Scalable Detection of Missed Cross-Function Refactorings

Narcisa Andreea Milea
School of Computing
National University of
Singapore, Singapore

mileanar@comp.nus.edu.sg

ABSTRACT

Refactoring is an important way to improve the design of
existing code. Identifying refactoring opportunities (i.e., code
fragments that can be refactored) in large code bases is a
challenging task. In this paper, we propose a novel, auto-
mated and scalable technique for identifying cross-function
refactoring opportunities that span more than one function
(e.g., Extract Method and Inline Method). The key of our
technique is the design of efficient vector inlining opera-
tions that emulate the effect of method inlining among code
fragments, so that the problem of identifying cross-function
refactoring can be reduced to the problem of finding similar
vectors before and after inlining. We have implemented our
technique in a prototype tool named REDEX which encodes
Java programs to particular vectors. We have applied the
tool to a large code base, 4.5 million lines of code, comprising
of 200 bundle projects in the Eclipse ecosystem (e.g., Eclipse
JDT, Eclipse PDE, Apache Commons, Hamcrest, etc.). Also,
different from many other studies on detecting refactoring,
REDEX only searches for code fragments that can be, but not
yet, refactored in a way similar to some refactoring that has
happened in the code base. Our results show that REDEX
can find 277 cross-function refactoring opportunities in 2
minutes, and 223 cases were labelled as true opportunities
by users, and cover many categories of cross-function refac-
toring operations in classical refactoring books, such as Self
Encapsulate Field, Decompose Conditional Expression, Hide
Delegate, Preserve Whole Object, etc.

Categories and Subject Descriptors

D.2.7 [Software Engineering)|: Distribution, Maintenance,
and Enhancement— Restructuring, reverse engineering, and
reengineering; F.3.2 [Logics and Meanings of Programs|:
Semantics of Programming Languages— Program analysis

General Terms
Algorithms, Design and Experimentation, Reliability

Keywords

Refactoring, Software Evolution, Vector-based representation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA °14, July 21D25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

Lingxiao Jiang
School of Information Systems
Singapore Management

University, Singapore
Ixjlang@smu.edu.sg

Siau-Cheng Khoo
School of Computing
National University of
Singapore, Singapore
khoosc@nus.edu.sg

1. INTRODUCTION

Refactoring has long been recognized as an important way
to improve the design of existing code [9]. Many modern
development environments, such as Eclipse, Microsoft Visual
Studio, have built-in support for various kinds of refactoring
operations, such as Rename Variables, Encapsulate Field,
Change Method Signature, Move Method, Extract Method,
and Extract Interface [11].! These tools usually require
refactoring opportunities (i.e., the parts of the code that can
be, but not yet, refactored) to be identified first.

Identifying refactoring opportunities can be a challeng-
ing task for large code bases. Scalability of a refactoring
detection technique is important to large-scale application.
The detection problem is also compounded by cross-function
refactoring opportunities that may involve moving code frag-
ments across function boundaries across different software
projects. Naively searching through all possible combina-
tions of different code fragments is not likely scalable. As an
example for illustration, we show in Figure 1 code snippets
from two Eclipse projects.

org.eclipse.equinox...... Disassembler

String escapeString(String s) {

StringBuffer buffer = new StringBuffer();
for (inti =0, max = s.length();

i <max; i++) { e — IJnIne

g\r/]v?trcﬁ FS{C harAt(); org.eclipse.jdt....... Disassembler

case \b' : Strin_g decodeStringValue(char(] chars) {

buffer.append("\b"); /SNON-NLS-1$ fg{'gﬁﬁ”fzr ﬁﬁ;;ﬂjﬁ;@;&%ﬁ““ﬁo’
""" i <max; i++){

char ¢ = charsli];

escapeChar(buffer, c);

org.eclipse.jdt...... Disassembler
String escapeString(String s) {

return decodeStringValue(s); Il (a)
) N

}
return buffer.toString(); }Plne

void escapeChar(StringBuffer buffer,
charc) {

switch(c) {
case '\b':
buffer.append("\\b"); //SNON-NLS-1$
7 ~1I(b)

Figure 1: Sample refactoring detected in Eclipse

The snippet in I(a) is from a class named Disassembler
in the Equinox project while the snippets in II ((a) and (b))
are from a class with the same name but in the different JDT
project. While both escapeString methods have the same
functionality, they are structurally different. The one in 11(a)
only contains a method call, and the callee decodeString-
Value contains a call to another method escapeChar in II(b).
The change history of Eclipse shows that the methods in II(a)
and II(b) were refactored from an earlier version of the code,
which was the same as the code in I(a) before Eclipse 3.5.2,

IThis paper uses “method” and “function” interchangeably.

and the refactored escapeChar became used in a number of
locations in the code. By simply looking at I(a) itself it may
not be clear whether it is a refactoring opportunity. However,
by looking at how the code in II is structured, a developer
can easily see a missed cross-function refactoring opportunity
for the method escapeString in I(a) as well.

The example also indicates that not all refactoring oppor-
tunities would be performed by developers at the same time.
Refactoring parts of a large code base of related programs of-
ten causes initially similar code fragments in different projects
to diverge. For code bases that have long evolution histories,
such divergences can in time cause difficulties in finding those
missed refactoring opportunities again. Usual refactoring de-
tection based on clone detection (e.g., [2,8,18,42,45]) would
not report two code fragments, one of which is a refactored
copy of the other, as clones, and thus misses many partial
refactoring opportunities. As for this example, the switch
statement in I(a) may be detected as a clone of the body of
escapeChar in II(b), but the for loops may not be detected,
as the loop in II is in a separate method decodeStringValue.
Thus, usual clone detection may fail to suggest a refactoring
for code in 1. Detecting such partially missed cross-function
refactoring opportunities scalably is the goal of this paper.

In this paper, we provide a new scalable approach for
identifying cross-function refactoring opportunities that may
involve method extraction and/or inlining. The key of our
technique is the design of efficient vector inlining operations
that emulate the effect of method inlining, based on charac-
teristic vector representations of code. Then, such inlined
vectors naturally represent inlined code, taking method ex-
traction and inlining into account. Thus, the problem of
scalable identification of cross-function refactoring can be re-
duced to the scalable technique of identifying similar vectors.

Also, we take the intuition that if two pieces of code become
similar to each other, either syntactically or semantically,
after the methods called in them are inlined, yet they were not
similar before inlining, they are very likely to indicate a true
cross-function refactoring opportunity. This means that the
two code pieces have structural differences involving method
extraction and/or inlining, and implies that the refactoring
operation applied to one of the code pieces, if any, may be
applied to the other as well. Thus, our technique uses a
special vector query and filtering strategy that first identifies
pairs of similar vectors and then filters those pairs that do
not satisfy the intuition above. This technique differs from
traditional clone detection that would need to first identify
simple fragments of methods as clone pairs (e.g the body
of escapeChar and the the for in Figure 1), and then to
determine if the fragments can be combined with any others
to yield a higher similarity. This would require checking
all combinations of code and an expensive analysis for each
simple clone pair.

We have implemented our technique for Java in a proto-
type named REDEX.? The tool takes in the source code of a
Java program, from which it first creates particular charac-
teristic vectors for every Java method, and then generates
inlined vectors by merging the vectors of the methods that
have caller-callee relations to emulate the effect of method
inlining. It then uses an efficient vector query technique,
Locality Sensitive Hashing (LSH [14]), together with certain

24ReDex” means refactoring detection in this paper. We use the name
since refactoring operations, especially method extraction/inlining,
bear similarity to “reducible expressions” in lambda calculus.

filters, to search for methods satisfying certain refactoring
criteria and reports them as refactoring opportunities. We
have applied the tool to a large code base comprising of 200
bundle projects in the Eclipse ecosystem (e.g., Eclipse JDT,
Eclipse PDE, Apache Commons, Hamcrest, ObjectWeb ASM,
etc.) containing 4.5 million lines of code. REDEX reported
277 refactoring opportunities, and with manual investigation
done by 5 students, we found that the detected opportunities
are of high accuracy at about 80%, and cover many categories
of cross-function refactoring operations from classical collec-
tions of refactoring (e.g., [9,20]), such as Self Encapsulate
Field, Decompose Conditional, Preserve Whole Object, etc.

Our study differs from many other studies on refactoring.
Some focus on the detection of refactoring operations that
have happened and are recorded in the version histories of
a project (e.g., [4,25,41,43,47]), so as to reconstruct those
operations. Other studies focus on formal definitions of
refactoring operations (e.g., [38,39,44]), so as to help ensure
semantic equivalence or correctness of code refactoring. Some
tools, such as LAMBDAFICATOR and CONCURRENCER, can
automatically perform certain refactoring operations (e.g.,
converting sequential code to use java.util.concurrent,
replacing certain for loops with functional operations, etc.).
Other tools only perform a refactoring operation if the code
that needs the operation is identified first with sufficient
relevant information (e.g., [11,18]).

This paper addresses a different problem of scalable iden-
tification of missed cross-function refactoring opportunities
that have yet to happen; results from our tool can be used to
facilitate other tools in performing and validating refactoring.
Similar to our work, Cider [40] is a recent study that can
detect code clones that may have diverged due to refactoring.
However, Cider’s detection algorithm works on a graph repre-
sentation of a program, which is less efficient than REDEX’s
vector representation and has limited ability in detecting
cross-function refactoring. Also, Cider requires initial seeds
for its search algorithm, while REDEX works automatically
without seeds. Another study by Meng et al. [32] can also
detect refactoring opportunities. They create context-aware
edit scripts from two or more examples and use the scripts
to identify edit locations and transform the code. However,
edit-scripts are also limited within a function, and are not
yet scalable to identify cross-function changes.

Our main contributions in this paper are as follows:

e We design a new technique based on vector inlining
to emulate the effect of method inlining, which en-
ables scalable detection of cross-function refactoring
opportunities;

e We have evaluated a prototype of our technique on a
code base containing 200 projects (4.5M lines of code)
from the Eclipse ecosystem, and results show that our
prototype can efficiently detect more than 200 missed
refactoring opportunities with an accuracy of 80%.

The rest of the paper is organized as follows. Section 2 de-
scribes more cross-function refactoring examples that can be
detected by our technique. Section 3 presents our technique
in detail. Section 4 presents the results of our empirical eval-
uation and discusses threats to validity. Section 5 presents
related work. Section 6 concludes with future work.

public IConfigurationElement[]
getSortedTargets()

{

if (fTargets == null)
loadElements();

IConfigurationElement[] result =

(IConfigurationElement([]) fTargets
values().toArray(new
IConfigurationElement
[fTargets.size()]);

rrays.sort(result,
new Comparator() { ;
return result;

public IConfigurationElement[]
getSortedFrameworks()
{ IConfigurationElement[] elements =
getFrameworks();
return orderElements(elements),
}.

pri\-/ate Inline

IConfigurationElement[] orderEleménts
(IConfigurationElement][] elems)

Arrays.sort(elems,
new Comparator() { s
return elems;
.
public
IConfigurationElement[] getFrameworks()
{ if (fFrameworks == null)
loadElements();
return
(IConfigurationElement[]) fFrameworks.
values().toArray(new

org.eclipse.ui.internal.intro.impl.model.
url.IntroURLParser
/* Note: This was copied and adapted
from org.eclipse.help.internal.util.
URLCoder */
static String urlDecode
(String encodedURL) {

int len = encodedURL.length();

try {

for (inti=0;i <len;) {

switch (encodedURL.charAt(i)) {

org.eclipse.help.internal.util. URLCoder
static String decode(String s) {
try {
return new String(ur/Decode(s), "UTF8");
} catch
(UnsupportedEncodingE
return null;

} Inljne
}
statlc byte[] uriDecode

(String encodedURL) {

ption uee) {

IConfigurationElement
[fFrameworks.size()]); }

(a) Sample Refactoring from Eclipse

case '%"; int len = encodedURL.length();
defaut: .
os.write(encodedURL.charAt(i++)); for (inti=0;i<len;){
break; switch (encodedURL.charAt(i)) {
} case '%"
default:
return new String(os.write(encodedURL.charAt(i++));
os.toByteArray(), "UTF8"); break;
} catch }
(UnsupportedEncodingException ex) { }
return null; } (a) return os.toBvteArrav():} (b)

(b) Sample Extract Service Method from Eclipse

Figure 2: Examples of Refactoring Oportunities

2. CROSS-FUNCTION
REFACTORING OPPORTUNITIES

Fowler et al. provide a catalog of refactoring operations [9]
and the code changes induced by these operations. Many
of the code changes affect methods in a program and may
be classified into multiple refactoring categories. Specifically,
at a coarse granularity, a particular code change may be
classified as Extract Method or Inline Method, while based
on the semantic purposes of the refactoring operation, it may
be classified into finer-grained categories, such as Replace
Temp with Query, Remove Middleman, Encapsulate Field,
Separate Query from Modifier, and Form Template Method.

In this paper, we define refactoring opportunities as po-
tential code changes that can be fit into classical refactoring
categories (i.e., Fowler’s categorization [9]) with small vari-
ants from recent resources (e.g., [20]). To increase the chance
that a detected refactoring indeed has the potential to im-
prove the design of existing code, our tool looks for missed
opportunities which are similar to some refactoring that may
have happened. In addition, cross-function refactoring oppor-
tunities in this paper refer to those categories in Fowler’s list
that involve method extraction/inlining. In this paper, all
refactoring opportunities mentioned are cross-function.

As the first example, the method escapeString in Fig-
ure I(a) is a missed refactoring opportunity as it can be
refactored in the same way as the code in Figure II, or even
be replaced by the method in II(b), which can help reduce
duplication. According to Fowler’s catalog, the example in
II(a) is the result of Extract Method. However, we may also
classify it as Replace Duplicated Functionality by Existing
Method since escapeString in II(a) was refactored to reuse
the functionality of an existing method decodeStringValue.
We can also say that the method decodeStringValue is a
1-way extraction since compared with escapeString in I(a),
it has one method extracted from its body.

Another example is shown in Figure 2(a). The single
method getSortedTargets on the left is from a class Tar-
getDefinitionManager that implements IRegistryChange-
Listener. It gets an array of configuration elements and
sorts them. The three methods on the right are from a
different class 0SGiFrameworkManager that also implements
IRegistryChangeListener. Although the three methods are
spatially apart from each other, they together perform the

same functionality as getSortedTargets. Based on what has
been done for the code on the right, a developer may easily
see a refactoring opportunity for getSortedTargets as well.
On the reverse, for reasons such as performance, a developer
may also choose, in reference to getSortedTargets, to refac-
tor getSortedFrameworks by inlining the methods used in it.
We call this example a 2-way extraction since compared with
getSortedTargets, getSortedFrameworks has two methods
getFrameworks and orderElements extracted from its body.
In general, we could have cross-function refactoring opportu-
nities that are n-way extraction.

In Figure 2(b)(a), the method urlDecode was copied from
an earlier version of urlDecode in Figure 2(b)(b) according
to the comments in the code. However, the code in Fig-
ure 2(b)(b) has gone through refactoring: the decode method
was introduced to invoke the local method urlDecode and
the try-catch statement was moved from urlDecode into
decode. This indicates the method in (a) is missed a refac-
toring opportunity. Such a refactoring operation can be
classified as Extract Service Method. Similar to the example
in Figure 1, usual clone detection tools may be able to detect
parts of the body of both urlDecode as clones, but they
would not be able to link the clones to the additional decode
method or suggest a concrete way to refactor the code in (a).

Overall, our technique aims to scalably detect missed cross-
function refactoring opportunities based on actual refactoring
operations that have occurred. REDEX achieves this aim by
relying on efficient vector inlining: for every method m in
a code base, one or more than one vector is generated to
represent m; then REDEX searches for another method m/’
whose vector(s) can become similar to m’s vector(s) if all
vectors are inlined according to call relations. The needed
similarity search is carried out in the form of a vector query
with automated filtering of the results. The results, if any,
are presented as a set of pairs of code fragments including
the query m and its counter-part, indicating possible ways
to refactor m. Section 3 has more details.

3. METHODOLOGY

Figure 3 illustrates the main steps of our approach. Given
a code base, we construct its abstract syntax trees (ASTSs),
program dependence graphs (PDGs), and call graphs (CGs).
The ASTs and PDGs are used in a way similar to previous
studies [12,21] in order to generate characteristic vectors

S 2 o, | Y | e
°e ©)O)
Syntax Trees @ @
® Characteristic Vectors
(S =
RO JE> Vt::::; =3 Detected
G ©® Query Refactorings
Program Dependence S ﬁ

Graphs Base-level vectors

Characteristic Vectors
L Al
Ty | ecr | o | S
nlining - .
‘ Box#1 = = Box#2
Figure 3: Approach Overview.

Source Code C
Programs

for code fragments from the code base. The PDGs allow
for flexibility in generating vectors for particular data or
control flows in a method, as well as the data dependency
information needed for accurate method call resolution during
for the construction of the call graphs. Our tailored vector
generation is recapped in Section 3.1. These vectors only
capture characteristics of the code inside the same function:
if a method is invoked in a code fragment, the vector for the
code fragment does not capture any characteristic of the code
inside the invoked method, except the method invocation
expression and actual parameters. Thus, we call these vectors
base-level characteristic vectors in this paper.

The key novelty of our approach is the use of CGs to merge
vectors from different functions together according to call
relations, so that the merged vectors are able to capture
cross-function, semantically related code fragments. The
merge operation of vectors is in spirit similar to method
inlining, and thus we call it vector inlining, which is the main
subject of Section 3.2, and we collectively call such merged
vectors inlined characteristic vectors.

After vector inlining, Locality-Sensitive Hashing (LSH) [14]
is adapted to return vectors similar to a vector used as a
query. Last but not least, all query results are then filtered
to identify refactoring opportunities. More details about the
query and filtering component are presented in Section 3.3.

In comparison with our previous studies [12,21], the compo-
nents in the shaded boxes in Figure 3 are new developments
of this paper. The components inside the shaded box #1
correspond to vector inlining. The components inside the
shaded box #2 correspond to vector querying and filtering
tailored for cross-function refactoring opportunities.

3.1 Characteristic Vectors for Code

The key idea for efficient code clone detection in our pre-
vious studies [12,21] is to represent code fragments as high
dimensional vectors in the form of v = (v1,v2, ..., vn), where
v; represents the number of occurrences of a particular kind
of program element. Then, efficient near-neighbour search
algorithms from the database area, such as locality-sensitive
hashing [14] can be used to find similar vectors quickly.

In this work we use characteristic vectors for the purpose
of refactoring detection. Vectors can be generated directly
from the abstract syntax tree of a code fragment to represent
the syntactic characteristics of the code [21]. They can also
be generated from certain parts of the abstract syntax tree of
the code that match slices of the program dependence graph
of the code [12]. In principle, vectors can be generated from
arbitrary combinations of parts of the trees and graphs.

As an illustrating example, Figure 4 shows partial ASTs

Algorithm 1 Vector Inlining with Depth 1: Inline direct
callees’ vectors into caller’s

1: Input: v.: a vector for a code fragment c that requires inlining

2: Input: V: a set of candidate vectors that may be inlined into v,

3: Input: G: a call graph of all code involved

4: Output: v;,: an inlined vector for v,

5:

6: Let Mcaiieq be the set of functions invoked by ¢, which can be
obtained from G

7: Vlucalled =10

8: for all m € Mcaiiea do

9: Let V,,, be the vector set for m, obtained from V'

10: Vj\lcalled = V]\/Icalled UV

11: end for

12: if VM atied = 0 then

13: return none

14: else

15: Vin := inlineVector(v, VMCalled)

16: end if

17:

18:

19: Method inlineVector

20: Input: v.: a vector from a caller ¢

21: Input: Vi, : a set of vectors from c’s callees
22: Output: v: an inlined vector

24: v :=wv.; flag := false; u := 6;

25: for all v,, € V. and vy, is a vector from the method m

26: and —isAPI(m, config) and isInlinable(v,, config) do

27: Let v be the version of v that excludes the call and
the actual arguments to m

28: v :=v"; flag := true

29: Let v:n be the version of v,, that excludes “return”s

30: ui=u-+ v:n

31: end for

32: if flag = false then

33: return none

34: else

35: vi=v4u

36: end if

and characteristic vectors for the code fragments in Figure 5
that will be used explain our key technique—wvector inlining—
in Section 3.2.1. The vector along with the top “block”node
in Figure 4(a) is the vector for the whole tree shown in
4(a). The elements of this vector indicate the occurrences
of nodes of the following types: (return, if, for, assign,
init, new, type, funcall, ., <, !=, ++ [], id, param, const).
Program elements, such as “block” and “parameter” in the
boxes with dashed borders in 4(a), are often used to facilitate
parsing and considered irrelevant for code semantics, and
thus not counted in the vectors. The vectors can be easily
generated by traversing the tree from bottom to top and by
accumulating counters for various node types. We can also
remove certain functionally non-essential code (e.g., simple
error-handling code, null-check, assertions, throws, try-catch,
etc.) when generating vectors.

Each vector also comes with various meta data (not shown
in the figures), such as the name of the method and the
corresponding file, line ranges of the code, number of tokens,
etc., to facilitate various postprocessing when needed.

3.2 Vector Inlining based on Call Relations

The key challenge for detecting cross-function refactoring
is to efficiently capture the call relations among code and to
efficiently search for code having similar functionality in the
presence of method calls. Our solution is to use vector inlining
to emulate the effect of method inlining and extraction.

3.2.1 Inlining for One Vector

Given a piece of code ¢ and its corresponding characteristic
vector v, if ¢ contains a call to a function f, method inlining

(_parameter]

assignment

(a) AST and vector for the Code Fragment A in Fig. 5

function
v | definition |
[identifier j l 1,1,1,0,2,2,5,3,4,1,0,1,3,19,0,2 ‘

 parameters 1,1,10,2,223,,1,013,1602 | block

retum

function
call

|

ty,
identifier identifier

(b) AST and vectors for filter method in Fig. 5

rameter
— — parameter I
(o) (parameter | ===
e |

(C) AST and vectors for code C in Fig. 5

Figure 4: Partial, Illustrative Abstract Syntax Trees Used for Vector Generation and Inlining.

would replace the function call with the code b in f’s body.
Intuitively, vector inlining emulating method inlining would
replace the parts of v. corresponding to the call to f with
the characteristic vector(s) for the code b in f’s body. After
the replacement, the changed vector v’ would approximately
represent the code c¢ inlined with b, taking away the code
related to the function call expression.

Algorithm 1 implements the above idea and accounts for
the situations when ¢ may contain zero or more calls. It takes
as input a vector v, a call graph G, and a set of vectors that
can be inlined into others (this could simply be all available
vectors or chosen by users). It identifies all callees of ¢ based
on G and collects all vectors for the callees (Lines 7-11), and
then calls the inlineVector method to inline those callee vec-
tors Vs, .y into ve (Line 15). The inlineVector method
transforms the caller vector v. and all callee vectors in Vi,
for inlining: The caller vector is transformed by subtracting
the parts from it that represent method invocations and the
actual parameters used in the invocations (Line 27); each
callee vector is transformed by subtracting the parts from
it that represent the return statements (but retaining the
expressions actually returned) (Line 29). Then the trans-
formed caller and callee vectors are summed to produce the
inlined vector for v, (Lines 30 and 35).

As an illustrating example, let us consider inlining the
method call to filter in Figure 4(c) into its caller vector.
The method call to filter is shown by the shaded part in
Figure 4(c). By following the algorithm inlineVector, the
inlining proceeds by first subtracting the vector for the call
expression from the vector for the caller, which gives us a
new vector: (0,1,0,2,1,1,1,1,0,0,1,0,0,5,0,1). Then “re-
turn”s should be subtracted from the vector for the function
body of filter (i.e., the vector along with “block” in Fig-
ure 4(b)), which results in a new vector (0,1,1,0,2,2,2,3,4,
1,0,1,3,16,0,2). The last step of the algorithm sums the

members = getMemberList(...);
if (members!=null) {
IFilter f = new Filter(...);
members = filter(members, f);

""" /ICode fragment C

members = getMemberList(...);
ArrayList f = new ArrayList<Member>();
if (members!=null) {
IFilter filter = new Filter(...);
Tor(int i=0; i<members.length; 1++) { }
if (filter.satisfy(membersii]))
f.add(membersi]);

Member(] filter(Member(] array, IFilter f)

members = f.toArray(new Member[0]); (ArrayList r = new ArrayList<Member>();
------ for(int i=0; i<array.length; i++)
if (f.satisfy(array[i]))
r.add(arrayl[i]);
return r.toArray(new Member{0]);

(b) Code fragment B

(a) Code fragment A

Figure 5: Sample code: (a) may be refactored as (b)

modified caller and callee vector together thus obtaining
0,2,1,2,3,3,3,4,4,1,1,1, 3,21, 0, 3) which is obviously the
same as the vector in Figure 4(a).

3.2.2 Inlinable Vectors

Algorithm 1 also allows skipping certain vectors based
on project-specific or user-specific preferences (isAPI and
isInlinable used at Line 26). For example, whether the
method is a third-party library code that the developers of
the current project do not care about; whether the code cor-
responding to the vector is not big enough; or, whether the
code does not contain relevant program elements interesting
to the users. Such criteria can be stored in a global config-
uration file con fig, used to decide whether a vector from a
method can be inlined into a vector from the method’s caller.
In the implementation of REDEX, we heuristically checked
the fully qualified names of each Java method call and if they
belong to certain packages (such as java.*), then we treated
them as APIs and did not use them for inlining. Also, if
some called methods are interface methods or if some call
sites cannot be statically resolved to a unique target method,
or if some methods are abstract or refer to native code, we
treat them as not inlinable and skipped.

String getSectionName() {
return "EXPRESSION INPUT DIALOG"; } (b)

IDialogSettings section = IDialogSettings section =
master.getSection ("pluginsView") ; settings.getSection(getSectionName());
if (section == null) { if (section == null) {
section = master. section = settings.
addNewSection("plug:i.nsview“)(;) addNewSection (getSectionName ()) ;)
...... a)ff--..-- C

Figure 6: Replace Constants with Methods

3.2.3 Multiple Calls to the Same Function

Each code fragment may contain multiple calls to the same
function. For method inlining, the same method is usually
inlined multiple times. However, detecting a refactoring may
require inlining the same function either once or multiple
times. For example, the code in Figure 6 needs inlining of
the same method getSectionName twice to be detected. In
REDEX, we make it an option for users to choose, and by
default we inline the same function multiple times.

3.2.4 Handling Recursive Function Calls

There are pros and cons for inlining the same function
into itself or for inlining another function that directly or
indirectly calls itself. Recursive inlining may be too expensive,
but it may help to capture more “semantic” characteristics
of code into the same function, and the following analysis
may be more convenient and “accurate.” Our vector inlining
algorithm provides two capabilities for users to decide how
to inline recursive functions.

First, it relies on a control parameter called inlining depth
(d in Algorithm 2 in Section 3.2.5) to let a user provide a
suitable depth of inlining so that we can terminate vector
inlining when the depth of inlining is reached. This is an
experience-based way to balance the costs and accuracy of
cross-function refactoring detection.

Second, it relies on the structure of the given call graphs
(used in Algorithm 1) to avoid potential non-terminating
inlining. When cycles exist in a call graph and it is requested
by a user, we break cyclic call relations in the call graph:
Starting from an entry node or a random node when there is
no obvious main entry in the call graph, we traverse the call
graph in a depth-first fashion, and remove every back edge
found during the traversal. This back edge removal process
is repeated until every node in the graph is traversed. Then,
the normal vector inlining is applied.

3.2.5 Depth of Inlining

In method inlining, we can choose the inlining depth, from
0, 1, 2, to infinity. Depth 0 effectively means no inlining.
Suppose a function f calls another function m: with depth 1,
we only inline m’s body into f; with depth 2, we inline m’s
body and also the body of every function called by m into
f; and so on, and with depth infinite, we inline the body of
every function called by f, either directly or indirectly, into
f. Similarly, in our vector inlining, we can choose to inline
our characteristic vectors with various depths.

Algorithm 1 effectively inlines vectors with depth 1. Algo-
rithm 2 extends it to allow arbitrary depths. The correctness
of this algorithm can be easily proved based on induction on
the depth and the correctness of Algorithm 1. The complex-
ity of the algorithm is linear with respect to the number of
vectors involved and the depth of inlining.

3.2.6 Indices for Efficiency

The most time-consuming operations in the above algo-
rithms are related to the repeated lookups in the callgraph
for callees in a code fragment (especially when the callgraph

Algorithm 2 Vector Inlining with Arbitrary Depths

. Input: T: a set of target vectors that may require inlining

. Input: V: a set of candidate vectors that may be inlined into
vectors in T'; V may or may not be the same as T

. Input: G: a call graph of all code involved

Input: d: a desired depth of inlining (d < 0 means an infinite
depth, i.e., to inline as deep as possible)

Output: I1,...,I;: sets of inlined vectors

CRPG w o

10: while |V;| > 0 and (d > i or d < 0) do
11: i:=1+1

12: I; := 0

13: Vii=0

14: for all t € T do

15: I; .= I; |J {Call Algorithm 1(t,V;_1,G)}

16: end for

17: for allv € V;_; do

18: Vi := V; U {Call Algorithm 1(v,V,G)}
19: end for

20: end while

21: d:=1

22: return Ii,Is,...,I4

Algorithm 3 Vector Inlining With Depth 1: With Indices

. Input: v: a vector that requires inlining

Input: V: a set of candidate vectors that may be inlined into v
Input: G: a call graph of all code involved

Output: v;y,: inlined vector for v

Let ¢ be the corresponding code fragment of v

Let L be the set of (filename, lineNumber) in ¢

Let MV of type: String — SetO fVectors the index for vectors

. Let LM of type: String — lineNumber — SetO fStrings the
index for call relations

10: Mcqieq =0

11: for all {filename,lineNumber) € L do

12: Mecatied = Mecatiea U LM|[filename][line Number]

13: end for

14: ijcalled =0

15: for all m € M.qiieq do

16: Vi = MV [m]

17: Vj\lcalled = VMCalled UV
18: end for
19: v;,, := inlineVector(v, VMcalled)

is large), and the repeated lookups for vectors corresponding
to callee signatures, which become particularly expensive
when the set of vectors to be inlined is large. However, these
operations can be implemented in an efficient way by hav-
ing various indices to speed up the lookups. The idea is to
construct indices among source code locations (file names,
method names, and line numbers), methods, and their corre-
sponding vectors. Algorithm 3 optimizes Algorithm 1 and
is much more efficient when using the additional indices. If
we used multi-sets, instead of sets, to store methods (Lines 9
and 12 in Algorithm 3), we can then inline the same method
more than once as discussed in Section 3.2.3.

3.3 Vector Query And Filtering

With vector inlining that emulates the effect of method
extraction and inlining, the problem of scalable detection of
cross-function refactoring can be reduced to finding similarity
among base-level and inlined vectors by means of vector query
and filtering. The intuition is: If two pieces of code become
similar, syntactically or semantically, only after the methods
called in them are inlined, then they are likely to indicate a
cross-function refactoring opportunity, especially if the two
code pieces are not similar to each other before inlining.

The purpose of vector query is to find vectors, from a given
set of candidate vectors, that are similar to a vector used
as an query. Our vector querying engine takes as input a

pair of vector sets: the first is the query set containing all
query vectors, and the second is the target set containing all
candidate vectors. The query engine then returns a set of
pairs; each pair represents a match between a query vector
and a target vector. As an example, consider a query set only
containing the base-level vector for the code fragment I(a) in
Figure 1 and a target set only containing the inlined vector
for the cross-function code fragment 1I(a) and (b) in Figure
1. Running the query engine will return the pair formed
by the base-level vector for I(a) and the inlined vector for
II(a) and (b), and the corresponding source code would be
presented as a potential refactoring opportunity.

Similar to previous studies on clone detection [12,21],
we adapt Locality-Sensitive Hashing (LSH) [14], which is
designed to efficiently handle nearest-neighbor queries of
high-dimensional data, to implement our query engine. Our
query engine first stores the target set into LSH’s internal
hash tables, then uses every query vector from the query
set to get matching target vectors for each query vector via
LSH backend, and presents all query results as a set of pairs
of matching vectors. The LSH backend from Alex Andoni
(http://www.mit.edu/~andoni/LSH/) is capable of handling
a couple of millions of vectors at a time.

Besides querying for matching code, we also need to identify
matching code that may manifest cross-function refactoring.
Thus, our query engine also defines a set of filters for matching
vectors, based on heuristics, to identify more likely cross-
function refactoring opportunities.

The following defines the query and filters used in REDEX.

DEFINITION 3.1 (SPLIT QUERY). Given two vector sets

Ba and In, where Ba contains only base-level vectors and In
contains only inlined vectors, a Split Query returns a set of
pairs of similar vectors; every pair in the set contains one
vector from Ba and another vector from In.
A Split query uses base-level vectors in the query set and
inlined vectors in the target set. It allows us to ask whether
code contained in one function is similar to code that spans
more than one function. A positive answer may provide an
opportunity to create a more modular version of the code
used as the query, by means of method extraction.

Results from the above query can then be refined by filters.
A filter defines a set of constraints over a pair of vectors,
and remowves the pairs that satisfy the constraints. Some of
the filters we have defined look into the origin of the inlined
vectors to make filtering decisions. To facilitate discussion,
let us define several notations. Given a method or code
fragment m, I, denotes the set of methods invoked by m,
v, denotes the base-level vector (no inlining) for m, and v,
denotes the inlined vector when the vectors for all methods
in I,, are inlined into v2,. Now, we define the following filters
for refining query results.

DEFINITION 3.2 (FILTER EQUAL). Given a pair of vec-
tors (vg ,ur), corresponding to methods q and r respectively,
Filter Equal first determines the base-level vectors for q and
r, (112, v?), and then removes the pair if ’Ug and v° are clones.
Filter Equal aims to eliminate those pairs where the vectors
before inlining are equal: As the code fragments for the two
base-level vectors are equal, they are unlikely to indicate a
refactoring opportunity.

DEFINITION 3.3 (FILTER SIMPLE). Given a pair of vec-
tors (v;J ,Ur), corresponding to methods q and r respectively,
and r invokes a method i, this Filter Simple removes the pair
if |Ir] =1 and 1)2 is equal to v?.

It is obvious that when |I| = 1, i is the only method in-
voked by r. In addition, when vg = 1Y, together with the
query premise 1)8 = v,, we have v" = v? and can infer that
the method r does nothing except invoke i. Thus, Filter
Simple eliminates those pairs where the possible refactoring
opportunity is to simply fold or unfold a method wrapper.

DEFINITION 3.4 (FILTER S1ZE). Given a pair of vectors
(vg,vr) or (v2,v,), this Filter Size removes the pair if vq or
vg contains less than 20 nodes.

Filter Size filters out query results whose query vectors are
too small in terms of numbers of nodes contained so that we
only report refactoring opportunities for code of non-trivial
sizes to help reduce possible false positives. An example of
such a pair of small vectors is shown in Figure 7.

public static String getSymbolicName() { public ITestRunSession getTestRunSession() {
return plugin.getBundle().getSymbolicName(); return getRoot().getTestRunSession();

} }
return getParent().getRoot(); fSession;

Figure 7: Small Vector Inlined

4. EMPIRICAL EVALUATION

This section evaluates the effectiveness of our vector-based
approach in detecting cross-function refactoring opportu-
nities. We show that our approach scales to a large code
base and detects many refactoring opportunities with a high
accuracy. Section 4.1 presents the experimental setup, Sec-
tion 4.2 discusses the performance, and Section 4.3 presents
the detected refactoring opportunities and accuracies.

4.1 Experimental Setup

While the general idea of using vector inlining to detect
refactoring is independent of programming languages, the
tools for constructing the data structures needed by our
approach are not. In this study, we have implemented a pro-
totype named REDEX and present results for Java programs.
The experiments were performed on a PC running Ubuntu
10.04 with Intel Xeon at 2.67GHz and 24GB of RAM.

Our evaluation comprises of 200 bundle projects in the
Eclipse 4.2.2 ecosystem, including Eclipse Core, Eclipse JDT,
Eclipse PDE, Eclipse Equinox, Apache Commons, Apache
Lucene, Hamcrest, etc. The projects encompass more than
20,000 Java files, 40,000 classes, 7,000 interfaces, and contain
about 4.5 million lines of code and a long evolution history.

Our implementation uses a modified version of Deckard,
in which vectors can be generated to represent either whole
methods, slices of methods obtained from PDGs, or any
fragment of code in a method. However, in this study, we
focus on detecting refactoring opportunities at method level
and only generate vectors that represent whole methods.?
The vectors we experimented with throughout this study
have dimensionality equal to 98. The first 84 features of
the vectors are the types of ASTNodes generated by Eclipse
JDT [7]. Separated from the usual method_invocation fea-
ture, our vectors also contain the api_invocation feature that
refers to invocations of methods not defined in the subject
programs. Specifically, the last 12 features of the vectors are
method_invocation_paramno and api_invocation_paramno

3Codc in a whole method includes all executable code in the method,
but excludes function headers, variable declaration, simple elements
unlikely responsible for the main function- ality of the code (e.g., sim-
ple null-check and return, throw exceptions), and non-executable lines
(e.g., comments, blank lines, lines with only curly braces).

that denote invocations with the number of actual arguments
denoted by paramno where paramno € {0,6}.

Also, we focused on detecting refactoring within and across
projects in our code base and ignored potential refactoring
that may span across methods defined in external libraries.
Thus, our inlining algorithm was configured to only inline
a method if the method is defined in a project in the code
base (checked by isAPI and isInlinable in Algorithm 1).
In addition, inlining was carried out in an all mode, i.e., all
inlinable and non-API methods called in a code fragment are
inlined; if any one of the methods in a code fragment cannot
be inlined due to any reason (e.g., missing vectors due to
parsing errors, unresolved call targets, etc.), the inlining for
the code fragment would be cancelled. Further, we focus on
evaluation of depth-1 inlining using REDEX and the type of
queries and filters described in Section 3.3.

4.2 Scalability

The most expensive parts in terms of both time and mem-
ory consumption are the construction of the callgraph (CG),
ASTs, PDGs, and the generation of indices (cf. Section 3.2.6)
for these data structures. PDG and CG construction built on
WALA [19] took about 44minutes; vector inlining (including
building indices) took 3 minutes, while indexing took most
of the time, and the actual vector inlining (c.f. Algorithm 3)
took less than 1 minute for inlining depth 1. Fortunately,
such constructions are one-time cost, and more optimizations
can be performed in future for the constructions.

REDEX generated about 186K base-level characteristic
vectors, each of which represents the body® of a defined
method in the Eclipse ecosystem (excluding abstract, native
and interface methods or external methods defined outside
of Eclipse). Thus, about 186K queries were performed and
filtered; they accumulatively took less than 2 minutes to
report potential refactoring opportunities. Figure 8 shows
the distribution of the refactoring oportunities in the projects.
One can see that many projects are covered by the vectors.

4.3 Cross-Function Refactoring Opportunities

We have detected many missed refactoring opportunities in
the bundle projects of Eclipse. Specifically, REDEX generated
277 reports for the evaluation code base. Each report is a
pair of two pieces of code that may span multiple functions:
one corresponds to the query generating the report, and the
other corresponds to the target matching the query. Each of
the two pieces of code may reveal a refactoring opportunity
and could be refactored according to its counter-part.

The validation of the results was done through a user study
with 5 graduate students with good knowledge of Java and
refactoring. These report inspectors were required to classify
each of the reports into one of the following four options:
(1) refactoring, (2) not refactoring but clone, (3) not
refactoring or clone, or (4) I don’t know. In the case
when the refactoring option is selected, they were required
to classify, additionally, the refactoring opportunity that

might be applied to one of the code fragements in the report.
verall, the results after inspection showed a high accu-

racy at 80% for the cross-function refactoring opportunities
detected by REDEX: 80% of all reports were classified as
option (1), 16% as option (2), and 4% as options (3) or (4).
The validation exercise discovered 223 out of the 277 anal-
ysed cases to have true refactoring opportunities. These true
refactoring opportunities are matched to many categories and
variants of Fowler’s catalog. Table 1 shows these categories

org.eclipse.e4_ QOthers Others
org.eclipse.ecf 2%

2% \ ¥ org.eclipse.compare

org.eclipse.jface org.eclipse.help
W org.eclipse.ant.internal

3%
org.eclipse.core ™ org.eclipse.osgi
5 | A A
% \ org.eclipse.ui org.apache.lucene
l 28% M org.eclipse.ant.core

org.eclipse.debug.
7%

or.eclipse.equinox '
7% 16%

org.eclipse.ltk
org.eclipse.search
com.ibm.icu.text
javax.servlet.jsp
org.apache.commons
org.apache.jasper
org.eclipse.search2
org.eclipse.swt

org.eclipse.pde

org.eclipse.team lorg.eclipse.jdi
7% 14%

Figure 8: Distribution of Covered Code

ui

pde

jdt

team

equinox

debug

core

jface

ecf

e4

compare

help
.internal

ui
pde

jdt

team
equinox
debug

core

jface

ecf

e4
compare
ant.internal

Figure 9: Heat Map of Refactoring Opportunities

and the number of validated refactoring opportunities. These
provide strong evidence to support the ability of REDEX in
detecting missed refactoring opportunities.* Some examples
of refactorings have been shown in Sections 1 and 2.

Figure 9 shows a heatmap of the number of reports be-
tween the projects in the evaluation. Values on the diagonal
indicate refactoring opportunities within the same project.
However, Figure 9 also shows many cross-project refactoring
opportunities. The results also indicate that many similar
code and refactoring opportunities across different functions
and projects diverge, which increases the difficulty for their
identification, and techniques that can detect cross-function
refactoring opportunities are indeed needed.

Furthermore, our evaluation showed that a large number
of vectors in the result set, 97%, are the result of inlining one
method. This is consistent with the fact that most refactor-
ings that involve cross-function changes in Fowler’s catalog
commonly only involve extracting/inlining one method.

During the investigation, the report inspectors checked if
one of the code fragments in a report can be refactored in
accordance with Fowler’s categorization [9], by comparing its
shape with its counter-part. At the same time, we allow their
best judgements and small variants to Fowler’s categories as
shown in Table 1. Some of the reports were validated by mul-
tiple inspectors, which resulted in interesting observations.
For simple refactorings, such as Self Encapsulate Field, the
type of refactoring was mostly correctly identified by all. For
more complex refactorings, such as Preserve Whole Object
or Separate Query from Modifier, there were variations be-
tween the types of refactoring classified by the inspectors.
The example in Figure 10 was classified as both “I don’t
know” and Preserve Whole Object. The report consists of
two methods convertSeverity and convertLevel that re-
turn an integer. Although they have similar functionality,

4‘The total number of occurences in Table 1 may be bigger than the
number of reports returned by REDEX. This is due to the fact that
code may be refactored in multiple ways.

Table 1: Categories of Refactoring Opportunities

Refactoring Categories | Ocurrences |

Self Encapsulate Field 76
Encapsulate collection access

19
and downcast
Downcast encapsulate 2
Decompose Conditional Expression 2
Substitute Algorithm 23
Extract/Inline method 25
Separate Query from Modifier 2
Introduce Query method 18
Replace duplicated functionality 10
by existing method
Hide Delegate 23
Preserve Whole Object 3
Introduce Parameter Object 7
Reverse conditional 3
Replace temp with chain 1
Make method static 11

org.eclipse.core....EclipseLogWriter
private static int convertSeverity
(int entryLevel) {

switch |(entryLevel){
case LogService.LOG_ERROR : switch|(logEntry.getSeverity()){
...... case FrameworkLogEntry. ERROR :

..... B

org.eclipse.core...EclipseLogFactory
static int convertLevel
(FrameworkLogEntry logEntry) {

convertSeverity(entry.getLevel()) ..
Figure 10: Preserve Whole Object

the two methods differ in the parameters. convertLevel
receives an object as parameter and calls a member function
of that object to access the data needed inside convertLevel.
convertSeverity on the other hand, receives an int value
obtained by a call to a member method of the object entry
of type LogEntry before calling convertSeverity. Sending
the whole object into a method makes it more robust to
certain functionality changes and avoids problems when the
method needs new data values from the object later. Thus, to
make convertSeverity more robust against changes, we may
refactor convertSeverity to use an object of type LogEntry
as parameter without affecting its performance, through the
operation Preserve Whole Object. For such cases where the
refactoring types varied, we applied our best judgment and
chose from the types selected by the reporters.

An interesting class of reports from the results is repre-
sented by code fragments where the Make Method Static
refactoring available in Intelli] IDEA [20] can be applied. 40
such reports were classified as not refactoring but clone
by an inspector with the comment that “one side of the code
is not directly refactorable into the other yet they are similar
(possible diverged from one source) and can be made more
reasonable with refactoring techniques.” These reports are
however not counted positively toward the accuracy of our ap-
proach. Counting these reports as refactoring opportunities
would have increased the accuracy to 94%.

4.4 Discussion & Threats to Validity

Our approach depends on the setting of some parameters.
Some of them are related to code similarity metrics and
common to most clone detection tools. For example, the
minimal number of tokens or nodes that a code fragment
needs to contain, and the difference (or similarity) allowed
between two code fragments for them to be detected. REDEX

is only evaluated with code sizes larger than 20 (cf. Filter
Size in Definition 3.4) and similarity 1.0.

REDEX is only evaluated with Split Query (cf. Definition
3.1) that uses all generated base-level vectors for Eclipse
as the query set and all inlined vectors as the target set.
Our approach doesn’t need users to choose queries though
it is possible to provide tailored query and target sets to
find additional cross-function refactoring opportunities. The
filters we used are relatively simplistic; more comprehensive
filtering constraints may be developed based on common
refactoring operations (e.g., Fowler’s and other collections
[9,20]) to look for refactoring opportunities more accurately.

A number of other parameters control what can be inlined
in our algorithms. For example, the depth of inlining in
Algorithm 2 and whether to inline a function more than once
(c.f. Section 3.2.3) affect the number of functions inlined
together. Also, since vectors can be generated for arbitrary
code fragments, not just whole methods, inlining can be
carried out for vectors corresponding to arbitrary code, which
may be expected to produce more refactoring opportunities.
We currently use an all mode to inline all vectors for all
methods invoked by a code fragment; we will expect to detect
more refactoring opportunities if we allow partial inlining.

Our approach doesn’t consider flow sensitivity since most
refactorings we can detect don’t affect flow sensitivity, but
may be more accurate for some cases if we make the vectors
“flow sensitive”. We leave it as future work to explore the large
configuration and parameter space to balance the number
detected refactoring opportunities with their accuracies.

In our empirical evaluation, we measured the accuracy
of the results via manual investigation by students. This
introduces experimental bias. The students’ Java program-
ming skills and knowledge about refactoring may also affect
how they label the reports. We also limit our evaluation to
Java and thus our results may not be applicable to other
programming languages. In the near future, we plan to port
to other languages, extend our evaluation to more programs,
and conduct both automated evaluation against historical
refactoring operations and more systematic user studies to
alleviate the above threats to the validity of our approach.

5. RELATED WORK

This paper searches for refactoring opportunities, a goal
related to many studies in refactoring and code clone detec-
tion, which are also broadly related to software maintenance
and evolution. The discussion here is by no means complete.

Many studies on refactoring focus on the specification and
implementation of refactoring operations. A classical work by
Opdyke [33], describes a set of refactoring operations for C++
in terms of the preconditions needed to preserve behaviour.
Griswold specifies refactoring from the perspective of their
effects on program dependence graphs [16]. Lémmel [28]
and Garrido [13] use rewriting rules to represent refactoring.
Recent studies also aim to allow programmers to script their
own refactoring operations. To this end, Verbaere et al. [46]
propose a domain specific language for expressing dataflow
properties on a graph representation of the program. Scéfer
et al. [38] improve on this and provides high-level specifica-
tions for many refactoring operations implemented in Eclipse.
Our work complements those studies in that it searches for
new refactoring opportunities. As future work, we plan to
investigate the development of a query language and of ab-
stractions that would allow us to more comprehensively and

precisely specify the refactoring opportunities to search for.

There are also many studies aiming for automatic detec-
tion of refactoring (besides the studies on clone detection).
Many of these studies rely on changes recorded in version
control systems; their focus is to reconstruct refactoring
operations that have happened. Demeyer et al. [4] define
heuristic metrics to search for refactoring between successive
versions. Hayashi et al. [17] model refactoring detection as
a graph search representing structural differences between
two versions of a program. Weiigerber and Diehl [47] define
various signatures based on code clone detection results to
look for refactoring. Prete and Kim [25,35] use template
logic queries to represent refactoring operations and a logic
programming engine to reconstruct the refactoring between
versions of a program; their tool REF-FINDER can detect 63
kinds of refactoring in Fowler’s catalog. Taneja and Dig et
al. [5,43] present tools (RefactoringCrawler and RefacLib)
to detect refactoring between different versions of libraries.
Soetens et al. [41] detect refactoring operations as actual
changes are happening in an integrated development environ-
ment, and thus achieve higher accuracy than previous work.
Origin analysis has also been used to detect refactoring [15]
by capturing certain kinds of cross-function changes and how
call relations change between two versions of a program. Our
vector-based inlining and query technique is not limited for
changes between versions; it can search whole code bases and
detect refactoring opportunities within the same version.

The approach of Meng et al. [32] can also be applied to
find refactoring opportunities. Their idea is to create context-
aware edit scripts from two or more examples and use the
scripts to identify edit locations and transform the code.
However, edit-scripts are limited within a single method, as
from their experience combining inter-procedural analysis
and the expressiveness of general-purpose edits is a very hard
problem. They can thus not detect changes that require
moving code from one method to another or coordinating
changes to multiple methods in the way our approach does.

Cider [40] is another work that can detect refactoring
without code change histories. Their algorithm relies on
graph matching and requires initial seeds that are similar
code fragments first, and is limited within individual methods
too. Our technique does not need seeds and relies on vector
matching, making it more scalable to large code bases where
code divergences across functions occur more often.

Code clone detection has also been touted as an important
way to detect refactoring opportunities (Extract or Pull-Up
Method in particular). Fontana et al. [8] manually refactor
code clones detected by three different clone detection tools
and find that certain code quality metrics are improved after
the refactoring. Higo et al. [18] define several metrics for code
clones and demonstrate a tool that can suggest refactoring
operations for code clones. Tairas [42] visualize clones so that
it may become easy to select candidates for refactoring. Van
Rysselberghe and Demeyer [45] investigate three different
kinds of clone detection techniques (simple line matching,
parameterized matching, and metric fingerprints) and find
that clones detected by different techniques may be suitable
for different kinds of refactoring.

Generally speaking, clone detection techniques can be
string-based [1], token-based [3,29,31,36], tree-based [2,21],
graph-based [12, 26,27, 30], functionality-based [22,24, 34],
and some detect clones in bytecode or binary code [23,37].
Although they can in theory detect cross-function clones,

especially the ones using program slicing [12,27], their scala-
bility is still limited to intra-procedural for large code bases.
Our approach builds on, and extends a previous study on
clone detection with the capability to check cross-function
similar code. This paper focuses on detecting cross-function
refactoring opportunities, while it may be possible to adapt
our technique to help improve clone detection.

Some studies and tools can also automatically perform
identified refactoring. For example, modern development
environments, such as Eclipse and NetBeans, have refac-
toring capabilities. CONCURRENCER [6] can identify and
convert sequential code that may be benefited from the
java.util.concurrent supports. LambdaFicator [10], au-
tomatically refactors certain anonymous inner Java classes
and for loops to use lambda expressions and functional op-
erations available in Java 8. Our tool currently focuses on
scalable detection only. We plan in future work to make our
tool perform identified refactoring automatically.

6. CONCLUSION AND FUTURE WORK

This paper presents a novel, automated and scalable tech-
nique for identifying cross-function refactoring opportuni-
ties that span more than one function (e.g., Extract/Inline
Method). The key of our technique is the design of efficient
vector inlining operations that emulate the effect of method
inlining among code fragments, so that the problem of iden-
tifying cross-function refactoring can be reduced to finding
similar vectors before and after vector inlining.

We have implemented our technique in a prototype tool
named REDEX which encodes Java programs to particular
vectors. We have evaluated our technique on a large code
base (4.5 MLOC) and the results show that ReDex can find
277 cross-function refactoring opportunities in 2 minutes, and
223 cases were labelled as true opportunities by users, and
cover many categories of cross-function refactoring operations
in classical refactoring books, such as Decompose Conditional
Expression, Hide Delegate, Preserve Whole Object, etc.

In the future, we plan to improve ReDex so that it can au-
tomatically categorize the detected refactoring opportunities,
which may require us to incorporate more diverse filtering cri-
teria into our approach. The filtering criteria might consider
the particular structures and features of inlined methods, the
call relations between code fragments, or some other charac-
teristics of the composition of code fragments. We have also
experimented with a number of abstractions of the vectors,
such as considering literals and simple names as the same
program elements, to allow us to encode more refactoring
operations in vectors. With appropriate abstractions and
filtering criteria we aim to detect a broad range of refactor-
ings. We also plan to develop a query language that allows
us to specify the refactoring opportunities to search for. The
query language will also allow us to specify the composition
of multiple refactoring types. We also plan to incorporate
code change histories from version control systems to further
improve the accuracy of ReDex, and evaluate whether refac-
toring detection results can help to track code changes better
and facilitate code evolution and program understanding.

7. ACKNOWLEDGMENTS

We would like to express our gratitude to the following
report inspectors, who have spent much time in evaluating
all our experiment results: Chenhong Xie, Liu Yang, Lucia,
Pavneet Kochhar Singh, and Ta Quang Trung. This research
is supported by NUS Research Grant R-252-000-484-112.

8.
1]

2]

3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

B. S. Baker. Finding clones with Dup: Analysis of an
experiment. [EEE TSE, 33(9):608-621, 2007.

I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS(©):

Program transformations for practical scalable software
evolution. In ICSE, pages 625—634, 2004.

Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie.

XTAO: tuning code clones at hands of engineers in
practice. In ACSAC, pages 369-378, 2012.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding

refactorings via change metrics. In OOPSLA, pages
166-177, 2000.

D. Dig, C. Comertoglu, D. Marinov, and R. E. Johnson.

Automated detection of refactorings in evolving
components. In FCOOP, pages 404-428, 2006.

D. Dig, J. Marrero, and M. D. Ernst. Refactoring

sequential java code for concurrency via concurrent

libraries. In ICSE, pages 397407, 2009.
Eclipse Foundation. Eclipse Java development tools

(JDT). http://help.eclipse.org/indigo/topic/org.

eclipse.jdt.doc.isv/reference/api/org/eclipse/
jdt/core/dom/ASTNode.html.
F. A. Fontana, M. Zanoni, A. Ranchetti, and

D. Ranchetti. Software clone detection and refactoring.

ISRN Software Engineering, online open access, 2013.
M. Fowler, K. Beck, J. Brant, W. Opdyke, and

D. Roberts. Refactoring: Improving the Design of
Ezisting Code. Addison-Wesley Professional, 1999.

L. Franklin, A. Gyori, J. Lahoda, and D. Dig.

LAMBDAFICATOR: from imperative to functional
programming through automated refactoring. In ICSE,
pages 1287-1290, 2013.

R. M. Fuhrer, M. Keller, and A. Kiezun. Refactoring in
the eclipse jdt: Past, present, and future. In Workshop
on Refactoring Tools (WRT), pages 30-31, 2007.

M. Gabel, L. Jiang, and Z. Su. Scalable detection of
semantic clones. In ICSE, pages 321-330, 2008.

A. Garrido and J. Meseguer. Formal specification and

verification of ?/Iz}va refactorings. In 6th IEEE
International Workshop on Source Code Analysis and

Manipulation (SCAM), pages 165-174, 2006.

A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. In VLDB, pages
518-529, 1999.

M. W. Godfrey and L. Zou. Using origin analysis to
detect merging and splitting of source code entities.
IEEE TSE, 31(2):166-181, 2005.

W. G. Griswold. Program restructuring as an aid to

software maintenance, phd thesis. University of
Washington, 1991.

S. Hayashi, Y. Tsuda, and M. Saeki. Detecting
occurrences of refactoring with heuristic search. In
APSEC, pages 453-460, 2008.

Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
ARIES: refactoring support tool for code clone. ACM

SIGSOFT Software Engineering Notes, 30(4):1-4, 2005.

IBM T.J. Watson. T.J. Watson Libraries for Analysis
(WALA). http://wala.sourceforge.net/.

JetBrains. Refactoring Source Code in IntelliJ IDEA 13.

http://www. jetbrains.com/idea/webhelp/
refactoring-source-code.html.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: Scalable and accurate tree-based detection
of code clones. In ICSE, pages 96-105, 2007.

L. Jiang and Z. Su. Automatic mining of functionally
eguivalent code fragments via random testing. In
ISSTA, pages 81-92, 2009.

I. Keivanloo, C. K. Roy, and J. Rilling. SeByte: A

semantic clone detection tool for intermediate
languages. In ICPC, pages 247-249, 2012.

[24]

(25]

[26]
27]

(28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

(37]
(38]
(39]
(40]
(41]

42]

(43]

(44]

(45]

[46]

(47]

H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: memory
comparison-based clone detector. In ICSE, pages
301-310, 2011.

M. Kim, M. Gee, A. Loh, and N. Rachatasumrit.
Ref-finder: A refactoring reconstruction tool based on
logic query templates. In FSE, pages 371-372, 2010.
R. Komondoor and S. Horwitz. Semantics-preserving
procedure extraction. In POPL, pages 155-169, 2000.
R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. In SAS, pages 40-56, 2001.
R. Lammel. Towards generic refactoring. In ACM
SIGPLAN workshop on Rule-based programming, pages
15-28, 2002.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In OSDI, pages 289-302, 2004.
C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG:

Detection of software plagiarism by program
ggggndence graph analysis. In KDD, pages 872-881,

S. Livieri, Y. Higo, M. Matsushita, and K. Inoue.
Very-large scale code clone analysis and visualization of
open source programs using distributed CCFinder. In
ICSE, pages 106—115, 2007.

N. Meng, M. Kim, and K. S. McKinley. Lase: locating
and applying systematic edits by learning from
examples. In ICSE, pages 502-511, 2013.

W. F. Opdyke. Refactoring object-oriented frameworks,
Il)géizthesis. University of Illinois at Urbana-Champaign,
A. P.odgurski and L. Pierce. Retrieving reusable
software by sampling behavior. ACM TOSEM,
2(3):286-303, 1993.

K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex refactorings.
In IgSM, pages 1-10, 2010.

C. K. Roy and J. R. Cordy. NICAD: Accurate
detection of near-miss intentional clones usin% flexible
pretty-printing and code normalization. In ICPC, pages
172-181, 2008.

A. Szbjgrnsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su. Detecting code clones in binary executables. In
ISSTA, pages 117-128, 2009.

M. Schéfer and O. de Moor. Specifying and
12161{)(1)ementing refactorings. In OOPSLA, pages 286-301,
M. S‘chafer7 J. Dolby, M. Sridharan, E. Torlak, and

F. Tip. Correct refactoring of concurrent java code. In
ECOOP, pages 225-249, 2010.

M. Shomrat and Y. Feldman. Detecting refactored
clones. In ECOOP, volume 7920 of Lecture Notes in
Computer Science, pages 502-526, 2013.

Q. D. Soetens, J. Perez, and S. Demeyer. An initial
investigation into chan(/ge—based reconstruction of
floss-refactorings. In ICSM, pages 384-387, 2013.

R. Tairas. Clone detection and refactoring. In
OOPSLA, pages 780-781, 2006.

K. Taneja, D. Dig, and T. Xie. Automated detection of
AQAOIZ(’)I?refactorings in libraries. In ASE, pages 377-380,

F. Tip, R. M. Fuhrer, A. Kiezun, M. D. Ernst,

I. Balaban, and B. D. Sutter. Refactoring using type
constraints. TOPLAS, 33(3):9, 2011.

F. Van Rysselberghe and S. Demeyer. Evaluating clone
detection techniques from a refactoring perspective. In
19th ASE, pages 336-339, 2004.

M. Verbaere, R. Ettinger, and O. de Moor. Jungl: a
scripting language for refactoring. In ICSE, pages
172-181, 2006.

P. Weissgerber and S. Diehl. Identifying refactorings

glboong source-code changes. In ASE, pages 231-240,

