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Abstract Software defects can cause much loss. Static bug-finding tools are
designed to detect and remove software defects and believed to be effective.
However, do such tools in fact help prevent actual defects that occur in the field
and reported by users? If these tools had been used, would they have detect-
ed these field defects, and generated warnings that would direct programmers
to fix them? To answer these questions, we perform an empirical study that
investigates the effectiveness of five state-of-the-art static bug-finding tools
(FindBugs, JLint, PMD, CheckStyle, and JCSC) on hundreds of reported and
fixed defects extracted from three open source programs (Lucene, Rhino, and
AspectJ). Our study addresses the question: To what extent could field defects
be detected by state-of-the-art static bug-finding tools? Different from past s-
tudies that are concerned with the numbers of false positives produced by such
tools, we address an orthogonal issue on the numbers of false negatives. We
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find that although many field defects could be detected by static bug-finding
tools, a substantial proportion of defects could not be flagged. We also analyze
the types of tool warnings that are more effective in finding field defects and
characterize the types of missed defects. Furthermore, we analyze the effec-
tiveness of the tools in finding field defects of various severities, difficulties,
and types.

Keywords False Negatives - Static Bug-Finding Tools - Empirical Study

1 Introduction

Bugs are prevalent in many software systems. The National Institute of Stan-
dards and Technology (NIST) has estimated that bugs cost the US economy
billions of dollars annually (Tassey, 2002). Bugs are not merely economically
harmful; they can also harm life and properties when mission critical systems
malfunction. Clearly, techniques that can detect and reduce bugs would be
very beneficial. To achieve this goal, many static analysis tools have been pro-
posed to find bugs. Static bug-finding tools, such as FindBugs (Hovemeyer and
Pugh, 2004), JLint (Artho, 2006), PMD (Copeland, 2005), CheckStyle (Burn,
2007), and JCSC (Jocham, 2005), have been shown to be helpful in detecting
many bugs, even in mature software (Ayewah et al, 2007). It is thus reasonable
to believe that such tools are a useful adjunct to other bug-finding techniques
such as testing and inspection.

Although static bug-finding tools are effective in some settings, it is un-
clear whether the warnings that they generate are really useful. Two issues
are particularly important to be addressed: First, many warnings need to cor-
respond to actual defects that would be experienced and reported by users.
Second, many actual defects should be captured by the generated warnings.
For the first issue, there have been a number of studies showing that the num-
bers of false warnings (i.e., false positives) are too many, and some have pro-
posed techniques to prioritize warnings (Heckman and Williams, 2011, 2009;
Ruthruff et al, 2008; Heckman, 2007). While the first issue has received much
attention, the second issue has received less. Many papers on bug detection
tools just report the number of defects that they can detect. It is unclear how
many defects are missed by these bug detection tools (i.e., false negatives).
While the first issue is concerned with false positives, the second focuses on
false negatives. We argue that both issues deserve equal attention as both have
impact on the quality of software systems. If false positives are not satisfacto-
rily addressed, this would make bug-finding tools unusable. If false negatives
are not satisfactorily addressed, the impact of these tools on software quality
would be minimal. On mission critical systems, false negatives may even de-
serve more attention. Thus, there is a need to investigate the false negative
rates of such tools on actual field defects.

Our study tries to fill this research gap by answering the following research
question, and we use the term “bug” and “defect” interchangeably, both of
which refer to errors or flaws in software:
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To what extent could state-of-the-art static bug-finding tools detect field
defects?

To investigate this research question, we make use of data available in
bug-tracking systems and software repositories. Bug-tracking systems, such
as Bugzilla or JIRA, record descriptions of bugs that are actually experienced
and reported by users. Software repositories contain information on what code
elements get changed, removed, or added at different periods of time. Such in-
formation can be linked together to track bugs and when and how they get
fixed. JIRA has the capability to link a bug report with the changed code that
fixes the bug. Also, many techniques have been employed to link bug report-
s in Bugzilla to their corresponding SVN/CVS code changes (Dallmeier and
Zimmermann, 2007; Wu et al, 2011a). These data sources provide us descrip-
tions of actual field defects and their treatments. Based on the descriptions,
we are able to infer root causes of defects (i.e., the faulty lines of code) from
the bug treatments. To ensure accurate identification of faulty lines of code,
we perform several iterations of manual inspections to identify lines of code
that are responsible for the defects. Then, we are able to compare the identi-
fied root causes with the lines of code flagged by static bug-finding tools, and
to analyze the proportion of field defects that are missed or captured by the
tools.

In this work, we perform an exploratory study with five state-of-the-art
static bug-finding tools (FindBugs, PMD, Jlint, CheckStyle, and JCSC) on
three reasonably large open source Java programs (Lucene, Rhino, and As-
pectJ). We use bugs reported in JIRA for Lucene version 2.9, and the iBugs
dataset provided by Dallmeier and Zimmermann (Dallmeier and Zimmerman-
n, 2007) for Rhino and AspectJ. Our manual analysis identifies 200 real-life
defects that we can unambiguously locate faulty lines of code. We find that
many of these defects could be detected by FindBugs, PMD, JLint, Check-
Style, and JCSC, but a number of them remain undetected.

The main contributions of this work are as follows:

1. We examine the number of real-life defects missed by five various static
bug-finding tools, and evaluate the tools’ performance in terms of their
false negative rates.

2. We investigate the warning families in various tools that are effective in
detecting actual defects.

3. We characterize actual defects that could not be flagged by the static bug-
finding tools.

4. We analyze the effectiveness of the static bug-finding tools on defects of
various severities, difficulties, and types.

The paper is structured as follows. In Section 2, we present introductory
information on various static bug-finding tools. In Section 3, we present our
experimental methodology. In Section 4, we present our empirical findings and
discuss interesting issues. In Section 5, we describe related work. We conclude
with future work in Section 6.
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2 Bug-Finding Tools

In this section, we first provide a short survey of different bug-finding tools
that could be grouped into: static, dynamic, and machine learning based. We
then present the five static bug-finding tools that we evaluate in this study,
namely FindBugs, JLint, PMD, CheckStyle and JCSC.

2.1 Categorization of Bug-Finding Tools

Many bug-finding tools are based on static analysis techniques (Nielson et al,
2005), such as type systems (Necula et al, 2005), constraint-based analysis (Xie
and Aiken, 2007), model checking (Holzmann et al, 2000; Corbett et al, 2000;
Beyer et al, 2007), abstract interpretation (Cousot et al, 2009; Cousot and
Cousot, 2012), or a combination of various techniques (Ball et al, 2011; Gram-
maTech, 2012; Visser and Mehlitz, 2005; IBM, 2012). They often produce
various false positives, and in theory they should be free of false negatives
for the kinds of defects they are designed to detect. However, due to imple-
mentation limitations and the fact that a large program often contains defect
types that are beyond the designed capabilities of the tools, such tools may
still suffer from false negatives with respect to all kinds of defects.

In this study, we analyze several static bug-finding tools that make use of
warning patterns for bug detection. These tools are lightweight and can scale to
large programs. On the downside, these tools do not consider the specifications
of a system, and may miss defects due to specification violations.

Other bug-finding tools also use dynamic analysis techniques, such as dy-
namic slicing (Weeratunge et al, 2010), dynamic instrumentation (Nethercote
and Seward, 2007), directed random testing (Sen et al, 2005; Godefroid et al,
2005; Cadar et al, 2008), and invariant detection (Brun and Ernst, 2004; Gabel
and Su, 2010). Such tools often explore particular parts of a program and
produce no or few false positives. However, they seldom cover all parts of a
program; they are thus expected to have false negatives.

There are also studies on bug prediction with data mining and machine
learning techniques, which may have both false positives and negatives. For
example, Sliwerski et al (2005) analyze code change patterns that may cause
defects. Ostrand et al (2005) use a regression model to predict defects. Nagap-
pan et al (2006) apply principal component analysis on the code complexity
metrics of commercial software to predict failure-prone components. Kim et al
(2008) predict potential faults from bug reports and fix histories.

2.2 FindBugs

FindBugs was first developed by Hovemeyer and Pugh (2004). It statical-
ly analyzes Java bytecode against various families of warnings characterizing
common bugs in many systems. Code matching a set of warning patterns are
flagged to the user, along with the specific locations of the code.
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FindBugs comes with a lot of built-in warnings. These include: null pointer
dereference, method not checking for null argument, close() invoked on a val-
ue that is always null, test for floating point equality, and many more. There
are hundreds of warnings; these fall under a set of warning families including;:
correctness, bad practice, malicious code vulnerability, multi-threaded correct-
ness, style, internationalization, performance, risky coding practice, etc.

2.3 JLint

JLint, developed by Artho (2006), is a tool to find defects, inconsistent code,
and problems with synchronization in multi-threading applications. Similar to
FindBugs, JLint also analyzes Java bytecode against a set of warning patterns.
It constructs and checks a lock-graph, and does data-flow analysis. Code frag-
ments matching the warning patterns are flagged and outputted to the user
along with their locations.

JLint provides many warnings such as potential deadlocks, unsynchronized
method implementing ‘Runnable’ interface, method finalize() not calling su-
per.finalize(), null reference, etc. These warnings are group under three fami-
lies: synchronization, inheritance, and data flow.

2.4 PMD

PMD, developed by Copeland (2005), is a tool that finds defects, dead code,
duplicate code, sub-optimal code, and overcomplicated expressions. Different
from FindBugs and JLint, PMD analyzes Java source code rather than Java
bytecode. PMD also comes with a set of warning patterns and finds locations
in code matching these patterns.

PMD provides many warning patterns, such as jumbled incrementer, return
from finally block, class cast exception with toArray, misplaced null check, etc.
These warning patterns fall into families, such as design, strict exceptions,
clone, unused code, String and StringBuffer, security code, etc., which are
referred to as rule sets.

2.5 CheckStyle

CheckStyle, developed by Burn (2007), is a tool to write Java code that en-
forces a coding standard; default configuration is the Sun Code Conventions.
Similar to PMD, CheckStyle analyzes Java source code. CheckStyle also comes
with a set of warning patterns and finds locations in code matching these pat-
terns.

CheckStyle provides many warning patterns, such as layout issues, class de-
sign problems, duplicate code, Javadoc comments, metrics, modifiers, naming
conventions, regular expression, size violations, whitespace, etc. These warning
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patterns fall into families, such as sizes, regular expression, whitespace, Java
documentation, etc.

2.6 JCSC

JCSC, developed by Jocham (2005), is a tool to write Java code that enforces
a customized coding standard and also check for potential bad code. Similar
to CheckStyle, the default coding standard is the Sun Code Conventions. The
standard can be defined for naming conventions for class, interfaces, fields,
parameter, structural layout of the type (class/interface), etc. Similar to PMD
and CheckStyle, JCSC analyzes Java source code. It also comes with a set of
warning patterns and finds locations in code matching these patterns.

JCSC provides many warning patterns, such as empty catch/finally block,
switch without default, slow code, inner classes in class/interface issues, con-
structor or method or field declaration issues, etc. These warning patterns fall
into families, such as method, metrics, field, Java documentation, etc.

3 Methodology

We make use of bug-tracking, version control, and state-of-the-art bug-finding
tools. First, we extract bugs and the faulty lines of code that are responsible
for the bugs. Next, we run bug-finding tools for the various program releases
before the bugs get fixed. Finally, we compare warnings given by bug-finding
tools and the real bugs to find false negatives.

3.1 Extraction of Faulty Lines of Code

We analyze two common configurations of bug tracking systems and code
repositories to get historically faulty lines of code. One configuration is the
combination of CVS as the source control repository, and Bugzilla as the bug
tracking system. Another configuration is the combination of Git as the source
control repository, and JIRA as the bug tracking system. We describe how
these two configurations could be analyzed to extract root causes of fixed
defects.

Data Extraction: CVS with Bugzilla. For the first configuration, Dallmeier
and Zimmermann (2007) have proposed an approach to automatically analyze
CVS and Bugzilla to link information. Their approach is able to extract is-
sue reports linked to corresponding CVS commit entries that correspond to
the reports. They are also able to download the code before and after each
change. The code to perform this has been publicly released for several soft-
ware systems. As our focus is on defects, we remove issue reports that are
marked as enhancements (i.e., they are not bug fixes) and the CVS commits
that correspond to them.
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Data Extraction: Git cum JIRA. Git and JIRA have features that make it
preferable over CVS and Bugzilla. JIRA bug tracking systems explicitly links
bug reports to the revisions that fix the corresponding defects. From these
fixes, we use Git diff to find the location of the buggy code and we download
the revision prior to the fix by appending the “A” symbol to the hashcode of
the corresponding fix revision number. Again we remove bug reports and Git
commits that are marked as enhancements.

Identification of Faulty Lines. The above process gives us a set of real-life
defects along with the set of changes that fix them. To find the corresponding
root causes, we perform a manual process based on the treatments of the
defects. Kawrykow and Robillard (2011) have proposed an approach to remove
non-essential changes and convert “dirty” treatments to “clean” treatments.
However, they still do not recover the root causes of defects.

Our process for locating root causes could not be easily automated by
a simple diff operation between two versions of the systems (after and pri-
or to the fix), due to the following reasons. Firstly, not all changes fix the
bug (Kawrykow and Robillard, 2011); some, such as addition of new lines,
removal of new lines, changes in indentations, etc., are only cosmetic changes
that make the code aesthetically better. Figure 1 shows such an example. Sec-
ondly, even if all changes are essential, it is not straightforward to identify
the defective lines from the fixes. Some fixes introduce additional code, and
we need to find the corresponding faulty lines that are fixed by the additional
code. We show several examples highlighting the process of extracting root
causes from their treatments for a simple and a slightly more complicated case
in Figures 2 and 4.

Figure 2 describes a bug fixing activity where one line of code is changed
by modifying the operator == to !=. It is easy for us to identify the faulty
line which is the line that gets changed. A more complicated case is shown in
Figure 4. There are four sets of faulty lines that could be inferred from the
diff: one is line 259 (marked with *), where an unnecessary method call needs
to be removed; a similar fault is at line 262; the third set of faulty lines are
at lines 838-340, and they are condition checks that should be removed; the
fourth one is at line 887 and it misses a pre-condition check. For this case, the
diff is much larger than the faulty lines that are manually identified.

Figure 4 illustrates the difficulties in automating the identification of faulty
lines. To ensure the fidelity of identified root causes, we perform several itera-
tions of manual inspections. For some ambiguous cases, several of the authors
discussed and came to resolutions. Some cases that are still deemed ambiguous
(i.e., it is unclear or difficult to manually locate the faulty lines) are removed
from this empirical study. We show such an example in Figure 3. This example
shows a bug fixing activity where an if block is inserted into the code and it
is unclear which lines are really faulty.

At the end of the above process, we get the sets of faulty lines Faulty
for all defects in our collection. Notation-wise, we refer to these sets of lines
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using an index notation Faulty[]. We refer to the set of lines in Faulty that
correspond to the i'" defect as Faulty[i].

3.2 Extraction of Warnings

To evaluate the static bug-finding tools, we run the tools on the program
versions before the defects get fixed. An ideal bug-finding tool would recover
the faulty lines of the program—possibly with other lines corresponding to
other defects lying within the software system. Some of these warnings are
false positives, while others are true positives.

For each defect, we extract the version of the program in the repository
prior to the bug fix. We have such information already as an intermediate
result for the root cause extraction process. We then run the bug-finding tools
on these program versions. Because 13.42% of these versions could not be
compiled, we remove them from our analysis, which is a threat to validity of
our study (see section 4.3).

As described in Section 2, each of the bug-finding tools takes in a set of
rules or the types of defects and flags them if found. By default, we enable all
rules/types of defects available in the tools, except that we exclude two rule
sets from PMD: one related to Android development, and the other whose
XML configuration file could not be read by PMD (i.e., Coupling).

Each run would produce a set of warnings. Each warning flags a set of
lines of code. Notation-wise, we refer to the sets of lines of code for all runs
as Warning, and the set of lines of code for the i*" warning as Warning[i].
Also, we refer to the sets of lines of code for all runs of a particular tool T as
Warningy, and similarly we have Warningp [i].

3.3 Extraction of Missed Defects

With the faulty lines Faulty obtained through manual analysis, and the lines
flagged by the static bug-finding tools Warning, we can look for false negatives,
i.e., actual reported and fixed defects that are missed by the tools.

To get these missed defects, for every i*" warning, we take the intersection
of the sets Faulty[i] and Warning[i] from all bug-finding tools, and the
intersection between Faulty[i] with each Warningr [i]. If an intersection is
an empty set, we say that the corresponding bug-finding tool misses the i*"
defect. If the intersection covers a true subset of the lines in Faulty[i], we
say that the bug-finding tool partially captures the i'" defect. Otherwise, if the
intersection covers all lines in Faulty [i], we say that the bug-finding tool fully
captures the it" defect. We differentiate the partial and full cases as developers
might be able to recover the other faulty lines, given that some of the faulty
lines have been flagged.
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3.4 Overall Approach

Our overall approach is illustrated by the pseudocode in Figure 5. Our ap-
proach takes in a bug repository (e.g., Bugzilla or JIRA), a code repository
(e.g., CVS or Git), and a bug-finding tool (e.g., FindBugs, PMD, JLint, Check-
Style, or JCSC). For each bug report in the repository, it performs three steps
mentioned in previous sub-sections: Faulty lines extraction, warning identifi-
cation, and missed defect detection.

The first step corresponds to lines 3-8. We find the bug fix commit cor-
responding to the bug report. We identify the version prior to the bug fix
commit. We perform a diff to find the differences between these two versions.
Faulty lines are then extracted by a manual analysis. The second step corre-
sponds to lines 9-11. Here, we simply run the bug-finding tools and collect lines
of code flagged by the various warnings. Finally, step three is performed by
lines 12-19. Here, we detect cases where the bug-finding tool misses, partially
captures, or fully captures a defect. The final statistics is output at line 20.

Procedure IdentifyMissedDefects
Inputs:
BugRepo : Bug Repository
CodeRepo : Code Repository
BFTool : Bug-Finding Tool
Output:
Statistics of Defects that are Missed and
Captured (Fully or Partially)
Method:
1: Let Stats = {}
2: For each bug report br in BugRepo
3: // Step 1: Extract faulty lines of code
4: Let fixC = br’s corresponding fix commit in CodeRepo
5: Let bugC = Revision before fixrC' in CodeRepo
6: Let diff = The difference between fizC and bugC
7 Extract faulty lines from diff
8: Let Faultyy, = Faulty lines in bugC
: // Step 2: Get warnings
10: Run BFTool on bugC
11:  Let Warning,, = Flagged lines in bugC by BFTool
12: // Step 3: Detect missed defects
13:  Let Common = Faultyy, N Warningp,
14:  If Common = {}
15: Add (br, miss) to Stats
16:  Else If Common = Faultyy,
17: Add (br, full) to Stats
18: Else
19: Add (br, partial) to Stats
20: Output Stats

@ . .

Fig. 5: Identification of Missed Defects.
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4 Empirical Evaluation

In this section we present our research questions, datasets, empirical findings,
and threats to validity.

4.1 Research Questions & Datasets
We would like to answer the following research questions:

RQ1 How many real-life reported and fixed defects from Lucene, Rhino, and
AspectJ are missed by state-of-the-art static bug-finding tools?

RQ2 What types of warnings reported by the tools are most effective in de-
tecting actual defects?

RQ3 What are some characteristics of the defects missed by the tools?

RQ4 How effective are the tools in finding defects of various severity?

RQ5 How effective are the tools in finding defects of various difficulties?

RQ6 How effective are the tools in finding defects of various types?

We evaluate five static bug-finding tools, namely FindBugs, JLint, PMD,
CheckStyle, and JCSC on three open source projects: Lucene, Rhino, and As-
pectJ. Lucene from Apache Software Foundation' is a general purpose text
search engine library. Rhino from Mozilla Foundation? is an implementation
of JavaScript written in Java. AspectJ from Eclipse Foundation® is an aspect-
oriented extension of Java. We crawl JIRA for defects tagged for Lucene ver-
sion 2.9. For Rhino and AspectJ, we analyze the iBugs repository prepared
by Dallmeier and Zimmermann (2007). The average sizes of Lucene, Rhino,
and AspectJ are around 265,822, 75,544, and 448,176 lines of code (LOC) re-
spectively. We show the numbers of unambiguous defects that we are able to
manually locate root causes from the three datasets in Table 1 together with
the total numbers of defects available in the datasets and the average faulty
lines per defect.

Table 1: Number of Defects for Various Datasets

Dataset # of # of Avg # of
Unambiguous | Defects | Faulty Lines
Defects Per Defect
Lucene 28 57 3.54
Rhino 20 32 9.1
AspectJ 152 350 4.07

1 http://lucene.apache.org/core/
2 http://www.mozilla.org/rhino/
3 http://www.eclipse.org/aspectj/
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4.2 Experimental Results
4.2.1 RQ1: Number of Missed Defects

We show the number of missed defects by each and all of the five tools, for
Lucene, Rhino, and AspectJ in Table 2. We do not summarize across software
projects as the numbers of warnings for different projects differ greatly and
ummarization across projects may not be meaningful. We first show the results
for all defects, and then zoom into subsets of the defects that span a small
number of lines of code, and those that are severe. Our goal is to evaluate the
effectiveness of state-of-the-art static bug-finding tools in terms of their false
negative rates. We would also like to evaluate whether false negative rates may
be reduced if we use all five tools together.

Consider All Defects.

Lucene. For Lucene, as shown in Table 2, we find that with all five tools, 35.7%
of all defects could be fully identified (i.e., all faulty lines Faulty[i] of a defect
1 are flagged). Another 28.6% of all defects could also be partially identified
(i.e., some but not all faulty lines in Faulty[i] are flagged). Still, 35.7% of all
defects could not be flagged by the tools. Thus, the five tools are effective but
are not very successful in capturing Lucene defects. Among the tools, PMD
captures the most numbers of bugs, followed by FindBugs, CheckStyle, JCSC,
and finally JLint.

Rhino. For Rhino, as shown in Table 2, we find that with all five tools, 95%
of all defects could be fully identified. Only 5% of all defects could not be
captured by the tools. Thus, the tools are very effective in capturing Rhino
defects. Among the tools, FindBugs captures the most numbers of defects,
followed by PMD, CheckStyle, JLint, and finally JCSC.

AspectJ. For AspectJ, as shown in Table 2, we find that with all five tools,
71.1% of all defects could be fully captured. Also, another 28.3% of all defects
could be partially captured. Only 0.7% of the defects could not be captured
by any of the tools. Thus, the tools are very effective in capturing AspectJ
defects. PMD captures the most numbers of defects, followed by CheckStyle,
FindBugs, JCSC, and finally JLint.

Also, to compare the five bug-finding tools, we show the average numbers
of lines in one defect program wversion (over all defects) that are flagged by
the tools for our subject programs in Table 3. We note that PMD flags the
most numbers of lines of code, and likely produces more false positives than
others, while JLint flags the least numbers of lines of code. With respect to the
average sizes of programs (see Column “Avg # LOC” in Table 4), the tools
may flag 0.2% to 56.9% of the whole program as buggy.
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Table 3: Average Numbers of Lines Flagged Per Defect Version by Various
Static Bug-Finding Tools.

Tools Vvs. Lucene Rhino AspectJ
Programs

FindBugs 33,208.82 | 40,511.55 83,320.09
JLint 515.54 330.6 720.44
PMD 124,281.5 42,999.3 198,065.51
Checkstyle 16,180.6 11,144.65 55,900.13
JCSC 16,682.46 3,573.55 22,010.77
All 126,367.75 | 52,123.05 220,263

Note that there may be many other issues in a version besides the defects in
our dataset in a program version, and a tool may generate many warnings for
the version. These partially explain the high average numbers of lines flagged
in Table 3. To further understanding these numbers, we present more statistics
about the warnings generated by the tools for each of the three programs in
Table 4. Column “Avg # Warning” provides the average numbers of reported
warnings by each tool for each program. Column “Avg # Flagged Line Per
Warning” is the average numbers of lines flagged by a warning report. Column
“Avg # Unfixed” is the average numbers of lines of code that are flagged but
are not the buggy lines fixed in a version. Column “Avg # LOC” is the numbers
of lines of code in a particular program (across all buggy versions).

We notice that the average numbers of warnings generated by PMD is high.
FindBugs reports less warnings but many warnings span many consecutive
lines of code. Many flagged lines do not correspond to the buggy lines fixed in
a version. These could either be false positives or bugs found in the future. We
do not check the exact number of false positives though, as they require much
manual labor (i.e., checking thousands of warnings in each of the hundreds of
program versions), and they are the subject of other studies (e.g. Heckman
and Williams, 2011). On the other hand, the high numbers of flagged lines
raise concerns with the effectiveness of warnings generated by the tools: Are
the warnings effectively correlated with actual defects?

To answer such a question, we create random “bug” finding tools that
would randomly flag some lines of code as buggy according to the distributions
of the numbers of the lines flagged by each warning generated by each of the
bug-finding tools, and compare the bug-capturing effectiveness of such random
tools with the actual tools. For each version of the subject programs and each
of the actual tools, we run a random tool 10,000 times; each time the random
tool would randomly generate the same numbers of warnings by following the
distribution of the numbers of lines flagged by each warning; then, we count
the numbers of missed, partially captured, and fully captured defects by the
random tool; finally, we compare the effectiveness of the random tools with
the actual tools by calculating the p-values as in Table 5. A value x in each
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cell in the table means that our random tool would have z x 100% chance
to get at least as good results as the actual tool for either partially or fully
capturing the bugs. The values in the table imply the actual tools may indeed
detect more bugs than random tools, although they may produce many false
positives. However, some tools for some programs, such as PMD for Lucene,
may not be much better than random tools. If there is no correlation between
the warnings generated by the actual tools with actual defects, the tools should
not perform differently from the random tools. Our results show that this is
not the case at least for some tools with some programs.

Table 5: p-values comparing random tools against actual tools.

[ Tool [ Program [ Full [ Partial or Full ]

Lucene 0.2766 0.1167

FindBugs Rhino | <0.0001 0.0081
AspectJ 0.5248 0.0015

Lucene 0.0011 <0.0001

JLint Rhino | <0.0001 <0.0001
AspectJ 0.0222 0.0363

Lucene 0.9996 1

PMD Rhino 0.9996 1
AspectJ 0.9996 <0.0001

Lucene 0.0471 0.0152

Checkstyle Rhino 0.5085 1
AspectJ | <0.0001 <0.0001

Lucene 0.0152 1

JCSC Rhino 0.3636 1
AspectJ 0.0006 1

Consider Localized Defects.

Many of the defects that we analyze span more than a few lines of code.
Thus, we further focus only on defects that can be localized to a few lines of
code (at most five lines of code, which we call localized defects), and investigate
the effectiveness of the various bug-finding tools. We show the numbers of
missed localized defects by the five tools, for Lucene, Rhino, and AspectJ in
Tables 6.

Lucene. Table 6 shows that the tools together fully identify 47.6% of all local-
ized defects and partially identify another 14.3%. This is only slightly higher
than the percentage for all defects (see Table 2). The ordering of the tools
based on their ability to fully capture localized defects is the same.

Rhino. As shown in Table 6, all five tools together could fully identify 93.3%
of all localized defects. This is slightly lower than the percentage for all defects
(see Table 2).

AspectJ. Table 6 shows that the tools together fully capture 78.9% of all lo-
calized defects and miss only 0.8%. These are better than the percentages for
all defects (see Table 2).
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Consider Stricter Analysis.

We also perform a stricter analysis that requires not only that the faulty
lines are covered by the warnings, but also the type of the warnings must be
directly related to the faulty lines. For example, if the faulty line is a null
pointer dereference, then the warning must explicitly say so. Warning reports
that cover this line but do not have reasonable explanation for the warning
would not be counted as capturing the fault. Again we manually analyze to
see if the warnings strictly captures the defect. We focus on defects that are
localized to one line of code. There are 7 bugs, 5 bugs, and 66 bugs for Lucene,
Rhino, and AspectJ respectively that can be localized to one line of code.

We show the results of our analysis for Lucene, Rhino, and AspectJ in
Table 7. We notice that under this stricter requirement, very few of the de-
fects fully captured by the tools (see Column “Full”) are strictly captured by
the same tools (see Column “Strict”). Thus, although the faulty lines might
be flagged by the tools, the warning messages from the tools may not have
sufficient information for the developers to understand the defects.

Table 7: Numbers of One-Line Defects that are Strictly Captured versus
Fully Captured

Tool Lucene Rhino AspectJ
Strict [ Full | Strict [ Full | Strict[ Full
FindBugs | O 4 1 4 5 42
PMD 0 7 0 5 1 65
JLint 0 0 0 1 1 2
Checkstyle | 0 3 0 0 0 33
JCSC 0 3 0 0 0 5

4.2.2 RQ2: Effectiveness of Different Warnings

We show the effectiveness of various warning families of FindBugs, PMD,
JLint, CheckStyle, and JCSC in flagging defects in Tables 8, 9, and 10 respec-
tively. We highlight the top-5 warning families in terms of their ability in fully
capturing the root causes of the defects.

FindBugs. For FindBugs, as shown in Table 8, in terms of low false negative
rates, we find that the best warning families are: Style, Performance, Malicious
Code, Bad Practice, and Correctness. Warnings in the style category include
switch statement having one case branch to fall through to the next case
branch, switch statement having no default case, assignment to a local variable
which is never used, unread public or protected field, a referenced variable
contains null value, etc. Warnings belonging to the malicious code category
include a class attribute should be made final, a class attribute should be
package protected, etc. Furthermore, we find that a violation of each of these
warnings would likely flag an entire class that violates it. Thus, a lot of lines
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of code would be flagged, making it having a higher chance of capturing the
defects. Warnings belonging to the bad practice category include comparison
of String objects using == or !=, a method ignores exceptional return value,
etc. Performance related warnings include method concatenates strings using
+ instead of StringBuffer, etc. Correctness related warnings include a field
that masks a superclass’s field, invocation of toString to an array, etc.

Table 8: Percentages of Defects that are Missed, Partially Captured, and
Fully Captured for Different Warning Families of FindBugs

Warning Family [ Miss [ Partial [ Full ]

Style 46.5% 9.5% | 44.0%
Performance 62.0% 9.0% | 29.0%
Malicious Code 68.5% 7.5% | 24.0%
Bad Practise 73.5% 4.5% | 22.0%
Correctness 74.0% 6.5% | 19.5%

PMD. For PMD, as shown in Table 9, we find that the warning categories
that are the most effective are: Code Size, Design, Controversial, Optimiza-
tion, and Naming. Code size warnings include problems related to a code being
too large or complex, e.g., number of acyclic execution paths is more than 200,
method length is long, etc. Code size is correlated with defects but does not
really inform the types of defects that needs a fix. Design warnings identify
suboptimal code implementation; these include the simplification of boolean
return, missing default case in a switch statement, deeply nested if statement,
etc which may not be correlated with defects. Controversial warnings include
unnecessary constructor, null assignment, assignments in operands, etc. Opti-
mization warnings include best practices to improve the efficiency of the code.
Naming warnings include rules pertaining to the preferred names of various
program elements.

Table 9: Percentages of Warnings that are Missed, Partially Captured, and
Fully Captured for Different Warning Families of PMD

[ Warning Family [ Miss [ Partial [ Full ]

Code Size 21.5% 5.0% | 73.5%
Design 30.0% 8.5% | 61.5%
Controversial 27.5% 19.5% | 53.0%
Optimization 38.5% 23.0% | 38.5%
Naming 60.0% 23.0% | 17.0%

JLint. For JLint, as shown in Table 10, we have three categories: Inheritance,
Synchronization, and Data Flow. We find that inheritance is more effective
than data flow which in turn is more effective than synchronization in detecting
defects. Inheritance warnings relate to class inheritance issues, such as: new
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method in a sub-class is created with identical name but different parameters
as one inherited from the super class, etc. Synchronization warnings relate
to erroneous multi-threading applications in particular problems related to
conflicts on shared data usage by multiple threads, such as potential deadlocks,
required but missing synchronized keywords, etc. Data flow warnings relate to
problems that JLint detects by performing data flow analysis on Java bytecode,
such as null referenced variable, type cast misuse, comparison of String with
object references, etc.

Table 10: Percentages of Defects that are Missed, Partially Captured, and
Fully Captured for Different Warning Families of JLint

Warning Family Miss | Partial Full
Inheritance 93.0% 5.0% | 2.0%
Data Flow 93.5% 5.0% | 1.5%
Synchronization 99.5% 0% | 0.5%

CheckStyle. For CheckStyle, as shown in Table 11, we have five most effec-
tive categories: Sizes, Regular expression, White space, Java documentation,
and Miscellaneous. Sizes warning occurred when a considerable limit of good
program size is exceeded. Regular expression warning occurred when a spe-
cific standard pattern exist or not exist in the code file. White space warning
occurred if there is an incorrect whitespace around generic tokens. Java docu-
mentation warning occurred when there is no javadoc or the javadoc does not
conform to standard. Miscellaneous warning includes other issues that are not
included in the other warning category. Although likely unrelated to the actual
cause of the defects, the top warning family is quite effective on catching the
defects.

Table 11: Percentages of Defects that are Missed, Partially Captured, and
Fully Captured for Different Warning Families of CheckStyle

[ ‘Warning Family [ Miss [ Partial [ Full ]

Sizes 26% 23.5% | 50.5%
Regular expression 39.5% 21% | 39.5%
White space 34% 28.5% | 37.5%
Java documentation | 42.5% 32% | 25.5%
Miscellaneous 54.5% 28% | 17.5%

JCSC. For JCSC, as shown in Table 12, we have five most effective categories:
General, Java documentation, Metrics, Field, and Method. General warning
includes common issues in coding, such as the length limit of the code, missing
default in switch statement, empty catch statement, etc. Java documentation
warning includes issues related to the existence of javadoc and its conformance
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to standard. Metrics warning includes issues related to metrics used for mea-
suring code quality, such as NCSS and NCC. Field warning includes issues
related to the field of the class, such as bad modifier order. Method warn-
ing includes issues related to the method of the class, such as bad number of
arguments of a method. The warnings generated by JCSC are generally not
effective and very bad in detecting defects in the three systems.

Table 12: Percentages of Defects that are Missed, Partially Captured, and
Fully Captured for Different Warning Families of JCSC

[ Warning Family [ Miss [ Partial [ Full |

General 76.5% 16.5% 7%
Java documentation 91% 7% 2%
Metrics 95% 4.5% | 0.5%
Field 94.5% 5% | 0.5%
Method 98% 2% 0%

4.2.3 RQ3: Characteristics of Missed Defects

There are 12 defects that are missed by all five tools. These defects involve log-
ical or functionality errors and thus they are difficult to be detected by static
bug-finding tools without the knowledge of the specification of the systems.
We can categorize the defects into several categories: method related defects
(addition, removal of method calls, changes to parameters passed in to meth-
ods), conditional checking related defects (addition, removal, or changes to
pre-condition checks), assignment related defects (wrong value being assigned
to variables), return value related defects (wrong value being returned) and
object usage related defects (missing type cast, etc). The distribution of such
defect categories that are missed by all five tools are listed in Table 13.

Table 13: Distribution of Missed Defect Types

[ Type [ Number of Defects ]
Assigment related defects 1
Conditional checking related defects
Return value related defects 1
Method related defects 3
Object usage related defects 1

A sample defect missed by all five tools is shown in Figure 6, which involves
an invocation of a wrong method.



To What Extent Could We Detect Field Defects? 23

Rhino - mozi llajjs/rhino/xmlimplsrc/org/mozi lla/javascript/xmlimpl/XML.java

Buggy version Fixed version
Line 3043: return createEmptyXML(lib); | Line 3043: retum createFromJS(lib, ™);

Fig. 6: Example of A Defect Missed By All Tools

4.2.4 RQ4: Effectiveness on Defects of Various Severity

Different defects are often labeled with different severity levels. Lucene is
tracked using Jira bug tracking systems, while Rhino and AspectJ are tracked
using Bugzilla bug tracking systems. Jira has the following predefined severity
levels: blocker, critical, major, minor, trivial. Bugzilla has the following pre-
defined severity levels: blocker, critical, major, normal, minor, trivial. In Jira,
there is no normal severity level. To standardize the two, we group blocker,
critical, and major as severe group, and normal, minor, and trivial as non-
severe group. Table 14 describes the distribution of severe and non-severe
defects among the 200 defects that we analyze in this study.

Table 14: Distribution of Defects of Various Severity Levels

[ Type | Number of Defects |
Severe 45
Non-Severe 155

We investigate the number of false negatives for each category of defects.
We show the results for severe and non-severe defects in Tables 15 and 16
respectively. We find that PMD captures the most numbers of severe and non-
severe defects in most datasets. For almost all the datasets that we analyze,
we also find that the tools that could more effectively capture severe defects
in a dataset, could also more effectively capture non-severe defects in the
same dataset. For Lucene, PMD and JCSC are the top two tools that could
more effectively capture severe defects, where only 33.3% and 50% of the
defects are missed respectively. For non-severe defects in Lucene, PMD and
FindBugs are the top two tools that effectively capture non-severe bugs where
only 62.5% of the defects are missed. For Rhino, PMD and FindBugs are
the top two tools that could more effectively capture severe defects without
missing any defects and capture non-severe defects where only 16.67% and
11.11% of the defects are missed. For AspectJ, PMD and CheckStyle are the
top two tools that could more effectively capture both severe (i.e., 3.2% and
29.03% of the defects are missed by PMD and CheckStyle respectively) and
non-severe defects (i.e., 2.48% and 33.06% of the defects are missed by PMD
and CheckStyle respectively). FindBugs could also effectively capture non-
severe defects in AspectJ where only 33.06% of the defects are missed.

Based on the percentage of bugs that could be partially or fully captured
by all the five tools together, the tools could capture severe defects more
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effectively than non-severe defects. For Lucene, only 16.67% of severe defects
and 50% of non-severe defects could not be captured with all the five tools.
While for Rhino and AspectJ, all severe defects could be captured using all
the five tools, and only 5.56% of non-severe defects of Rhino and 0.83% of
non-severe defects of AspectJ could not be captured.

Summary. Overall, we find that among the five tools, PMD captures the most
numbers of bugs for both severe and non-severe defects in most datasets.
Also, all the five tools together could capture severe defects more effectively
as compared to non-severe defects.

4.2.5 RQ5: Effectiveness on Defects of Various Difficulties

Some defects are more difficult to fix than others. Difficulty could be measured
in various ways: time needed to fix a defect, number of bug resolvers involved in
the bug fixing process, number of lines of code churned to fix a bug, and so on.
We investigate these different dimensions of difficulty and analyze the number
of false negatives on defects of various difficulties in the following paragraphs.

Consider Time to Fix a Defect.

First, we measure difficulty in terms of the time it takes to fix a defect.
Time to fix defect has been studied in a number of previous studies (Kim and
Jr, 2006; Weiss et al, 2007; Hosseini et al, 2012). Following Thung et al (2012),
we divide time to fix a defect into 2 classes: <30 days, and >30 days.

We show the results for <30 days and and >30 days defects in Tables 17
and 18 respectively. Generally, we find that >30 days defects can be better
captured by the tools than <30 days defects. By using the five tools together
(i.e., “All” rows in the tables), for defects that are fixed within 30 days, we
could partially or fully capture all defects of AspectJ, and miss 14.9% and 40%
defects of AspectJ and Lucene respectively. By using the five tools together,
for defects that are fixed in more than 30 days, all defects of Lucene and Rhino
can be captured, while only 0.79% of AspectJ defects are missed.

Also we find that among all the five tools, PMD could more effectively
captures both defects that are fixed within 30 days and those fixed in more
than 30 days. The top two most effective tools in capturing defects fixed within
30 days are similar with those capturing defects fixed in more than 30 days. For
Lucene’s defects, PMD and JCSC are the most effective tools to identify both
defects fixed within 30 days and those fixed in more than 30 days: only 56% and
68% of defects fixed within 30 days could not be captured by PMD and JCSC
respectively; also, PMD could capture all of the defects fixed in more than
30 days, while JCSC, Findbugs, JLint, and CheckStyles could not capture
33.33% of the >30 days defects. For Rhino’s defects, PMD and FindBugs
are the most effective tools to identify both defects fixed within 30 days and
those fixed in more than 30 days: only 28.57% of defects fixed within 30 days
could not be identified by PMD and Findbugs; also, FindBugs could capture
all Rhino’s defects that are fixed in more than 30 days and only 7.69% of



Ferdian Thung et al.

26

%VR'69 | %LE6T | %6L0 | %000T | %0 %0 %eLEE | %L999 | %0 v

%LEE | BITTT | %2678 | %0 %0 %001 | %0 %1999 | %eeee 0SOr
%LE6T | %RI6E | USE0E | %0 %e19v | %eses | %0 %1999 | %eeee T e
%OVLO | %OTOE | %URET | %TOTS | U69L | %6IL | %EEEE | %999 | %0 and

%6LO | %6ST | %T9L6 | %0 %8eer | %T9v8 | %0 %1999 | %eeee yrp
%98TY | %SO6T | %I'8E | %00 | %0 %0 %0 %1999 | %eees sSngputg

g | renaed [ sson [ g | renaed [ sson | g | renaed | ssa suroaFon s siooL

ryoedsy ouryy suson

pomade)) A pue ‘pamjde)) A[eIared ‘passijy oIe Jel) sAr( ()f 2A0QY POXI $199J9(] JO sodejuadiod QT 9[qel,

%T69L | %80°€T | %0 %ILR | %0 %62 VT | %9e | %ve %07 v
%0 %ege | %e196 | %0 %0 %001 | %zl | %oz %89 0SOr
%LLOE | %LLOE | %9V'RE | %0 %6TTT | %IL'SR | %91 | %R %91 T e
%ROEL | %T69T | %0 %EVIL | %0 %Le8T | %9E | %8 %9¢ and
%eRe | %0 %a196 | %651 | %0 %ires | %8 | %P %88 arp
%8€'¢9 | %S0€T | %I | %ErIL | %0 %Le8T | %I | %8 %9 sSngpur
md [ reoaed [ sson [ ma | renaed | ssov | g | reneed | ssoa .
rodsy oura P sweiSoiJ ‘SA S[OOL,

pomade) A pue ‘pamjder) A[[erired ‘passijy oIe e} sAe( (¢ UIYIA\ POXI] $199J9(] JO So8ejuadisd :LT 9[qel,




To What Extent Could We Detect Field Defects? 27

the >30 days defects could not be captured by PMD. For AspectJ’s defects,
PMD, FindBugs, and CheckStyles are the most effective tools to identify both
defects fixed within 30 days and those fixed in more than 30 days: only 38.46%,
11.54%, and 0% of defects fixed within 30 days could not be identified by
CheckStyles, Findbugs, and PMD respectively; also, only 38.1%, 30.95%, and
2.38% of defects fixed more than 30 days could not be identified by FindBugs,
CheckStyles, and PMD respectively.

Summary. Overall, we find that the five tools used together are more effective
in capturing defects that are fixed in more than 30 days than those that are
fixed within 30 days. This shows that the tools are beneficial as they can
capture more difficult bugs. Also, among all the five tools, PMD could more
effectively capture both defects fixed within 30 days and those fixed in more
than 30 days.

Consider Number of Resolvers for a Defect.

Next, we measure difficulty in terms of the number of bug resolvers. Num-
ber of bug resolvers has been studied in a number of previous studies (e.g. Wu
et al, 2011b; Xie et al, 2012; Xia et al, 2013). Based on the number of bug
resolvers, we divide bugs into 2 classes: <2 people, and >2 people. A simple
bug typically would have only 2 bug resolvers: a triager who assigns the bug
report to a fixer, and the fixer who fixes the bug.

We show the results for <2 and >2 resolvers defects in Tables 19 and 20
respectively. When using the 5 tools together, we find that they are almost
equally effective in capturing <2 and >2 resolvers defects for Lucene and
AspectJ datasets. For the Lucene dataset, by using all the 5 tools, we miss
the same percentage (i.e., 35.71%) of <2 and >2 resolvers defects. For the
AspectJ dataset, by using all the 5 tools, we miss 0% and 1.23% of <2 and >2
resolvers defects respectively. However, for the Rhino dataset, by using all the
5 tools together, we can more effectively capture > 2 resolvers defects than
<2 resolvers defects, i.e., 0% of > 2 resolvers defects and 25% of <2 resolvers
defects are missed.

Also, we find that among all the five tools, PMD could more effectively
capture both <2 and >2 resolvers defects. The top two most effective tools in
capturing <2 resolvers defects are similar with those capturing >2 resolvers
defects. For Lucene’s defects, PMD and JCSC are the most effective tools to
capture for both <2 and >2 resolvers defects: only 42.86% and 57.14% of <2
resolvers defects could not be captured by PMD and JCSC respectively; also,
only 57.14% and 71.43% of >2 resolvers defects could not be identified by
PMD and JCSC respectively. For Rhino’s defects, PMD and FindBugs are
the most effective tools to capture both <2 and >2 resolvers defects: only 25%
and 50% of <2 resolvers defects could not be captured by PMD and Findbugs;
also, FindBugs could capture all Rhino’s >2 resolvers defects while only 12.5%
of the defects could not be captured by PMD. For AspectJ’s defects, PMD,
FindBugs, and CheckStyles are the most effective tools to capture both <2 and
>2 resolvers defects: only 35.21%, 33.8%, and 2.82% of <2 resolvers defects
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could not be captured by CheckStyles, Findbugs, and PMD respectively; also,
only 33.33%, 29.63%, and 1.23% of AspectJ’s >2 resolvers defects could not
be captured by FindBugs, CheckStyles, and PMD respectively.

Summary. Overall, we find that by using the five tools together, we can cap-
ture >2 resolvers defects more effectively than <2 resolvers defects (at least
on Rhino dataset). This shows that the tools are beneficial as they can capture
more difficult bugs. Also among all the five tools, PMD could more effectively
capture for both <2 and >2 resolvers defects.

Consider Number of Lines of Code Churned for a Defect.

We also measure difficulty in terms of the number of lines of code churned.
Number of lines of code churned has been investigated in a number of previous
studies, e.g., (Nagappan and Ball, 2005; Giger et al, 2011). Based on the
number of lines of code churned, we divide the bugs into 2 classes: <10 lines
churned, and >10 lines churned.

We show the results for <10 and >10 lines churned defects in Tables 21
and 22. The performance of the 5 tools (used together) in capturing <10 lines
churned defects is similar to the performance in capturing >10 lines churned
defects. For Lucene, using the 5 tools together, we can capture <10 lines
churned defects better than >10 lines churned defects (33.33% vs. 38.46% <10
and >10 lines churned defects are missed respectively). However, for Rhino,
using the 5 tools together, we can capture >10 lines churned defects better
than <10 lines churned defects (7.14% vs. 0% <10 and >10 lines churned
defects are missed respectively). For AspectJ, using the 5 tools together, we
can capture >10 lines churned defects and <10 lines churned defects equally
well (0.78% vs. 0% <10 and >10 lines churned defects are missed respectively).

We find that among all the five tools, PMD could more effectively capture
both <10 and >10 lines churned defects. The top two most effective tools in
capturing <10 lines churned defects however may vary with those capturing
>10 lines churned defects.

For Lucene’s defects, PMD and CheckStyles are the most effective tools
to capture <10 lines churned defects (i.e., only 40% and 40% of the defects
are missed by PMD and CheckStyles respectively), while PMD and JCSC
are the most effective tools to identify >10 lines churned defects (i.e., only
61.54% of the defects are missed by both tools). For Rhino’s defects, PMD
and FindBugs are the most effective tools to capture both <10 and >10 lines
churned defects: both tools could capture all Rhino’s >10 lines churned defects,
and only 21.43% and 14.29% of Rhino’s <10 lines churned defects could not be
captured by the tools. For AspectJ’s defects, PMD, FindBugs, and CheckStyles
are the most effective tools to identify for both <10 and >10 lines churned
defects: only 34.11%, 33.33%, and 2.33% of <10 lines churned defects could
not be identified by CheckStyles, Findbugs, and PMD respectively; also, only
34.78%, 21.74%, and 0% of AspectJ’s >10 lines churned defects could not be
identified by FindBugs, CheckStyles, and PMD respectively.
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Table 23: Distribution of Defect Types

[ Type | Number of Defects |
Assignment related defects 27
Conditional related defects 127
Return related defects 11
Method invocation related defects 28
Object usage related defects 7

Summary. Overall, we find that the performance of the 5 tools (used together)
in capturing <10 lines churned defects are similar to that in capturing >10
lines churned defects. Also among the five tools, PMD could more effectively
identify <10 and >10 lines churned defects.

4.2.6 RQG6: Effectiveness on Defects of Various Types

We consider a rough categorization of defects based on the type of the program
elements that are affected by a defect. We categorize defects into the following
families (or types): assignment, conditional, return, method invocation, and
object usage. A defect belongs to a family if the statement responsible for the
defect contains a corresponding program type. For example, if a defect affects
an “if” statement it belongs to the conditional family. Since a defect can
span multiple program statements of different types, it can belong to multiple
families, for such cases we analyze the bug fix and choose one dominant family.
Table 23 describes the distribution of defect types among the 200 defects that
we analyze in this study.

We investigate the number of false negatives for each category of defects.
We show the results for assignment related defects in Table 24. We find that
using the five tools together we could effectively capture (partially or fully)
assignment related defects in all datasets: we could capture all assignment
related defects in Rhino and AspectsJ, and only 16.67% of Lucene’s assignment
related defects could not be captured by the tools. We also find that PMD is
the most effective tool in capturing assignments related defects, while JLint
and JCSC are the most ineffective. For Lucene, 33.33%, 66.66%, and 66.67% of
its assignment related defects could not be captured by PMD, FindBugs, and
CheckStyle. PMD and Findbugs could effectively capture Rhino’s assignment
related defects without missing any defects, and only 11.11% of AspectJ’s
assignment related defects could not be captured by these tools. Thus, besides
PMD, FindBugs is also effective in capturing assignment related defects.

We show the results for conditional related defects in Table 25. We find that
using the five tools together, we could capture all conditional related defects in
Rhino, and only 0.99% of AspectJ’s and 38.46% of Lucene conditional related
defects could not be captured by the tools. We also find that PMD is the most
effective tool in capturing conditional related defects, while JLint is the most
ineffective in capturing the defects. For Lucene, PMD only misses 46.15%
of conditional related defects, while the other tools miss more than 50% of
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the defects. PMD and Findbugs could effectively capture Rhino’s conditional
related defects with only 15.38% and 7.69% missed defects, and only 30.69%
of AspectJ’s conditional related defects could not be captured by these tools.
Thus, aside from PMD, FindBugs is also effective in capturing conditional
related defects.

We show the results for return related defects in Table 26. We find that
using the five tools together is effective enough to capture all return related
defects in AspectJ and Lucene, however they are less effective in capturing
return related defects in Rhino (50% missed defects). We also find that PMD
is the most effective tool in capturing return related defects. For Lucene, all
tools could capture (partially or fully) all the return related defects. For Rhino,
50% of return related defects could not be captured by PMD, FindBugs, and
JLint, while the other tools could not capture all the defects (100% missed
defects). For AspectJ, PMD could effectively capture all return related defects
without any missed defects, and CheckStyle only missed 37.5% of the defects.
The other tools could not effectively capture AspectJ’s return related defects
as they miss more than 50% of the defects.

We show the results for method invocation related defects in Table 27.
We find that using the five tools together is effective enough to capture all
method invocation defects of Rhino and AspectJ, but they are less effective
in capturing method invocation related defects in Lucene (50% missing de-
fects). We also find that PMD is the most effective tool in capturing method
invocation related defects. PMD could effectively capture all method invoca-
tion related defects in Rhino and AspectJ, but it misses 66.67% of Lucene’s
method invocation related defects. The other 4 tools could not capture more
than 70% of Lucene’s method invocation related defects. Other than PMD,
Findbugs could also effectively capture all Rhino’s method invocation related
defects without any missed defects, while the other 3 tools could not capture
all Rhino’s method invocation related defects. For AspectJ, CheckStyle could
also effectively capture the defects with only 28.57% missed defects, while the
other 3 tools could not capture more than 40% of AspectJ’s method invocation
related defects.

We show the results for object usage related defects in Table 28. We find
that using the five tools together, we can capture all object usage related de-
fects of Rhino and AspectJ, but they are less effective in capturing object
usage related defects of Lucene (50% missing defects). We also find that gen-
erally PMD is the most effective tool in capturing object usage related defects.
PMD could effectively capture all object usage related defects in Rhino and
Aspectd, but it misses all Lucene’s object usage related defects. Only JCSC
could capture 50% of Lucene’s object usage related defects, while the other
tools could not capture these defects at all. Other than PMD, Findbugs and
CheckStyle could also effectively capture all Rhino’s method invocation de-
fects without any missed defects, while the other tools could not capture all
Rhino’s method invocation defects. For AspectJ, the other tools except PMD
could not effectively capture object usage related defects in this dataset—they
could not capture 50 or more percent of the defects.
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Summary. Overall, we find that PMD could outperform other tools in captur-
ing various types of defects. The effectiveness of the other tools varies across
the datasets; for example, Findbugs are more effective in capturing defects in
Rhino, while Checktyle is more effective in capturing defects in AspectJ. JLint
and JCSC are often the most ineffective in capturing defects in the datasets.
Based on the percentage of missed defects, averaging across the defect fam-
ilies, the 5 bug-finding tools (used together) could more effectively capture
assignment defects, followed by conditional defects. They are less effective in
capturing return, method invocation, and object usage related defects.

4.3 Threats to Validity

Threats to internal validity may include experimental biases. We manually
extract faulty lines from changes that fix them; this manual process might be
error-prone. We also manually categorize defects into their families; this man-
ual process might also be error prone. To reduce this threat, we have checked
and refined the results. We also exclude defects that could not be unambigu-
ously localized to the responsible faulty lines of code. Also, we exclude some
versions of our subject programs that cannot be compiled. There might also
be implementation errors in the various scripts and code used to collect and
evaluate defects.

Threats to external validity are related to the generalizability of our find-
ings. In this work, we only analyze five static bug-finding tools and three open
source Java programs. We analyze only one version of Lucene dataset; for Rhi-
no and AspectJ, we only analyze defects that are available in iBugs. Also, we
investigate only defects that get reported and fixed. In the future, we could
analyze more programs and more defects to reduce selection bias. Also, we
plan to investigate more bug-finding tools and programs in various languages.

5 Related Work

We summarize related studies on bug finding, warning prioritization, bug
triage, and empirical study on defects.

5.1 Bug Finding

There are many bug-finding tools proposed in the literature (Nielson et al,
2005; Necula et al, 2005; Holzmann et al, 2000; Sen et al, 2005; Godefroid
et al, 2005; Cadar et al, 2008; Sliwerski et al, 2005). A short survey of these
tools has been provided in Section 2. In this paper, we focus on five static
bug-finding tools for Java, including FindBugs, PMD, JLint, Checkstyle and
JCSC. These tools are relatively lightweight, and have been applied to large
systems.
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None of these bug-finding tools is able to detect all kinds of bugs. To the
best of our knowledge, there is no study on the false negative rates of these
tools. We are the first to carry out an empirical study to answer this issue based
on a few hundreds of real-life bugs from three Java programs. In the future,
we plan to investigate other bug-finding tools with more programs written in
different languages.

5.2 Warning Prioritization

Many studies deal with the many false positives produced by various bug-
finding tools. Kremenek and Engler (2003) use z-ranking to prioritize warn-
ings. Kim and Ernst (2007) prioritize warning categories using historical data.
Ruthruff et al (2008) predict actionable static analysis warnings by proposing
a logistic regression model that differentiates false positives from actionable
warnings. Liang et al (2010) propose a technique to construct a training set
for better prioritization of static analysis warnings. A comprehensive survey
of static analysis warnings prioritization has been written by Heckman and
Williams (2011). There are large scale studies on the false positives produced
by FindBugs (Ayewah and Pugh, 2010; Ayewah et al, 2008).

While past studies on warning prioritization focus on coping with false
positives with respect to actionable warnings, we investigate an orthogonal
problem on false negatives. False negatives are important as it can cause bugs
to go unnoticed and cause harm when the software is used by end users.
Analyzing false negatives is also important to guide future research on building
additional bug-finding tools.

5.3 Bug Triage

Even when the bug reports, either from a tool or from a human user, are all
for real bugs, the sheer number of reports can be huge for a large system. In
order to allocate appropriate development and maintenance resources, project
managers often need to triage the reports.

Cubranic and Murphy (2004) propose a method that uses text categoriza-
tion to triage bug reports. Anvik et al (2006) use machine learning techniques
to triage bug reports. Hooimeijer and Weimer (2007) construct a descriptive
model to measure the quality of bug reports. Park et al (2011) propose Cos-
Triage that further takes the cost associated with bug reporting and fixing into
consideration. Sun et al (2010) use data mining techniques to detect duplicate
bug reports.

Different from warning prioritization, these studies address the problem of
too many true positives. They are also different from our work which deals
with false negatives.
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5.4 Empirical Studies on Defects

Many studies investigate the nature of defects. Pan et al (2009) investigate
different bug fix patterns for various software systems. They highlight pat-
terns such as method calls with different actual parameter values, change of
assignment expressions, etc. Chou et al (2001) perform an empirical study of
operating system errors.

Closest to our work is the study by Rutar et al (2004) on the comparison of
bug-finding tools in Java. They compare the number of warnings generated by
various bug-finding tools. However, no analysis have been made as to whether
there are false positives or false negatives. The authors commented that: “An
interesting area of future work is to gather extensive information about the
actual faults in programs, which would enable us to precisely identify false
positives and false negatives.” In this study, we address the false negatives
mentioned by them.

6 Conclusion and Future Work

Defects can harm software vendors and users. A number of static bug-finding
tools have been developed to catch defects. In this work, we empirically s-
tudy the effectiveness of state-of-the-art static bug-finding tools in preventing
real-life defects. We investigate five bug-finding tools, FindBugs, JLint, PMD,
CheckStyle, and JCSC on three programs, Lucene, Rhino, and AspectJ. We
analyze 200 fixed real defects and extract faulty lines of code responsible for
these defects from their treatments.

We find that most defects in the programs could be partially or fully cap-
tured by combining reports generated by all bug-finding tools. However, a
substantial proportion of defects (e.g., about 36% for Lucene) are still missed.
We find that FindBugs and PMD are the best among the bug-finding tools
in preventing false negatives. Our stricter analysis sheds light that although
many of these warnings cover faulty lines, often the warnings are too generic
and developers need to inspect the code to find the defects. We find that some
bugs are not flagged by any of the bug-finding tools—these bugs involve logical
or functionality errors that are difficult to be detected without any specifica-
tion of the system. We also find that the bug-finding tools are more effective
in capturing severe than non-severe defects. Also, based on various measures
of difficulty, the bug-finding tools are more effective in capturing more difficult
bugs. Furthermore, the bug-finding tools could perform differently for differ-
ent bug types: they could be more effectively in capturing assignment and
conditional defects than return, method invocation, and object usage related
defects.

As future work, we would like to reduce the threats to external validity by
experimenting with even more bugs from more software systems. Based on the
characteristics of the missed bugs, we also plan to build a new tool that could
help to reduce false negatives further.
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