end, we perform
two pre-processing steps: text pre-processing and code pre-
processing, which correspond to the text preprocessor
and code preprocessor components in Figure 1 and are
explained further in Section IV.

Next step is feature extraction performed by the feature
extractor component in Figure 1. A feature is an individual
measurable attribute of a defect. The goal of the feature
extraction step is to reduce the defects to some important,
quantitative facets. In our setting, we can extract features
from both texts and code. Textual features include the word
tokens appearing in the pre-processed bug reports. Code
features include the counts of various program elements in
the pre-processed bug fixing code. Good feature engineering
is essential in building an accurate classifier suitable for a
particular domain. Section V explains in more details about
our feature engineering.

After extracted, features are fed to the model learner
component, which is a machine learning algorithm that can
infer a discriminative model to differentiate each of
the three families of defects. Part of Section VI explains the
model learner used in our study.

When the discriminative model is established, it is passed
to the deployment phase.

B. Deployment Phase

Inputs to the deployment phase are defects whose defect
family labels are to be inferred by the discriminative
model learned in the training phase. Similar to the training
phase, each defect consists of a textual bug report and its
bug fixing code. These inputs are processed by 4 com-
ponents: text preprocessor, code preprocessor,
feature extractor, and label predictor.

The first three components are the same as those performed
in the training phase. The resultant features characterizing
an input defect and the discriminative model learned
in the training phase are taken as input to the label
predictor component to infer the likely label of the defect.
Part of Section VI also describes our label predictor in
more details.

IV. TEXT & CODE PRE-PROCESSING

In this section, we present the text preprocessor and
the code preprocessor in our framework.

A. Text Pre-Processing Strategies

We preprocess bug reports that are textual documents in
three steps: tokenization, stop-word removal, and stemming.

1) Tokenization: The main objective of tokenization is to
break a document into its constituent word tokens. Bug reports
may contain contents that do not appear in average natural
language texts, such as HTML tags, etc. We remove these
HTML tags2, and remove all numbers and punctuation marks
appearing in the reports as they often have weak correlation
with the meaning of the bug reports. We then extract the
remaining word tokens.

2) Stop-Word Removal: Stop words are words that are used
often and carry little meaning. We take a set of standard stop
words from Ranks NL3, a search engine optimization com-
pany. These stop words are also removed from the extracted
word tokens.

3) Stemming: This is to reduce a word to its root form.
For example, the words “reading” and “reads” would be
both reduced to “read”. We employ the well-known Porter
stemmer4 to reduce a word to its representative root form.

Fig. 2. Sample JIRA Bug Report For Lucene

2There are cases when HTML tags are meaningful for the reported bugs,
which we leave for future improvements. Other non-English contents (e.g.,
code snippets, stack traces, etc.) in bug reports are currently treated as English
texts too. In the future, we may use other tools, e.g., InfoZilla [9], to separate
such contents from normal texts to improve the features used for classification.

3http://www.ranks.nl/resources/stopwords.html
4http://tartarus.org/∼martin/PorterStemmer/



Various bug tracking systems may have different ways to
store and present bug reports. Figure 2 shows a sample bug
report from JIRA—a commercial bug/issue tracking system
widely used for Apache projects5. There are various fields in
a bug report (e.g., “Title” and “Description”) to which our text
preprocessing strategies may be applied.

B. Code Pre-Processing Strategies

We also preprocess the code that fixes a bug. We collect
these pieces of code from both bug tracking systems and
commit logs. In the cases where Bugzilla is used as the bug
tracking system, it may need special techniques to infer from
the commit logs which pieces of code fix a bug (e.g., [45]).
In the cases where JIRA is used as the bug tracking system,
the bug fixing code has most likely been tagged in the system
together with the bug reports since a unique keyword is used
in both commit logs and bug reports to refer to a particular
bug. As stated in our empirical evaluation (cf. Section VII-A),
we focus on bugs tracked in JIRA.

A snapshot of JIRA interface showing a bug report linked
to its fixing code is shown in Figure 3. We can see that,
aside from the usual bug report information (title, description,
severity, etc.), we have other information regarding the revision
related to the bug (e.g., “Repository”, “Revision”, “Date”, etc.,
and the list of affected files). Using such information, we can
extract the bug fixing code.

After bug fixing code is extracted, we convert it into abstract
syntax trees (ASTs). There are two versions of the code, one
before the bug fix is made, and the other after. Firstly, we
identify the changed lines in the two versions of the code
by performing a standard diff6 which would provide the code
changes as a set of lines of code added and the set of lines
of code deleted. Secondly, we parse both versions of the
code before and after the fix to form two abstract syntax
trees (ASTs), and then identify the nodes in both ASTs that
correspond to the lines of code added and deleted, and prune
the trees so that nodes not directly related to the added or
deleted lines of code are removed.

V. FEATURE EXTRACTION

We extract two kinds of features for a defect: textual features
from the bug reports, and code features from the code that fixes
the bug.

A. Textual Features

As shown in the sample bug report in Figure 2, we can
extract textual features from two fields: title and description.
The title is a condensed representation of a bug report, and
description provides additional information.

We first perform text preprocessing strategies as described in
Section IV-A. Then, we extract three kinds of textual features
from these two bug report fields:

5http://wiki.apache.org/general/ApacheJira
6http://www.gnu.org/software/diffutils/

TextT We take pre-processed word tokens from the
title of a bug report as features. The value of
each feature is the number of times the word
tokens appear.

TextD We take pre-processed word tokens from the
description of a bug report as features. For
each feature, we also use its count as its
feature value.

TextA We take pre-processed word tokens from
both the title and description of a bug report
as features. Again, for each feature, we also
use its count as its feature value.

By default, we only use TextA in our model learner
and label predictor, and we compare the effects of
using TextT and TextD in Section VII-F.

B. Code Features

For each defect, we count various statistics from the AST
trees as constructed according to the code preprocessing
strategies (cf. Section IV-B), and use these statistics to form
many of the code features. We list the complete set of code
features that we use in Table II. The features capture the counts
of various program elements in the added and deleted code.
We also take the difference in the counts of program elements
in the added and deleted code. The program elements that
we consider include assignments, comments, character literals,
looping structure, method invocations, throw statement, etc.
We also count the numbers of lines that are added, deleted,
and the difference of these two. The first 39 code features
correspond to these AST node statistics. Note that we use
Eclipse Java Development Tools7 to construct the ASTs, and
comments are attached to the ASTs as special AST nodes
although they are not considered in the main structure of ASTs.
We also count the number of lines of code that are added and
deleted, and the difference of the two (F40 − F42).

TABLE II
CODE FEATURES USED FOR CLASSIFICATION

ID Description

F1 #Assignment Added
F2 #Assignment Deleted
F3 |F1 − F2|
F4 − F6 Similar to F1 to F3 for #BlockComment
F7 − F9 Similar to F1 to F3 for #CharacterLiteral
F10 − F12 Similar to F1 to F3 for #EnhancedForStatement
F13 − F15 Similar to F1 to F3 for #ExpressionStatement
F16 − F18 Similar to F1 to F3 for #ForStatement
F10 − F21 Similar to F1 to F3 for #IfStatement
F22 − F24 Similar to F1 to F3 for #JavaDoc
F25 − F27 Similar to F1 to F3 for #LineComment
F28 − F30 Similar to F1 to F3 for #MethodInvocation
F31 − F33 Similar to F1 to F3 for #ParenthesizedExpression
F34 − F36 Similar to F1 to F3 for #ThrowStatement
F37 − F39 Similar to F1 to F3 for #WhileStatement
F40 − F42 Similar to F1 to F3 for #Line
F43 DeletedAndAddedCodeSimilarity
F44 hasJavaFile
F45 hasXML/HTMLFile
F46 hasXML/HTMLButNoJavaFile

7http://www.eclipse.org/jdt/



Fig. 3. Sample JIRA Bug Report with Links to Subversion Commits (including commit message and files changed.

We also include a derived feature DeletedAndAddedCodeS-
imilarity – F43. This feature measures how similar the added
code is from the deleted code. This is to address the limitation
of diff which could only flag an entire line even if only
one character is changed in the line. Also, diff sometimes
flags more lines than it should. This feature also helps to
differentiate between the situations when many real changes
are done in the fixed code and the situations when most
of the changed lines are only slightly modified from the
original ones. To compute this feature, we tokenize the added
and deleted lines by treating non alphabets and numbers
as delimiters. We then use a bag of word tokens as the
characterization of the added and deleted code. We represent
these bags as term vectors in Vector Space Model (VSM) and
compute the cosine similarity of these term vectors [29]. The
resultant similarity score is used as the value of this derived
feature DeletedAndAddedCodeSimilarity.

Besides extracting features from changed lines, we also
extract features from added, modified, or deleted files. We
investigate bug fixing changes in the repository for the exis-
tence of Java files that are added, modified, or deleted (F44),
and the existence of HTML and XML files that are added,
modified, or deleted (F45). We also extract a derived feature
hasXML/HTMLButNoJavaFile; this is a boolean feature that
indicates if there are XML and HTML files but no Java files
that get added, deleted, or modified to fix the bug. We use this
feature as we observe that many of the non-functional defects
only involve changes to XML configuration files or the HTML
files corresponding to manuals and JavaDocs.

As the values of these various features vary a lot, we nor-
malize them such that each feature only takes a value between
zero and one. To normalize these features we simply find the
maximum (maximum) and minimum (minimum) values for

each feature and perform the following normalization for each
feature value (original):

normalized =
original −minimum

maximum−minimum

VI. MODEL-LEARNING & LABEL PREDICTION

This section describes the model learner and label
predictor. The former is part of the training phase, while
the latter is part of the deployment phase.

A. Model Learner

The goal of the Model learner is to learn a discrimi-
native model that differentiates defects belonging to the three
families: control and data flow, structural, and non-functional.
It takes as input a multi-set of feature vectors from a training
dataset. A training dataset contains a set of defects with a
known defect family label, and each defect is represented as
a feature vector. A feature vector is a set of features and
their associated values. We use the set of features defined in
Section V.

Each of the three defect families are represented in the
training set. The model learner then learns some characteristics
of each of the families based on the feature values of the
defects belonging to the defect family in the training set.
Our particular problem is known as a multi-class classification
problem as there are more than two class labels: control and
data flow, structural, and non-functional.

There are many machine learning algorithms that could
perform multi-class classification. They include classification
algorithms such as Support Vector Machine, decision tree,
logistic, Naive Bayes, and many more. In this study, we
mainly use Support Vector Machine (SVM) as it has been
shown to be effective in many past studies in mining software



repository [15], [41]. In particular, we use the SVMmulticlass

[13] implementation available at http://svmlight.joachims.org/
svm multiclass.html. In addition, we compare the performance
of SVM with those of other classification algorithms in Sec-
tion VII-E.

B. Label Predictor

The Label predictor takes as input the discriminative
model learned by the model learner and a defect whose
label is to be predicted. The defect is also represented by
its feature vector, and the discriminative model would assign
likelihoods of the defect to belong to each of the three defect
families. The family with the highest likelihood would be
outputted as the predicted label for the defect.

This step is a natural extension of model learner.
Again, we use SVMmulticlass for our purpose by default.

VII. EMPIRICAL EVALUATION

In this section, we describe our datasets, research questions,
answers to these questions, and threats to validity.

A. Datasets & Experiment Settings

We analyze defects from three software systems: Ma-
hout [6], Lucene [5], and OpenNLP [7]. Mahout is a data
mining library that provides algorithms to analyze large data
by employing parallelization. It includes the implementations
of various clustering, classification, frequent pattern mining,
and collaborative filtering algorithms. It consists of 1,251 Java
files and 175,295 lines of code (Version 0.6, May 2012).
Lucene is an information retrieval library that supports various
ways of retrieving relevant documents when given a query.
Lucene has indexing and search capabilities. It consists of
2,564 Java files and 554,036 lines of code (Version 3.6,
May 2012). OpenNLP is a natural language processing (NLP)
library providing supports for various NLP tasks such as
tokenization, segmentation, chunking, etc. It consists of 697
Java files and 78,224 lines of code.

We collect random defects from the JIRA repositories of the
respective software systems: 200 from Mahout JIRA reposito-
ry, 200 from Lucene JIRA repository, and 100 from OpenNLP
JIRA repository. Thus, in total we have 500 randomly selected
defects. These 500 entries in JIRA are explicitly tagged as
defects rather than feature requests. The distribution of the 500
defects across the three defect families is shown in Table III.
We note that about half of the defects belong to the control
& data flow family. About 25% of the defects belong to the
structural family and the others belong to the non-functional
family.

TABLE III
DEFECT STATISTICS FROM MAHOUT, LUCENE, AND OPENNLP

Software Defect Families TotalControl & Data Structural Non-Functional
Mahout 120 46 34 200
Lucene 120 32 48 200
OpenNLP 46 32 22 100

To measure the effectiveness of our proposed approach, we
make use of common effectiveness measures for multi-class
classification. They are precision, recall, F-measure, accuracy,
and AUC. The first four measures are defined based on the
concepts of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). Consider a given label l and
a bug B with its ground truth label c. If a classifier outputs
label o for B, there are 5 cases:

1) If l = c and c = o, then B is a true positive for label l.
2) If l = c and c 6= o, then B is a false negative for l.
3) If l 6= c and c = o, then B is a true negative for l.
4) If l 6= c, c 6= o, and o = l, then B is a false positive for

l.
5) If l 6= c, c 6= o, and o 6= l, then B is a true negative for

l.

The above are the definitions of TP, FP, TN, and FN in
a multi-class setting. Then, we can define precision, recall,
F-measure, and accuracy for each label as follows:

precision =
#TP

#TP + #FP

recall =
#TP

#TP + #FN

F -measure =
2× precision× recall

precision + recall

accuracy =
#TP + #TN

#TP + #TN + #FP + #FN

In the above equations, #TP, #TN, #FP, and #FN denote the
numbers of true positives, true negatives, false positives, and
false negatives respectively. F-measure is the harmonic mean
of precision and recall.

AUC is the area under the Receiver Operating Characteris-
tics (ROC) curve [19], [27]. A ROC curve for a label l plots
the true positive rates for l (i.e., the fractions of true positives
out of those predicted of label l) versus the false positive rates
(i.e., the fractions of false positives out of those not predicted
of label l). This curve could be created by first sorting the
data points (i.e., defects whose labels are to be predicted) in
descending order based on their likelihood of being assigned
label l. The data points are then considered one by one and
then the rates of true positives and false positives could be
computed. These form the points in the ROC curve. AUC is
the area under this ROC curve.

We compute all the above commonly used measures. In past
studies, F-measure, accuracy, and AUC scores of 0.7 or above
are often considered reasonable (e.g., [2], [26], [36]).

We use a ten-fold cross validation strategy [18]. We divide
the dataset into 10 parts and perform ten iterations. At each
iteration, we take 9 parts for training and 1 part for testing
(deployment). Note that each data point (i.e., defect) would be
used for testing once and only once. We report the averaged
overall performance after ten iterations.



B. Research Questions

We are interested in answering these research questions:
RQ1 How effective is our proposed approach in in-

ferring the defect type labels?
RQ2 What are the most effective features for defect

type classification?
RQ3 What are the performance of various classifica-

tion algorithms?
RQ4 What are the impact of the various text pre-

processing strategies on the defect classification
performance?

RQ5 How is the performance of our proposed ap-
proach affected with varying amount of training
data?

C. RQ1: Overall Effectiveness

The precision, recall, F-measure, accuracy, and AUC of our
proposed approach are shown in Table IV. We also compute
the weighted average across the three defect families. We
take weighted average rather than mean as the proportion
of defects that each defect family has is different. We note
that the result for control & data flow and non-functional are
reasonably good—their F-measures are 0.782 and 0.699 (out
of 1) respectively. The result for structural is not that good
though; its F-measure is only 0.436. However, the accuracy
and AUC of structural are still reasonably good (0.788 and
0.699 respectively). Taking the weighted average, the result is
reasonably good with F-measure at 0.692, accuracy at 0.778,
and AUC at 0.779.

TABLE IV
EFFECTIVENESS OF OUR APPROACH

Class Precision Recall F-Measure Accuracy AUC

Control & Data Flow 0.741 0.829 0.782 0.736 0.77
Non Functional 0.75 0.655 0.699 0.876 0.878
Structural 0.488 0.394 0.436 0.788 0.699

Weighted Average 0.69 0.7 0.692 0.778 0.779

We also show the confusion matrix in Table V. The con-
fusion matrix shows how many times a defect of a particular
family is classified as belonging to another family. We note
that defects of type control and data flow are often mis-
classified as structural. Defects of type non-functional and
structural are also often misclassified as control and data
flow, which indicate that the features we use may not be
discriminative enough and may be targets of improvements
to our algorithm in the future.

TABLE V
CONFUSION MATRIX FOR OUR CLASSIFICATION RESULTS

Class Classified As

Control & Data Flow Non Functional Structural

Control & Data Flow 237 15 34
Non Functional 29 72 9
Structural 54 9 41

D. RQ2: Most Discriminative Features

Considering the textual and code features, we have in
total 4341 features. Fischer score is often used in the data
mining community to infer the most discriminative features.
We compute the Fisher score of every feature as follows:

F (j) =

∑#class
class=1(x̄

(class)
j − x̄j)

2∑#class
class=1( 1

nclass−1
∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j )2)

In the above equation, F(j) is the Fisher score for the jth

feature. nclass is the numbers of data points with the class

label. x̄j and x̄
(class)
j are the averages of the jth feature of all

and class-labeled data points respectively. Lastly, x(class)
i,j is

the jth feature of the ith class-labeled data point.
Fisher score ranges from 0 to 1; features with Fisher score

equals to 1 are the most discriminative ones while those with
score 0 are the least discriminative ones. We show the top-10
most effective features in Table VI. We notice that the first
three features are code features and they are quite discrimi-
native. The rest are textual features and they are marginally
discriminative. In the future, we may employ feature selection
to reduce less relevant features in the classification models to
avoid potential overfitting and improve performance.

TABLE VI
TOP 10 MOST EFFECTIVE FEATURES

Feature Fisher Score

hasJavaFile 0.89
hasXML/HTMLButNoJavaFile 0.709
hasXML/HTMLFile 0.38
stem word ”releas” 0.06
stem word ”pom” 0.059
stem word ”link” 0.051
stem word ”except” 0.049
stem word ”distribut” 0.044
stem word ”packag” 0.042
stem word ”thread” 0.041

E. RQ3: Varying Classification Algorithms

Our framework allows the use of various classification
algorithms, other than SVM, for the model learner and
label predictor. We have evaluated multiple classifi-
cation algorithms, including C4.5 [33], Logistic [25], Naive
Bayes [34], Naive Bayes Multinomial [35], and RBF Net-
work [32] with their Weka [44] implementations.

The results are shown in Table VII. We notice that in terms
of the weighted averages, SVM is better than all other clas-
sification algorithms. On the other hand, the other algorithms
are able to achieve more than 0.6 score for F-measure (aka.
F1), accuracy, and AUC as well.

F. RQ4: Varying Textual Pre-processing Strategies and Textual
Features

As presented in Section IV-A, we employ both stop word
removal and stemming. We investigate if these pre-processing
strategies improve performance. We disable each of them and
show the results for precision, recall, F-measure, accuracy, and
AUC in Table VIII.



TABLE VII
VARYING CLASSIFICATION ALGORITHMS IN OUR FRAMEWORK

Algorithm Class Prec Rec F1 Acc AUC

C4.5

Control & Data Flow 0.643 0.636 0.64 0.59 0.597
Non Functional 0.663 0.627 0.645 0.848 0.797
Structural 0.23 0.25 0.24 0.67 0.545

Weighted Average 0.562 0.554 0.558 0.663 0.63

Logistic

Control & Data Flow 0.722 0.79 0.755 0.706 0.725
Non Functional 0.657 0.591 0.622 0.842 0.782
Structural 0.409 0.346 0.375 0.76 0.651

Weighted Average 0.643 0.654 0.646 0.747 0.722

Naive Bayes

Control & Data Flow 0.753 0.598 0.667 0.658 0.716
Non Functional 0.487 0.673 0.565 0.772 0.793
Structural 0.38 0.442 0.409 0.734 0.645

Weighted Average 0.617 0.582 0.591 0.699 0.718

Naive Bayes
Multinomial

Control & Data Flow 0.77 0.678 0.721 0.7 0.757
Non Functional 0.57 0.736 0.643 0.82 0.854
Structural 0.406 0.413 0.41 0.752 0.676

Weighted Average 0.65 0.636 0.639 0.737 0.761

RBF
Network

Control & Data Flow 0.655 0.717 0.684 0.622 0.594
Non Functional 0.461 0.373 0.412 0.766 0.662
Structural 0.245 0.231 0.238 0.692 0.529

Weighted Average 0.527 0.54 0.532 0.668 0.595

SVM
Multiclass

Control & Data Flow 0.741 0.829 0.782 0.736 0.77
Non Functional 0.75 0.655 0.699 0.876 0.878
Structural 0.488 0.394 0.436 0.788 0.699

Weighted Average 0.69 0.7 0.692 0.778 0.779

TABLE VIII
VARYING PREPROCESSING STRATEGIES IN OUR FRAMEWORK

Preprocessing Class Prec Rec F1 Acc AUC

Stop Word
Removal

Control & Data Flow 0.702 0.790 0.743 0.688 0.763
Non Functional 0.733 0.6 0.66 0.864 0.87
Structural 0.409 0.346 0.375 0.76 0.678

Weighted Average 0.648 0.656 0.648 0.742 0.769

Stemming

Control & Data Flow 0.729 0.79 0.758 0.712 0.751
Non Functional 0.718 0.673 0.695 0.87 0.872
Structural 0.471 0.394 0.429 0.782 0.689

Weighted Average 0.673 0.682 0.676 0.761 0.765

Both

Control & Data Flow 0.741 0.829 0.782 0.736 0.77
Non Functional 0.75 0.655 0.699 0.876 0.878
Structural 0.488 0.394 0.436 0.788 0.699

Weighted Average 0.69 0.7 0.692 0.778 0.779

We notice that stop-word removal and stemming are im-
portant since disabling them would reduce the performance
measures in F-measure, accuracy, and AUC.

We also investigate the effectiveness of various textual
features. In Table IX, we notice that TextA gives an overall
better performance compared to TextT and TextD.

G. RQ5: Varying Training Data

We also vary the amount of training data. In k-fold cross
validation, we use k−1

k × 100% of the data for training, and
1
k × 100% for testing. This is a standard approach. We try to
reduce the number of folds to reduce the proportion of data
used for training. We show the result in Table X. We notice that
reducing the amount of training data by reducing the number
of folds does not affect the result much. In terms of F-measure,
accuracy, and AUC, the largest reduction is the reduction in
F-measure from 0.692 to 0.657 when we reduce the number of

TABLE IX
VARYING TEXT FEATURES USED FOR CLASSFICATION

Feature Class Prec Rec F1 Acc AUC

TextT

Control & Data Flow 0.73 0.776 0.753 0.708 0.776
Non Functional 0.655 0.738 0.898 0.868
Structural 0.351 0.375 0.363 0.726 0.68

Weighted Average 0.677 0.666 0.668 0.754 0.776

TextD

Control & Data Flow 0.738 0.776 0.756 0.714 0.746
Non Functional 0.76 0.664 0.709 0.88 0.884
Structural 0.418 0.414 0.416 0.758 0.672

Weighted Average 0.676 0.676 0.675 0.76 0.761

TextA

Control & Data Flow 0.741 0.829 0.782 0.736 0.77
Non Functional 0.75 0.655 0.699 0.876 0.878
Structural 0.488 0.394 0.436 0.788 0.699

Weighted Average 0.69 0.7 0.692 0.778 0.779

TABLE X
VARYING k FOR k-FOLD CROSS VALIDATION

k Class Prec Rec F1 Acc AUC

2

Control & Data Flow 0.730 0.815 0.77 0.722 0.76
Non Functional 0.705 0.609 0.654 0.858 0.862
Structural 0.384 0.317 0.347 0.752 0.674

Weighted Average 0.653 0.666 0.657 0.758 0.764

3

Control & Data Flow 0.73 0.815 0.77 0.722 0.771
Non Functional 0.777 0.664 0.716 0.884 0.889
Structural 0.425 0.356 0.387 0.766 0.693

Weighted Average 0.677 0.686 0.679 0.767 0.782

4

Control & Data Flow 0.741 0.832 0.784 0.738 0.773
Non Functional 0.707 0.636 0.67 0.862 0.841
Structural 0.488 0.375 0.424 0.788 0.711

Weighted Average 0.681 0.694 0.684 0.776 0.775

5

Control & Data Flow 0.716 0.811 0.761 0.708 0.757
Non Functional 0.774 0.591 0.67 0.872 0.858
Structural 0.446 0.394 0.418 0.772 0.692

Weighted Average 0.672 0.676 0.67 0.757 0.766

6

Control & Data Flow 0.745 0.818 0.78 0.736 0.765
Non Functional 0.742 0.655 0.696 0.874 0.878
Structural 0.438 0.375 0.404 0.77 0.69

Weighted Average 0.681 0.69 0.683 0.773 0.774

7

Control & Data Flow 0.714 0.822 0.764 0.71 0.77
Non Functional 0.795 0.6 0.684 0.878 0.861
Structural 0.432 0.365 0.396 0.768 0.69

Weighted Average 0.673 0.678 0.67 0.759 0.774

8

Control & Data Flow 0.745 0.797 0.77 0.728 0.771
Non Functional 0.737 0.636 0.683 0.87 0.854
Structural 0.444 0.423 0.433 0.77 0.71

Weighted Average 0.681 0.684 0.681 0.768 0.777

9

Control & Data Flow 0.734 0.801 0.766 0.72 0.777
Non Functional 0.737 0.636 0.683 0.87 0.872
Structural 0.462 0.413 0.437 0.778 0.712

Weighted Average 0.678 0.684 0.679 0.765 0.784

10

Control & Data Flow 0.741 0.829 0.782 0.736 0.77
Non Functional 0.75 0.655 0.699 0.876 0.878
Structural 0.488 0.394 0.436 0.788 0.699

Weighted Average 0.69 0.7 0.692 0.778 0.779

folds from 10 to 2. The results could also be because the bug
report population used in this paper is homogeneous. In the
future, we plan to investigate more defects and related reports
to enhance the general applicability of our algorithm.



H. Threats to Validity

This subsection considers threats to construct validity,
threats to internal validity, and threats to external validity.

Threats to construct validity refer to the appropriateness of
our evaluation measures. We make use of five commonly used
evaluation measures: precision, recall, F-measure, accuracy,
and AUC, used before in past studies. Thus, we believe threats
to construct validity are minimal.

Threats to internal validity refer to experimenter biases. We
manually label the 500 bug reports. The labeling process is a
subjective one and there might be errors. We have involved a
PhD student who is not an author of this paper to double check
the labels, and any discrepancy is resolved by a discussion.

Threats to external validity correspond to the generalizabil-
ity of our results. We have only investigated 500 randomly
selected defects from three software systems, which may not
be representative of even just the bugs in the three systems. In
the future, we plan to reduce this threat further by analyzing
more defects from more software systems.

VIII. RELATED WORK

In this section, we discuss some related studies on the
classification of bug reports, empirical studies of bug reports,
and text mining in software engineering. The survey here is
by no means complete.

A. Classification of Bugs & Changes

One line of research related to ours is retrieval of duplicate
reports. When a new report comes, it returns a list of reports
existing in the repository which are potentially similar to the
new report. The intrinsic problem is how to measure the
similarity between two reports. Runeson et al. take natural
language text of bug reports and use cosine, dice and jaccard
to measure the similarity of reports [37]. Wang et al. use not
only texts also execution information to improve the retrieve
performance [43]. Sun et al. propose a machine learning
approach and extend BM25F to accurately retrieve duplicate
reports [40], [41]. Our work is orthogonal to the above as we
aim to classify the type of a defect.

Studies in [3], [14], [42], propose techniques to assign bug
reports to the right developers. Menzies and Marcus propose
a prediction model to automatically infer the severity of bug
reports which achieves F-measures of 0.14 to 0.86 for various
severity labels [31]. Hindle et al. propose a technique that
automatically classifies large changes into several categories
and achieve an accuracy of 13-70% for various classification
strategies [20]. Ko and Myers investigate the differences
between defect reports and feature requests based on the
linguistic characteristics of summaries and descriptions in bug
reports [23]. Huang et al. classify defects based on their
impact by analyzing textual features obtained from defect
reports [22]. Their approach classifies 403 defects from a
software system into reliability, capability, integrity, usability,
and requirements category labels achieving F-measures of
0.222, 0.885, 0.700, 0.629, and 0.393 respectively. Our work
uses a classification algorithm to classify bugs into control and

data flow, structural, and non-functional based on ODC [11],
[12] and both textual and code features of a bug.

B. Empirical Studies of Bug Reports

Researchers have also done empirical studies on bug repos-
itories. Sandusky et al. investigate the nature, extent, and
impact of bug report networks in one large F/OSS devel-
opment community [38]. Anvik et al. empirically study the
characteristics of bug repositories and show findings on the
number of reports that a person submits and the proportion
of different resolutions [4]. Hooimeijer and Weimer develop
a descriptive model based on a statistical analysis of surface
features of over 27,000 bug reports in open source projects,
to predict bug report quality [21]. Bettenburg et al. survey
developers of Eclipse, Mozilla, and Apache to study what
makes a good bug report. A good bug report provides enough
information to developers for debugging [8].

C. Text Mining for Software Engineering

Text mining has been widely employed to solve various
software engineering problems. It includes work that supports
program comprehension and recovers traceability links be-
tween software artifacts.

Haiduc et al. produce succinct and informative text to
characterize software code [17]. Sridhara et al. detect source
code corresponding to high level abstractions and describe
them succinctly [39]. Marcus and Maletic use Latent Seman-
tic Indexing to recover the traceability links [30]. Chen et
al. combine multiple techniques including regular expression
matching and clustering to recover traceability links [10].

IX. CONCLUSION AND FUTURE WORK

To better understand defects, defect classification schemes
have been proposed in the industry. These defect classifications
can give us insight on the frequency of different kinds of
defects appearing in a software system. Appropriate mitigation
action could then be taken based on the findings. Despite the
benefit of defect classification, the defect classification process
is a manual one and involves much manual labor. Due to this,
many defects stored in various bug tracking systems are not
assigned any category label.

To address this problem, in this paper, we propose an
automated approach that categorizes defects into three fam-
ilies: control and data flow, structural, and non-functional. To
realize this, we extract features from both bug reports and bug
fixing code. Both simple and derived features are extracted
to better discriminate one defect family from the others. The
derived features are designed based on our domain knowledge
on the characteristics of the three families of defects. These
features are then used by a multi-class classification algorithm
to train a discriminative model that predicts which family a
defect belongs to. We have evaluated our approach on a dataset
of 500 manually labeled defects from three software systems,
Lucene, Mahout, and OpenNLP. Our results are promising; we
could achieve a (weighted) average F-measure, accuracy, and
AUC of 0.692, 0.778, and 0.779.



In the future, we plan to improve our algorithm to achieve
better F-measure, accuracy, and AUC scores. For example, we
may incorporate more features (e.g., code McCabe complexity
metrics, finer-grained code features for both the code in the
diff trunks and the code surrounding the diff in addition to the
statement-level features in the diff, and comments in the code)
to enhance the discriminative capability of the classification
models. On the other hand, we may employ feature selection to
reduce less relevant features to avoid overfitting classification
models. We also want to develop better customized classifica-
tion models that can help to classify defects into finer-grained
categories and defect types in addition to the three super-
categories used in this paper. In addition, we want to reduce
the threats to external validity by evaluating our approach on
more defects from more software systems.

Also, note that our current approach can only be used
for post-mortem analysis since it requires code features from
bug fixes. In the future, we also plan to investigate defect
classification solely based on bug reports so that the approach
may be used before bug fixes to help triage and prioritize bug
fixing efforts, and even suggest appropriate bug fixing actions
based on classified defect types.
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