
TreeCaps:Tree-Structured Capsule Networks for
Program Source Code Processing

Vinoj Jayasundara1,2 & Nghi Duy Quoc Bui2 & Lingxiao Jiang2 & David Lo2
1Artificial Intelligence Initiative (A*AI), A*STAR, Singapore

2School of Information Systems, Singapore Management University
vinojjayasundara@gmail.com, dqnbui.2016@phdis.smu.edu.sg

lxjiang@smu.edu.sg, davidlo@smu.edu.sg

Abstract

Program comprehension is a fundamental task in software development and main-
tenance processes. Software developers often need to understand a large amount of
existing code before they can develop new features or fix bugs in existing programs.
Being able to process programming language code automatically and provide sum-
maries of code functionality accurately can significantly help developers to reduce
time spent in code navigation and understanding, and thus increase productivity.
Different from natural language articles, source code in programming languages
often follows rigid syntactical structures and there can exist dependencies among
code elements that are located far away from each other through complex control
flows and data flows. Existing studies on tree-based convolutional neural networks
(TBCNN) and gated graph neural networks (GGNN) are not able to capture es-
sential semantic dependencies among code elements accurately. In this paper, we
propose novel tree-based capsule networks (TreeCaps) and relevant techniques
for processing program code in an automated way that encodes code syntactical
structures and captures code dependencies more accurately. Based on evaluation on
programs written in different programming languages, we show that our TreeCaps-
based approach can outperform other approaches in classifying the functionalities
of many programs.

1 Introduction

Understanding program code is a fundamental step for many software engineering tasks. Software
developers often spend more than 50% of their time in navigating through existing code bases and
understanding the code before they can implement new features or fix bugs [Xia et al., 2018, Evans
Data Corporation, 2019, Britton et al., 2012]. If suitable models for programs are built, they can be
useful for many tasks, such as classifying the functionality of programs [Nix and Zhang, 2017, Dahl
et al., 2013, Pascanu et al., 2015, Rastogi et al., 2013], predicting bugs [Yang et al., 2015, Li et al.,
2017, 2018], and providing bases for program translation [Nguyen et al., 2017, Gu et al., 2017].

Different from natural language texts, programming languages have clearly defined grammars and
compilable source code must follow rigid syntactical structures and can be unambiguously parsed
into syntax trees. There can be complex control flows and data flows among various code elements all
over a program that affect the semantic and functionality of the program. Some inter-dependent code
elements can appear in an arbitrary order in the program (e.g., a function A calls another function B
while A and B are spatially far away from each other); some code elements, such as local variable
names, have no significant impact on code functionality.

In the literature, tree-based convolutional neural networks (TBCNNs) have been proposed [Peng et al.,
2015, Mou et al., 2016] to show promising results in programming language processing. TBCNNs

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Jonathan Raiman

accept Abstract Syntax Trees (ASTs) of source code as the input, and capture explicit, structural
parent-child-sibling relations among code elements. Gated graph neural networks (GGNNs) [Li et al.,
2016] are also proposed as a way to learn graphs, and ASTs are extended to graphs with a variety
of code dependencies added as edges among tree nodes to model code semantics [Allamanis et al.,
2018b]. While GGNNs capture more code semantics than TBCNNs, many additional edges among
tree nodes have to be added through program analysis techniques, and many of the edges may be
noise, contributing longer training time and lower performance. A recent model, known as ASTNN,
based on a sequence of small ASTs for statements (instead of one big AST for the whole program)
shows better performance than TBCNNs and GGNNs [Zhang et al., 2019].

In this paper, we propose a novel tree-based capsule network architecture, named TreeCaps, to
capture both syntactical structure and dependency information in code, without the need of explicitly
adding dependencies in the trees or splitting a big tree into smaller ones. Capsule Networks (CapsNet)
[Sabour et al., 2017] itself is a promising concept that has demonstrated vast potential in outperforming
CNNs in various domains including computer vision and natural language processing, because it has
the main advantage that it can discover and preserve the relative spatial and hierarchical relations
among objects within an input (e.g., an image and a piece of texts).

TreeCaps adapts CapsNet to ASTs for programs, proposes novel primary variable and primary static
capsule layers, proposes a novel variable-to-static routing algorithm to route a variable set of capsules
to generate a static set of capsules (with the intention of preserving code dependencies), and connects
the tree capsule layers to a classification layer to classify the functionality of a program.

In our empirical evaluation, we take various sets of programs written in different programming
languages (e.g., Python, Java, C) collected from GitHub and the literature, and train our TreeCaps
models to classify programs with different functionalities. Results show that TreeCaps outperforms
other approaches in program classification by significant margins, while a study done on variants of the
proposed model reveals the effectiveness of the proposed variable-to-static routing algorithm, effect
of the dimensionality of the classification capsules on the model performance and the effectiveness of
the use of additional capsule layers.

2 Related Work

Capsule networks [Sabour et al., 2017, Hinton et al., 2018] use dynamic routing to model spatial and
hierarchical relations among objects in an image. The techniques have been successfully applied to
different tasks, such as computer vision, character recognition, and text classification [Jayasundara
et al., 2019, Zhao et al., 2018]. None of the studies has considered complex tree data as input. Capsule
Graph Neural Network [Xinyi and Chen, 2019] has been recently proposed to classify biological and
social network graphs, yet, has not been applied to trees for programming languages processing yet.

On the other hand, tree- and graph-based neural networks have been studied for program language
processing. TBCNNs [Peng et al., 2015, Mou et al., 2016] have been used to model code syntactical
structures. GGNNs [Li et al., 2016, Allamanis et al., 2018b] build dependency graphs from ASTs
and use graph neural networks to encode the code dependencies. Variants of TBCNNs and GGNNs
are also proposed to represent programs differently and aim to achieve better training accuracy and
costs. For example, ASTNN [Zhang et al., 2019] splits an entire AST into a sequence of smaller
ones and uses bidirectional gated recurrent units (Bi-GRU) to model the smaller ASTs that represent
statements in programs. For another example, bilateral dependency tree-based CNNs (DTBCNNs)
[BUI et al., 2019] are used to classify programs across different programming languages. Tree-LSTM
[Wei and Li, 2017] has also been used to model tree structures in program code. Our work aims to
model tree structures too, but designs special dynamic routing with the intention to capture code
dependencies without the need of explicit program analysis techniques.

More generally, there is huge interest in applying deep learning techniques for various software
engineering tasks, such as program classification, bug prediction, code clone detection, program
refactoring, translation and even code synthesis [Allamanis et al., 2018a, Alon et al., 2019, Hu et al.,
2018, Chen et al., 2018, Pradel and Sen, 2018]. We are likely the first to adapt capsule networks
for program source code processing to capture both syntactical structures and code dependencies,
especially for the problem of program classification. In the future, it can be an exciting area to
combine more kinds of semantic-aware code representations (e.g., symbolic traces [Henkel et al.,
2018]) and tailored program analysis techniques with deep learning to improve code learning tasks.

2

3 Approach Overview

Figure 1: Approach Overview. The source codes are parsed, vectorized and fed into the proposed
TreeCaps network for the program classification task.

The overview of our TreeCaps approach is summarized in Fig. 1. The source code of the training
sample program is parsed into an AST and vectorized with the aid of Word2Vec [Mikolov et al., 2013]
or a similar technique that considers the AST node types, instead of concrete tokens, as the vocabulary
words [Peng et al., 2015, BUI et al., 2019]. The AST and the vectorized nodes are then fed in to our
TreeCaps network, which consists of a Primary Variable Capsule (PVC) layer to accommodate the
varying number of nodes in the AST. Subsequently, the capsules are routed to the Primary Static
Capsule (PSC) layer using the proposed variable-to-static routing algorithm, followed by routing with
the dynamic routing algorithm to the Code Capsule (CC) layer. Acting as the classification capsule
layer, Code capsules capture and provide embeddings for the entire training sample, while denoting
the probability of existence of the source code classes by the respective vector norms. Finally, a
softmax layer is used on the vector norms to output the probabilities for the input code sample to
belong to various functionality classes.

Section 4 and 5 explain more about the AST vectorization and other major components in TreeCaps.

4 Abstract Syntax Tree Vectorization

Figure 2: Tree Vectorization, which generates the AST from the source code and vectorizes it using
an embedding generation technique.

Fig. 2 illustrates the vectorization of an AST. Every raw source code is parsed with an appropriate
parser corresponding to the programming language to generate the AST.1 The AST represents the
syntactic structure of the source code with a set of generalized vocabulary words (i.e., node type
names). We use ASTs to train the embedding for node types by applying embedding techniques, such
as Word2vec [Mikolov et al., 2013], in the context of ASTs using techniques similar to Peng et al.
[2015], which learns a vectorized vocabulary of node types, xnode ∈ RV , where V is the embedding
size. The learned vocabulary can subsequently be used to vectorize each individual node of the ASTs,
generating the vectorized ASTs.

5 Tree-based Capsule Networks

One of the main challenges in creating a tree-based capsule network is that the input of the network is
tree-structured (ASTs in our case). Tree-structured data are inherently different from generic image
data, Ximg ∈ RH×W×C , where H,W,C are the fixed height, width and the number of channels

1We use python AST parser for python programs, whereas we use srcML parser for C and Java programs.

3

respectively, or natural language data, Xnlp ∈ RL×E , where L,E are the fixed padded sentence
length and the word embedding size respectively. Hence, the network architecture needs to be
constructed to accommodate such tree-structured data, Xtree ∈ RT×V , where T, V are the variable
tree size (the number of nodes in the tree) and the node embedding size respectively.

Figure 3: Variable-to-Static Routing, which routes a variable set of capsules to generate a static set of
capsules.

5.1 Primary Variable TreeCaps Layer

A further challenge with trees is that the tree size varies from program to program, and the number of
children varies from node to node. A naive solution to the problem can be to pad the sizes to reach a
fixed, pre-defined length, following a similar approach in natural language domain to preserve a fixed
sentence length. However, zero-padding is not appropriate in our case due to the degree of variability.
For instance, the number of children per node can vary from zero to hundreds, causing challenges
in deciding the fixed padding length and introducing sparsity. Mou et al. [2016] propose a more
effective approach termed as continuous binary tree, where the convolution window is emulated as a
binary tree, where the weight matrix corresponding to each node is represented as a weighted sum of
three fixed matrices Wt, Wl, Wr ∈ RV ′×V and a bias term b ∈ RV ′

, where V ′ is the embedding
size after the convolution, and the weighting coefficients are calculated by taking the positional value
in to account.

Hence, for a convolutional window of depth d in the original AST, and there areK+1 nodes (including
the parent node) which belong to that window with vectors [x1, ...,xK+1], where xi ∈ RV , then the
convolutional output y can be defined as follows,

y = tanh(

K+1∑
i=1

[ηtiW
t + ηliW

l + ηriW
r]xi + b) (1)

where ηti , η
l
i, η

r
i are weights defined corresponding to the depth and the position of the children nodes:

ηti =
di − 1

d− 1
ηri = (1− ηti)

pi − 1

k − 1
ηli = (1− ηti)(1− ηri) (2)

where di is the depth of the node i in the convolutional windows, pi is the position of the node and k
is the total number of node’s siblings. The output of tree-structured convolution resembles the input
tree structure, Yconv ∈ RT×V ′

.

In the Primary Variable Capsule layer, y obtained from Equation 1 corresponds to the output of one
convolutional slice. We use ε such slices with different random initializations for W,b, similar
to CNNs for image data. Subsequently, as illustrated by Fig 3, we group the convolutional slices
together to form Npvc =

T×V ′×ε
Dpvc

sets of capsules with outputs ui ∈ RDpvc , i ∈ [1, Npvc] , where
Dpvc is the dimensions of the capsules (i.e., Dpvc is the number of instantiation parameters of the
capsules) in the PVC layer. In order to vectorize each capsule output uj as ûj (to represent the
probability of existence of an entity by the vector length), we subsequently apply a non-linear squash
function as follows,

ûi =
||ui||2

||ui||2 + 1
· ui
||ui||2

(3)

where ||ûi||2 ≤ 1. Hence, the output of the primary variable capsule layer is Xpvc ∈ RNpvc×Dpvc .

4

5.2 Primary Static TreeCaps Layer

The key issue with passing the outputs of the PVC layer, Xpvc, to the Code Capsule layer is that
the number of capsules, Npvc, is variable from one training example to another. Prior to routing the
lower level capsules to a set of higher level capsules, the lower dimensional capsule outputs need
to be projected to the higher dimensionality, with the aid of the transformation matrix which learns
the part-whole relationship between the lower and the higher level capsules [Sabour et al., 2017].
However, a trainable transformation matrix cannot be defined in practice with variable dimensions.
Thus, the dynamic routing in the literature [Sabour et al., 2017] cannot be applied between a variable
set of capsules and a static set of capsules.

5.2.1 Variable-to-Static Capsule Routing

Therefore, we propose a novel variable-to-static capsule routing algorithm, summarized in Algo. 1.

Algorithm 1 Variable-to-Static Capsule Routing
1: procedure ROUTING(ûi, r, a, b)
2: Ûsorted ← sort([û1, ..., ûNpvc])

3: Initialize vj : ∀i, j ≤ a,vj ← Ûsorted[i]
4: Initialize αij : ∀j ∈ [1, a],∀i ∈ [1, b], αij ← 0
5: for r iterations do
6: ∀j ∈ [1, a],∀i ∈ [1, b], fij ← ûi · vj
7: ∀j ∈ [1, a],∀i ∈ [1, b], αij ← αij + fij
8: ∀i ∈ [1, b],βi ← Softmax(αi)
9: ∀j ∈ [1, a], sj ←

∑
iβijûi

10: ∀j ∈ [1, a],vj ← Squash(sj)

11: return vj

We initialize the outputs of the Primary Static Capsule layer with the outputs of the a capsules with
the highest L2 norms in the PVC layer. Hence, the outputs of the PVC layer, [û1, ..., ûNpvc

], are first
sorted by their L2 norms, to obtain Ûsorted, and then the first a vectors of Ûsorted are assigned as
vj , j ≤ a. The intuition is that, in practice, not every node of the AST contributes towards source
code classification. Often, source code consists of non-essential entities, and only a portion of all
entities determine the code class. Since the probability of existence of an entity is denoted by the
length of the capsule output vector (L2 norm), we only consider the entities with the highest existence
probabilities for initialization. It should be noted that the capsules with the a-highest norms are used
only for initialization, the actual outputs of the primary static capsules are determined by iteratively
running the variable-to-static routing algorithm.

A well-known property of source code is that dependency relationships may exist among entities that
are not spatially co-located. Therefore, we route b nodes in the AST based on the similarity between
them and the primary static capsule layer outputs, where a ≤ b ≤ Npvc. We assign b = Npvc
in general to route with all the nodes in the AST. If computational complexity is critical, we can
choose a smaller b and route with top-b nodes of the AST. a and b can be chosen empirically, where
computational complexity also factors in when choosing b.

We initialize the routing coefficients as αij = 0, equally to all the capsules in the primary variable
capsule layer. Subsequently, as illustrated by Fig 3, they are iteratively refined based on the agreement
between the current primary static capsule layer outputs vj and the primary dynamic capsule layer
outputs ûi. The agreement in this case is measured by the dot product, fij ← ûi · vj , and the routing
coefficients are adjusted with fij accordingly. If a capsule γ in the primary dynamic layer has a strong
agreement with a capsule δ in the primary static layer, then fγδ will be positively large, whereas if
there is a strong disagreement, then fγδ will be negatively large. Subsequently, the sum of vectors ûi
is weighted by the updated βij to calculate sj , which is then squashed to update vj .

5.3 Code Capsule Layer

Code Capsule layer is the final layer of the TreeCaps network, which acts as the classification capsule
layer, as illustrated by Figure 4. Since the outputs of the PSC layer Xpsc ∈ RNpsc×Dpsc , where
Npsc = a and Dpsc = Dpvc, consist of a fixed set of capsules, it can be routed to the CC layer via

5

Figure 4: Dynamic Routing between the Primary Static Capsules and the Code Capsules.

the dynamic routing algorithm in the literature [Sabour et al., 2017] (summarized in Algo. 2). For
each capsule j in the PSC layer, and for each capsule m in the CC layer, we multiply the output
of the primary static capsule vj by the transformation matrices Wjm to produce the prediction
vectors v̂m|j = Wjmvj . The trainable transformation matrices learn the part-whole relationships
between the primary static capsules and the code capsules, while effectively transforming vj’s into
the same dimensionality as zm, where zm’s denote the outputs of the code capsule layer. Similar to
the variable-to-static capsule routing, we initialize the routing coefficients γjm equally, and iteratively
refine them based on the agreements between the prediction vectors v̂m|j and the code capsule
outputs zm, where zm = squash(

∑
j γjmv̂m|j).

Algorithm 2 Dynamic Routing
1: procedure ROUTING(v̂j , t, a, c)
2: Initialize ∀j ∈ [1, a],∀m ∈ [1, c], δjm ← 0
3: for t iterations do
4: ∀j ∈ [1, a], γj ← softmax(δj)
5: ∀m ∈ [1, c], zm ← squash(

∑
j γjmv̂m|j)

6: ∀j ∈ [1, a],∀m ∈ [1, c], δjm ← δjm + v̂m|j · zm
7: return ẑm

The primary static capsule outputs are routed to the CC layer using the dynamic routing algorithm,
as illustrated by Fig 4, to produce the final capsule outputs Xcc ∈ RNcc×Dcc , where Ncc = κ is the
number of classes and Dcc is the dimensionality of the code capsules. Ultimately, we calculate the
probability of existence of each class by obtaining L2 norm of each CodeCaps output vector.

5.4 Margin Loss for TreeCaps Training

We use the Margin Loss proposed by Sabour et al. [2017] as the loss function for TreeCaps. For every
code capsule µ, the margin loss Lµ is defined as follows,

Lµ = Tµmax(0,m+ − ‖vµ‖)2 + λ(1− Tµ)max(0, ‖vµ‖ −m−)2 (4)

where Tµ is 1 if the correct class is µ and zero otherwise. Following Sabour et al. [2017], λ is set
to 0.5 to control the initial learning from shrinking the length of the output vectors of all the code
capsules, and m+,m− are set to 0.9, 0.1 as the lower bound for the correct class and the upper bound
for the incorrect class respectively.

6 Empirical Evaluation
6.1 Datasets and Implementation

We used three datasets in three programming languages to ensure cross-language robustness. The
first dataset (A) contains 6 classes of sorting algorithms, with 346 training programs on average per
class, written in Python.2 The second dataset (B) is inherited from BUI et al. [2019], which contains
10 classes of sorting algorithms, with 64 training programs on average per class, written in Java. The
third dataset (C) is inherited from Mou et al. [2016], which contains 104 classes of C programs,
with 375 training programs on average per class. For the dataset A, we used the publicly available

2Collected from https://github.com/crestonbunch/tbcnn.

6

vectorizer (see Footnote 2) to generate embeddings for more than 90 AST node types in Python. For
the datasets B & C, srcML3 defines a unified vocabulary for more than four hundred AST node types
for C and Java (and several other languages, but not Python), and we adapted the same vectorizer to
generate embeddings for the unified AST node types defined by srcML.

We used Keras and Tensorflow libraries to implement TreeCaps. To train the models, we used the
RAdam optimizer [Liu et al., 2019] with an initial learning rate of 0.001 subjected to decay, on an
Nvidia Tesla P100 GPU. To enhance the classification accuracies, a weighted average ensembling
technique [Krogh and Vedelsby, 1995] was used.

6.2 Program Classification Results

Table 1: Comparison of TreeCaps with other approaches. The means and the standard deviations
from 3 trials are shown.

Model Dataset A Dataset B Dataset C
GGNN Allamanis et al. [2018b] - 85.00% 86.52%
TBCNN [Mou et al., 2016] 99.30% 75.00% 79.40%
TreeCaps 100.00± 0.00% 92.11± 0.90% 87.95± 0.23%
TreeCaps (3-ensembles) 100.00% 94.08% 89.41%

Table 1 compares our results to other approaches for program classification. It should be noted that,
Mou et al. [2016] have used custom-trained initial embeddings for a small set of about 50 AST node
types defined specifically for C language only [Peng et al., 2015] and reported a higher result in their
paper, while our approach generates the initial embeddings for a much larger vocabulary of more
than three hundred unified AST node types for both C and Java. For a fairer comparison based on the
same set of AST node vocabulary, especially for the datasets B & C, we used our embeddings based
on srcML node vocabulary as the initial embeddings across all models. We followed the techniques
proposed in Allamanis et al. [2018a] and BUI et al. [2019] to re-generate the results for GGNN and
the techniques proposed in Mou et al. [2016] to re-generate the results for TBCNN.

For the dataset A, we achieved a perfect classification result, outperforming TBCNN by a narrow
margin of less than 1%. However, the margin was more significant for the datasets B and C. An
average accuracy of 92.11% was achieved by our approach for the dataset B, outperforming other
approaches at least by 7.11%. TreeCaps outperformed its convolutional counterpart (TBCNN) by
a significant margin of 17.11%. The performance was further improved by 1.97% with the use of
3-model weighted average ensembling technique. For the dataset C, our approach was able to surpass
the other approaches by 1.43%, achieving an accuracy of 87.95%. However, TreeCaps surpassed
TBCNN by a more significant margin of 8.55%. Three-model weighted average ensembling on the
dataset C provided a further improvement of 2.89% in comparison to the other approaches, achieving
an accuracy of 89.41%.

6.3 Model Analysis

We evaluate the effects of various aspects of the TreeCaps model, including the effect of the variable-
to-static routing algorithm, variations in the number of instantiation parameters in the CodeCaps
layer, and the addition of a secondary capsule layer. We evaluate these variations on the dataset B.

Table 2: Effect of different model variants

Model Variant Accuracy
Variable-to-Static Routing Algorithm→ Dynamic Pooling 83.43%
Instantiation parameters→ Dcc = 4 90.90%

Dcc = 8 92.10%
Dcc = 12 90.33%
Dcc = 16 91.51%

TreeCaps→ TreeCaps + Secondary Capsule Layer 92.31%
TreeCaps with Variable-to-Static Routing and Dcc = 8 92.11%

3https://www.srcml.org/

7

https://www.srcml.org/

6.3.1 Effect of the variable-to-static routing algorithm

We investigate the effect of the variable-to-static routing algorithm by replacing it with Dynamic
Max Pooling (DMP). Since there is no alternative approach existing in the literature for routing
a variable set of capsules to a static set of capsules, we compare the proposed routing algorithm
with dynamic pooling. The output of the PVC layer, Xpvc ∈ RNpvc×Dpvc consists of a variable
component, Npvc. Using dynamic max pooling across all the Npvc capsules will result in one output
capsule, Xdmp ∈ R1×Dpvc . Since Xdmp has no variable components across the training samples,
it can now be routed to the code capsules using the dynamic routing algorithm. However, it should
be noted that DMP is not suitable for capsule networks, as it destroys the spatial and dependency
relationships between the capsules. We use DMP here only for comparison purposes. As summarized
in Table 2, DMP yields a considerably lower accuracy of 83.43% than our routing algorithm by a
significant margin of 8.68%, establishing the effectiveness of our proposed algorithm.

6.3.2 Effect of the number of instantiation parameters

The instantiation parameters Dcc of the Code Capsule layer acts as the final embeddings used for
classification, in other words, the dimensionality of the latent representation of source code. If
the dimensionality of the latent representation is higher than required, it can introduce sparsity
and/or correlations between the instantiation parameters, reducing the classification accuracy. On
the contrary, if the dimensionality of the latent representation is too low, it may not be sufficient to
capture the variations in source code, leading to under-representation, reducing the classification
accuracy. Hence, in an attempt to identify a suitable value for Dcc for source code classification, we
investigate the effect of Dcc in the accuracy. As summarized in Table 2, we observed that the most
suitable value was Dcc = 8 for the dataset B.

6.3.3 Effect of the addition of a secondary capsule layer

We evaluate the addition of an extra capsule layer functionally similar to a primary static capsule
layer, which we call the secondary capsule (SC) layer. With respect to Fig 1, we stack the SC layer in
between the PSC layer and the CC layer. We use dynamic routing to route between the PSC and SC
layers and between the SC and CC layers. Even though we observed a minor improvement of the
classification accuracy, the added computational complexity increases the inference time by 16%,
from 10.3ms to 11.9ms per sample. The usefulness of the addition of such a SC layer needs to be
further investigated.

6.4 Discussion of Limitations & Future Work

Since TreeCaps is based on the capsule networks, it inherits the limitations of capsule networks
such as the high computational complexity in comparison to CNNs, and performance reduction
with the increasing number of classes. TreeCaps lacks a reconstruction network, similar to the
reconstruction network for image data presented by Sabour et al. [2017], which is useful to investigate
the interpretability of the capsule network, including the relationship between the learnt instantiation
parameters and the physical attributes of data.

We intend to extend our work to further investigate the effects of different initial embeddings on the
classification accuracy. Further, we intend to compare related pieces of code identified by TreeCaps
to program dependencies identified by program analysis techniques, to evaluate the effectiveness of
TreeCaps as an embedding generating technique, and to extend TreeCaps to other related tasks such
as bug detection and localization.

7 Conclusion

In this paper, we proposed a novel tree-based capsule network (TreeCaps) to learn rich syntactical
structures and semantic dependencies in program source code. The model proposed novel technical
features that deal with variable sized trees across different programming languages, including primary
variable and primary static capsule layers, and the variable to static routing algorithm. Our empirical
evaluations show that these features significantly contribute to the high classification accuracy of
TreeCaps model for program classification tasks for various programming languages. To the best of
our knowledge, our work is the first to adapt capsule networks to trees and apply them to program
source code learning. We believe that TreeCaps can capture more code semantics than previous code
learning models and complement existing program analysis techniques well.

8

8 Acknowledgement

This research is supported by the National Research Foundation Singapore under its AI Singapore
Programme (Award Number: AISG-RP-2019-010).

References
Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine

learning for big code and naturalness. ACM Computing Surveys, 51(4):81, 2018a.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018b.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed represen-
tations of code. Proc. ACM Programming Languages, 3(POPL):40:1–40:29, January 2019.

Tom Britton, Lisa Jeng, Graham Carver, and Paul Cheak. Quantify the time and cost saved using
reversible debuggers. Technical report, Cambridge Judge Business School, 2012.

Nghi D. Q. BUI, Yijun YU, and Lingxiao JIANG. Bilateral dependency neural networks for cross-
language algorithm classification. In IEEE/ACM International Conference on Software Analysis,
Evolution and Reengineering, 2019.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems, pages 2547–2557, 2018.

George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale malware classification using
random projections and neural networks. In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 3422–3426. IEEE, 2013.

Evans Data Corporation. Global developer population and demographic study. http://evansdata.
com/reports/viewRelease.php?reportID=9, 2019.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. DeepAM: Migrate apis with multi-
modal sequence to sequence learning. In International Joint Conference on Artificial Intelligence,
pages 3675–3681, 2017.

Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. Code vectors: Understanding
programs through embedded abstracted symbolic traces. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 163–174. ACM, 2018.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM routing. In
International Conference on Learning Representations, May 2018.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In International
Conference on Program Comprehension, pages 200–210. ACM, 2018.

Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Jathushan Rajasegaran, Suranga
Seneviratne, and Ranga Rodrigo. TextCaps: Handwritten character recognition with very small
datasets. In IEEE Winter Conference on Applications of Computer Vision, pages 254–262, 2019.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
In Advances in neural information processing systems, pages 231–238, 1995.

Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software defect prediction via convolutional
neural network. In IEEE International Conference on Software Quality, Reliability and Security,
pages 318–328. IEEE, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations, November 2016.

9

http://evansdata.com/reports/viewRelease.php?reportID=9
http://evansdata.com/reports/viewRelease.php?reportID=9

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681, 2018.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree structures
for programming language processing. In AAAI Conference on Artificial Intelligence, 2016.

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. Exploring API
embedding for API usages and applications. In International Conference on Software Engineering,
pages 438–449, 2017.

R. Nix and J. Zhang. Classification of android apps and malware using deep neural networks. In
International Joint Conference on Neural Networks, pages 1871–1878, May 2017.

Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas. Malware
classification with recurrent networks. In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 1916–1920. IEEE, 2015.

Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building program vector representa-
tions for deep learning. In Proceedings of the 8th International Conference on Knowledge Science,
Engineering and Management), pages 547–553, October 28-30 2015.

Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detection.
Proceedings of the ACM on Programming Languages, 2(OOPSLA):147, 2018.

Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch me if you can: Evaluating android anti-malware
against transformation attacks. IEEE Transactions on Information Forensics and Security, 9(1):
99–108, 2013.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Conference on Neural Information Processing Systems, pages 3856–3866, Long Beach, CA, 2017.

Huihui Wei and Ming Li. Supervised deep features for software functional clone detection by
exploiting lexical and syntactical information in source code. In International Joint Conferences
on Artificial Intelligence, pages 3034–3040, 2017.

X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring program comprehension: A
large-scale field study with professionals. IEEE Transactions on Software Engineering, 44(10):
951–976, Oct 2018.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In International Conference on Learning
Representations, 2019.

Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for just-in-time defect
prediction. In IEEE International Conference on Software Quality, Reliability and Security, pages
17–26, 2015.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel neural
source code representation based on abstract syntax tree. In International Conference on Software
Engineering, pages 783–794, 2019.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei Zhang, and Zhou Zhao. Investigating capsule
networks with dynamic routing for text classification. arXiv preprint arXiv:1804.00538, 2018.

10

	Introduction
	Related Work
	Approach Overview
	Abstract Syntax Tree Vectorization
	Tree-based Capsule Networks
	Primary Variable TreeCaps Layer
	Primary Static TreeCaps Layer
	Variable-to-Static Capsule Routing

	Code Capsule Layer
	Margin Loss for TreeCaps Training

	Empirical Evaluation
	Datasets and Implementation
	Program Classification Results
	Model Analysis
	Effect of the variable-to-static routing algorithm
	Effect of the number of instantiation parameters
	Effect of the addition of a secondary capsule layer

	Discussion of Limitations & Future Work

	Conclusion
	Acknowledgement

