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Abstract—Code search methods, especially those that allow
programmers to raise queries in a natural language, plays an
important role in software development. It helps to improve
programmers’ productivity by returning sample code snippets
from the Internet and/or source-code repositories for their
natural-language queries. Meanwhile, there are many code search
methods in the literature that support natural-language queries.
Difficulties exist in recognizing the strengths and weaknesses
of each method and choosing the right one for different usage
scenarios, because (1) the implementations of those methods and
the datasets for evaluating them are usually not publicly available,
and (2) some methods leverage different training datasets or
auxiliary data sources and thus their effectiveness cannot be fairly
measured and may be negatively affected in practical uses.

To build a common ground for measuring code search methods,
this paper builds CosBench, a dataset that consists of 1000
projects, 52 code-independent natural-language queries with
ground truths, and a set of scripts for calculating four metrics
on code research results. We have evaluated four IR (Information
Retrieval)-based and two DL (Deep Learning)-based code search
methods on CosBench. The empirical evaluation results clearly
show the usefulness of the CosBench dataset and various
strengths of each code search method. We found that DL-based
methods are more suitable for queries on reusing code, and IR-
based ones for queries on resolving bugs and learning API uses.

Index Terms—natural-language code search, benchmarking,
empirical study, information retrieval, machine learning, deep
learning, word embedding

I. INTRODUCTION

Code search plays an important role in software development
[22], [39], [40], [43], [53]. In particular, code search methods
that allow programmers to raise queries in natural languages
(abbreviated as natural-language code search in this paper)
are more convenient for programmers to use than those
that need specific query languages. In a natural language,
programmers can describe their needs for implementing specific
algorithms and/or functionalities, finding code samples that use
specific APIs, or seeking for code solutions to hard problems,
and then natural-language code search methods can retrieve
code snippets meeting the needs from the Internet or code
repositories. Many natural-language code search methods have
been proposed in the literature, some of which are available
as either open-source or commercial tools [2], [4], [6].
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The existing natural-language code search methods can be
classified into two mainstreams [8]: IR (Information Retrieval)-
based methods and DL (Deep Learning)-based ones. The two
kinds of search methods differ in their respective styles of
matching queries and code snippets. An IR-based method
usually extracts from a query a set of keywords and then
searches for the keywords in code repositories [24], [25], [31],
[45], [51]. Comparatively, a DL-based method takes some deep
learning techniques, especially embedding algorithm(s), that
map raw data (including queries and code snippets) into a
high-dimensional space and then matches them [13], [49].

Few studies have evaluated the effectiveness of various code
search methods against each other extensively, although many
papers exist in proposing different search techniques. Indeed,
difficulties exist in empirically evaluating code search methods
fairly and extensively against each other.

Difficulty 1. Lack of a common dataset and consistent
evaluation metrics.

Many studies on code search (e.g., [13], [25], [31], [49],
[52]) collected and used their own datasets, and used different
metrics in their evaluations. Such inconsistencies in datasets
and metrics make it difficult to compare the evaluation results
across studies fairly. For a fair comparison, a dataset, including
a common codebase for search and a common set of queries,
should be carefully curated, and the evaluation metrics should
be consistently chosen.

Difficulty 2. Too many peripheral factors that may affect
code search results when comparing different implementations
of code search methods.

Many code search methods, especially commercial code
search engines, only provide query interfaces to search within
their backends. Their implementations and datasets are not
publicly available, and it is difficulty to check if their ef-
fectiveness is really attributed to their search techniques or
some other factors. For example, some methods may leverage
special training datasets or auxiliary data sources to enhance
themselves; a codebase may be differently preprocessed and
indexed; queries may be differently preprocessed or expanded,
etc. Consequently, existing studies often resort to a compar-
ison against some rudimentary open-sourced methods (e.g.,
Lucene [5]) or an older version of their own work, so that the
evaluation can actually focus on evaluating the effectiveness
of the core parts of the IR/DL algorithms in their methods,
excluding the effects of other peripheral factors.



In order to gain insights into the strength and weakness of
each code search method, a fair comparison should also be
able to evaluate chosen components of a method, in addition
to using a common dataset and consistent metrics.

Difficulty 3. Unclear intentions expressed in the queries from
programmers. Natural-language queries are often informally
presented, and their literal meaning may not reflect program-
mers’ real needs (e.g., programmers may unknowingly use
a wrong word in a query; programmers may not be able to
tell their purposes in querying for certain code.). Different
intentions in queries may or may not be processed by different
code search methods and affect their effectiveness. Mixing
queries of different types of intentions in evaluations may
obscure the effectiveness of different search methods. For a
more insightful comparison of the strengths and weaknesses
of different code search methods, the evaluation data should
also include queries of different types of intentions.

Essentially, this paper aims to address the following key re-
search question while overcoming these evaluation difficulties:

Question: “Which is the best method for which type of queries
among the existing natural-language code search methods?”

Towards answering the above question, this paper aims to
build a common ground for fair and comprehensive evaluation
of natural-language code search methods, and investigate, given
a query of a specific type of intention, which code search
method returns the most relevant results. More specifically, this
paper makes the following contributions.

Dataset. We have built CosBench, a dataset that can enable
fair and extensive evaluation of natural-language code search
methods. It currently contains 1000 Java projects collected
from GitHub and 52 queries with ground truths of three
types of intentions (i.e., bug resolution, code reuse, and API
learning). It also contains scripts to calculate four metrics
(Precision@k, Mean Average Precision@k, Mean Reciprocal
Rank @k, and Frank measures) for evaluating code search
results. CosBench is publicly available on GitHub.'

Implementation. With CosBench, we have also implemented
four representative code search methods that take natural-
language queries as input, including three IR-based and
a DL-based method (cf. Section III), and included two
publicly available code search methods Lucene and Code-nn
[13]. These methods are implemented in a unified, Lucene-
compatible framework, allowing the implementations to be
compared fairly.

Evaluation. We have evaluated the six code search methods
against each other on CosBench. The empirical results clearly
show the usefulness of the CosBench dataset and the strength
of each natural-language code search method. In particular,
we found that the DL-based code search methods are more
suitable for queries on reusing code, while the IR-based
ones for queries on resolving bugs and learning API uses.

The rest of the paper is organized as follows. Section II
presents the CosBench dataset. Section III describes the code
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search methods chosen for evaluation. Section IV evaluates
the code search methods on the dataset. Section V discusses
various threats to validity. Section VI compares with related
work. Section VII concludes.

II. COoSBENCH DATASET

This section presents the CosBench dataset used for evalu-
ating code search methods that take natural-language queries
as input. CosBench has three components:

CosBench = Codebase + QASet + Metrics
A. Codebase

The codebase of CosBench consists of 1,000 Java projects,
with 475,783 Java files and 4,199,769 code snippets (i.e.,
Java methods). The total size of the codebase is 1.4G. Table I
enumerates the top 10 most popular projects in the codebase.

The code snippets are all collected from GitHub. Firstly,
we sorted all Java projects on GitHub by their popularities
(denoted by the stars) and selected the top 1,000 most popular
ones. Secondly, we extracted the Java source files (.java) from
these projects and divided them into code snippets by following
the technique in [13]. Each code snippet is a Java method, and
comments, line breaks, and redundant spaces are removed.

B. QASet (Query and Answer Set)

1) Queries and Their Types: CosBench contains a set of
codebase-independent queries. These queries are categorized
into either phrase or keyword queries. A phrase query is usually
raised as a sentence or a phrase, e.g., “How to convert an
image to base64 encoding?” A keyword query often
contains one or more keywords that need to be strictly matched
with code snippets, e.g. “image encoding base64”.

Each query also has its intention, representing the user’s
expectation(s) and/or potential usages of the searching results.
Some studies have summarized the common intentions of
queries frequently raised by programmers [8], [37], [38], [48]:

(a) Code reuse. Queries can be raised for reusing code to avoid
repetitive implementations or to find the best industrial
practices. A query for reusing code often contains some
functional descriptions;

(b) API learning. Some queries may be raised for learning
how to use APIs. Such a query often contains API names;

(c) Bug resolution. Many programmers may raise queries for
resolving program bugs. Such a query is usually long,
with a bug report;

(d) Traceability. Programmers may search for locations of
certain functions and/or code snippets in software projects;

(e) Programming knowledge. Programmers may search for
programming knowledge, such as guidelines of using a
new language, coding conventions, design patterns, efc.;

(f) Domain knowledge. Programmers may search for domain
knowledge, e.g., machine learning, image processing, efc.;

(g) Tool uses. Programmers may search for code related to
tools, e.g., IDEs, version control tools, tool configurations,
etc.;



TABLE I
ToP 10 MOST POPULAR PROJECTS IN THE CODEBASE. THE PROJECTS ARE SORTED IN DESCENDING ORDER OF THEIR POPULARITIES.

Project Project Description #Files #Methods Size Stars
java-design -patterns Design patterns implemented in Java. 1,126 2,841 959KB 51.8k
elasticsearch Distributed, RESTful search engine. 11,081 89,723 60MB 44.6k
spring-boot Spring-powered, production-grade applications and services. 4,636 49,320 2IMB 423k
RxJava Reactive extensions for the JVM. 1,652 29,700 I13MB  40.7k
okhttp An HTTP+HTTP/2 client for Android and Java applications. 189 10,981 6.1IMB 34.6k
guava Google core libraries for Java. 3,145 59,789 25M 34.1k
retrofit Type-safe HTTP client for Android and Java by Square, Inc. 241 2,115 1,012KB 33.9k
spring-framework The framework for all Spring projects. 7,100 110,023 52MB 32.7k
dubbo A high-performance, Java based RPC framework. 1,691 9,877 42MB  29.4k
MPAndroidChart A powerful & easy to use chart library forAndroid. 220 2,115 1.0MB 28.7k

TABLE II TABLE III
NUMBERS OF DIFFERENT TYPES OF QUERIES AND SOME EXAMPLES. SIZES OF QUERY ANSWERS.
Code Reuse  API Learning  Bug Resolution  Total Mean # of words [ Code Reuse  API Learning  Bug Resolution All
Phrase/Keyword 23 14 15 52 per answer [ 18.61 26.56 27.18 22.78

Sample queries. #SO and #CS show the numbers of relevant answers curated
from StackOverflow posts and the results of existing code search methods.

Query Intention  Rep. #SO  #CS
Q1 How do I invoke a Java Reuse Phrase 6 35
method when given the

method name as a string?

Q2 invoke method by method Reuse Keyword 6 35
name

Q3 Can I use API Phrase 3 7
Class.newInstance () with

constructor arguments?

Q4 Class.newInstance () API Keyword 3 7
constructor arguments

Q5 How to fix Illegal- Bug Phrase 1 2
MonitorStateException? my

code is try{page.wait (1);}

Q6 IllegalMonitorState- Bug Keyword 1 2

Exception

(h) Others. Other query intentions include how to connect to
a database, how to write test scripts, efc.

We have observed that the first three intentions above have
the most numbers of queries on StackOverflow. CosBench
thus currently collects only queries of one of the three query
intentions: reusing, API learning and bug resolution. Table II
shows an overview of the queries chosen in CosBench and
some examples. Note that the query intentions are identified
by human engineers, on the basis of their descriptions and
characteristics (including API names, bug descriptions, etc.).

We curated 52 queries by selectively choosing posts from
Stack Overflow (SO) [7]. Firstly, we investigated the list of
Java-tagged questions posted on SO and sorted them by their
vote numbers—A Java-tagged post with a sufficient number of
votes usually contains Java code as relevant results. Secondly,
we picked 26 posts from the Top-50 posts(i.e., those shown on
the first page); these posts were manually chosen as they are
much more relevant to the three intentions we are studying.
The titles of the posts were taken as phrase queries. Keywords,
which were manually extracted from these phrase queries, were
taken as keyword queries in the dataset.

2) Query Answers: The ground truths (i.e., the relevant
answers) to the 52 queries are also curated and included in
the dataset. For example, an answer to the query “How to
make pipes work with Runtime.exec () ?” is:

String [] emd = {
”/bin/sh”,

e,
“ls./etc|grep-release”

Process p = Runtime.getRuntime (). exec(cmd);

We curated the ground truths in two respects.
(i) SO answers. We extracted the code snippets from the SO
posts that are marked as answers. We manually checked the
correctness of these code snippets and included the correct
ones in the dataset.
Code search results. To curate more possibly correct answers
for each query, we ran all the chosen code search methods
(see Section IV) on the CosBench codebase and collected
their results returned for each query, analyzed the results
manually, and then added the relevant ones into our dataset.

(i)

Note that the answer set for each query may still be
incomplete or inaccurate, as we do not have a prophet that
can retrieve a complete and precise set of true answers.
Nevertheless, we manually vetted through the possible answers
collected from the two respects for each query to build the
answer set, so that the relative precision and recall of each
code search method can be estimated.

Each query in CosBench has, on average, 3.56 SO answers
and 13.14 code search results. Table II shows the numbers of
relevant SO answers and code search results for sample queries.
The answers to a query can be long or short. Meanwhile, as
shown in Table III, we note that the answers to the queries on
code reusing are on average shorter than those on API learning
and resolving bugs.

C. Metrics

We surveyed the metrics used in several studies [9], [10],
[13], [18], [19], [24], [25], [31], [33], [35], [45], [46], [49],
[51], [52]. Metrics, including Precision,Recall, MAP, MRR, F-
Score, NDCG, and Frank, are often used in previous studies;
different researchers may choose to use different metrics in
their evaluations.
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Fig. 1. An example of Top@k and Hit @k.

CosBench provides scripts to calculate four of the metrics:
Precision@k, MAP@k, MRR@k, and Frank; it leaves the other
metrics (e.g., Recall, F-score, and NDCG) for future work
when we include more relevant answers for each query and
have more confidence in the completeness of the answer set
for calculating recalls.

Let 0=q1,92; -
Let AnswerSet be the ground-truth set of answers w.r.tz. a query
q. As Figure 1 shows, let Top@k = [r1,r2,...,r| and Hir@k =
[hit, hity,. .. hity,] be a sequence of the top-k results retrieved
and a projection of AnswerSet onto Top@k, respectively.

The four metrics in current CosBench are then defined.

(1) Precision@k measures how many ground-truth answers are
hit on average in the Top @k returned for a query in Q:

[JRp=s
Precision@k = \Q| Z ‘&kk(ql)'

(1)
Precision@k shows the relevance of the returned results to
the queries with respect to the ground-truth answers. The
higher the value, the more relevant the results are.

(2) MAP@k is the mean average precision across the rankings
returned for all the queries:

MAP@k = —
|Q| lz; m ! Z rank(hzt],Top@k(CIz))

2

, hit; is an element in Hit@k, and
rank(e,l) is the rank (i.e., the index) of an element e in
a list I. When |Hir@k(q;)| =0, hit; does not exist and the
average precision for g; is set 0. The higher the MAP@k
value is, the more answers are hit by the top-k results.

(3) MRR@F is the mean reciprocal rank across all queries:

] !

MRR@k =
\Q| Z rank(hity, Top@k(g;))

3)

When |Hit @k(g;)| = 0, the reciprocal rank is set to 0. Usually
only the first hit is considered. The higher the MRR@k value
is, the higher ranked the hit answers are in Top @k.
(4) Frank@k is the mean rank of the first hit answer across all
queries [33]:
10|
7] Z Frank@k(q;) 4)
i=1
where Frank@k(q;) = rank(hit,(q;), Top@k(q;)). Clearly,
the smaller the Frank@k value is, the earlier ground-truth
answers appear in the search results.

Frank@k =

,qn) be the set of queries to be performed.

TABLE IV
PAPERS RELATED WITH NATURAL-LANGUAGE CODE SEARCHES. ACCESSED
DECEMBER, 2019.

ASE TOSEM ICSE ICDL ICSME  SANER  other all
2014 1 1 1 1 4
2015 2 1 1 1 5
2016 2 2 4
2017 1 1 1 3
2018 2 1 3
2019 1 1 2
all 3 1 7 1 2 1 6 21

In the evaluation, we let k be 3 or 20, as programmers may
often have the patience to examine top-3 results, while there
may be often enough space to display top-20 results on the
first page for search results.

III. CODE SEARCH METHODS

A code search engine (i.e., an implementation of a code
search method), is typically composed of various components
that parse queries in natural languages, process code snippets,
and match code snippets with queries. Each component
can take some different strategies, incurring extra efforts in
implementing and integrating these strategies into one engine.

We selected six state-of-the-art code search methods in our
empirical study.

A. Selection of Code Search Methods

We did a survey on natural-language code search and took
three steps to select code search methods for evaluation.

Firstly, we searched Google Scholar [3], looking
for the papers that were accepted by some
top venues in 2015-2018. The keywords used
for searches were “code search|recommend

code |code recommender|code queries|code
snippet |query code”. The conferences were restricted
to five closely related ones, i.e., FSE, ICSE, ASE, ICSME,
and SANER. In this step we got 46 papers.

Secondly, we investigated the 46 papers and their relevance
to the area of code search. We also went through the references
of these papers. In this step, 21 papers, which are shown in
Table IV, were identified to be strongly related to this topic of
code search for natural-language queries.

Thirdly, we used the following criteria for choosing code
search methods for evaluation: (I) “Is the method suitable for
Java?”, (@) “Is the search process fully automated?”, 3 “Is the
implementation or the dataset publicly available?”, @ “Can the
method be implemented?”, ) “Is the method representative?”’—
A method is “representative” if it takes strategies significantly
different from those taken by the methods we have chosen.

We finally selected six code search methods, including
Lucene [5], LuSearch [24], CodeHow [25], QECK [31],
YeSearch [49], and Code-nn [13]. Among them, only Lucene
and Code-nn are publicly available. We have re-implemented
CodeHow, YeSearch, LuSearch, and QECK, following what are
described in their paper faithfully, to facilitate fair comparison
against Lucene and Code-nn on the CosBench dataset.



B. IR-based Methods

The essence of the IR-based methods is to search for the
keywords/words of a query in the codebase [17]. Four of
the six methods we chose, i.e., Lucene [5], LuSearch [24],
CodeHow [25], and QECK [31], can be classified as IR-based
methods. Lucene is a commonly used framework for any text
search.

LuSearch, CodeHow, and QECK follow a Lucene-compatible
process to search code. As Figure 2(a) shows, the process is
mainly composed of three steps:

e Preprocessing. This step preprocesses code snippets and
queries by removing the stopwords, splitting compound
words, lowering cases and stemming. Here we keep the
preprocessing step the same for the four methods such that
the effects of their strategies for information enhancement
and similarity calculation can be compared fairly.

o Information enhancement. As user queries can be codebase
independent and use words or abbreviations different from
code, this step expands queries in various ways such that
synonyms of query words can be also used for code searches.

o Similarity calculation. This step calculates the similarities
between queries and code snippets to return search results.

We use Lucene version 7.4.0 [5] as the rendering framework.
The main differences among the four IR-based methods are in
information enhancement and similarity calculation steps, as
shown in the boxes with red dashed boundaries in Figure 2(a).

C. DL-based Methods

DL-based methods advocate the idea of mapping and
matching data in a high-dimensional numerical vector space.
Word and code embedding algorithms based on neural networks
are employed to learn the mapping and/or matching rules from
historical data used for training [20].

Two DL-based methods are chosen for CosBench.

YeSearch [49]. YeSearch proposed by Ye et al. bridges the
vocabulary gap between natural-language queries and code
snippets by projecting them into the same vector space.
Code-nn [13]. Code-nn proposed by Gu et al. embeds
code snippets and their natural-language descriptions into a
vector space, making code snippets and their descriptions
comparable to queries.

As Figure 2(b) shows, YeSearch and Code-nn differ in
four aspects: (I) features extracted, 2 word embeddings,
3 semantic representations of the corpus, and @) similarity
calculation algorithms taken.
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IV. EVALUATION

The evaluation is designed to evaluate the usefulness of the
CosBench dataset with respect to the key research question
raised in Section I. In particular, we use CosBench to answer
the two specific questions:

RQ1 (Strength): Which is the best method among the existing
natural-language code search methods?

RQ2 (Query Type): How do the types of queries and inten-
tions affect the search results?

TABLE V
NUMBERS OF QUERIES THAT CAN BE ANSWERED BY THE CODE SEARCH
METHODS. A QUERY IS “ANSWERED” IF |Hit@20| > 0 HOLDS.

# of queries [ Lucene LuSearch CodeHow QECK YeSearch Code-nn
answered [ 39 13 35 32 33 29

TABLE VI
|Hir@20| w.r.t. THE EXAMPLE QUERIES IN TABLE II

LuSearch CodeHow
13
13

3

YeSearch Code-nn
9 9
17

Query  Lucene

Ql i1
Q2 11

QECK

SO~ OO
[=NRIS RV N SES]

9
2
4
1
1

)

e
—_—w =
oo

5
2
2

A. Usefulness of CosBench

CosBench is sufficient for measuring natural-language code
search methods: The codebase contains a rich set of code
snippets, the natural-language queries and their ground-truth
answers that are manually vetted, and four evaluation metrics. In
particular, each query has 2 ~ 42 (16.7 on average) answers; the
effectiveness of a code search method can then be demonstrated
through investigating the results retrieved and the answers hit.

As Table V shows, each code search method can answer
13 ~ 39, but not all, of the 52 queries in their Top @20 results.

Table VI shows that the six code search methods perform
differently with respect to the CosBench dataset, at least the
sample queries in Table II. Lucene, CodeHow, and YeSearch
can answer all of the six queries, while LuSearch only one.
A detailed explanation about the effectiveness of each code
search method is given in Section IV-B.

The above results lead to our first observation:

Observation 1. CosBench is useful for evaluating natural-
language code searches in that (1) it contains a rich set of
code snippets and a diverse query-answer set; (2) all of the six
method can be evaluated and their capabilities be demonstrated
and differentiated by the dataset.

B. Results to RQI

We evaluated the six methods on the dataset. The average
results are shown in Table VII, and box plots of the performance
measures of the methods are shown in Figure 3.

First, Code-nn achieves the highest Precision@3 value
(0.2115) among the six search methods. Meanwhile, along
with the increase of k, Precision@k of the IR-based methods
can increase more rapidly than that of Code-nn. For instance,
Lucene and CodeHow have higher Precision@2(0 values
(0.2916 and 0.3090) than Code-nn (0.2229).

Second, Code-nn outperforms the others on MAP@3—it
indicates that Code-nn hits more answers in its Top@3 than
the others, or its hit answers are of higher ranks than the
answers hit by the others. Meanwhile, Lucene and CodeHow

Zhttps://wordnet.princeton.edu/download/current-version
3https://docs.oracle.com/javase/8/docs/api/
“https://archive.org/details/stackexchange
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(b) Workflow of DL-based methods. Embeddings of natural-language queries
(green) are matched with embeddings of code (blue) to generate results (brown).

Fig. 2. An overview of the methods chosen in our study.

TABLE VII

AVERAGE RESULTS ON Precison@k, MAP@k, MRR@k AND Frank@k.

Type Method P@3 MAP@3 MRR@3 P@20 MAP@20 MRR@20 Frank@20
Lucene 0.1730 0.0314  0.2532  0.2916 0.0972  0.3237  3.667

(R LuSearch | 0038400046 00673 00848 0.0284  0.0883 5615
CodeHow | 0.1538 0.0288  0.2083  0.3090 0.1197  0.2882  3.971
QECK 0.1346 0.0202  0.1378  0.1906 0.0731  0.2061  5.25

DL YeSearch | 0.0641 0.0050 0.0801 0.1667 0.0384  0.1551  5.142
Code-nn 0.2115 0.0320  0.2756  0.2229 0.0459 03211  4.034

have higher MAP @20 values (0.0972 for Lucene and 0.1197
for CodeHow) than Code-nn (0.0459), indicating that Lucene
and CodeHow can hit more answers in their Top@20 than
Code-nn, or their hit answers are of higher ranks than the
answers hit by Code-nn.

Third, the first answer hit by Code-nn or Lucene are of higher
ranks than those hit by the others, as Code-nn and Lucene
achieve higher MRR@3 values (0.2756 and 0.2532) and higher
MRR@20 values (0.3211 and 0.3237) than the others.

In addition, the Frank@20 values of all methods are between
3.667 and 5.147, implying that an answer can on average be
found in the first three to five search results.

The following observation summarizes the above results:

Observation 2. Code-nn achieves the highest Precision@3,
MAP@3, MRR@3 values among the six methods; the two
DL-based methods achieve lower Precision@20, MAP @20,
MRR@20 values than the four IR-based methods.

1) Analyzing IR-based methods: We took a further analysis
of the four IR-based methods in two respects: (1) information
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Precison@k, MAP@k, MRR@k and Frank@k.

Box plots of the performance measures of the six methods on

enhancement conducted and (2) code snippets returned.

The IR-based methods, except Lucene, expand queries for
code searches. Meanwhile, a query expansion may not definitely
enhance a code search method, since each method takes its
specific dictionary to expand queries. Figure 4 shows a sample
query and the expanded queries obtained by the three IR-based
methods. Recall from Figure 2(a) that LuSearch, CodeHow,
and QECK expand queries using WordNet, APIs in Java native
libraries, and QAs from SO, respectively.

We then applied one similarity calculation algorithm (BM25)
on the expanded queried to return search results. As shown
in Figure 4, different query expansions lead to different
results. First, LuSearch’s expansion is less effective for code
searches, since WordNet provides a synonym dictionary that

Origin query: How can | compare two strings in Java?
SO(Lucene): compar string

S1(LuSearch): compar comparison equat equival liken bow string
instrument chain strand drawstr draw twine train up thread
S2(Codehow): compar string APl;java.lang.String.compareTo,
javax.management.monitor.StringMonitorMBean.setStringToCompare,
javax.management.monitor.StringMonitorMBean.getStringToCompare

S3(QECK): compar string gener iter atm list fal

Method P@20 MAP@20 MRR@20
Lucene (S0) 0.55 0.12 0.25
LuSearch (S1) 0 0 0
CodeHow (S2) 0.66 0.30 0.25
QECK (S3) 0.11 0.01 0.16

Fig. 4. A sample query and its expansions, and corresponding search
performance measures (when BM25 is employed for retrieval).

is not specific for code searches. Second, CodeHow uses
APIs in Java native libraries to expand queries. The expanded
APIs bridge the gap between queries and code, and thus
CodeHow achieves higher Precision@20 and MAP @20 values
than Lucene. However, many native and industrial libraries
are used in the codebase, while it remains a problem which
libraries should be included for expanding queries. Third,
QECK employs QAs from SO to expand queries. These QAs
often contain code snippets and thus are much more relevant to
the codebase. However, a large number of irrelevant words can
be introduced, making the effectiveness of QECK unsatisfying.

The above results lead to the next observation.

Observation 3. Code-specific information enhancement
helps improve code searches.

2) Comparing Code-nn and YeSearch: We also compared the
two DL-based methods, and found that Code-nn is 1.2 ~ 26X
higher than YeSearch in its Precision@k, MAP@k,MRR@k
values. There are two main reasons for this.

First, YeSearch takes a similarity calculation algorithm that
is not suitable for code searches—the average word similarity
weighted by IDF (Inverse Document Frequency) [42] is taken to
represent the similarity between two sentences; the similarity
is easily affected by the similarity between the words in a
code snippet and those in a query. As a result, irrelevant code
snippets with relevant words are more easily retrieved.

Second, the two DL-based methods use their specific code
features: Code-nn uses three features, while YeSearch uses
only one, leading to loss of code information. The more code
features are employed, the richer the code information is, and
the more accuracy a matching is likely to be.

Thus we draw the next observation.

Observation 4. Code-nn outperforms YeSearch on the
CosBench dataset.

3) Analyzing the time cost: The time cost of an IR-based
method includes the time for indexing and searching. The
time cost of a DL-based method includes the time for model
training and searching. In our study, all methods were run on
the Linux operating system (CPU XEON E5-2620 6 core 12
threads 2.4Ghz, 64G DDR4 memory, and one GTX 1080Ti
GPU). The models were trained on the GPU. All of the other



TABLE VIII

TIME COST.
Method Indexing (s) Training Each search
Lucene 77.11 / 80.25 ms
CodeHow 250.61 / 3119.25 ms
LuSearch 137.54 / 176.28 ms
QECK 315.44 / 338.5 ms
YeSearch / 4.75h/50epoch timeout”
Code-nn / 227.5h/2000epoch 18.3 ms

* YeSearch is very slow on middle/large-scale codebases.

operations were performed on the CPU. Table VIII describes
the time cost of each search method.

The IR-base code searches do not need an offline training
process. The four IR-based methods are fast in indexing code
snippets. However, CodeHow is slower in code searches than
the other IR-based methods, because its similarity calculation
is a little more complicated (and inefficient) than those taken
by the others.

DL-based method needs longer time to train a model, and
updating the model using new data may not be efficient either.
On the other hand, the training process is offline. Having the
model been trained, the model can be directly used for code
search. Code-nn is much faster in code search than YeSearch.
In a code search, Code-nn converts a query to a vector, and
searches for the k-nearest code vectors in the same vector
space. Its time complexity is O(n), where n is the number
of code snippets in the codebase. Comparatively, YeSearch
calculates the text-to-text similarity. The time complexity is thus
O(2 x we X wg x 1), where w, is the number of query words,
and w, the number of words in a code snippet. YeSearch needs
a more efficient similarity calculation algorithm when running
on a large codebase.

Observation 5. The IR-based methods are fast in code
indexing and search. The DL-based methods are slow in
training, but can be fast in code search too; however, YeSearch
is much slower than Code-nn in code search.

C. Results to RQ2

We looked further into the queries in the CosBench dataset
and their ground-truth answers, and found that:

(1) For the queries on reusing code, the queries and the function
names of the answers are strongly related. In particular,
61.32% of answers have function names semantically related
to the queries.
For the queries on resolving bugs, the buggy code raised in
the queries and the answers are syntactically similar. Thus
clone detection may help reveal answers to such queries.
In particular, for queries containing specific exceptions
(e.g., IllegalMonitorStateException), matching
exception names may facilitate code identification.
For the queries on using APIs, API names are included in
most answers. In CosBench, 99.27% of answers contain API
names mentioned in the queries.

@)
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The above empirical findings drove us to explore deeper
relations between the types of queries and intentions and the
effectiveness of code search methods.

1) Results w.r.t. query intentions: As Table IX shows, for
queries on reusing code, Code-nn achieves a Precision@20
value of 0.3612, while among the four IR-based methods,
CodeHow achieves the highest Precision@20 value (0.2898).
Code-nn achieves higher MAP@20 and MRR@20 values than
the IR-based methods.

There can be two reasons for this.

First, DL-based methods are much more suitable for searching
semantically similar code snippets. For queries on reusing
code, the words used in a query and those used in the
answers tend to be semantically similar, rather than syntac-
tically similar. For instance, let “queryl: How should I
compare two strings?” and “query2: How can I
check the equality of two strings?” be the
queries to be performed. Let an answer be the following:

void stringEquals (String a, String b){
if (a == null) return (b == null);
else return (a.equals(b));

}

The answer is semantically relevant to both of the queries,
but the syntactical similarity between stringEquals and
queryl is lower than that between stringEquals and
query2 due to the words used. Code-nn improves code search
in that it learns more semantic relations among words using

a deep learning model.

Second, Code-nn takes function names as code features. Func-
tion names tend to reflect functional behaviors of code
snippets. Thus Code-nn outperforms the others, as queries
on reusing code often contain function names.

For queries on resolving bugs and using APIs, Lucene
achieves Precision@20 values that are 4.23x and 2.2 higher
than those of Code-nn, respectively. Similarly, the IR-based
methods achieve higher MAP@20 and MRR@20 values than
the DL-based methods. One main reason is that these queries
do contain code information, such as API names, exception
names, and buggy code, which facilitates the IR-based methods
in matching code with the queries.

The above results are summarized as the next observation.

Observation 6. For queries on reusing code, Code-nn
outperforms the other methods. For queries on using API
and resolving bugs, IR-based methods outperform DL-based
methods.

2) Results w.r.t. queries of different representations (key-
word versus phrase): As Table IX shows, the Precision @20,
MAP@20, and MRR@?20 values w.r.t. keyword queries are
1.1 ~ 3.1x higher than those w.r.t. phrase queries, indicating
that all of the code search methods are not effective in
identifying and leveraging key information in phrase queries.

It is intuitively that a code search method for keyword queries
may be able to match code with queries more easily to retrieve
results, but a programmer may need to hold more domain
knowledge when he/she raises a keyword query. Phrase queries
do provide programmers more flexibility in asking unclear
queries, while it can be more challenging for code search
methods to obtain the real needs in phrase queries to retrieve
more relevant search results.



TABLE IX
RESULTS w.r:t. DIFFERENT TYPES OF QUERY INTENTIONS AND REPRESENTATION.

Method Code Reuse Bug Resolution API Learning Phrase Keyword
eho P@20 MAP@20 MRR@20| P@20 MAP@20 MRR@20| P@20 MAP@20 MRR@20|| P@20 MAP@20 MRR@20| P@20 MAP@20 MRR@20

Lucene 0.2375 0.0825 0.3632 | 0.3433 0.1037 0.2712 | 0.3250 0.114 0.3149 0.2309 0.0662 0.2753 | 0.3624 0.1333 0.3802

LuSearch || 0.0506 0.0192 0.1197 | 0.1011 0.0185 0.065 0.1233  0.0540 0.0615 0.0518 0.0145 0.0561 | 0.1231 0.0446 0.1256

CodeHow || 0.2898 0.1123 0.2786 | 0.3255 0.1326 0.2990 | 0.3227 0.1179 0.2923 0.2644 0.0880 0.2415 | 0.3609 0.1566 0.3427

QECK 0.1749 0.0667 0.2125 | 0.2122 0.1150 0.2868 | 0.2273 0.1232 0.3073 0.1925 0.0608 0.1767 | 0.2124 0.0949 0.2624

YeSearch 0.103 0.0253 0.1714 | 0.2100 0.0475 0.1130 | 0.2247 0.0501 0.1732 0.1260 0.0263 0.1293 | 0.2141 0.0525 0.1851

Code-nn 0.3612 0.1701 0.5030 | 0.0811 0.0195 0.1774 | 0.1476 0.0679 0.1614 || 0.2032 0.0928 0.2598 | 0.2458 0.1065 0.3793

TABLE X snippet should be a ground-truth answer to a query. We reduced
PROS AND CONS OF VARIOUS CODE SEARCH METHODS the bias by inviting five developers of different development
Pros Cons Tt Rep.  experiences and domain knowledge to repeat the manual

Lucene  simple and stable. cannot handle complex sit- Z}Plv Keyd vetting process and verified the answers by their voting on the

tions.

LuSearch - ?,flelf?:sﬁve_ e correctness of each answer.

CodeHow use API to expand query  remains a problem which ~ API, Key Threats to external validity are mainly related with the
to reduce the differences  libraries should be in- Bug  word . . L .
between query and code.  cluded. generalizability of the observations. CosBench was specifically

QECK  employs QAs to expand introduce irrelevant words - built and evaluated on the chosen code search methods; the
queries to reduce the dif-  into query expansions. . .
ferences between query observations may not be valid when other datasets or code
and code. ) ) ) search methods were employed. Nevertheless, this study has

YeSearch learns a word embedding  ineffective. - . . s
for code. the following advantages that may render better generalizability

Code-  leverage semantic informa-  poor for query for APIand  Reuse  Key than other previous studies in the literature: (1) The codebase

nn tion for code searches. Bug. word

Thus we draw the next observation.
Observation 7. Most of the existing code search methods
perform better on keyword queries than on phrase queries.

D. Summary and Feedback

Table X summarizes pros and cons of the code search
methods. IR-based methods are popular in industry because they
are easier to implement, and their processes and intermediate
results are more intuitive to understand. On the other hand,
IR-based methods are usually less efficient for processing
synonyms that occur frequently in queries. In contrast, DL-
based methods can process more complicated queries, while
they do need model training, and the training datasets also
affect the effectiveness of code search. Further, the models are
usually incomprehensible, and are not easy to evolve.

V. THREADS TO VALIDITY

Threats to internal validity are primarily related to uncon-
trolled internal factors that may affect the evaluation results.
First, our implementations of the four code search methods
may be inconsistent with those implemented by their authors;
errors may also be latent in the implementations of code
search methods. As the implementations of four selected
methods are not publicly available, we re-implemented them by
faithfully following the principle of each method, but took some
strategies to simplify the implementations—we let Lucene be
the rendering framework, and only implemented the specific
strategies and algorithms taken by the other methods. Mature
third-party libraries, such as Keras and Wordnet, were employed
for preventing defects during the implementation phase.

Second, ground-truth answers were prepared for each query
manually; bias may exist for determining whether a code

was established by following a general process that has been
popularly used in the MSR (Mining Software Repositories)
community [9], [25], [31], [52]; (2) The natural-language
queries were obtained from popular posts on Stack Overflow,
which is fair and has also been adopted in many other
researches [37], [38], [48]; (3) The four metrics have also
been used in many researches, which have been explained in
Section II; and (4) Six methods belonging to two mainstreams
of code search methods that support natural-language queries
were chosen for evaluations.

VI. RELATED WORK

A. Code Search

Researchers have proposed many IR-based and DL-based
natural-language code search methods [8]. Wu ez al. [47] have
proposed a method to predict the alteration intent and use it
for query expansion. Lu er al. [23] have proposed INQRES,
which considered the relations between words in the source
code to optimize the query quality. Rahman et al. [34] have
proposed a technique that reformulates the query by relevant
API from StackOverflow. Zhang ef al. [51] have proposed an
approach to find identifiers that are semantically related to a
given natural-language query. Sirres et al. [41] have presented
CoCaBu which resolves the vocabulary mismatch problem
when dealing with free-form code search queries. Vinayakarao
et al. [45] have proposed the ANNE approach to discover the
mappings between syntactic forms and programming concepts
and expanding codebases. Allamanis et al. [9] have learned a
bimodal model conditioned on natural-language text, and used
it to rank code search results. Niu et al. [32] have used learning-
to-rank methods to automatically train a ranking schema.

Several code search studies focus on automatically generating
and/or ranking code results based on partial search results and



TABLE XI
EXISTING DATASETS IN THE LITERATURE.

Source Description L g Research Use Note

Zhang et al. [52] 65,253 projects, 78,165,560 snippets C, C++, C#, Java, JS Code search Not accessible

Gu et al. [13] 9,950 projects, 16,262,602 methods Java Code search Not accessible

Ye et al. [49] Four open source project Java Code search A set of bug reports

Lv et al. [25] 26K C# projects, 8.3M C# code files and 11.4M methods C# Code search Not accessible

Nie et al. [31] 1,538 projects, 921,713 code snippets Android/Java Code search A set of Android specific code snippets
Li et al. [21] 24,549 GitHub repositories, 4,716,814 methods Andriod/Java Code search A set of Android specific code snippets
Hamel et al. [15] 2 million (comment, code) pairs from open source libraries. Python, JS, Ruby, Code search Basic, multiple code language dataset.

Yin et al. [50]
Iyer et al. [16]

2,379 training and 500 test examples, 600k mining example
145,841 pairs of C# and 41,340 pairs of SQL

Go, Java, and PHP

Java/python
C#,SQL

General purposed
General purposed

A dataset of low quality
A small number of code snippets

a large amount of historical data. Moreno et al. [30] have
proposed MUSE, a method for mining and sorting code exam-
ples. Raghothaman et al. [33] have proposed SWIM, which
translated user queries into the APIs and synthesized idiomatic
code describing the uses of these APIs. Galenson et al. [12]
have proposed CodeHint for synthesizing dynamic code. Martie
et al. [27] have developed CodeExchange, which explicitly
leverages contexts to support fluid, expressive reformulation of
queries. Martie et al. [26] have also introduced a search engine,
CodeLikeThis, which can directly use the results of previous
queries to conduct the succeeding queries. Wang et al. [46]
have proposed a model allowing user demands to be enforced
for filtering and/or optimizing code search results.

Code search engines based on IDE have been developed.
Rahman et al. [35] have developed RACK, which automatically
mines relevant code snippets from thousands of open source
projects and displays them as sorted lists in IDEs. Zhang
et al. [52] have developed Bing Developer Assistant (BDA) that
improves developers’ productivity by recommending sample
code retrieved from software repositories and web pages.
Campbell et al. [11] have introduced a content-assisted tool
named NLP2Code that saves developers’ efforts in switching
from their IDEs to web browsers when they need to search.

B. Existing Datasets for Code Search

Many datasets of code snippets and natural-language queries
do exist, while they are mainly used for data training and
validation. Zhang et al. [52], Gu et al. [13], Ye et al. [49], Lv
et al. [25], Nie et al. [31], Husain et al. [15], Li et al. [21]
have created their own datasets in their studies. Others, such as
Yin et al. [50], Iyer et al. [16], have also provided datasets with
natural-language queries and code snippets answers, which are
also promising for evaluating code search.

The above datasets, as Table XI shows, often contain: (1)
code snippets and comments contributed to the GitHub platform,
(2) QA pairs collected from the SO platform, where the answers
may contain many code snippets, (3) online documents, such
as tutorials, JDK documents, etc., and (4) the others, such
as bug reports, etc. Comparatively, CosBench is specifically
built for measuring natural-language code search, as it does
provide not only the codebase, but also a set of queries and the
ground truths on which code search methods can be evaluated
fairly. Furthermore, CosBench contains queries of different
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intentions, assisting engineers in evaluating and choosing search
techniques for their respective intentions.

We did not evaluate all natural-language code search methods
on CosBench because of our limited resources for implementing
all those search methods. Nevertheless, the six search methods
presented in this paper can be the representative baselines,
and researchers can propose and evaluate their own search
methods on CosBench. We believe that CosBench is flexible
and extensive so that it can be equipped with new code search
strategies, which also encourages researchers to propose more
effective and efficient strategies and evaluate them on the
CosBench dataset.

VII. CONCLUSION

This paper presents an empirical study of code search
methods that use natural-language queries as input. We have
created a CosBench dataset, which currently consists of
4,199,769 code snippets from 1000 Java projects on GitHub,
52 queries with ground truths and of three different types
of intentions, and four metrics, for evaluating code search
methods. We have also implemented four representative code
search methods and evaluated them against Lucene and Code-
nn on the CosBench dataset. The empirical results clearly show
the usefulness of the CosBench dataset and the strength of
each code search method. In particular, we have observed that
code search methods can be selectively applied to perform
queries of different types of intentions, and Deep Learning-
based methods are more suitable for queries on reusing code,
and Information Retrieval-based ones for queries on resolving
bugs and learning API uses. This observation also leads to a
piece of interesting future work—the intention of a query from
a programmer may be inferred automatically so as to help the
programmer to use a suitable search method.
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