
The 11th SEATUC Symposium	
	

1	
	

WHOLE-SYSTEM ANALYSIS FOR UNDERSTANDING
PUBLICLY ACCESSIBLE FUNCTIONS IN ANDROID

Nguyen Huu Hoang (1) (2) *, Lingxiao Jiang (2), Quan Thanh Tho (1)

(1) Ho Chi Minh City University of Technology, Viet Nam
(2) School of Information Systems, Singapore Management University, Singapore

Email: hhnguyen@smu.edu.sg
	
	
ABSTRACT
 Android has become the most popular mobile
operating system. Millions of applications, including
many malwares, haven been developed for it. Android
itself evolves constantly with changing features and
higher complexities. It is challenging for application
developers to keep up with the changes and maintain the
compatibility of their apps across Android versions.
Therefore, there are many challenges for application
analysis tools to accurately model and analyze app
behaviors across Android versions. Even though the
overall system architecture of Android and many APIs are
documented, many other APIs and implementation details
are not, not to mention potential bugs and vulnerabilities.
Techniques and tool supports are thus needed to
automatically extract information from different versions
of Android to help programmers understand system
behaviors and APIs across different versions. This paper
aims to address the need. It performs whole-system
analysis for different versions of Android by using both
backward and forward static analysis of intra-procedural
and inter-procedural control-flow and data-flow graphs. It
can collect information about functions in Android that
can be invoked by applications, which are referred to as
publicly accessible functions in this paper. Such
information can help programmers better understand the
ways in which their applications utilize system functions.
We have analyzed Android versions 4.1.1, 4.2.2, 4.3,
4.4.4, 5.1.0, 6.0.1, and show basic statistics about the
publicly accessible functions in different Android
versions. We also use an example to illustrate that the
information about publicly accessible functions can be
useful in identifying unprotected system functions whose
invocations may not be protected by proper permissions
and may lead to security and privacy violations.
* This work is done when the first author is a visiting student in the
School of Information Systems at Singapore Management University.

KEYWORDS: android, call graph, control flow
analysis, data flow analysis, program comprehension,
permission check

1. INTRODUCTION

Android now accounts for more than 80% of the
global smartphone operating system (OS) market [8].
There have been more than 8 million mobile application
programmers worldwide in 2014 [7]. To help
programmers, especially novice ones, to develop
applications for a mobile OS quickly, often a first step is
to get them become familiar with the architecture of the
mobile OS and all APIs available in the OS. Thus,
programmers can structure their apps according the ways
in which the OS manages apps and able to invoke needed
OS functionalities via the APIs. Even though the overall
system architecture of Android and many of its APIs are
documented, many APIs have evolved much across
different versions of the Android system from API level 1
to API level 24 for Nougat 7.0, exhibiting different
behaviors and causing incompatibility across versions and
inconsistencies between actual code behaviors and the
documentations. There are also many undocumented APIs
in the system that could be invoked by apps, not to
mention many potential bugs and vulnerabilities that can
be exploited by apps too.

Understanding system behaviors and APIs becomes
even more challenging when Android faces the
fragmentation problem: there are over 1000 brands and
more than 24000 models of Android phones in 2015 [15];
the manufacturers of the brands and models often
customize the Android system for their phones in different
ways without sufficient documentations for programmers.
Manually going through documents and source code to
track and understand the relations among different system
APIs and behaviors is very time-consuming and error-
prone; such tasks should be facilitated by tools (e.g., code
navigation via Android X Ref [6]) that can work across
different versions and fragments of the system.

The 11th SEATUC Symposium	
	

2	
	

In the area of static analysis of Android systems and
applications, much work [4,12,16,19] that focuses on
analyzing Android applications require expert knowledge
and models of the Android systems, such as the lifecycle
callbacks used by the system to manage individual app
activities [1], the back stack used in the system to manage
sets of running activities [2], etc. Such expert (and
manual) modelling of the systems cannot keep up with the
evolution and fragmentation of the systems, leading to
inaccurate models and analysis results. So, there are also
needs to automate the modeling of various versions of the
Android system, and more generally, to automate the
modeling of large-scale frameworks and libraries used for
application development, so that analysis of apps can be
more accurate.

The ultimate goal of this work is to achieve automated
modeling of Android systems and facilitate programmers
to understand system behaviors and APIs. One way
towards this goal is to perform whole-program analysis of
a version of Android together with an application, so as to
avoid the need to manually construct a behavior model of
the system before analyzing the app. This way has been
considered in the literature and comes with many
challenges (e.g., [18]).

This paper takes a first step to analyze whole Android
systems in different versions, to automatically curate
Android system functions that are accessible by
applications. It provides a “navigation map” for different
versions of Android systems for programmers to
understand what functionalities in different versions of
Android systems can be invoked by which APIs.
Technically, we construct Java class hierarchies, call
graphs and control-flow graphs for different versions of
Android systems using the Soot analysis framework [17],
and then identify public functions in Android that can be
invoked by applications with suitable parameters that can
be obtained by the applications too. Such curated
functions can reveal to programmers how system APIs,
documented or undocumented, can be invoked in

applications, helping them to understand the capabilities
of the APIs. We have analyzed six versions of Android:
4.1.1, 4.2.2, 4.3, 4.4.4, 5.1.0, 6.0.1, and curated publicly
accessible functions from them. The numbers of publicly
accessible functions generally increase with increasing
version numbers and Android code sizes, from about 53K
to 74K. Together with more analyses (e.g., checking
whether permissions are added for publicly accessible
functions to prevent unauthorized accesses), we aim to
show that curated information about such functions can be
useful in helping programmers understand system
functions and revealing unprotected system APIs that may
lead to security and privacy violations in Android.

The rest of the paper is organized as follows: Section
2 briefly introduces related work; Section 3 describes our
approach; Section 4 presents our actual setups and
evaluations, and discusses our limitations and possible
future work; Section 5 concludes.

2. RELATED WORK

The work in this paper is closely related to much work
in static analysis of Android systems and applications.
Much work that focuses on analyzing Android
applications require expert knowledge and models of the
Android systems.

FlowDroid [4], was introduced in 2014, focuses on
the private data leaks. It performs static analysis on
Android app based on inter-procedural control-flow and
data-flow. As a part of this work, they modeled the effects
of callbacks by generating a dummy main method.

As shown by Li et al. [12], IccTA performs inter-
component communication based taint analysis (ICC).
They used a highly precise control-flow graph through
instrumentation of the code of applications to detect ICC
based privacy leaks.

CHEX [13] detects possible hijack-enabling flows
through conducting low-overhead reachability tests on
customized system dependence graphs. They model the
vulnerabilities from a data-flow analysis perspective.

De
sig

ne
d
by

 F
re
ep

ik
.c
om

Code
in various
languages
Code

in various
languages

Android
System
Code

(1) Construction of
call graphs and

control‐flow graphs

(2) Understanding publicly
accessible functions

(Intra‐ and inter‐procedural
control‐ and data‐flow analysis)

SystemServer.main

(3) Application on
verifying permission
checks for system APIs

Relations
among

objects and
functions

Fig 1. Approach Overview	

The 11th SEATUC Symposium	
	

3	
	

In the study by Yang et al. [19], they presented a
control-flow representation or user-driven callback
behavior based on context-sensitive analysis of event
handlers. They traverse context-compatible inter-
procedural control-flow paths and identify trigger
callbacks of the statements to perform graph reachability.

In 2015, Rasthofer et al. [16] described in detail the
components of current state-of-the-art static and dynamic
code analysis techniques of Android malware
development. They emphasize the challenges for
automatic malware analysis frameworks. These problems
hinder the fully automatic detection of Android malicious
components significantly.

Generally, the effectiveness of such analysis is prone
to the inaccuracies of the manually constructed models of
the systems. This paper tries to work towards automated
modeling of Android systems.

Thus, a major objective of the work is performed
whole-program analysis of any version of Android
system, so as to reduce the need for manually produced
behavior models before analyzing an application, and to
make the analysis of the application more accurate. This
objective on whole-program analysis has been considered
in the literature. For example, Yan et al. [18] propose to
extend Soot with summary-based analysis so as to scale
up to whole-program analysis. StubDroid [3] generates
summaries for system/library APIs before performing
data-flow analysis for applications.

Those studies focus on building summaries and
models for automated application analyses, not
application development; their outputs are not intended
for programmers to read, and may not be useful for
programmers who are developing applications and want
to understand system APIs and behavior models better.

The work on this paper focuses more on the
understandability of the whole systems, although
techniques used in other work can be adapted for our

purposes, and the outputs from our work may be used for
both application analysis and system analysis, e.g.,
checking proper permission controls in Android systems
and applications [5,11].

3. APPROACH
3.1 Overview

At a high level, our technical idea is straightforward
as illustrated in Figure 1 mainly consisting 3 steps.

(1) For a version of Android, we collect all of its
code, identify all Java classes involved, construct
call graphs for the whole Android system from
the system's main entry point
(com.android.server.SystemServer).

(2) Then, we identify potentially publicly accessible
functions, and use data-flow and control-flow
analysis based on the call graphs to identify
objects and other functions that are needed to
invoke each of the public functions. Such
analysis will produce information on the
dependencies among objects and functions and
indicate possible paths in the code that link the
dependent elements together.

(3) To illustrate the usefulness of such information,
we follow the dependencies and paths to check
whether publicly accessible functions are
protected with certain permissions in the Android
system (e.g., the sample code fragment in Figure
1 shows that getDeviceId is protected by the
READ_PHONE_STATE permission), and detect
possible unprotected system APIs that access
system or private resources without proper
permission checking. Such unprotected system
APIs could be potentially invoked by
applications without permissions, causing
security and privacy issues.

Fig 2. The whole-system call graph of Android version 4.4.4	

The 11th SEATUC Symposium	
	

4	
	

3.2 Call Graph Construction
Statically constructing call graphs of the Android

system faces many technical challenges, some of which
are common for all Java programs, other are unique to
Android. For example, Java reflection is often used to
invoke dynamically loaded classes and methods whose
signatures may be difficult to determine without accurate
string analysis of possible method names. This is a
common problem handled by the Soot static analysis
framework [17] to some extends. Android also extensively
uses event-driven programming and registered listeners to
invoke various kinds of call backs to process messages.
And, broadcasts (or, intents) can be sent by both the
system and applications to each other to invoke different
functionalities based on intent matching. Android also
supports defining call backs and intents via XML
configuration files, which incurs additional challenges for
accurate static call graph construction. We do not address
these challenges; instead, we reply on the capabilities of
Soot to construct the call graphs starting from
SystemServer.main().

Android is a large system was built in many years,
there is other challenge as the call graph is a huge graph
(about one million edges and fifty thousand vertices with
Android version 4.4.4). Figure 2 describes the complexity
of whole-system call graph Android. It is difficult to load
the data from call graph to memory and apply the
pathfinding algorithms. We resolve this problem via
NetworkX [14] as an intermediate library. It dumps the
call graph memory to the special format is called Pickle
to improve the access performance.

3.3 Publicly Accessible Android Functions

A basic condition for a function in the Android
system to be publicly accessible is that the function should
be a public method in Java. Also, the second more
complex condition is that the objects needed for invoking
the function should be either publicly accessible too or
could be constructed easily. To check whether a function
satisfies the two conditions, we need to recursively check
whether all involved objects and functions are publicly
accessible, which is essentially a backward data-flow
analysis with heuristic filters based on coding and naming
conventions.

The following is essentially a backward data-flow
analysis:

(1) For objects of primary types, they can be easily
constructed with random values, and we consider
them publicly accessible.

(2) For an object that is a public field in a class, it is
considered publicly accessible if one of the
class's constructor and the parameters for the
constructor are publicly accessible.

If the object is a private or protected field, it can
still be publicly accessible when the class has a
getter function whose name is the same as the
field name.

(3) For a public static method that takes in primary
types as parameters, the method can be easily
invoked from outside of the Android system with
randomly generated parameter values.

(4) Otherwise, we need to check whether it is easy to
obtain all the objects needed for invoking the
public method.

For example, if an object of type T is needed to
invoke a public function f, then we need to check whether
one of T's constructor is publicly accessible, or whether
an instance of T can be returned via some getter
functions.1 If either the constructor and the getter
function requires additional parameters to be invoked,
recursive checks are performed.

To simplify the analysis and get preliminary results,
this paper considers a function to be publicly accessible as
long as it is public. In addition, there are also many
functions in the Android system (about 38-43%) that are
not reachable from the SystemServer.main entry. We
consider such functions are not intended to be invoked by
the system itself, and are more likely designed for
applications to use. So, we consider such functions
publicly accessible as long as they are public.

3.4 Understanding of Android System Functions and
Checking Permissions

We consider three kinds of information that may be
useful in understanding a publicly accessible function if a
programmer wants to invoke it properly:

(1) the information about all the dependencies,
including objects and other functions needed,
before invoking the function.

(2) the information about what happens, including
objects affected and functions invoked, after the
function is called.

(3) the information about what happens, including
objects affected and functions invoked, within
the function.

Item (1) can be collected using a backward flow
analysis that identifies objects and functions that
programmers need to construct or invoke before invoking
the function.

Item (2) can be collected by an impact analysis that
traverses control and data flows in a forward mode,
together with an escape analysis and heuristics based on.

Item (3) can be collected by an impact analysis too,
but focuses on inner workings of a function and may only

1 E.g., a function named getSomething returns type T. These heuristics
are neither sound nor complete; they are to simplify the analysis.

The 11th SEATUC Symposium	
	

5	
	

be needed if programmers want to understand the
function's internals. Section 4 presents some summarized
statistics about the collected information.

As a particular application of such information, we
can apply it to address a security and privacy question: are
all the publicly accessible functions that access system
and/or private resources protected by proper permissions?
Given a publicly accessible function f:

(1) if the objects and functions needed before
invoking f do not have any permission
protection.

(2) if the objects and functions within the invocation
of f do not have any permission protection.

(3) if the invocation of f can change some external
objects, then it is very likely f is not properly
protected by a permission.

Based on the question mentioned above, we propose
Algorithm 1 to detect the permission checking issues. This
algorithm is a backward-flow analysis through the call
graph paths to get all methods that have permission
checking. Section 4.2.3 illustrates how such permission
checking can be done with an example.

Algorithm 1. Detect permission checking

4. EVALUATION
4.1 Setups

Our approach uses Soot to generate call graphs of
Android systems and output them in the Dot file format.
Then we use NetworkX library [14] to analyze the graphs,
to traverse call graphs to find paths, analyze in-degrees,
out-degrees and output graphs into Pickle file.

For Soot to construct call graphs for a version of
Android, we feed it with all system jar files (including
android.jar) in the Android SDK as distributed by
Google. To analyze the Android system from version 4.1
to 4.4.4, we used all of jar files in /system/framework
that extracted from Google Nexus 4 emulator of
Genymotion tool [9]; these file included Dex file of
Dalvik Virtual Machine. From version 5.0.0 and later,
Android changed its architecture, replacing Dalvik Virtual
Machine (VM) with Android Runtime (ART) and the Dex
files were combined to Linux binary files (ELF file).
Since Soot framework did not support Linux binary files,
we used the Java bytecode of Android from Grepcode [10]
for Android version 5.1.0 and 6.0.1.

Table 1. The generation time for each version

Version Generated Duration (seconds)
4.1.1 31988
4.2.2 35790
4.3 41288

4.4.4 43133
5.1.0 80463
6.0.1 86521

The duration to generate and read the call graph files

is a challenge issue. We generated the call graphs on our
server with the specifications as Windows Server 2008 R2
64-bit, Intel(R) Xeon(R) E5540 2.53Ghz, RAM 64 GB.
Table 1 presents the generated duration for each Android
version. The generation time in the Dot format is
approximate 9 hours for version 4.1.1 and up to 24 hours
for version 6.0.1. Then, it takes about 10 minutes to read
and convert the Dot file to Pickle via NetworkX, and the
following graph traversals based on the Pickle files can be
performed quickly.

4.2 Result Summary

Our evaluation addresses the following research
questions:

(1) How the numbers of total and public methods
changes for each Android version?

(2) How are the degree distributions of the methods?
(3) Could we find publicly accessible functions that

are not properly protected by permission checks?
The next sections address each research question in

detail.

4.2.1 Methods in Each Android Version

Comparing Android 4.4.4 with 5.1.0 (the gray line in
Figure 3), the numbers of call graph methods increase
14.7%. The change rate is comparable between Android
4.1.1 and 4.4.4. The large change rates indicate the needs
of tools to help programmers to understand the Android

Result: Set methods has permission checking
Set setMethods = null;
Stack stackPaths = getCallGraphPaths();
while stackPaths NOT empty do

Path currentPath = stackPaths.pop();
while currentPath NOT empty do

Method startingMethod = currentPath.pop();
if startingMethod HAS permission checking and NOT in setMethods then

setMethods.add(startingMethod);
end

StackStmt stackCallerStmts = locateCallerStatements(startingMethod);
while stackCallerStmts NOT empty do

Stmt callerStmt = stackCallerStmts.pop();
if callerStmt HAS permission checking then

Method callerMethod = callerStmt.getMethod();
setMethods.add(callerMethod);

else

Stack stackRelatedVars = locateRelatedVars(callerStmt);
Stack stackRelatedStmts =
locateStatementsOfRelatedVars(stackRelatedVars);
while stackRelatedStmts NOT empty do

Stmt currentStmt = stackRelatedStmts.pop();
if currentStmt HAS permission checking then

Method currentMethod = currentStmt.getMethod();
setMethods.add(currentMethod);

end

end

end

end

end

end

The 11th SEATUC Symposium	
	

6	
	

system functions. The numbers of edges also change
significantly (e.g., Android 4.2.2 increased 10.8% and
4.4.4 increased 11.2%). These changes also contribute to
the complexity of the Android system after each new
version. The orange line in Figure 3 presents the number
of public methods for each Android version. The public
methods occupy about 51% of all system methods from
Android 4.1.1 to 4.4.4. After Dalvik VM was replaced by
ART from Android version 5.0, this ratio changed to 54%
as our results on Android 5.1.0 and 6.0.1. These ratios
demonstrate the difference between Dalvik VM
architecture and ART architecture.

Fig 3. Numbers of Methods and Edges

4.2.2 Degrees of Methods
We use the interaction degrees among methods in call

graphs to illustrate the complexity of Android functions.
Figures 4 and 5 show the in-degree and out-degree
distributions, respectively, for Android. The distributions
exhibit power-law like relations, especially for degrees in
the range of [1, 100]. The degrees in the range of [100,
10000] are distributed in a more arbitrary fashion.
Samples of nodes of high in-degrees are toString, append
methods in the general purpose Java StringBuilder,
Object classes. More interestingly, nodes of high out-
degree may not indicate high complexities of the involved
methods. E.g., equals, toString methods in the Android
core.KeyValueMap, text.SpannableStringBuilder
classes have almost the highest out-degree, reflecting the
fact that it deals with generic object types, but the code of
these functions are often short and easy to understand.
More complex methods are in fact those having tens of
out-degrees and dealing with specific object types with
rich contents, e.g., parseIntent, getLastLocation in the
Android Intent, LocationManagerService classes.

(a) Android version 4.1.1

(b) Android version 5.1.0

(c) Android version 6.0.1

Fig 4. In-degree distributions of Android

4.2.3 Accessing system resources without permissions
Information curated by our analysis could be applied

to find potential security and privacy violations.
For example, consider the public method

setStreamVolume() of system class
com.android.server.audio.AudioService. Based on
the call graph of Android version 4.3, we realize this
public method invokes many other methods in the system
class AudioService in a certain order, such as
ensureValidStreamType(), getDeviceForStream(),
rescaleIndex() and finally sendVolumeUpdate(). The
method sendVolumeUpdate() could update the device
volume without permission. So, it means the applications
could access its device volume without any permission.
This bug was fixed from Android 4.4, Google used
method

0

200000

400000

600000

800000

1000000

1200000

0
20000
40000
60000
80000
100000
120000
140000
160000
180000

4.1.1 4.2.2 4.3.0 4.4.4 5.1.0 6.0.1

Nu
m
be

r	o
f	e

dg
es

Nu
m
be

r	o
f	m

et
ho

ds

Android	version

Number	of	public	methods	in	callgraph Number	of	methods	in	callgraph

Number	of	public	methods Number	of	methods

Number	of	edges	(right	y-axis)

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
Nu

m
be

r	o
f	n

od
es
)

Log(In-degree)	

1

10

100

1000

10000

100000

1 10 100 1000 10000
Lo
g(
Nu

m
be

r	o
f	n

od
es
)

Log(In-degree)

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
Nu

m
be

r	o
f	n

od
es
)

Log(In-degree)

The 11th SEATUC Symposium	
	

7	
	

AppOpsManager.noteOp()!=AppOpsManager.MODE_ALLOW

ED to check permission before calling rescaleIndex().

(a) Android version 4.1.1

(b) Android version 5.1.0

(c) Android version 6.0.1

Fig 5. Out-degree distributions of Android

4.3 Discussion
As the example in Section 4.2.3, our technique could

be used to detect the vulnerabilities of the operating
system Android. It's also more potential for detecting data
leaks or support the developer understands Android
system better.

Note that directly invoking publicly accessible
functions in the system is not the only way for Android
applications to invoke functionalities of the system. There
are other ways, such as broadcasting an intent that will be
matched and processed by systems, or using Java
reflection to invoke functions dynamically, etc. These
ways of invoking system functions are not yet detected as

publicly accessible functions in this paper and are left for
future work.

5. CONCLUSION

This paper takes a first step to analyze the whole
Android system across various versions, with the intention
to automate the modeling of system behaviors and
facilitate more accurate and scalable whole-program
analysis of Android applications. The work so far focuses
on providing better understandability of system functions
that are publicly accessible. Based on limited studies of
six versions of the Android system from 4.1.1 to 6.0.1, we
show that system functions change a lot across different
versions; the numbers of publicly accessible APIs change
from about 53K to about 74K. Also, the complexity
involved in many APIs can be high based on their in-
degrees and out-degrees. We also illustrate the potential
usefulness of the studies by showing missed permission
checks for a publicly accessible API that may violate
security and privacy. In the near future, we will integrate
the API dependencies and control/data-flow information
into modern IDEs (e.g., Android Studio, Eclipse, IntelliJ
IDEA) in a visual way to help programmers navigate
through and understand the complex system APIs, and
will automate the permission checks for discovering
unprotected APIs that may lead to security and privacy
violations.

REFERENCES

[1] Android Open Source Project. Android API guides:
Activities.
https://developer.android.com/guide/components/activities.h
tml.

[2] Android Open Source Project. Android API guides: Tasks
and back stack.
https://developer.android.com/guide/components/tasks-and-
back-stack.html.

[3] S. Arzt and E. Bodden. StubDroid: automatic inference of
precise data-flow summaries for the android framework. In
Proceedings of the 38th International Conference on
Software Engineering, ICSE, pages 725–735, Austin, TX,
USA, May 14–22 2016.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J.
Klein, Y. L. Traon, D. Octeau, and P. McDaniel.
FlowDroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, page 29, Edinburgh, United
Kingdom, June 9–11 2014.

[5] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon. Static
analysis for extracting permission checks of a large scale
framework: The challenges and solutions for analyzing
android. IEEE Trans. Software Eng., 40(6):617–632, 2014.

[6] R. Chiossi. Android x ref. http://androidxref.com/, 2016.

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
Nu

m
be

r	o
f	n

od
es
)

Log(Out-degree)

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
Nu

m
be

r	o
f	n

od
es
)

Log(Out-degree)

1

10

100

1000

10000

100000

1 10 100 1000 10000

Lo
g(
Nu

m
be

r	o
f	n

od
es
)

Log(Out-degree)

The 11th SEATUC Symposium	
	

8	
	

[7] Evans Data Corporation. Mobile developers now number
8.7 million worldwide.
http://www.fiercewireless.com/developer/ evans-data-
mobile-developers-now-number-8-7-million-worldwide,
June 2014.

[8] Gartner. Worldwide smartphone sales grew 9.7 percent in
fourth quarter of 2015.
http://www.gartner.com/newsroom/id/3215217, February
2016.

[9] Genymotion. Fast and easy android emulator.
https://www.genymotion.com/.

[10] Grepcode. Java source code search 2.0.
http://repository.grepcode.com/java/ext/com/google/
android/android/.

[11] S. M. Kywe, Y. Li, K. Petal, and M. Grace. Attacking
android smartphone systems without permissions. In 14th
Annual Conference on Privacy, Security and Trust, 2016.
To appear.

[12] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S.
Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel.
IccTA: Detecting inter-component privacy leaks in android
apps. In 37th IEEE/ACM International Conference on
Software Engineering, ICSE, volume 1, pages 280–291,
Florence, Italy, May 16–24 2015.

[13] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking
vulnerabilities. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 229–240.
ACM, 2012.

[14] NetworkX. High-productivity software for complex
networks. http://networkx.github.io/, 2016.

[15] OpenSignal. Android fragmentation visualized.
http://opensignal.com/reports/2015/08/android-
fragmentation/, August 2015.

[16] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden. How
current android malware seeks to evade automated code
analysis. In Information Security Theory and Practice - 9th
IFIP WG 11.2 International Conference, WISTP, pages
187–202, 2015.

[17] Sable Research Group. Soot: A framework for analyzing
and transforming java and android applications.
https://sable.github.io/soot/, 2016.

[18] D. Yan, G. Xu, and A. Rountev. Rethinking Soot for
summary-based whole-program analysis. In ACM
SIGPLAN International Workshop on the State Of the Art
in Java Program Analysis @ PLDI, pages 9–13, 2012.

[19] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static
control-flow analysis of user-driven callbacks in Android
applications. In International Conference on Software
Engineering, pages 89–99, 2015.

PHOTOS AND INFORMATION

Nguyen Huu Hoang received his
Bachelor's degree in Electronics and
Telecommunications, Ho Chi Minh city
University of Science (HCMUS), Vietnam
in 2013. He became Master student in
Computer Science, Ho Chi Minh City
University of Technology (HCMUT),
Vietnam in 2014. He had one year in
School of Information Systems, Singapore
Management University as a visiting
student. His current research interests
include programming languages, program
analysis and mobile security. He also has
experience in mobile application
development.

Jiang Lingxiao received his Bachelor's
degree in Information Science and Master's
degree in Applied Mathematics from the
School of Mathematical Sciences at Peking
University (1996-2003). He completed his
Ph.D. with Prof. Zhendong Su in the
Department of Computer Science at
University of California, Davis (2003-
2009). He joined the faculty of School of
Information Systems at Singapore
Management University in November 2009
as a Professor. He interested in
programming languages and data mining,
looking for research ideas and techniques
that can help solve software engineering
and security problems.

Quan Thanh Tho is an Associate
Professor in the Faculty of Computer
Science and Engineering, Ho Chi Minh
City University of Technology (HCMUT),
Vietnam. He received his B.Eng. degree in
Information Technology from HCMUT in
1998 and received Ph.D. degree in 2006
from Nanyang Technological University,
Singapore. His current research interests
include formal methods, program
analysis/verification, the Semantic Web,
machine learning/data mining and
intelligent systems. Currently, he heads the
Department of Software Engineering of the
Faculty. He is also serving as the Chair of
Computer Science Program (undergraduate
level).

