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SUMMARY

Spectrum-based fault localization is a promising approach to automatically locate root causes of failures

quickly. Two well-known spectrum-based fault localization techniques, Tarantula and Ochiai, employ

measures to quantify how likely a program element is a root cause of failures based on profiles of correct

and failed program executions. These measures are conceptually similar to association measures that have

been proposed in statistics, data mining, and other research areas and have been utilized to quantify the

relationship strengths between two variables of interest (e.g., the use of a medicine and the cure rate of a

disease). In this paper, we view fault localization as a measurement of the relationship strength between

the execution of program elements and program failures. We investigate the effectiveness of 40 association

measures from the literature on locating bugs and look for existing measures that have similar or better

performance than Tarantula and Ochiai. Our empirical evaluations involve programs containing single bug

and also multiple bugs. We find that there is no best single measure for all cases. Klosgen and Ochiai

outperform other measures for localizing single bug programs. While for localizing multiple-bug programs,

Added Value, Odds Ratio, Yule’s Q, and Coverage outperform other measures.
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1. INTRODUCTION

Software debugging is a difficult and expensive activity to perform. US National Institute of

Standards and Technology has reported that software bugs cost US economy 59.5 billion dollars

annually [1], and testing and debugging activities account for 30 to 90 percent of labor expended for

a project [2]. When a program failure occurs, the execution trace may be long and contain failure-

irrelevant information. Often, full execution traces are not even available for debugging if programs

fail in the field. Locating the root cause of the failure, which may be far away from the failure point,

is non-trivial.

Many approaches have been proposed to help in automating debugging activities, especially in

localizing root causes of failures (i.e., faults) in programs [3–11]. One family of approaches is

spectrum-based fault localization [3,4,12–14], where program traces or abstractions of traces (called

program spectra) are used to represent program behaviors and the spectra of correct executions and

failed executions are compared to identify potentially faulty program elements (e.g., statements,

basic blocks, functions, and components). The comparison often employs statistical analysis, and

program elements that are observed more often in failed executions than in correct executions

(or statistically correlate with failures) may be identified and presented to developers for further

inspection.

Spectrum-based fault localization techniques are promising as they are lightweight and have

good accuracy. Among spectrum-based fault localization techniques, two well-known techniques

are Tarantula [4, 15] and Ochiai [13, 16, 17]. Both approaches compute a suspiciousness score for

each program element based on the execution frequencies of the element in correct and failed

executions, and rank all program elements according to their scores. Thus, higher suspiciousness

scores indicate more likely faulty program elements, and the computation of the scores in effect

answers the following question:

What is the strength of association between the executions of a particular program

element with failures?
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Based on this question, a general solution for fault localization can naturally emerge based on

the proliferation of association measures in the literature: measure the strength of association of a

program element’s executions with failures, and the stronger the association is, the more likely the

program element is a fault.

Besides Tarantula and Ochiai which have been used for fault localization, various association

measures in the data mining and statistics communities, such as odds ratio [18], Yule’s Q [19],

and Yule’s Y [20] have been proposed to measure the strength of the association of two variables.

For example, one might be interested in the association between an application of a particular

medical treatment with a recovery from an illness, or in the association between an execution of

a business strategy with the revenue change. There are several studies that evaluate the effectiveness

of some similarity coefficients, e.g., Jaccard [13, 21], Sorensen-Dice [21], Anderberg [21], Simple

Matching [21], Rogers and Tanimoto [21], and Ochiai II [21]. However, there are rich varieties of

association measures other than those coefficients that have not been studied for fault localization.

This paper aims to fill this gap by investigating the effectiveness of 40 popular association

measures for the purpose of fault localization and comparing them with Tarantula and Ochiai. In

particular, we are interested in answering the following research questions (RQs):

RQ 1. Are vanilla or off-the-shelf association measures accurate enough in localizing faults?

RQ 2. Which off-the-shelf association measures are more accurate to localize faults?

RQ 3. What is the relative performance of the off-the-shelf association measures as compared to

well-known suspiciousness measures for fault localization, Tarantula and Ochiai in particular?

RQ 4. Is the accuracy of the off-the-shelf association measures, Tarantula, and Ochiai different for

programs written in C as compared to programs written in Java?

RQ 5. What is the effectiveness of the off-the-shelf association measures, Tarantula, and Ochiai in

localizing different types of bugs?

RQ 6. What is the accuracies of the off-the-shelf association measures, Tarantula, and Ochiai in

localizing faulty programs containing multiple bugs?
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To answer the above questions, we investigate and compare the accuracies of Tarantula, Ochiai,

and the additional 40 association measures on programs from the Siemens test suite [22], and three

larger programs from Software Infrastructure Repository (SIR) [23]. The latter includes Space

which is written in C, and NanoXml and XmlSecurity, which are written in Java. The programs

come along with seeded bugs, test oracles to decide between failures and non-failures, and test cases.

We compute various accuracy metrics to evaluate the effectiveness of the association measures in

localizing faults to answer the above research questions. We show that a few association measures

have better performance than Ochiai and many are better than Tarantula. We also split the programs

into those written in C and those written in Java, and analyze the accuracies of the association

measures, Tarantula, and Ochiai separately for each of the two sets of programs. Furthermore, we

characterize the bugs in the programs and group them into several categories. We then evaluate

the effectiveness of the various association measures, Tarantula, and Ochiai, to localize different

categories of bugs and also evaluate their accuracies in localizing bugs for programs.

The contributions of this work are as follows:

1. We comprehensively investigate the effectiveness of 40 association measures for fault

localization.

2. We highlight a few promising association measures which can outperform Tarantula and

Ochiai and those that are comparable with the two well-known spectrum-based fault

localization approaches.

3. We provide a partial order of association measures in terms of their accuracies for fault

localization.

4. We characterize the effectiveness of the association measures, Ochiai, and Tarantula on

programs written in different programming languages.

5. We analyze different kinds of bugs and investigate the effectiveness of the 40 association

measures, Ochiai, and Tarantula in localizing each of these categories of bugs.
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6. We investigate the accuracies of the 40 association measures, Ochiai, and Tarantula in

localizing faulty programs containing multiple bugs.

The structure of this paper is as follows. Section 2 discusses related work. Section 3 discusses

the fundamental concepts of spectrum-based fault localization and association measures. Section 4

discusses the particular association measures considered in the paper. Section 5 describes our

empirical evaluation and comparison of the association measures. Finally, we conclude our work

in Section 6.

2. RELATED WORK

In this section, we describe closely related studies on fault localization and association measures.

The survey here is by no means a complete list of all related studies.

2.1. Fault Localization

Recently, there are many studies on fault localization and automated debugging. There are different

ways to categorize these studies. Based on the data analyzed by the approaches, fault localization

techniques can be classified into spectrum-based and model-based.

2.1.1. Spectrum-based fault localization. Spectrum-based fault localization techniques often use

program spectra, which are program traces or abstractions of program traces that represent program

runtime behaviors in certain ways, to correlate program elements (e.g., statements, basic blocks,

functions, and components) with program failures (often with the help of statistical analysis).

Many spectrum-based fault localization techniques [4, 5, 12, 24, 25] take as inputs two sets of

spectra, one for successful executions and the other for failed executions, and report candidate

locations where root causes of program failures (i.e., faults) may reside. Given a failed program

spectrum and a set of correct spectra, Renieris and Reiss present a fault localization tool

WHITHER [5] that compares the failed execution to the nearest correct execution and reports the

most suspicious locations in the program. Liblit et al. propose a technique to search for predicates
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whose true evaluation correlates with failures [24]. Chao et al. extend the work by incorporating

information on the outcomes of multiple predicate evaluations in a program run in their tool

called SOBER [12]. Santelices et al. combine several program spectra to better localize bugs in

programs. [25]. All of these techniques need to compare spectra of failed executions with those of

successful executions in some way. Evaluating the effectiveness of various association measures can

complement all of these techniques by helping to locate the most failure-relevant program elements

quickly and improving their performance.

Artzi et al. evaluate the effectiveness of several test generation techniques in generating enough

test cases for localizing faults in web applications with the help of Ochiai [26]. Artzi et al. extend

their work by proposing a tool named Apollo that can generate test cases to expose failures for web

applications and also localize bugs that cause the failures [27]. Their fault localization technique

uses Tarantula and a technique that keep information about which program statements are potentially

responsible to produce a particular part of an output (e.g., a table in an HTML document). This

approach is possible for web applications but may not be applicable to other applications as the

output is often not decomposable into parts (it could be a single number) and the number of program

statements that are potentially responsible to produce an output are often large. Bandyopadhyay and

Ghosh study how the properties of faults affect the effectiveness of Tarantula [28]. Three properties

namely accessibility, original state failure condition, and impact are investigated. To answer RQ5,

we also investigate the effectiveness of various fault localization techniques on different kinds of

bugs. However, we consider a different categorization of faults – our categorization is based on the

empirical study performed by Kim et al. on bug fixes [29]. Jiang et al. study the effectiveness of test

case prioritization for fault localization using different types of prioritization criteria [30].

Other spectrum-based techniques [8, 31–33] only use failed executions as the input and

systematically alter the program structure or program runtime states to locate faults. Zhang et

al. [31] search for faulty program predicates by switching the states of program predicates at

runtime. Sterling and Olsson use the concept of program chipping [32] to automatically remove

parts of a program so that the part that contributes to the failure may become more apparent. While
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their tool, ChipperJ, works on syntax trees for Java programs, Gupta et al. [8] work on program

dependency graphs and use the intersection of forward and backward program slices to reduce the

sizes of failure-relevant code for further inspection. Jeffrey et al. use a value profile based approach

to rank program statements according to their likelihood of being faulty [33]. These fault localization

techniques do not compare the spectra of failed executions with those of successful executions, and

association measures are generally not applicable to them. List of programs that have been used by

those past studies in fault localization is shown in Table I.

2.1.2. Model-based fault localization. Compared with spectrum-based techniques, model-based

debugging techniques [9, 34–37] are often more accurate, but heavyweight since they are based on

more expensive logic reasoning over formal models of programs. Many static and dynamic analysis

techniques [6, 38, 39] can be classified as model-based debugging as well. Abreu et al. propose

a framework called BARINEL that combines spectrum-based fault localization and model-based

debugging to localize single and multiple bugs in programs, and found that the approach is more

accurate and heavyweight than spectrum-based fault localization [17]. Although few model-based

techniques have employed the concept of failure association, incorporating association measures

investigated in this study into program models can be a future direction to improve the performance

of model-based debugging techniques.

In our study, we focus on comparisons with two well-known spectrum-based fault localization

techniques, namely Tarantula [4, 15] and Ochiai [13, 16, 17]. We evaluate 40 association measures

and find promising ones for fault localization.

2.2. Studies On Association Measures

There have been a number of studies proposed in the statistics and data mining community on

measures of association between variables since the early 20th century. These include measures

such as Yule’s Q and Yule’s Y [19,20]. Other measures, such as odds ratio [18], are also commonly

considered and utilized in various domains, such as medical [41] and social science [42]. In the data

mining community, Agrawal and Srikant have proposed association rule mining which aims to infer
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Dataset LOC Papers Dataset LOC Papers

SumPowers 27 [35, 36] Power 763 [24]

BinSearch 29 [35, 36] Compress 1590 [24]

BubbleSort 29 [35, 36] Bh 2053 [24]

Hamming 48 [35, 36] Webchess v.0.9.0 2226 [26, 27]

Adder 49 [35, 36] Tetris 2403 [40]

Permutation 54 [35, 36] Schoolmate v.1.5.4 4263 [26, 27]

Binomia 80 [35, 36] Gzip 5680 [17, 30]

Polynom 105 [35, 36] Space 6218 [4, 15, 17, 21]

Tcas 141 [4, 5, 12, 16, 17, 28, 30, 33, 35–37] NanoXML 7646 [25, 40]

Schedule 292 [4, 5, 8, 12, 13, 16, 17, 25, 28, 30, 33] Phpsysinfo v.2.5.3 7745 [26, 27]

Schedule2 301 [4, 5, 8, 12, 13, 16, 17, 25, 28, 30, 33] Li 7761 [24]

Treeadd 385 [24] Grep 10068 [30, 31]

Perimeter 395 [24] Flex 10459 [30, 31]

Print token2 399 [4, 5, 8, 12, 13, 16, 17, 25, 28, 30, 33] Sed 14427 [17, 30]

Tot info 440 [4, 5, 12, 13, 16, 17, 25, 28, 30, 33] XMLsecurity 16800 [25]

Print token 478 [4, 5, 8, 12, 13, 16, 17, 25, 28, 30, 33] Bc-1.06 17042 [31]

Replace 512 [4, 5, 8, 12, 13, 16, 17, 28, 30, 33] Tar-1.13.25 27137 [31]

Emad 557 [24] Go 29315 [24]

Rest 617 [24] Ijpeg 31371 [24]

Bisort 707 [24] Make 35545 [31]

Health 725 [24] JABA 37966 [25]

Faqforge v.1.3.2 734 [26, 27]

Table I. Subject Programs Used in Past Fault Localization Studies

associations from two itemsets in a transaction dataset in the early 90s [43]. In that work the metrics

of support and confidence for measuring the strength of an association are proposed. Various other

metrics, such as interest and collective strength, are proposed later. We describe these measures in

detail in Section 4 .

Tan et al. investigate various association measures, compare their properties, and outline the

benefits and limitations of each from a computational point of view [44]. The measures are revisited

by Geng and Hamilton by including measures for aggregated data summaries [45]. In this paper, we

extend their work in the specific domain of fault localization by comparing 40 association measures

based on their ability to assign high suspiciousness scores for buggy program elements and low

scores for non-buggy ones.
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Some of the association measures that we evaluate in this paper, have been studied for fault

localizations, e.g., Jaccard [13, 21], Sorensen-Dice [21], Anderberg [21], Simple Matching [21],

Rogers and Tanimoto [21], and Ochiai II [21]. In this paper, we revisit the effectiveness of these

measures as their effectiveness on various kinds of bugs and programs containing multiple bugs has

not been extensively evaluated.

3. CONCEPTS & DEFINITIONS

In this section we formally introduce the problem of spectrum-based fault localization as the

computation of association strengths between the executions of various program elements and

failures. Also, we describe the concept of dichotomy matrix that is used in the calculation of these

association strengths.

3.1. Spectrum-Based Fault Localization

This problem starts with a faulty program, a set of test cases, and a test oracle. The set of test

cases are run over the faulty program and observations of how the program runs on each of the

test cases are recorded as program spectra. A program spectrum represents certain characteristics

of an execution of a program, providing a behavior signature of the execution [46]. The signature

of a behavior could be a set of counters, each of which indicates the number of times each program

element (e.g., statement, basic block, path, etc.) is executed in one execution [47]. The counters

could also simply be 0-1 flags that indicate whether an element is executed. A test oracle is available

to label whether a particular output or execution of a test case is correct or wrong. Wrong executions

are classified as program failures. The task of a fault localization tool is to find the program elements

that are responsible for the failures (i.e., the faults or the root causes) based on the program spectra

of both correct and wrong executions.

There have been various spectra proposed in the literature [13, 47]. Different spectra may have

different effects on effectiveness of fault localization. The block-hit spectra are at a suitable profiling

granularity because all code in the same basic block has the same execution pattern and there is no
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Block ID Program Elements T15 T16 T17 T18

1 int count;

int n;

Ele *proc;

List *src_queue, *dest_queue;

if (prio >= MAXPRIO) /*maxprio=3*/

2 {return;}

3 src_queue = prio_queue[prio];

dest_queue = prio_queue[prio+1];

count = src_queue->mem_count;

if (count > 1) /* Bug*//* supposed : count>0*/ {

4 n = (int) (count*ratio + 1);

proc = find_nth(src_queue, n);

if (proc) {

5 src_queue = del_ele(src_queue, proc);

proc->priority = prio;

dest_queue = append_ele(dest_queue, proc); } }}

Status of Test Case Execution : Pass Pass Pass Fail

Figure 1. Example of block-hit program spectra

need to instrument individual instructions in a granularity finer than blocks, and because it has been

shown in the literature that the instrumentation costs to obtain such spectra are relatively low and it

can be used for effective fault localization [13,16,17,21,47]. The granularity has a balance between

reducing instrumentation costs and having sufficient bug-revealing capabilities.

In this paper, we use block-hit program spectra, each of which consists of a set of flags to indicate

whether each basic block is executed or not in each test case. An example of block-hit program

spectra is shown in Figure 1. The first column contains identifiers of basic blocks. The second

column contains the statements in the corresponding basic blocks. The other columns indicate

whether each basic block is executed in test cases T15, T16, T17, and T18 along with the information

whether each of the test cases passes or fails. In this example, • denotes that a basic block is executed

by a test case and an empty cell denotes that the block is not executed by the test case. In the code

snippet, a bug lies in the condition of the if statement in Block 3, causing Blocks 4–5 to be skipped

when the variable count is 1. Note that in test cases T16-T18, execution of Block 2 that contains

return statement is followed by execution of Block 3. Normally, Block 3 should not be executed,

but since this snipped code is being called inside a loop. Thus the traces of these test cases contain

execution of Block 2 together with the following blocks.
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Symbol Definition

n Total number of test cases in the test suite

n(e) Number of test cases that executes a program element e

ns Number of test cases that pass

nf Number of test cases that fail

ns(e) Number of test cases that execute e and pass

nf (e) Number of test cases that execute e and fail

Table II. Some common notations

Based on these spectra, we want to compute the suspiciousness score of each program element

following Definition 3.1.

Definition 3.1 (Suspiciousness Score)

Consider a program P = {e1, ..., en} and a set of program spectra T = Ts ∪ Tf for P , where P

comprises of n elements e1, ..., en and T comprises of the spectra for correct executions Ts and the

spectra for wrong executions Tf . We would like to measure the strength of the association between

the executions of each ei and program failures and assign this strength as the suspiciousness score

of ei denoted as suspiciousness(e).

3.1.1. Tarantula Jones and Harrold propose Tarantula [4] to rank program elements based on their

suspiciousness scores. Intuitively, a program element is more suspicious if it appears in failed

executions more frequently than in correct executions. Considering a program P and a test suite

T , Table II introduce some common notations which are used in the rest of the paper.

Tarantula’s suspiciousness score for a program element e can be computed as follows:

suspiciousness(e) =

nf (e)
nf

ns(e)
ns

+
nf (e)
nf

Based on block-hit program spectra shown in Figure 1, the suspiciousness score of Block 3 that

contains the bug is 1/1
3/3+1/1 = 0.5. Block 1 has the same suspiciousness score. Interestingly, Block 2
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receives the highest suspiciousness score: 1/1
2/3+1/1 = 0.6. Following the same calculation, Blocks 4

and 5 are not suspicious. There is no failure that executes these blocks and hence Tarantula returns a

suspiciousness score of 0. Assuming developers inspect program elements one by one from the most

suspicious to the least, the bug in Block 3 can be found after at most 3 blocks have been inspected.

3.1.2. Ochiai Abreu et al. [16] propose Ochiai which assigns the suspiciousness score of a program

element as follows:

suspiciousness(e) =
nf (e)√

nf (nf (e) + ns(e))
=

nf (e)√
nfn(e)

Similar to Tarantula, Ochiai considers an element more suspicious if it occurs more frequently in

failed executions than in correct executions (the
√

nf (e)
n(e) part). Using the same example shown

in Figure 1, Blocks 1 and 3 receive a suspiciousness score: 1/
√

3 ∗ (1 + 0) = 0.14. Similar to

Tarantula, Ochiai also returns Block 2 as the most suspicious block: 1/
√

4 ∗ (1 + 0) = 0.20, while

the remaining blocks are assigned suspiciousness scores of 0. As the case with Tarantula, by

employing Ochiai, the bug can be found after 3 blocks have been inspected. In this study, we are

interested to investigate other association measures that can possibly localize the bug earlier.

3.2. Dichotomous Association

A common characteristics of the association measures evaluated in this paper is that they are all

defined based on dichotomy matrices. The following are the necessary definitions.

Definition 3.2 (Dichotomy)

A dichotomous outcome is an outcome whose values could be split into two categories, e.g.,

wrong or correct, executed or skipped, married or unmarried, etc. A dichotomous variable is a

variable having a dichotomous outcome. A dichotomy matrix is a 2× 2 matrix that tries to associate

two dichotomous variables in the form of a 2× 2 contingency table which records the bivariate

frequency distribution of the two variables.
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An example of a dichotomy matrix D(A,B) relating variables A and B is shown in Table III.

The value c00 corresponds to the number of observations in which the value of variable A equals to

A0 and the value of variable B equals to B0. The values of the other three entries in the dichotomy

matrix are similarly defined.

A = A0 A = A1

B = B0 c00 c01

B = B1 c10 c11

Table III. An example of a dichotomy matrix. We refer to it as D(A,B).

Based on the concept of dichotomy matrix, we introduce dichotomous association in

Definition 3.3.

Definition 3.3 (Dichotomous Association)

A dichotomous association is a special form of bivariate association [42] which measures the

strength of association between two dichotomous variables, e.g., application of a medical treatment

and recovery from the disease, job satisfaction and productivity, and program element execution and

program failure. The formulae for calculating dichotomous associations depend on the four entries

in dichotomy matrices.

Given a dichotomy matrix relating two variables, two questions are often asked:

1. Is there a (dichotomous) association between the two variables?

2. How strong is the association between the two variables?

A common way to answer these two questions is to define a formula, referred to as an association

measure, to calculate a score based on the four entries in a dichotomy matrix and consider the

association exists (or is strong) if the score is beyond a particular threshold. We define association

measure in Definition 3.4.
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Definition 3.4 (Association Measure)

An association measure M of two variable A and B is a mathematical function of the four entries

of a dichotomy matrix D(A,B), and is denoted as M(A,B,D(A,B)) or simply M(A,B,D) if it

is clear from the context.

In fault localization, we could produce a dichotomy matrix that relates the executions of a program

element with program failures. Consider a program element e. For each test case, a trace is generated

when a subject program is executed on the test case. Some traces execute e, others do not. Some

traces correspond to failures, others correspond to correct executions. After the test cases are run, a

dichotomy matrix as shown in Table IV is produced for every program element e.

e Executed e Not Executed

Test Passed ns(e) ns(e)

Test Failed nf (e) nf (e)

Table IV. Dichotomy matrix for fault localization.

The notation e means e is not executed, and other notations are defined in Table II. Thus, ns(e)

is the number of test cases that do not execute e and pass, and nf (e) is the number of test cases that

do not execute e and fail.

Considering variables E and F to represent a program element being executed and a program

failure occurs respectively, we are interested to compute M(E,F,De(E,F )) (i.e., the association

between the execution of e and a failure), where De(E,F ) represents the dichotomy matrix of the

two variables E and F for a program element e. The formulae of the 40 association measures are

given in Section 4.
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ASSOCIATION MEASURES FOR FAULT LOCALIZATION 15

4. ASSOCIATION MEASURES

In this section, we first describe how a dichotomy matrix can be constructed. Next, we present how

the 40 association measures can be computed from a dichotomy matrix. Finally, we give an example

how we sort program elements for inspection using the association measures.

4.1. Constructing a Dichotomy Matrix

Dichotomy matrix construction requires programs instrumentation that could support collection of

program execution traces and a test oracle. In this paper, we instrument all buggy programs in

our dataset in basic block level. We manually instrument for C programs and use Cobertura† to

instrument Java programs. In order to construct dichotomy matrix, we collect the program execution

traces which contain information about which basic blocks are executed by each test case. The test

oracle would give us information on whether a test case fails or passes. Next, for each basic block,

we construct a dichotomy matrix by counting the number of times the basic block is executed by the

passing test cases which is denoted as ns(e), number of times the basic block is not executed by the

passing test cases which is denoted as ns(e), number of times the basic block is executed by failing

test cases which is denoted as nf (e), and number of times the basic block is not executed by failing

test cases which is denoted as nf (e). The information in this dichotomy matrix is then used as an

input to the association measures to calculate how likely the corresponding basic block contains a

bug.

4.2. Association Measures

The 40 association measures that we consider are as follows: ϕ-coefficient [42], odds

ratio [18], Yule’s Q [19], Yule’s Y [20], Kappa [48], J-Measure [49], gini index [50],

support [43], confidence [43], Clark and Boswell’s Laplace accuracy [51], conviction [52],

interest [52], cosine [44], Piatetsky-Shapiro’s Leverage [53], certainty factor [54], added value [44],

collective strength [55], Jaccard [56], Klosgen [57], information gain [58, 59], Coverage [45,

†http://cobertura.sourceforge.net/
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Name Formula

ϕ-Coefficient (M1)
P (A,B)−P (A)P (B)√

P (A)P (B)(1−P (A))(1−P (B))

Odds ratio (M2)
P (A,B)P (A,B)

P (A,B)P (A,B)

Yule’s Q (M3)
P (A,B)P (A,B)−P (A,B)P (A,B)

P (A,B)P (A,B)+P (A,B)P (A,B)
= α−1

α+1

Yule’s Y (M4)

√
P (A,B)P (A,B)−

√
P (A,B)P (A,B)√

P (A,B)P (A,B)+
√

P (A,B)P (A,B)
=

√
α−1√
α+1

Kappa (M5)
P (A,B)+P (A,B)−P (A)P (B)−P (A)P (B)

1−P (A)P (B)−P (A)P (B)

J-Measure (M6) max(P (A,B) log(
P (B|A)
P (B)

) + P (AB) log(
P (B|A)

P (B)
),

P (A,B) log(
P (A|B)
P (A)

) + P (AB) log(
P (A|B)

P (A)
))

Gini Index (M7) max(P (A)[P (B|A)2 + P (B|A)2] + P (A)[P (B|A)2 +

P (B|A)2]− P (B)2 − P (B)2,P (B)[P (A|B)2 + P (A|B)2] +

P (B)[P (A|B)2 + P (A|B)2]− P (A)2 − P (A)2)

Support (M8) P (A,B)

Confidence (M9) max(P (B|A), P (A|B))

Laplace (M10) max(
P (A,B)+1
P (A)+2

,
P (A,B)+1
P (B)+2

)

Conviction (M11) max(
P (A)P (B)

P (AB)
,
P (B)P (A)

P (BA)
)

Interest (M12)
P (A,B)

P (A)P (B)

Piatetsky-Shapiro’s (M13) P (A,B)− P (A)P (B)

Certainty Factor (M14) max(
P (B|A)−P (B)

1−P (B)
,
P (A|B)−P (A)

1−P (A)
)

Added Value (M15) max(P (B|A)− P (B), P (A|B)− P (A))

Collective Strength (M16)
P (A,B)+P (A,B)

P (A)P (B)+P (A)P (B)
× 1−P (A)P (B)−P (A)P (B)

1−P (A,B)−P (AB)

Jaccard (M17)
P (A,B)

P (A)+P (B)−P (A,B)

Klosgen (M18)
√

P (A,B)max(P (B|A)− P (B), P (A|B)− P (A))

Information Gain (M19) (−P (B) logP (B)− P (B) logP (B))− (P (A)×

(−P (B|A) logP (B|A))− P (B|A) logP (B|A)− P (A)×

(−P (B|A) logP (B|A))− P (B|A) logP (B|A)))

Table V. Definitions of association measures [Part I]. A and B are the two variables in the dichotomy matrix. P (A) and

P (B) correspond to the probabilities of A and B respectively. Other notations follow standard notations in Probability

and Statistics.Copyright c⃝ 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
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Name Formula

Coverage (M20) P (A)

Accuracy (M21) P (A,B) + P (A,B)

Leverage (M22) P (B|A)− P (A)P (B)

Relative Risk (M23) P (B|A)/P (B|A)

Interestingness Weighting Depen-

dency (M24)

(( P (A,B)
P (A)P (B)

)k − 1)P (A,B)m where k,m are coefficients of depen-

dency and generality, respectively, weighting the relative importance

of the two factors.

Goodman and Kruskal (M25)
∑

i maxjP (Ai,Bj)+
∑

j maxiP (Ai,Bj)−maxiP (Ai)−maxjP (Bj

2−maxiP (Ai)−maxjP (Bj))

Normalized Mutual Information

(M26)

∑
i

∑
j P (Ai, Bj)log2

P (Ai,Bj)

P (Ai)P (Bj)
/{−

∑
i P (Ai)log2P (Ai)}

One-Way Support (M27) P (B|A)log2
P (A,B)

(P (A)P (B))

Two-Way Support (M28) P (A,B)log2
P (A,B)

(P (A)P (B))

Two-Way Support Variation (M29) P (A,B)log2
P (A,B)

(P (A)P (B))
+ P (A,B)log2

P (A,B)

(P (A)P (B))
+

P (A,B)log2
P (A,B)

(P (A)P (B))
+ P (A,B)log2

P (A,B)

(P (A)P (B))

Loevinger (M30) 1− P (A)P (B)

P (A,B)

Sebag-Schoenauer (M31)
P (A,B)

P (A,B)

Least Contradiction (M32)
P (A,B)−P (A,B)

P (B)

Odd Multiplier (M33)
P (A,B)P (B)

P (B)P (A,B)

Example and Counterexample Rate

(M34)

1− P (A,B)
P (A,B)

Zhang (M35)
P (A,B)−P (A)P (B)

max(P (A,B)P (B),P (B)P (A,B)

Sorensen-Dice (M36)
2P (A,B)

2P (A,B)+P (A,B)+P (A,B)

Anderberg (M37)
P (A,B)

P (A,B)+2(P (A,B)+P (A,B))

Simple-Matching (M38) P (A,B) + P (A,B)

Rogers and Tanimoto (M39)
P (A,B)+P (A,B)

P (A,B)+P (A,B)+2(P (A,B)+P (A,B))

Ochiai II (M40)
P (A,B)+P (A,B)√

(P (A,B)+P (A,B))(P (A,B)+P (A,B))(P (A,B)+P (A,B))(P (A,B)+P (A,B))

Table VI. Definitions of association measures [Part II].

60], Accuracy [45, 60], Leverage [45, 60], Relative Risk [45, 60], Interestingness Weighting

Dependency [45, 60], Goodman and Kruskal [44, 45, 60, 61], Normalized Mutual Information [44,

45,60], One-Way Support [45,60], Two-Way Support [45,60], Two-Way Support Variation [45,60],

Loevinger [45], Sebag-Schoenauer [45], Least Contradiction [45], Odd Multiplier [45], Example

Copyright c⃝ 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)
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Name Range No Perfect

ϕ-Coefficient (M1) −1 . . . 0 . . . 1 0 1

Odds ratio (M2) 0 . . . 1 . . .∞ 1 ∞

Yule’s Q (M3) −1 . . . 0 . . . 1 0 1

Yule’s Y (M4) −1 . . . 0 . . . 1 0 1

Kappa (M5) −1 . . . 0 . . . 1 0 1

J Measure (M6) 0 . . . 1 0 1

Gini index (M7) 0 . . . 1 0 1

Support (M8) 0 . . . 1 0 1

Confidence (M9) 0 . . . 1 0 1

Laplace (M10) 0 . . . 1 0 1

Conviction (M11) 0.5 . . . 1 . . .∞ 1 ∞

Interest (M12) 0 . . . 1 . . .∞ 1 ∞

Piatetsky-Shapiro’s (M13) −0.25 . . . 0 . . . 0.25 0 0.25

Certainty factor (M14) −1 . . . 0 . . . 1 0 1

Added Value (M15) −0.5 . . . 0 . . . 1 0 1

Collective strength (M16) 0 . . . 1 . . .∞ 1 ∞

Jaccard (M17) 0 . . . 1 0 1

Klosgen (M18) ( 2√
3
− 1)1/2[2−

√
3− 1√

3
] . . . 0 . . . 2

3
√
3

0 2
3
√
3

Information Gain (M19) 0 . . . 1 0 1

Table VII. Value ranges of the association measures [Part I]. The third and fourth columns give the values corresponding

to no association and perfect association respectively. Values of measures with ranges in the format of a . . . b (e.g., J-

Measure (0 . . . 1), etc.) indicate positive associations with failures. Values of measures with ranges in the format of

a . . . b . . . c (e.g., ϕ-coefficient (-1..0..1), etc.) indicate positive associations with failures (if they are between b and c),

or negative associations with failures (if they are between a and b). Values closer to a imply stronger associations with

passing executions.

and Counterexample Rate [45], Zhang [45], Sorensen-Dice [62, 63], Anderberg [64], Simple

Matching [65], Rogers and Tanimoto [66], and Ochiai II [67].

The mathematical formulae for calculating these 40 association measures are given in

Tables V and VI. The formulae are defined in terms of probabilities, instead of frequencies,

but we can substitute frequencies recorded in dichotomous matrices for probabilities during

actual calculations. The ranges of values that these association measures can take are given in

Tables VII and VIII.
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Name Range No Perfect

Coverage (M20) 0 . . . 1 0 1

Accuracy (M21) 0 . . . 1 0 1

Leverage (M22) −1 . . . 0 . . . 1 0 1

Relative Risk (M23) 0 . . . 1 . . .∞ 1 ∞

Interestingness Weighting Dependency (M24) −1 . . . 0 . . . 1 0 1

Goodman and Kruskal (M25) 0 . . . 1 0 1

Normalized Mutual Information (M26) 0 . . . 1 0 1

One-Way Support (M27) −1 . . . 0 . . . 1 0 1

Two-Way Support (M28) −1 . . . 0 . . . 1 0 1

Two-Way Support Variation (M29) 0 . . . 1 0 1

Loevinger (M30) −1 . . . 0 . . . 1 0 1

Sebag-Schoenauer (M31) 0 . . . 1 . . .∞ 1 ∞

Least Contradiction (M32) 0 . . . 1 0 1

Odd Multiplier (M33) 0 . . . 1 . . .∞ 1 ∞

Example and Counterexample Rate (M34) -∞ . . . 0 . . . 1 0 1

Zhang (M35) −1 . . . 0 . . . 1 0 1

Sorensen-Dice (M36) 0 . . . 1 0 1

Anderberg (M37) 0 . . . 1 0 1

Simple-Matching (M38) 0 . . . 1 0 1

Rogers and Tanimoto (M39) 0 . . . 1 0 1

Ochiai II (M40) 0 . . . 1 0 1

Table VIII. Value ranges of the association measures [Part II].

4.3. From Association to Suspiciousness

From Section 3, the suspiciousness score for a program element e with dichotomy matrix De

is defined as the strength of the association between the executions of e with failures (i.e.,

M(E,F,De)). M refers to one of the 40 association measures presented in Section 4.2.

Next, we illustrate how an association measure could be used to rank program elements for

inspection. Using the example in Figure 1, we observe that there are 5 blocks: Blocks 1, 2, 3, 4, and

5. The bug resides at the if statement in block 3. The suspiciousness score of block 3 is determined

by the association strength between the executions of block 3 and failures. For example, by using

one of the association measures, e.g., Coverage, blocks 3 and 1 receive the highest suspiciousness

score, i.e., 1, followed by block 2 whose suspiciousness score is 0.75. The suspiciousness scores of
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blocks 4 and 5 are 0.5. This particular measure can rank the block containing the bug such that no

other block receives a score higher than it. However, Tarantula and Ochiai are unable to do so—see

Sections 3.1.1 and 3.1.2.

5. EMPIRICAL EVALUATION

In this section we first describe our datasets, followed by our evaluation metrics, and experimental

results.

5.1. Datasets

We analyze different programs from Siemens Test Suite [68]. Siemens programs are injected

with realistic bugs and often analyzed for fault localization studies [4, 5, 8, 12, 13, 16, 17, 25, 28,

30, 33, 35–37]. We also analyze other three real programs from Software-artifact Infrastructure

Repository (SIR) [22] namely: Space [4, 15, 17, 21], NanoXML [25], and XML-Security [25].

Space is written in C, while NanoXML and XML-Security are written in Java. The average

lines of code for various versions of Space, NanoXML and XML-Security are 6,218, 4,223,

and 21,275 respectively. Siemens test suite was originally used for research in test coverage

adequacy and was developed by Siemens Corporation Research. We use the variant provided at

www.cc.gatech.edu/aristotle/Tools/subjects/. Each program contains many different versions where

each version has one bug. These bugs comprise a wide array of realistic bugs. The Siemens

Test Suite comes with 7 programs: print tokens, print tokens2, replace, schedule, schedule2, tcas,

and tot info. The total number of buggy versions are 132, as shown in Table IX. We manually

instrumented the buggy versions at basic block level. Since our instrumentation cannot reach the

bugs that reside in variable declarations, we exclude versions that contain this type of bugs, i.e.,

versions 6, 10, 19, 21 of tot info dataset, version 12 of replace dataset, and versions 13, 14, 15, 36,

38 of tcas dataset. We exclude versions 4 and 6 of print token because they are identical with the

original version. We also exclude version 9 of schedule2 because there is no test case that results in

a failure. Thus, in total, we use 119 buggy versions from the Siemens test suite.
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Dataset LOC Language Num. of Faulty Version Num. of Test Cases

print token 478 C 5 4130

print token2 399 C 10 4115

replace 512 C 31 5542

schedule 292 C 9 2650

schedule2 301 C 9 2710

tcas 141 C 36 1608

tot info 440 C 19 1051

space 6,218 C 35 13,585

NanoXML v1 3,497 Java 6 214

NanoXML v2 4,007 Java 7 214

NanoXML v3 4,608 Java 9 216

NanoXML v5 4,782 Java 8 216

XML security v1 21,613 Java 6 92

XML security v2 22,318 Java 6 94

XML security v3 19,895 Java 4 84

Table IX. Dataset descriptions

Space is an interpreter for Array Definition Language (ADL) used by European Space Agency.

We analyze all 35 faulty versions of Space downloaded from SIR. NanoXML is a utility for

parsing XML. SIR contains 5 versions of NanoXML. We exclude NanoXML v4 because there

is no buggy version. For each version, SIR provides a few bugs. In total there are 32 buggy versions

for NanoXML v1, NanoXML v2, NanoXML v3, and NanoXML v5, and we analyze 30 of them.

We exclude two buggy versions because there is no test case that results in a failure. XML-Security

is a Java library that supports digital signature and encryption. SIR contains 3 versions of XML-

Security. Again for each version, SIR provides a few bugs. In total there are 52 buggy versions for

XMLSec v1, XMLSec v2, and XMLSec v3. We exclude 16 buggy versions because there is no

test case that results in a failure. Thus, the total number of buggy versions that we analyze for the 3

programs are 81.

Table IX provides the details on the number of lines, the programming language in which the

program is written, the number of faulty versions, and the number of test cases, of each subject

programs (programs in the Siemens test suite and the other 3 medium-size programs).
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5.2. Evaluation Metrics

We use 40 association measures, Tarantula, and Ochiai to rank program elements based on their

suspiciousness. Developers could then use this list to investigate the more suspicious program

elements first. We assume that developers would be able to identify the buggy program element

when they inspect it.

We consider two commonly used evaluation metrics: average percentage of code inspected to

find all bugs, and proportion of bugs found when a given proportion of the code is inspected. We

describe these two metrics in the following paragraphs.

5.2.1. Percentage of Code Inspected. We evaluate the performance of the measures by the number

of elements that are ranked as high or higher than the program element containing the fault/the bug.

For a suspiciousness score to be effective, buggy program elements should have a relatively larger

value of suspiciousness scores than the non-buggy elements.

When a buggy program element has the same suspiciousness score with several other elements,

the largest rank of the elements that has this suspiciousness score is used as the rank of the buggy

element. For example, consider the case where the two highest suspiciousness scores are 0.92 and

0.91, two elements have suspiciousness scores of 0.92, and 3 elements have suspiciousness scores

of 0.91. If a buggy element is given the suspiciousness score of 0.91, then the rank of this buggy

element is 5, instead of 3. Since we do not know how the programmer will traverse elements that

have the same suspiciousness score, we use the worst case scenario where the programmer inspects

all elements having the same score. In the situation when a buggy version contains multiple bugs or

one single bug that involves multiple program elements, we use the largest rank among the buggy

elements as it is the worst case rank that represents scenarios when programmers would like to find

all the buggy elements by using the given list of most suspicious program elements.

Ranking program elements by using suspiciousness score is useful to evaluate the accuracy

of a fault-localization approach. However, it may not be representative enough to know how

programmers really locate the bugs with their expertise, as this ranking approach does not provide
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the context of the bugs to help programmers in understanding the root cause of the bugs, as the

study by Parnin and Orso has shown [40]. It is an interesting future study to augment suspiciousness

ranking with some additional information to more effectively guide programmers to locate all buggy

program elements.

Suspiciousness measures that rank buggy elements first are more effective than those that rank

them last. We then use this rank to compute the percentage of program elements that need to be

inspected to find the buggy elements by the formula:

largest rank among the buggy elements

total elements

In our experiment, we thus choose to use basic block as the granularity of the elements and the

above percentage is applied as the first accuracy criterion of the association measures. The accuracy

of a particular measure to localize bug in all buggy versions of our datasets is then evaluated by

calculating the overall mean of all percentages of code inspected for the measure which is the

average of the percentages of code inspected of the measure for all buggy versions in our datasets.

The smaller the overall mean, the more accurate the measure in localizing bug. However, the overall

mean might not necessarily reflect that the measure would localize bugs with the same accuracy for

all buggy versions. A measure could have a good accuracy in localizing one bug, but might not have

a good accuracy in localizing other bugs. Thus, we also calculate the overall standard deviation of

a measure to evaluate the variance of percentages of code inspected of the measure for all buggy

versions. The smaller the overall standard deviation, the better the overall mean reflects the accuracy

of the measure because of less variation of percentage of code inspected for all buggy versions.

5.2.2. Proportion of Bugs Localized. Next, we calculate the proportion of bugs that could be

localized assuming that the developers are only willing to investigate a given proportion of code. To

compute this measure we vary the proportion of code that the developers are willing to inspect and

for each proportion we compute the proportion of bugs that can be localized.
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5.3. Evaluation Results

We describe the accuracy of the association measures in comparison with Ochiai and Tarantula in

the following paragraphs.

5.3.1. Percentage of Code Inspected. The overall means and standard deviations of percentage of

code inspected of the 40 association measures along with those of Ochiai and Tarantula for all

subject programs are shown in Table X. The smallest mean is 22.42% which is achieved by Klosgen.

Ochiai and Tarantula achieve 22.66% and 24.66% respectively. Other measures that have similar

accuracy to Klosgen (M18) and Ochiai (i.e., having a mean in the range of 22.5% and 23.5%) are

Added Value (M15), ϕ-Coefficient (M1), Normalized Mutual Information (M26), and Two-way

Support (M28). There are 13 measures that have similar accuracy as Tarantula ((i.e., having a mean

between 23.5% to 25.5%)), i.e., Interestingness Weighting Dependency (M24), J-Measure (M6),

Information Gain (M19), Two-Way Support Variation (M29), Example and Counterexample Rate

(M34), Kappa (M5), Confidence (M9), Odd Multiplier (M33), Sebag (M31), Interest (M12), Zhang

(M35), One-Way Support (M27), Jaccard (M17), Sorensen-Dice (M36), and Anderberg (M37).

We notice that most of the association measures have similar standard deviations of around 20%

(ranging from 19% to 27%), except for Goodman and Kruskal (M25) which has the highest standard

deviation among all measures i.e., 37%.

In our evaluation dataset, we have eight C programs and seven Java programs, the accuracy of an

association measure in localizing bugs for different programs might be different. We are interested

to evaluate the accuracy of the association measures in localizing bugs for each program. Thus, we

also calculate the mean and standard deviation of the measures for buggy versions in each program.

Tables XI & XII show the detail of the accuracy values (i.e., mean and standard deviation) of each

measure for each C program, while Tables XIII & XIV show the detail for each of Java program.

Based on the results, the measures have different accuracy for different program and different

programming languages. The measures generally require more than 10% of percentage of code

to be inspected in order to localize bugs for three C programs (i.e., schedule2, tcas, and tot info) and
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Association Measures Mean StdDev Association Measures Mean StdDev

Klosgen(M18) 22.42% 24.58% Sorensen-Dice(M36) 24.86% 24.88%

Ochiai 22.66% 23.81% Anderberg(M37) 24.86% 24.90%

Collective Strength(M16) 22.97% 24.20% Ochiai II(M40) 25.78% 26.94%

Added Value(M15) 23.03% 24.93% Gini Index(M7) 25.83% 26.84%

ϕ-Coefficient(M1) 23.12% 24.54% Leverage(M22) 27.12% 26.16%

Normalized Mutual Information(M26) 23.22% 24.04% Least Contradiction(M32) 31.71% 27.70%

Two-Way Support(M28) 23.37% 24.93% Rogers and Tanimoto(M39) 31.76% 27.73%

Interestingness Weighting Dependency(M24) 23.74% 24.94% Accuracy(M21) 31.98% 27.69%

J-Measure(M6) 24.23% 25.80% Simple-Matching(M38) 31.98% 27.69%

Information Gain(M19) 24.37% 25.82% Odds Ratio(M2) 40.07% 19.80%

Two-Way Support Variation(M29) 24.37% 25.82% Yule’s Q (M3) 40.09% 19.82%

Example and Counterexample Rate(M34) 24.49% 24.59% Conviction(M11) 40.09% 19.70%

Kappa(M5) 24.51% 24.76% Certainty Factor(M14) 40.10% 19.70%

Confidence(M9) 24.52% 24.74% Yule’s Y (M4) 40.10% 19.81%

Sebag(M31) 24.63% 24.67% Goodman and Kruskal(M25) 43.04% 37.55%

Odd Multiplier(M33) 24.63% 24.68% Relative Risk(M23) 43.30% 20.71%

Zhang(M35) 24.64% 24.66% Support(M8) 43.64% 20.32%

Interest(M12) 24.64% 24.68% Laplace(M10) 43.64% 20.30%

One-Way Support(M27) 24.65% 24.76% Coverage(M20) 45.09% 23.07%

Tarantula 24.66% 24.66% Piatetsky-Shapiro’s(M13) 56.02% 24.49%

Jaccard(M17) 24.72% 24.94% Loevinger(M30) 56.31% 24.79%

Table X. Overall mean and standard deviation (in parentheses) of accuracy values (smaller the better)

the Java programs. For the other two C programs (i.e., schedule and space), more than half of the

measures could guide a debugger to localize bugs in these programs by inspecting less than 10% of

code.

We also perform statistical tests for each pair of measures including Tarantula and Ochiai using

Wilcoxon signed rank test [69] at 0.05 statistical significance threshold to see if some measures are

statistically significantly better than others. We use this statistical test because it does not assume that

the data follows normal distribution. We visualize the statistical significance relationship as a partial

order in Figure 2. A link from A to B in the partial order denotes that A is statistically significantly

better than B. The relationships expressed in the partial order are transitive: if A outperforms B, and

B outperforms C, then A outperforms C too. To reduce the number of links in the partial order, we

omit links that could be captured by this transitivity property.
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Association Measures Programs

print token print token2 schedule schedule2 replace tcas tot info space

ϕ-Coefficient 14%(19%) 13%(17%) 9%(15%) 47%(24%) 11%(14%) 50%(27%) 19%(15%) *3%(7%)

OddsRatio 38%(10%) 44%(2%) 49%(28%) 53%(7%) 33%(13%) 62%(13%) 49%(20%) 18%(6%)

Yule’s Q 38%(10%) 44%(3%) 48%(28%) 53%(7%) 33%(13%) 62%(13%) 49%(20%) 18%(6%)

Yule’s Y 38%(9%) 44%(3%) 48%(28%) 53%(7%) 33%(13%) 62%(13%) 49%(20%) 18%(6%)

Kappa 22%(22%) 16%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 21%(16%) 4%(8%)

J-Measure 13%(22%) 11%(13%) 24%(19%) 49%(23%) 11%(15%) 52%(30%) 18%(15%) 5%(10%)

Gini Index 16%(28%) 16%(22%) 12%(12%) 58%(26%) 11%(15%) 53%(30%) 24%(19%) 6%(12%)

Support 38%(10%) 45%(3%) 50%(28%) 56%(8%) 33%(12%) 65%(13%) 51%(20%) 20%(8%)

Confidence 23%(22%) 13%(18%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 23%(16%) 5%(8%)

Laplace 38%(10%) 45%(3%) 50%(28%) 56%(8%) 34%(12%) 65%(13%) 50%(20%) 20%(8%)

Conviction 38%(10%) 44%(3%) 48%(28%) 53%(7%) 33%(12%) 62%(13%) 49%(20%) 18%(6%)

Interest 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 22%(16%) 5%(8%)

Piatetsky-Shapiro’s 61%(32%) 77%(16%) 71%(29%) 68%(28%) 60%(27%) 65%(25%) 63%(28%) 47%(13%)

Certainty Factor 38%(10%) 44%(3%) 48%(28%) 53%(7%) 33%(13%) 62%(13%) 49%(20%) 18%(6%)

Added Value 14%(23%) 14%(19%) 7%(10%) 50%(25%) 10%(14%) 50%(27%) 18%(15%) 4%(8%)

Collective Strength 13%(15%) 13%(16%) 11%(20%) 44%(23%) 11%(13%) 50%(27%) 18%(15%) *3%(7%)

Jaccard 21%(21%) 12%(18%) 7%(6%) 50%(24%) 13%(15%) 51%(27%) 21%(15%) *3%(7%)

Klosgen 12%(19%) 11%(15%) 8%(12%) 48%(24%) *9%(12%) 50%(28%) *17%(13%) 4%(8%)

Information Gain 13%(22%) 11%(14%) 14%(19%) 49%(23%) 11%(15%) 52%(30%) 19%(16%) 5%(10%)

Coverage 58%(26%) 63%(20%) 69%(30%) *29%(20%) 50%(22%) *45%(23%) 51%(28%) 36%(19%)

Accuracy 33%(24%) 28%(22%) 10%(5%) 60%(24%) 26%(21%) 57%(29%) 37%(29%) 9%(16%)

Leverage 24%(23%) 20%(22%) 7%(4%) 55%(26%) 16%(18%) 53%(28%) 28%(23%) 8%(12%)

Relative Risk 38%(10%) 45%(3%) 50%(28%) 56%(8%) 34%(13%) 66%(12%) 50%(20%) 18%(6%)

Int. Weighting Dependency 17%(23%) 15%(20%) 8%(9%) 50%(24%) 12%(15%) 50%(27%) 21%(16%) 4%(8%)

Goodman and Kruskal 20%(36%) 30%(44%) 67%(38%) 83%(9%) 40%(40%) 64%(33%) 66%(41%) 12%(22%)

Normalized Mutual Info. 10%(12%) 9%(11%) 16%(27%) 41%(20%) 11%(15%) 49%(27%) *17%(13%) 4%(8%)

One-Way Support 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 22%(16%) 5%(8%)

Two-Way Support 14%(22%) 14%(19%) 8%(10%) 50%(25%) 11%(14%) 50%(27%) 20%(15%) *3%(8%)

Two-Way Support Variation 13%(22%) 11%(14%) 14%(19%) 49%(23%) 11%(15%) 52%(30%) 19%(16%) 5%(10%)

Loevinger 68%(26%) 78%(21%) 72%(29%) 38%(22%) 64%(23%) 52%(22%) 70%(26%) 59%(24%)

Sebag 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 22%(16%) 5%(8%)

Least Contradiction 30%(27%) 28%(22%) 10%(5%) 59%(24%) 26%(21%) 57%(29%) 36%(29%) 9%(16%)

Odd Multiplier 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 22%(16%) 5%(8%)

Example and Counter. 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 50%(27%) 22%(16%) 5%(8%)

Zhang 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 22%(16%) 5%(8%)

Table XI. Detailed means and standard deviations (in parentheses) of percentages of code inspected to find

all bugs in the C programs [Part I]. The star (*) marks the measure(s) with the lowest mean and the underline

marks measures that have a mean within 10%.
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Association Measures Programs

print token print token2 schedule schedule2 replace tcas tot info space

Sorensen-Dice 21%(21%) 16%(20%) 7%(6%) 50%(24%) 14%(15%) 51%(27%) 20%(14%) *3%(7%)

Anderberg 21%(21%) 16%(20%) 7%(6%) 51%(24%) 14%(15%) 51%(27%) 20%(14%) *3%(7%)

Simple-Matching 33%(24%) 28%(22%) 10%(5%) 60%(24%) 26%(21%) 57%(29%) 37%(29%) 9%(16%)

Rogers and Tanimoto 30%(27%) 28%(22%) 10%(5%) 60%(24%) 26%(21%) 57%(29%) 36%(29%) 9%(16%)

Ochiai II 19%(27%) 16%(21%) *6%(4%) 57%(26%) 13%(15%) 52%(29%) 28%(27%) 4%(10%)

Tarantula 23%(22%) 17%(20%) 7%(6%) 51%(24%) 14%(16%) 51%(27%) 22%(16%) 5%(8%)

Ochiai *8%(8%) 9%(10%) 13%(28%) 42%(22%) 10%(13%) 48%(24%) *17%(12%) *3%(8%)

Table XII. Detailed means and standard deviations (in parentheses) of percentages of code inspected to find

all bugs in the C programs [Part II]. The star (*) marks the measure(s) with the lowest mean and the underline

marks measures that have a mean within 10%.

Association Measures Programs

Nano v1 Nano v2 Nano v3 Nano v5 XML-sec v1 XML-sec v2 XML-sec v3

ϕ-Coefficient *21%(28%) 32%(25%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

OddsRatio 45%(18%) 43%(18%) 44%(19%) 23%(10%) 29%(0%) 31%(0%) 40%(0%)

Yule’s Q 44%(18%) 43%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)

Yule’s Y 44%(18%) 43%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)

Kappa *21%(28%) 32%(25%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

J-Measure 25%(30%) 31%(26%) *31%(30%) 26%(17%) 29%(0%) 31%(0%) 40%(0%)

Gini Index 25%(30%) 32%(25%) *31%(30%) 26%(19%) 29%(0%) 31%(0%) 40%(0%)

Support 67%(11%) 51%(12%) 55%(10%) 41%(18%) 29%(0%) 31%(0%) 40%(0%)

Confidence *21%(28%) 26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Laplace 67%(11%) 51%(12%) 55%(10%) 41%(18%) 29%(0%) 31%(0%) 40%(0%)

Conviction 44%(18%) 42%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)

Interest *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Piatetsky-Shapiro’s 52%(20%) 46%(16%) 36%(13%) 46%(22%) 29%(0%) 31%(0%) 40%(0%)

Certainty Factor 44%(18%) 42%(18%) 44%(19%) 25%(14%) 29%(0%) 31%(0%) 40%(0%)

Added Value *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Collective Strength *21%(28%) 31%(26%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Jaccard *21%(28%) 53%(9%) *31%(30%) 19%(15%) 29%(0%) 31%(0%) 40%(0%)

Klosgen *21%(28%) 28%(28%) *31%(30%) 19%(14%) 29%(0%) 31%(0%) 40%(0%)

Information Gain 25%(30%) 32%(25%) *31%(30%) 26%(18%) 29%(0%) 31%(0%) 40%(0%)

Coverage 59%(21%) 47%(19%) 34%(15%) 40%(19%) 29%(0%) 31%(0%) 40%(0%)

Accuracy 25%(30%) 38%(27%) 32%(30%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)

Leverage 25%(30%) 28%(28%) *31%(30%) 24%(17%) 29%(0%) 31%(0%) 40%(0%)

Table XIII. Detailed means and standard deviations (in parentheses) of percentages of code inspected to

find all bugs in the Java programs [Part I]. The star (*) marks the measure(s) with the lowest mean and the

underline marks measures that have a mean within 10%.
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Association Measures Programs

Nano v1 Nano v2 Nano v3 Nano v5 XML-sec v1 XML-sec v2 XML-sec v3

Relative Risk 67%(11%) 51%(12%) 55%(10%) 40%(16%) 29%(0%) 31%(0%) 40%(0%)

Int. Weighting Dependency *21%(28%) 27%(28%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Goodman and Kruskal 29%(35%) 38%(27%) 40%(30%) 42%(30%) 29%(0%) 31%(0%) 40%(0%)

Normalized Mutual Info. *21%(28%) 43%(18%) *31%(30%) 21%(14%) 29%(0%) 31%(0%) 40%(0%)

One-Way Support *21%(28%) *26%(29%) *31%(30%) 21%(18%) 29%(0%) 31%(0%) 40%(0%)

Two-Way Support *21%(28%) 30%(27%) *31%(30%) 20%(13%) 29%(0%) 31%(0%) 40%(0%)

Two-Way Support Variation 25%(30%) 32%(25%) 31%(30%) 26%(18%) 29%(0%) 31%(0%) 40%(0%)

Loevinger 63%(20%) 50%(21%) 35%(15%) 45%(21%) 29%(0%) 31%(0%) 40%(0%)

Sebag *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Least Contradiction 25%(30%) 38%(27%) 32%(30%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)

Odd Multiplier *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Example and counter. *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Zhang *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Sorensen-Dice *21%(28%) 53%(9%) 42%(35%) 19%(15%) 29%(0%) 31%(0%) 40%(0%)

Anderberg *21%(28%) 53%(9%) 42%(35%) 19%(15%) 29%(0%) 31%(0%) 40%(0%)

Simple-Matching 25%(30%) 38%(27%) 43%(35%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)

Rogers and Tanimoto 25%(30%) 38%(27%) 43%(35%) 24%(21%) 29%(0%) 31%(0%) 40%(0%)

Ochiai II 25%(30%) 32%(25%) 42%(35%) 24%(18%) 29%(0%) 31%(0%) 40%(0%)

Tarantula *21%(28%) *26%(29%) *31%(30%) 20%(15%) 29%(0%) 31%(0%) 40%(0%)

Ochiai *21%(28%) 53%(10%) *31%(30%) *18%(15%) 29%(0%) 31%(0%) 40%(0%)

Table XIV. Detailed means and standard deviations (in parentheses) of percentages of code inspected to find

all bugs in the Java programs [Part II]. The star (*) marks the measure(s) with the lowest mean and the

underline marks measures that have a mean within 10%.

It is interesting to note that Klosgen (M18)) and Normalized Mutual Information (M26)) perform

comparably with Ochiai. Klosgen (M18)), Normalized Mutual Information (M26)), and Ochiai

are significantly better than Tarantula. It is also interesting to note that 12 other measures also

perform significantly better than Tarantula. These are: ϕ-coefficient (M1), Added Value (M15),

Collective Strength (M16)), J-Measure (M6)), Information Gain (M19), Two-way Support (M28),

Two-way Support Variation (M29)), Interestingness Weighting Dependency (M24)), Gini Index

(M7)), Example and Counterexample Rate (M34)), Kappa (M5)), and Ochiai II (M40)) . Measures

that perform comparably with Tarantula are Confidence (M9), Interest (M12), One-way Support

(M27)), Sebag (M31)), Odds Multiplier (M33)), and Zhang (M35)). Also it could be noted that

Piatetsky-Shapiro’s (M13), and Loevinger (M30)) perform worse than other measures for fault

localization.
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Figure 2. Accuracy partial order

5.3.2. Proportion of Bugs Localized. We also plot the curve showing the proportion of code that

are investigated (x-axis) vs. the proportion of bugs localized (y-axis) for all dataset. We split the

large graphs into several smaller graphs so that measures that have similar accuracies would be

grouped together, as shown in Figures 3, 4, 5, 6, 7,and 8. For each graph, we compare a number of

association measures with Tarantula and Ochiai.

Association measures included in Figure 3 perform better than Ochiai and Tarantula or as good

as Ochiai. When only 10% of program elements are inspected, Tarantula and Ochiai could localize

40% and 47% of the bugs. Klosgen (M18)) and Added Value (M15) could localize more bugs than

Tarantula and Ochiai—they could localize 49% and 50% of the bugs respectively. Two-way Support

(M28) could localize the same proportion of bugs as Ochiai.
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Figure 3. Comparing M15, M18, and M28 with Ochiai

and Tarantula for all datasets

Figure 4. Comparing M5, M9, M12, M27, M31, M33

- M35 with Ochiai and Tarantula for all datasets

Figure 5. Comparing M1, M6, M7, M16, M17 with

Ochiai and Tarantula for all datasets

Figure 6. Comparing M19, M24, M26, M29, M36,

M37, M40 with Ochiai and Tarantula for all datasets

Figures 5 and 6 show association measures that perform better than Tarantula but not as good

as Ochiai when only 10% of program elements are inspected. The measures are ϕ-coefficient

(M1), J-Measure (M6), Gini Index (M7), Collective Strength (M16), Jaccard (M17), Information

Gain (M19), Interestingness Weighting Dependency (M24), Normalized Mutual Information (M26),

Loevinger(M29), Sorensen-Dice (M36), Anderberg (M37), and Ochiai II (M40).
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Figure 7. Comparing M2 - M4, M8, M10, M11, M13,

M14, M20 with Ochiai and Tarantula for all datasets

Figure 8. Comparing M21 - M23, M25, M30, M32,

M38, M39 with Ochiai and Tarantula for all datasets

Measures that perform similar to Tarantula are shown in Figure 4. They localize 41% of the bugs

when 10% of program elements are inspected. The association measures included in Figures 7 and

8 perform worse than Tarantula and Ochiai.

5.4. Effectiveness for Various Programming Languages.

We are interested to evaluate the accuracy of measures for different programming language (C and

Java). We find that for different programming language, measures could perform differently. Based

on the first accuracy criterion (i.e., percentage of code inspected), we generate two partial orders

for the C and Java programs separately to evaluate which measures perform well in each of the

programming languages. We highlight measures that are at the top of the partial orders (i.e., no

other measures perform statistically significantly better than them). For C programs, Ochiai and

Klosgen (M18) are measures that are at the top of the partial order. For Java programs, a number

of measures are at the top of the partial order namely Klosgen (M18), Ochiai, Confidence (M9),

Interest (M12), Added Value (M15), Sebag (M31), Example and Counterexample Rate (M34),

Zhang (M35), Tarantula, Interestingness Weighting Dependency (M24), and Normalized Mutual

Information (M26).
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Figure 9. Comparing M15, M18, and M28 with Ochiai

and Tarantula for C programs

Figure 10. Comparing M5, M9, M12, M27, M31, M33

- M35 with Ochiai and Tarantula for C programs

Next, we evaluate the measures based on the second accuracy criterion (i.e., proportion of bugs

found). For localizing bugs in C programs, Tarantula and Ochiai could localize 44% and 55% of total

bugs within 10% of inspected program elements. Ochiai performs better than Tarantula. Figure 9

show measures that perform better than Ochiai and Tarantula or similar with Ochiai when only 10%

of program elements are inspected. Added Value (M15) and Klosgen (M18) could localize 56% and

56% of the bugs respectively. Two-way Support (M28)) could localize slightly lower than Ochiai,

54%.

Figures 11 and 12 show measures that perform better than Tarantula but not as good as

Ochiai. ϕ-Coefficient (M1), J-Measure (M6), Gini Index (M7), Collective Strength (M16), Jaccard

(M17), Information Gain (M19), Interestingness Weighting Dependency (M24), Normalized Mutual

Information (M26), Loevinger(M29), Sorensen-Dice (M36), Anderberg (M37), and Ochiai II (M40)

could localize 53%, 52%, 49%, 53%, 48%, 51%, 50%, 50%, 51%, 47%, 47%, and 51% of the bugs

respectively. Measures that perform similar to Tarantula are shown in Figure 10. They localize 45-

46% of the bugs when 10% of program elements are inspected. The association measures included

in Figures 13 and 14 perform worse than Tarantula and Ochiai.

For localizing bugs in Java programs, Tarantula performs better than Ochiai. Notice that when

10% of program elements are inspected, Tarantula and Ochiai could localize 26% and 20% of
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Figure 11. Comparing M1, M6, M7, M16, M17 with

Ochiai and Tarantula for C programs

Figure 12. Comparing M19, M24, M26, M29, M36,

M37, M40 with Ochiai and Tarantula for C programs

Figure 13. Comparing M2 - M4, M8, M10, M11, M13,

M14, M20 with Ochiai and Tarantula for C programs

Figure 14. Comparing M21 - M23, M25, M30, M32,

M38, M39 with Ochiai and Tarantula for C programs

the bugs. Figure 15 shows measures that have similar performance as Tarantula. They could

localize 26% of the bugs within 10% of inspected program elements. The measures are Confidence

(M9), Interest (M12), Added Value (M15), Sebag (M31), Odd Multiplier (M33), and Example and

Counterexample Rate (M34).

Figures 16, 17, and 18 show measures that have performance between Tarantula and Ochiai

when 10% of program elements are inspected. Figures 19 and 20 show measures that perform
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worse than Ochiai and Tarantula when localizing bugs in Java programs. Based on the results, we

notice that there are a number of measures that could perform as good as Tarantula and Ochiai when

using different programming language.

The differences in accuracies for localizing bug in C and Java programs possibly imply that

there could be specific characteristic of spectra produced by different program language that could

advantage or disadvantage spectrum-based fault localization. For example in Java, due to object

oriented model, some program elements are executed more often than others e.g., class construction

elements. Thus, their suspiciousness scores are the same.

Figure 15. Comparing M9, M12, M15, M27, M31,

M33, M34 with Ochiai and Tarantula for Java

programs

Figure 16. Comparing M1, M5, M6, M7, M16,

M17, M18, M19 with Ochiai and Tarantula for Java

programs

5.5. Effectiveness for Various Kinds of Bugs.

We divide the bugs into several groups; our categorization is based on that by Kim et al. [29].

Kim et al. categorize different fixes that are made to various software systems. We categorize bugs

based on how the bugs get fixed. The following paragraphs describe our bug categories and present

the effectiveness of the various association measures, Tarantula, and Ochiai on the different bug

categories.
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Figure 17. Comparing M21, M22, M24, M32, M38,

M39 with Ochiai and Tarantula for Java programs

Figure 18. Comparing M27 - M29, M35 - M37, M40

with Ochiai and Tarantula for Java programs

Figure 19. Comparing M2 - M4, M8, M10 ,M11 - M14

with Ochiai and Tarantula for Java programs

Figure 20. Comparing M20, M23, M25, M26, M30

with Ochiai and Tarantula for Java programs

5.5.1. Bug Categories. Kim et al. [29] describes a number of bug categories based on the way bugs

are fixed. In this paper, we refer to their categories to analyze the bug in our subject programs.

We categorize bugs in our subject programs into 8 categories. Table XV shows the categories and

number of buggy versions for each type of bug. We add two categories that are not included by Kim

et al. [29], i.e., change of return expression (CH-RET) and others (OTH).
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Bug category Total version

Addition/removal of conditional statement (CH-CS) 28

Addition/removal of non-conditional statement (CH-NCS) 10

Change in method calls (CH-MC) 26

Change of assignment expression (AS-CE) 60

Change of if condition expression (IF-CC) 44

Change of loop predicate (LP-CC) 11

Change of return expression (CH-RET) 18

Others (OTH) 3

Table XV. Bug categories

We categorize a bug into addition or removal of conditional statement category (CH-CS) when

a bug could be fixed by adding a conditional check statement (e.g. if statement) or removing an

inappropriate check statement. This type of bugs occurs when there is a missing precondition or

postcondition check of some variables, or an extraneous conditional check. Bugs that could be

fixed by adding or removing statement which is not a conditional check statement are put into

addition/removal of non-conditional statement (CH-NCS) category. An example of this type of bug

is missing or extraneous assignment statements.

Change in method calls (CH-MC) category includes bugs that can be fixed by adding or removing

a method call in a program, or by changing the parameter values of a method call. Bugs that could be

fixed by changing the right hand side of an assignment expression are put into change of assignment

expression (AS-CE) category. When a bug could be fixed by modifying a conditional expression

within an if statement, we put the bug into change of if condition expression (IF-CC) category.

Similarly, when a bug could be fixed by modifying a conditional expression in a looping statement,

then we put this bug into change of loop predicate (LP-CC) category. When a bug could be fixed by

changing the value or the expression in a return statement, then we put the bug into change of return

expression (CH-RET) category.

We create a category named other (OTH) to include other bugs that are not covered by the above

categories, e.g., a bug is fixed by changing an if statement to a for loop statement, etc. We ignore

bugs in category (OTH).
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5.5.2. Effectiveness. We first evaluate the effectiveness of the various measures on each category

by the first accuracy criterion (i.e., percentage of code inspected). Based on this criterion, we create

several partial orders based on statistically significantly better relationships among the measures.

We highlight measures that are at the top of the partial orders as shown in Table XVI.

Based on these partial orders, Tarantula is at the top of the partial orders of four bug

categories. Ochiai, Information Gain (M19), Normalized Mutual Information (M26), Two-way

Support Variation (M29) are at the top of the partial orders of six bug categories. Klosgen is at

the top of the partial orders of all bug categories.

Next, we evaluate the effectiveness of the measures on each bug category by the second accuracy

criterion (i.e., proportion of bugs localized). We compute the percentage of bugs localized when up

to 10% of program elements are inspected, as shown in Table XVII and XVIII.

For each category shown in Table XVII and XVIII, different measures have different

effectiveness to localize bugs. The star (*) marks the measures that could localize most bugs in

each category. J-Measure (M6), Gini index (M7), Klosgen (M18), Information Gain (M19), Two-

way Support (M28), and Two-way Support Variation (M29) could localize the most number of bugs

in addition or removal of conditional statement (CH-CS) category. They could localize 50% of the

bugs in this category. ϕ-Coefficient (M1), Added Value (M15), Collective Strength (M16), Klosgen

(M18), Interestingness Weighting Dependency (M24), Two-way Support (M28), and Ochiai could

better localize bugs in addition or removal of non-conditional statement (CH-NCS) category than

other measures. They could localize 70% of the bugs in this category.

For localizing change in method calls (CH-MC) bugs, at most 35% of the bugs in this category

could be localized by the measures. There are number of measures that could localize 35% of the

bugs in this category, they are Confidence (M9), Interest (M12), Added Value (M15), Collective

Strength (M16), Klosgen (M18), Accuracy (M21), Interestingness Weighting Dependency (M24),

One-way Support (M27), Two-way Support (M28), Sebag (M31), Least Contradiction (M32),

Odd Multiplier (M33), Example and Counterexample Rate (M34), Zhang (M35), Simple-Matching

(M38), Rogers and Tanimoto (M39), and Tarantula.
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Bug category Top Measures

Addition/removal of condi-

tional statement (CH-CS)

Klosgen (M18), Ochiai, Information Gain (M19), Normalized Mutual Information (M26),

Two-way Support Variation (M29),

Tarantula, Coefficient (M1), Kappa (M5), J-Measure (M6), Confidence (M9), Added Value

(M15), Collective Strength (M16), Interestingness Weighting Dependency (M24), One-way

Support (M27), Two-way Support (M28), Sebag (M31), Odd Multiplier (M33), Example

and Counterexample Rate (M34), Zhang (M35), Sorensen-Dice (M36), Anderberg (M37),

and Ochiai II (M40)

Addition/removal of non-

conditional statement (CH-

NCS)

Klosgen (M18), Ochiai, Information Gain (M19), Normalized Mutual Information (M26),

Two-way Support Variation (M29),

Coefficient (M1), Kappa (M5), Gini Index (M7), J-Measure (M6), Added Value (M15),

Collective Strength (M16), Jaccard (M17), Interestingness Weighting Dependency (M24),

Two-way Support (M28), Anderberg (M37), and Ochiai II (M40)

Change in method calls

(CH-MC)

Klosgen (M18), Ochiai, Information Gain (M19), Normalized Mutual Information (M26),

Two-way Support Variation (M29),

Tarantula, Coefficient (M1), Confidence (M9), Interest (M12), Added Value (M15),

Collective Strength (M16), Interestingness Weighting Dependency (M24), One-way Support

(M27), Two-way Support (M28), Sebag (M31), Odd Multiplier (M33), Example and

Counterexample Rate (M34), Zhang (M35), and Ochiai II (M40)

Change of assignment

expression (AS-CE)

Klosgen (M18), Ochiai, and Normalized Mutual Information (M26)

Change of if condition

expression (IF-CC)

Klosgen (M18), Ochiai, Information Gain (M19), Normalized Mutual Information (M26),

Two-way Support Variation (M29),

amd J-Measure (M6)

Change of loop predicate

(LP-CC)

Klosgen (M18), Ochiai, Information Gain (M19), Normalized Mutual Information (M26),

Two-way Support Variation (M29),

Tarantula, Coefficient (M1), Kappa (M5), Collective Strength (M16), J-Measure (M6),

Gini Index (M7), Confidence (M9), Added Value (M15), Jaccard (M17), Interestingness

Weighting Dependency (M24), Goodman Kruskal (M25), One-way Support (M27), Two-

way Support (M28), Sebag (M31), Example and Counterexample Rate (M34), Zhang (M35),

Sorensen-Dice (M36), Anderberg (M37), and Ochiai II (M40)

Change of return expression

(CH-RET)

Klosgen (M18), Information Gain (M19), Normalized Mutual Information (M26),

Two-way Support Variation (M29),

Tarantula, Coefficient (M1), J-Measure (M6), Gini Index (M7), Confidence (M9), Interest

(M12), Added Value (M15), Leverage(M21), Interestingness Weighting Dependency (M24),

One-way Support (M27), Two-way Support (M28), Sebag (M31), Odd Multiplier (M33),

Example and Counterexample Rate (M34), Zhang (M35), and Ochiai II (M40)

Table XVI. Measures that are at the top of the partial orders for each bug categories. The underline marks

measures that are at the top of the partial orders of more than five bug categories.
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Measures CH-CS CH-NCS CH-MC AS-CE IF-CC LP-CC CH-RET

ϕ-Coefficient(M1) 46% *70% 31% 47% 41% *73% 50%

Odds Ratio(M2) 0% 0% 0% 3% 5% 9% 0%

Yule’s Q(M3) 0% 0% 4% 3% 5% 9% 0%

Yule’s Y(M4) 0% 0% 4% 3% 5% 9% 0%

Kappa(M5) 43% 60% 31% 43% 30% 64% 50%

J-Measure(M6) *50% 60% 27% 45% *48% 45% 50%

Gini Index(M7) *50% 60% 27% 45% 36% 45% 50%

Support(M8) 0% 0% 4% 5% 5% 9% 0%

Confidence(M9) 43% 60% *35% 40% 32% 64% 56%

Laplace(M10) 0% 0% 4% 5% 5% 9% 0%

Conviction(M11) 0% 0% 4% 3% 5% 9% 0%

Interest(M12) 43% 60% *35% 40% 30% 64% 56%

Pietatsky-Shapiro(M13) 7% 0% 4% 8% 5% 0% 0%

Certainty Factor(M14) 0% 0% 4% 3% 5% 9% 0%

Added Value(M15) 50% *70% *35% *48% *48% *73% 56%

Collective Strength(M16) 46% *70% *35% *48% 39% *73% 50%

Jaccard(M17) 43% 60% 31% 43% 32% *73% 50%

Klosgen(M18) *50% *70% *35% *48% *48% *73% *61%

Information Gain(M19) *50% 60% 27% 45% 45% 45% 50%

Coverage(M20) 4% 0% 8% 5% 7% 9% 0%

Accuracy(M21) 43% 40% *35% 37% 18% 18% 39%

Leverage(M22) 43% 40% 31% 35% 27% 64% 56%

Relative Risk(M23) 0% 0% 4% 5% 5% 9% 0%

Int. Weighting Dependency(M24) 43% *70% *35% 43% 39% *73% 56%

GoodMan and Kruskal(M25) 39% 30% 23% 42% 25% 45% 50%

Normalized Mutual Info.(M26) 46% 60% 27% 43% 43% 45% 50%

One-Way Support(M27) 43% 60% *35% 40% 30% 64% 56%

Two-Way Support(M28) *50% *70% *35% 47% 43% *73% 50%

Two-Way Support Variation(M29) *50% 60% 27% 45% 45% 45% 50%

Loevinger(M30) 0% 0% 4% 5% 0% 9% 0%

Sebag(M31) 43% 60% *35% 40% 30% 64% 56%

Least Contradiction(M32) 43% 40% *35% 37% 20% 18% 39%

Odd Multiplier(M33) 43% 60% *35% 40% 30% 64% 56%

Example and Counter.(M34) 43% 60% *35% 40% 30% 64% 56%

Zhang(M35) 43% 60% *35% 40% 30% 64% 56%

Table XVII. Effectiveness of bug localization for (M1) to (M35) for each bug category when up to 10% program

elements are inspected [Part I]. The star (*) marks the measures that could localize most of the bugs for each category.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (2012)



40 LUCIA ET AL.

Measures CH-CS CH-NCS CH-MC AS-CE IF-CC LP-CC CH-RET

Sorensen-Dice (M36) 43% 60% 31% 43% 30% *73% 50%

Anderberg (M37) 43% 60% 31% 43% 30% *73% 50%

Simple-Matching (M38) 43% 40% *35% 37% 18% 18% 39%

Rogers and Tanimoto (M39) 43% 40% *35% 37% 20% 18% 39%

Ochiai II (M40) 43% 40% 31% 45% 39% *73% 50%

Tarantula 43% 60% *35% 40% 27% 64% 56%

Ochiai 46% *70% 31% 45% *48% *73% 50%

Table XVIII. Effectiveness of bug localization for (M36) to (M40), Tarantula, and Ochiai for each bug category when

up to 10% program elements are inspected [Part II]. The star (*) marks the measures that could localize most of the bugs

for each category.

Added Value (M15), Collective Strength (M16), Klosgen (M18) could localize 48% of the bugs in

change of assignment expression (AS-CE) category. J-Measure (M6), Added Value (M15), Klosgen

(M18), and Ochiai could localize 48% of the bugs in change of if condition expression (IF-CC)

category.

ϕ-Coefficient (M1), Added Value (M15), Collective Strength (M16), Jaccard (M17), Klosgen

(M18), Interestingness Weighting Dependency (M24), Two-way Support (M27), Sorensen-Dice

(M36), Anderberg (M37), Ochiai II (M40) , and Ochiai could localize 73% of the bugs in change

of loop predicate (LP-CC) category. For bugs in change of return expression (CH-RET) category,

Klosgen (M18) could localize these bugs better than others, i.e., 61% of the bugs could be localized.

By only inspecting up to 10% of the program elements, bugs in change in method calls (CH-MC)

category are not easy to be localized. The best measures could only localize 35% of these bugs. On

the other hand, bugs in addition or removal of non-conditional statement (CH-NCS) and change of

loop predicate (LP-CC) categories could be better localized by the measures (i.e., up to 70% and

73% respectively). It is interesting to note that Klosgen (M18) is the measure that could localize the

most number of bugs in all categories, followed by Added Value (M15) that could localize the most

number of bugs in five categories. Two-way Support (M28) and Collective Strength (M16) could

localize the most number of bugs in four bug categories. Ochiai and Tarantula could localize the

most number of bugs in 3 and 1 categories respectively.
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Figure 21. Effectiveness of measures to localize bugs by inspecting up to 10% of code [Part I]

Figure 22. Effectiveness of measures to localize bugs by inspecting up to 10% of code [Part II]

Figures 21, 22, 23 and 24 show the effectiveness of the measures in localizing bugs for each

category. As shown in Figure 24, Odds Ratio (M2), Yule’s Q (M3), Yule’s Y (M4), Support (M8),

Laplace (M10), Conviction (M11), Pietatsky-Shapiro (M13), Certainty Factor (M14), Relative Risk

(M23), Loevinger (M30), and Coverage (M20) could only localize a small number of bugs for each

bug category. Figures 21, 22, and 23 show measures that could localize more bugs for most of the

categories. A number of measures could localize at least 50% of the bugs in addition or removal

of non-conditional statement (CH-NCS), change of loop predicate (LP-CC), and change of return

statement (CH-RET) categories.
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Figure 23. Effectiveness of measures to localize bugs by inspecting up to 10% of code [Part III]

Figure 24. Effectiveness of measures to localize bugs by inspecting up to 10% of code [Part IV]

5.6. Effectiveness on Multiple-bug Versions

We evaluate the effectiveness of association measures, Tarantula, and Ochiai to localize multiple

bugs in programs. We refer these programs as multiple-bug versions. A multiple-bug version

contains a number of bugs where each bug only involves one line in the program and different

bugs affect different lines [15, 17].

We generate 173 multiple-bug versions of C programs as shown in Table XIX. As print token and

schedule2 datasets only have 4 and 7 bugs that involve one line, we randomly insert two bugs for

every version, while for other datasets, we randomly insert five bugs for every multiple-bug version.

Also, we ensure that each bug has been inserted at least in one of the versions.
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Dataset Num. of Bug in a Version Num. of Single Bug in Dataset Language Num. of Buggy Version

print token 2 4 C 10

schedule2 2 5 C 10

print token2 5 9 C 10

replace 5 25 C 32

schedule 5 7 C 9

tcas 5 30 C 41

tot info 5 19 C 23

space 5 19 C 38

Table XIX. Multiple-bug datasets

We generate multiple-bug versions for each dataset as many as the number of single bug versions

in the dataset. For example, there are 38 single bug versions for Space, so we randomly generate 38

multiple-bug versions for Space, each of which contains 5 bugs. For each print tokens and schedule2

dataset, we generate 10 multiple-bug versions. Thus, we have 20 multiple-bug versions that contain

two bugs (minimum number of multiple bugs) and 153 versions that contain five bugs.

We evaluate the effectiveness of 40 association measures, Tarantula, and Ochiai to localize

multiple bugs in programs. Tables XX, XXI, and XXII show the overall mean and standard

deviation of percentage of code inspected of the measures to localize bugs in all multiple-bug

versions, versions containing five bugs, and versions containing two bugs respectively.

Generally, the effectiveness of all measures to localize multiple bugs are not as good as localizing

single bugs. The overall ranges of mean of percentage of code inspected of the measures to localize

all multiple-bug versions, five bugs, and two bugs are between 45% to 71%, 43% to 71%, and

34% to 74% respectively. Measures that could localize five bugs in the programs with the smallest

percentage of code inspected (43%) are Odds ratio (M2), Yule’s Q (M3), and Yule’s Y (M4). For

localizing five bugs in the programs, the measures are Accuracy (M21), Least Contradiction (M32),

Simple-Matching (M38), and Rogers and Tanimoto (M39).

We notice that performance of the measures in localizing five and two bugs in the programs are

different. Tarantula performs slightly better than Ochiai when localizing five bugs (i.e., 50.23% for

Tarantula, 50.59% for Ochiai), in contrast Ochiai performs better than Tarantula when localizing
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Association Measures Mean StdDev Association Measures Mean StdDev

Odds ratio (M2) 44.51% 28.67% Example Rate (M34) 49.57% 33.25%

Yule’s Q (M3) 44.55% 28.81% Klosgen (M18) 49.93% 32.19%

Yule’s Y (M4) 44.69% 28.68% Kappa (M5) 50.21% 32.28%

Conviction (M11) 45.78% 27.80% Laplace (M10) 50.31% 25.79%

Certainty Factor (M14) 45.80% 27.79% Two Way Support (M28) 50.36% 32.01%

Relative Risk (M23) 46.06% 28.81% Rogers and Tanimoto (M39) 50.43% 33.74%

Coverage (M20) 46.20% 30.40% Accuracy (M21) 50.46% 33.77%

Normalized Mutual Information (M26) 47.50% 32.25% Simple-Matching (M38) 50.46% 33.77%

Added Value (M15) 48.18% 33.44% Least Contradiction (M32) 50.53% 33.90%

ϕ-Coefficient (M1) 48.83% 32.20% Leverage (M22) 50.80% 32.48%

One Way Support (M27) 49.23% 33.01% J-Measure (M6) 51.28% 32.18%

Interestingness Weighting Dependency (M24) 49.33% 33.09% Ochiai II (M40) 51.29% 32.22%

Jaccard (M17) 49.35% 31.31% Sorensen-Dice (M36) 51.42% 31.19%

Odd Multiplier (M33) 49.35% 32.97% Anderberg (M37) 51.45% 31.17%

Zhang (M35) 49.36% 32.95% Information Gain (M19) 51.58% 31.97%

Sebag (M31) 49.38% 32.93% Two Way Support Variantion (M29) 51.58% 31.97%

Tarantula 49.39% 32.98% Support (M8) 51.70% 26.67%

Collective Strength (M16) 49.41% 32.07% Gini Index (M7) 52.17% 32.18%

Interest (M12) 49.41% 32.91% Loevinger (M30) 52.95% 31.65%

Ochiai 49.42% 30.65% Piatetsky-Shapiro’s (M13) 62.02% 30.89%

Confidence (M9) 49.43% 32.92% GoodMan Kruskal (M25) 71.41% 35.57%

Table XX. Overall mean and standard deviation (in parentheses) of accuracy values (smaller the better) of

all multiple-bug versions

two bugs in the programs (i.e., 42.95% for Tarantula, 40.50% for Ochiai). There are 8 measures

that perform better than Tarantula and Ochiai in localizing two bugs in the programs, while 17

measures perform better for localizing five bugs. Among these measures, Added Value (M15) and

Normalized Mutual Information (M26) consistently perform better than Tarantula and Ochiai for

localizing programs that contain both two and five bugs. Interestingly these measures also have

good performance in localizing single bug. The overall mean of percentage of code inspected

for Added Value (M15) and Normalized Mutual Information (M26) are 23.30% and 23.22%

respectively, which are only slightly smaller then the smallest mean of percentage of code inspected

to localized all single bug programs (22.42%). In addition, Added Value (M15) and Normalized

Mutual Information (M26) are in the top of partial order of 5 and 6 bug categories out of 7 categories.
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Association Measures Mean StdDev Association Measures Mean StdDev

Odds ratio (M2) 42.88% 29.45% Example Rate (M34) 50.43% 34.19%

Yule’s Q (M3) 42.90% 29.58% Ochiai 50.59% 30.68%

Yule’s Y (M4) 43.06% 29.45% Collective Strength (M16) 50.62% 32.31%

Relative Risk (M23) 44.42% 29.66% Klosgen (M18) 51.16% 32.66%

Conviction (M11) 44.54% 28.71% Kappa (M5) 51.18% 33.05%

Certainty Factor (M14) 44.56% 28.71% Two Way Support (M28) 51.40% 32.62%

Coverage (M20) 44.66% 31.14% Ochiai II (M40) 51.65% 33.10%

Normalized Mutual Information (M26) 48.54% 32.63% J-Measure (M6) 52.17% 32.69%

Laplace (M10) 49.20% 26.60% Anderberg (M37) 52.22% 31.59%

Added Value (M15) 49.29% 34.25% Sorensen-Dice (M36) 52.24% 31.57%

ϕ-Coefficient (M1) 49.65% 32.68% Leverage (M22) 52.31% 33.83%

Jaccard (M17) 49.90% 31.76% Information Gain (M19) 52.50% 32.46%

One Way Support (M27) 50.05% 33.93% Two Way Support Variantion (M29) 52.50% 32.46%

Odd Multiplier (M33) 50.18% 33.88% Rogers and Tanimoto (M39) 52.58% 34.50%

Zhang (M35) 50.20% 33.86% Accuracy (M21) 52.61% 34.54%

Interestingness Weighting Dependency (M24) 50.22% 33.94% Simple-Matching (M38) 52.61% 34.54%

Sebag (M31) 50.22% 33.84% Least Contradiction (M32) 52.69% 34.67%

Tarantula 50.23% 33.89% Gini Index (M7) 53.03% 32.89%

Interest (M12) 50.25% 33.82% Loevinger (M30) 53.51% 32.14%

Confidence (M9) 50.28% 33.83% Piatetsky-Shapiro’s (M13) 64.78% 29.65%

Support (M8) 50.41% 27.30% GoodMan Kruskal (M25) 71.12% 36.17%

Table XXI. Overall mean and standard deviation (in parentheses) of accuracy values (smaller the better) of

versions containing five bugs

We also perform statistical tests for each pair of measures including Tarantula and Ochiai using

Wilcoxon signed rank test [69] at 0.05 statistical significance threshold to see if some measures are

statistically significantly better than others in localizing multiple-bug versions. Table XXIII shows

the measures that are on the top of the partial order ( no other measures that statistically significantly

perform better than the measure) for localizing both all multiple-bug versions, versions containing

five bugs, and versions containing two measures. We notice that Odds ratio (M2), Yule’s Q (M3),

Added Value (M15), and Coverage (M20) are in the top of the partial order of all multiple-bug

versions and at least in the top order of one of partial order of two or five bugs versions. They are

statistically significantly better than Tarantula and Ochiai for all multiple-bug versions.

We also plot the curve showing the proportion of code that are investigated (x-axis) vs. the

proportion of bugs localized (y-axis) for all multiple-bug versions. We split the large graphs into
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Association Measures Mean StdDev Association Measures Mean StdDev

Accuracy (M21) 34.00% 21.43% Zhang (M35) 42.95% 24.62%

Least Contradiction (M32) 34.00% 21.43% Tarantula 42.95% 24.62%

Simple-Matching (M38) 34.00% 21.43% J-Measure (M6) 44.45% 27.69%

Rogers and Tanimoto (M39) 34.00% 21.43% Information Gain (M19) 44.55% 27.62%

Leverage (M22) 39.30% 15.39% Two Way Support Variantion (M29) 44.55% 27.62%

Normalized Mutual Information (M26) 39.55% 28.69% Jaccard (M17) 45.15% 28.04%

Added Value (M15) 39.70% 25.55% Sorensen-Dice (M36) 45.15% 28.04%

Collective Strength (M16) 40.15% 29.21% Anderberg (M37) 45.50% 27.69%

Ochiai 40.50% 29.68% Gini Index (M7) 45.60% 25.87%

Klosgen (M18) 40.55% 27.20% Ochiai II (M40) 48.55% 25.01%

Piatetsky-Shapiro’s (M13) 40.85% 32.75% Loevinger (M30) 48.65% 27.97%

Two Way Support (M28) 42.45% 26.25% Conviction (M11) 55.30% 17.14%

Interestingness Weighting Dependency (M24) 42.55% 25.33% Certainty Factor (M14) 55.30% 17.14%

ϕ-Coefficient (M1) 42.60% 28.15% Odds ratio (M2) 57.00% 17.70%

Kappa (M5) 42.80% 25.05% Yule’s Q (M3) 57.20% 17.98%

Confidence (M9) 42.95% 24.62% Yule’s Y (M4) 57.20% 17.98%

Interest (M12) 42.95% 24.62% Coverage (M20) 58.00% 21.11%

One Way Support (M27) 42.95% 24.62% Relative Risk (M23) 58.60% 16.90%

Sebag (M31) 42.95% 24.62% Laplace (M10) 58.80% 16.61%

Odd Multiplier (M33) 42.95% 24.62% Support (M8) 61.55% 18.97%

Example Rate (M34) 42.95% 24.62% GoodMan Kruskal (M25) 73.65% 31.30%

Table XXII. Overall mean and standard deviation (in parentheses) of accuracy values (smaller the better) of

versions containing two bugs

Num. of Bugs in a Version Top Measures

Two and five bugs Odds Ratio (M2), Yule’s Q (M3), Added Value (M15), and Coverage (M20)

Five bugs Odds Ratio (M2), Yule’s Q (M3), and Coverage (M20)

Two bugs Added Value (M15), Kappa (M5), Piatetsky-Shapiro’s (M13), Collective Strength

(M16), Klosgen (M18), Accuracy (M21), Leverage (M22), Normalized Mutual

Information (M26), Loevinger (M30), Least Contradiction (M32), Simple-Matching

(M38), and Rogers and Tanimoto (M39)

Table XXIII. Measures that are at the top of the partial orders for different number of bugs within a buggy

version. The underline marks measures that are at the top of the partial orders of two types of multiple-bug

versions.

several smaller graphs so that measures that have similar accuracies would be grouped together, as

shown in Figures 25, 26, 27, 28, 29, and 30. For each graph, we compare a number of association

measures with Tarantula and Ochiai. Measures in Figure 25 shows measures that could localize

more buggy versions as compare to Tarantula and Ochiai when less than 10% of code is inspected.
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Measures that have similar performance with Tarantula are shown in Figure 26. Figures 27 and 28

show measures that could localize similar number of buggy version as compare to Tarantula and

Ochiai when less than 10% of code is inspected. Measures that perform worse than Tarantula and

Ochiai are shown in Figures 29 and 30. In this paper, we omit showing the curves for versions that

contain five bugs because the curves are the similar with curves of all multiple-bug versions.

Figure 25. Comparing M1, M15, M18

with Ochiai and Tarantula for all multiple-bugs

versions

Figure 26. Comparing M9, M12, M27, M31, M33 -

M35 with Ochiai and Tarantula for all multiple-bug

versions

Figure 27. Comparing M17, M21, M24, M26, M32,

M38, M39 with Ochiai and Tarantula for all multiple-

bug versions

Figure 28. Comparing M6, M16, M19, M25, M28,

M29, M36, M37 with Ochiai and Tarantula for all

multiple-bug versions
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Figure 29. Comparing M2 - M5, M7, M13, M22,

M23, M40 with Ochiai and Tarantula for all multi-bug

programs

Figure 30. Comparing M8, M10, M11, M14, M20,

M30 with Ochiai and Tarantula for all multi-bug

programs

We also plot the curve showing the proportion of code that are investigated (x-axis) vs.

the proportion of bugs localized (y-axis) for versions that contain two bugs, as shown in

Figures 31, 32, 33, 34, 35,and 36. Measures shown in Figures 31, 32, and 33 shows measures

that could localize more buggy versions as compare to Tarantula and Ochiai when less than 10% of

code is inspected. Measures that have similar performance with Tarantula are shown in Figure 34.

Figure 35 show measures that could localize similar number of buggy version as compare to

Tarantula and Ochiai when less than 10% of code is inspected. Measures that perform worse than

Tarantula and Ochiai are shown in Figure 36. We summarize the findings of this section in the

answer for RQ6 in the next Section.

5.7. Discussion

In this section, we summarize the answers to the research questions mentioned in Section 1.

RQ1. We are interested to find if off-the-shelf association measures are powerful enough to locate

bugs. Based on the mean accuracy values of the measures, it could be noted that the 40 association

measures could help to find all the bugs when an average of 22% - 56% of the program elements

are inspected. Fifty percent of the association measures are able to help find bugs by inspecting
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Figure 31. Comparing M13, M21, M30, M32, M38,

M39 with Ochiai and Tarantula for versions contain-

ing two bugs

Figure 32. Comparing M1, M5, M7, M15, M16,

M17, M18 with Ochiai and Tarantula for versions

containing two bugs

Figure 33. Comparing M24, M25, M28, M36, M37,

M40 with Ochiai and Tarantula for versions contain-

ing two bugs

Figure 34. Comparing M9, M12, M27, M31, M33

- M35 with Ochiai and Tarantula for versions

containing two bugs

an average of 22-25% of elements, while Tarantula and Ochiai require debuggers to inspect

approximately 23% and 25% of program elements respectively.

RQ2. Next, we are interested to find which association measures are better than others in

localizing single bug programs. The answer to this research question is the partial order shown

in Figure 2. At the top of the partial order there are 2 off-the-shelf association measures
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Figure 35. Comparing M6, M19, M22, M26, and M29

with Ochiai and Tarantula for versions containing two

bugs

Figure 36. Comparing M2 - M4, M8, M10, M11, M14,

M20, M23 with Ochiai and Tarantula for versions

containing two bugs

namely: Klosgen (M18), and Normalized Mutual Information (M26) that perform comparably to

Ochiai. They are statistically significantly better than the other off-the-shelf association measures

and Tarantula. There are 12 other measures that perform statistically significantly better than

Tarantula. These are: ϕ-coefficient (M1), Added Value (M15), Collective Strength (M16), J-Measure

(M6), Information Gain (M19), Two-way Support (M28), Two-way Support Variation (M29),

Interestingness Weighting Dependency (M24), Gini Index (M7), Example and Counterexample

Rate (M34), Kappa (M5), and Ochiai II (M40) .

RQ3. Finally, we would like to know the relative accuracy of the association measures versus those

of well-known suspiciousness measures for fault localization. By applying statistical significance

tests under 0.05 significance threshold, Klosgen (M18) and Normalized Mutual Information (M26)

are comparable to Ochiai and are statistically significantly better than Tarantula. Based on the

proportion of bugs localized, Klosgen (M18) and Added Value (M15) could localize more bugs

than Tarantula and Ochiai by inspecting up to 10% of the program elements. They could localize

49% and 50% of the bugs respectively, while Tarantula and Ochiai could localize 40% and 47% of

the bugs respectively.
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RQ4. We find that most measures perform better for the C programs than the Java programs

that we analyze. To evaluate the measures in terms of percentage of code inspected, we compute

two partial orders of the 40 association measures, Tarantula, and Ochiai, by performing statistical

significance tests. For the C programs, Ochiai and Klosgen (M18) are the measures that are at the

top of the partial orders (i.e., no measures are statistically significantly better than them). For the

Java programs, a number of measures are at the top including Ochiai, Klosgen (M18), Confidence

(M9), Interest (M12), Added Value (M15), Sebag (M31), Example and Counterexample Rate (M34),

Zhang (M35), Tarantula, Interestingness Weighting Dependency (M24), and Normalized Mutual

Information (M26). In terms of proportion of bugs localized when up to 10% of code is inspected,

for the C programs, Klosgen (M18) and Added Value (M15) outperform Ochiai and Tarantula.

Tarantula and Ochiai could localize 44% and 55% of the bugs respectively, while these measures

could localize 56% of the bugs. For the Java programs, Tarantula, Confidence (M9), Interest (M12),

Added Value (M15), Klosgen (M18), Relative Risk (M23), Loevinger (M30), Normalized Mutual

Information (M26), Odd Multiplier (M33), Example and Counterexample Rate (M34), and Least

Contradiction (M32) could localize the most number of bugs (i.e., 26% of the bugs could be

localized). Ochiai, on the other hand, could only localize 20% of the bugs.

RQ5. In terms of percentage of code inspected, again we compute several partial orders (one per bug

category) by performing statistical significance tests. Tarantula is at the top of four partial orders.

Ochiai, Information Gain (M19), Normalized Mutual Information (M24), and Two-way Support

Variation (M29) are at the top of six partial orders. Klosgen (M18) is at the top of seven partial

orders. In terms of proportion of bugs localized, we notice that Klosgen (M18) could localize the

most number of bugs for all categories as compared to other measures when up to 10% of the

program elements are inspected. The categories of bugs that could be better localized by most of

the measures are addition or removal of non-conditional statements (CH-CS) and change of loop

predicates (LP-CC).
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RQ6. When localizing multiple bugs in programs, all measures does not perform as good as

localizing single bugs in the programs. The percentage of code inspected required to localize all

the bugs, versions contain five bugs, and versions contain two bugs are 45% to 71%, 43% to 71%,

and 34% to 74% respectively. Measures that are at the top of the partial order for localizing all

multiple-bug versions are Odds ratio (M2), Yule’s Q (M3), Added Value (M15), and Coverage

(M20). The percentage of code inspected of the measures in localizing versions that contain different

number of bugs inserted are different (i.e, two and five bugs). However, we notice that Added

Value (M15) and Normalized Mutual Information (M26) consistently outperform Tarantula and

Ochiai when localizing versions that contain two and five bugs. In addition, these measures also

have good accuracies in localizing single bug programs. The overall mean of percentage of code

inspected for Added Value (M15) and Normalized Mutual Information (M26) are 23.30% and

23.22% respectively, which are only slightly smaller then the smallest mean of percentage of code

inspected to localized all single bug programs (22.42%). Also, Added Value (M15) and Normalized

Mutual Information (M26) are in the top of partial order of 5 and 6 bug categories out of 7 categories.

Based on our results, we find that there is no single best measure for all cases. For localizing C and

Java programs containing single bug, Klosgen (M18) and Ochiai always outperform other measures.

They are comparable. When we evaluate the effectiveness of the measures to localize different bug

categories, there is no other measures that could outperform Klosgen (M18) for all bug categories.

Ochiai could outperform in 5 out of 7 bug categories. However, when localizing multiple bugs,

there are several measures that outperform these measures. Added Value (M18), Odds Ratio (M2),

Yule’s Q (M3), and Coverage (M20) are the best measures. We notice that Added Value also has

good accuracy in localizing single bug, even though it is not as good as Ochiai and Klosgen, but its

accuracy is only slightly lower than Ochiai and Klosgen. It can be interesting future work to explore

ways to compose various measures together so that the combined meta-measure may perform better

for all cases than every individual measure.
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5.8. Threats to Validity

Threats to construct validity refers to the suitability of our evaluation criteria. In this work, we use

two criteria: percentage of program elements inspected to find all bugs, and proportion of bugs

localized when at most a given percentage of program elements are inspected. We believe these two

evaluation criteria reasonably measure the effectiveness of a fault localization approach. They have

also been used before in prior studies on fault localization [4, 16].

Threats to internal validity include bias and human errors. The accuracy of a measure in localizing

bugs is influenced by the granularity level considered during program instrumentation and trace

generation (statement, basic block, or method levels). Different granularity levels may produce

different accuracies since there would be different total numbers of elements which would affect the

percentages of inspected elements. We choose to use block-hit spectra in our evaluation since it has a

suitable balance between instrumentation costs and bug-reveal powers, and the focus of our study is

to compare the effectiveness of different association measures on the same spectra. We hypothesize

that the relative performance of different association measures on other spectra may remain the

same as that on block-hit spectra, but it remains interesting future work for us to verify. Also, we

manually instrument the C programs; we might miss instrumenting some blocks or add extraneous

instrumentation code. For Java program, we automatically instrument the programs where there

could be possible implementation errors. We manually assign the bugs into categories; there might

be some errors in our assignments. In order to minimize such errors, we carefully checked the

instrumented programs and assigned bug category labels.

Threats to external validity refers to the generalizability of our findings. We have tried to

reduce this threat by considering a number of programs of various sizes written in two popular

programming languages: C and Java. In the future, we would like to reduce this threat further by

analyzing more programs written in various programming languages.
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6. CONCLUSION

In this work, we investigate the effectiveness of a comprehensive number of association measures

for fault localization. These measures gauge the strength of association between two variables

expressible as a dichotomy matrix. We consider and compare 40 association measures with two

well-known fault localization measures, namely Tarantula and Ochiai.

In terms of average percentage of code inspected, we find that Klosgen outperforms Ochiai

and Tarantula. Many measures, including Normalized Mutual Information, ϕ-coefficient, Added

Value, Collective Strength, J-Measure, Information Gain, Two-way Support, Two-way Support

Variation, Interestingness Weighting Dependency, Gini Index, Example and Counterexample Rate,

Kappa, and Ochiai II outperform Tarantula. The percentages of code inspected for different buggy

program versions are different; such percentage values for each measure form a distribution,

and we could employ statistical tests to compare the accuracy of different measures. We find

that three measures, Klosgen, Normalized Mutual Information, and Ochiai can be statistically

significantly better than other measures. In terms of proportion of bugs found when up to 10%

of the code is inspected, Klosgen outperforms Ochiai. Also, Klosgen, Ochiai, Collective Strength,

Added Value, ϕ-coefficient, Normalized Mutual Information, Two-way Support, Interestingness

Weighting Dependency, J-Measure, Information Gain, Two-way Support Variation, Example and

Counterexample Rate, Kappa, Confidence, Odd Multiplier, Sebag, Interest, Zhang, One-way

Support, Gini Index, Jaccard, Sorensen-Dice, Anderberg, and Ochiai II outperform Tarantula. Thus,

we can conclude that association measures are also promising to be used for fault localization.

We find that most measures perform better for the C programs than the Java programs that we

analyze. For the C programs, in terms of proportions of bugs localized, Added Value and Normalized

Mutual Information outperform Ochiai and Tarantula. For the Java programs, in terms of proportions

of bugs localized, Tarantula, Confidence, Interest, Added Value, Klosgen, Relative Risk, Loevinger,

Normalized Mutual Information, Odd Multiplier, Example and Counterexample Rate, and Least

Contradiction measures, outperform the other measures and Ochiai.
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We have also grouped the bugs into 7 categories and analyze the effectiveness of the measures

to localize each category of bugs. The categories of bugs that could be better localized by most of

the measures are addition or removal of non-conditional statements (CH-CS) and change of loop

predicates (LP-CC). Klosgen is among the best measures for all bug categories.

The effectiveness of all measures in localizing multiple bugs in programs is not as good as

localizing single bug in programs. The smallest percentage of code inspected required to localize

the bugs is 45%. The measures that outperform other measures in localizing multiple-bug versions

are Odds Ratio, Yule’s Q, Added Value, and Coverage. We notice that Added Value is consistently

outperform Ochiai and Tarantula for localizing both versions that contain two and five bugs.

In the future, we would like to integrate promising association measures for fault localization to

popular IDEs and debugging tools such as Eclipse, Visual Studio.Net, etc.

Dataset. Our dataset and tool are made publicly available at:

http://www.mysmu.edu/phdis2009/lucia.2009/jsme/Dataset.htm.
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