
Automatic Mining of Functionally Equivalent Code
Fragments via Random Testing∗

Lingxiao Jiang
University of California, Davis
jiangl@cs.ucdavis.edu

Zhendong Su
University of California, Davis

su@cs.ucdavis.edu

ABSTRACT
Similar code may exist in large software projects due to some com-
mon software engineering practices, such as copying and pasting
code and n-version programming. Although previous work has
studied syntactic equivalence and small-scale, coarse-grained pro-
gram-level and function-level semantic equivalence, it is not known
whether significant fine-grained, code-level semantic duplications
exist. Detecting such semantic equivalence is also desirable be-
cause it can enable many applications such as code understanding,
maintenance, and optimization.

In this paper, we introduce the first algorithm to automatically
mine functionally equivalent code fragments of arbitrary size—
down to an executable statement. Our notion of functional equiva-
lence is based on input and output behavior. Inspired by Schwartz’s
randomized polynomial identity testing, we develop our core algo-
rithm using automated random testing: (1) candidate code frag-
ments are automatically extracted from the input program; and (2)
random inputs are generated to partition the code fragments based
on their output values on the generated inputs. We implemented
the algorithm and conducted a large-scale empirical evaluation of
it on the Linux kernel 2.6.24. Our results show that there exist
many functionally equivalent code fragments that are syntactically
different (i.e., they are unlikely due to copying and pasting code).
The algorithm also scales to million-line programs; it was able to
analyze the Linux kernel with several days of parallel processing.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging — code inspections and walk-throughs,
diagnostics; D.2.7 Distribution, Maintenance, and Enhancement —
Restructuring, reverse engineering, and reengineering; D.2.m Mis-
cellaneous — Reusable software

General Terms: Algorithms, Experimentation

Keywords: code clones, functional equivalence, random testing

1. INTRODUCTION
It is a common intuition that similar code, either syntactically or

semantically, is ubiquitous due to some common software devel-

∗This research was supported in part by NSF CAREER Grant No.
0546844, NSF CyberTrust Grant No. 0627749, NSF CCF Grant
No. 0702622, and US Air Force under grant FA9550-07-1-0532.
The information presented here does not necessarily reflect the po-
sition or the policy of the Government and no official endorsement
should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$5.00.

opment practices, such as copying and pasting code and n-version
programming. On one hand, the existence of similar code may indi-
cate potentially high software development and maintenance cost,
and a need to reduce the amount of similar code. On the other
hand, it is difficult to avoid having similar code because of vari-
ous resource constraints in development. The abundance of similar
code in existing software provides opportunities for one to study its
origins, characteristics, and evolution with the potential to improve
many aspects of the software development process.

To characterize similar code, the first step is to find it. There have
been many techniques for detecting similar code, especially syntac-
tically similar code [1, 5, 18, 20]. Large-scale studies have shown
that a project may contain more than 20% syntactically similar
code and demonstrated applications of detecting similar code such
as refactoring, plagiarism detection, and defect detection. However,
few studies exist that target semantically similar code that may not
be syntactically similar. In fact, no study has empirically validated
the ubiquitous existence of semantically similar code although it is
a common intuition.

In this paper, we propose the first scalable approach for iden-
tifying functionally equivalent code fragments, where functional
equivalence is a particular case of semantic equivalence that con-
cerns the input/output behavior of a piece of code. With such an ap-
proach, we are able to discover many functionally equivalent code
fragments, covering more than 624K lines of code in the Linux
kernel 2.6.24, justifying the common intuition. About 58% of the
functionally equivalent code fragments are syntactically different,
which shows the need for functionality-aware techniques in addi-
tion to syntactic approaches. We have also validated our results
by sampling reported equivalent code fragments and running addi-
tional random tests on them. About 68% of the sampled code frag-
ments remained in the same functional equivalence clusters, and
more than 96% of the sampled code fragments remained in some
clusters, showing probabilistically high accuracy.

Our approach is different from previous studies on finding se-
mantically equivalent code or checking the semantic equivalence
between two pieces of code. First, the definition of functional
equivalence used in this paper considers only the equivalence of
the final output of different code fragments given the same input,
and does not consider the intermediate program states. One im-
portant practical benefit of this definition is that it focuses on ex-
ternally observable behavior of a piece of code and is insensitive
to code transformations or different implementations for the same
behavior. Thus, it may admit more functionally equivalent code.

Second, inspired by Schwartz’s randomized polynomial identity
testing [33], we apply random testing on arbitrary pieces of code
and detect those with the same I/O behavior. The Schwartz-Zippel
lemma [33, 39] states that a few random tests are sufficient to de-
cide, with high probability, whether two polynomials are equiva-
lent. Although the lemma only holds for polynomials, we leverage
it here for arbitrary code: if two pieces of code always produce
the same outputs on a selected number of random inputs, we have
high confidence that they are functionally equivalent; even if they

Code
Transformer

Code
Chopper

Code
Filter

Code
Clustering

Input
Generator

Source
Code

Functionally
Equivalent

Code
Clusters

Figure 1: The work flow for mining functionally equivalent code.

may actually differ sometime, such as error-handling and boundary
cases, they may still be considered functionally similar and provide
opportunities for further studies.

Third, to the best of our knowledge, this paper presents the first
large-scale study on the existence of functionally equivalent code
in million-line software. Many unique optimizations in the imple-
mentation made our approach scalable.

In the rest of the paper, we first give an overview of our approach
and discuss its algorithmic details (Section 2). Then, Section 3
presents the implementation of our approach, and Section 4 details
our empirical evaluation of the approach on both a small sorting
benchmark and the Linux kernel. Section 5 discusses some limi-
tations of and future work for our approach. Finally, we present
additional related work (Section 6) and conclude (Section 7).

2. ALGORITHM DESCRIPTION
This section presents details of our approach for detecting func-

tional equivalence. We start with an overview of the approach.

2.1 High-level Overview
The main components of our approach are illustrated in Figure 1.

Code chopper. Since we consider functionally equivalent code
of various sizes, instead of whole-program or whole-function, we
use a code chopper to extract code fragments from a program as
candidates for functionally equivalent ones. It takes a function defi-
nition and parses it into a sequence of statements; then it extracts
all possible consecutive subsequences from the statement sequence,
and each of the subsequences is considered a candidate for func-
tional equivalence. We here illustrate what code fragments may
be extracted for the following sample code excerpt from a selec-
tion sort algorithm: where the code to the right is the normalized
sequence of statements of the code to the left.

1 min = i;
2

3 for(j=i+1; j<LENGTH; j++)
4 {
5

6 if(data[j] < data[min])
7 min = j;
8 }
9 if (min > i) {

10 int tmp = data[min];
11 data[min] = data[i];
12 data[i] = tmp; }

1 min = i;
2 j = i+1;
3 while (1) {
4 if(j >= LENGTH)
5 break;
6 if(data[j] < data[min])
7 min = j;
8 j++; }
9 if(min > i) {

10 tmp = data[min];
11 data[min] = data[i];
12 data[i] = tmp; }

When we require the minimum number of primary statements1,
contained in a code fragment to be 10, the code chopper will gen-
erate three code fragments if the boundaries of statements are re-
spected: the first contains lines 1–12, the second contains lines 2–
12, and the third contains lines 3–12. If the boundaries are not
respected, the code chopper may generate six code fragments.

Code transformer. Because we define equivalence in terms of
I/O behavior, we need to identify the inputs and outputs for each
code fragment. This task is straightforward if we only consider
coarser-grained code: for a whole program, we could directly use
1Informally, we consider every expression statement, if, switch, loop, return,
break, goto, and continue statements primary. The setting for different applica-
tions may be changed.

the inputs and outputs of the program; for a whole function, we
could use the arguments of the functions as its inputs and its side
effects and return values as its outputs. It is not obvious for a
code fragment of arbitrary sizes. The code transformer exploits
the heuristic that inputs should be the variables that are used but
not defined in the code, and outputs should be the variables that
are defined but not used by the code. Thus, specialized data-flow
analyses can be utilized to identify such input and output variables.
For example, for the code fragment containing lines 1–12 from the
above example, the variables i and data are used before their first
definitions and thus they are identified as the input variables for
this code fragment; the variable data is the only variable along the
control flow paths of the code fragment that is not used after its last
definition and thus it is identified as the only output variable.

Since our approach requires executions of all the code fragments,
each of the code fragment should be made compilable and exe-
cutable. For C programs, this can involve many details such as
defining all types used in the code, defining functions that are called
but not defined in the code, and declaring all variables used in the
code. The code transformer also takes care of these details.

Input generator. Since the executions of each code fragment re-
quire random inputs, the input generator component takes a code
fragment and its input variables and generates random values for
the input variables. Currently, it does not take the validity of ran-
domly generated inputs w.r.t. a code fragment into account since we
assume functionally equivalent code fragments should exhibit the
same behavior on even invalid inputs. Section 2.5 has more details
about the way our input generator works.

Code clustering. The code clustering component takes a set of
code fragments that have been compiled and random inputs gener-
ated by the input generator, executes each code fragment with the
same random inputs, and separates two code fragments into two
different code clusters whenever the outputs of the two code frag-
ments differ on a same input. In such a way, all the code fragments
will be dispatched into a set of code clusters, each of which may
be considered a functionally equivalent class, assuming enough ex-
ecutions are performed for the code fragments. Section 2.6 has
more details on how the outputs are compared against each other
and how the clustering process works.

Code filter. Since the code chopper may extract many code frag-
ments that overlap with each other in terms of the locations of the
original source code they correspond to, it may not be interesting to
consider them functionally equivalent if two code fragments over-
lap too much. Thus, a code filter can be placed both before and
after code clustering to reduce both unnecessary executions of code
fragments and false positives.

2.2 Equivalence Definition
We first introduce our definition for the aforementioned func-

tional equivalence. We denote a piece of code as C and its set of
input variables as I. We also use I to represent a sequence of con-
crete values (also called an input) that can be used to instantiate
I and execute C. Similarly, we use O to denote the set of out-
put variables of C, and use O to represent a set of concrete values
(also called an output) that is a concrete instantiation of O. Then,
C(I) = O means that the execution of C with the input I gener-
ates the output O. We also use I and O to represent the sets of all
possible inputs and outputs respectively.
Definition 2.1 (Functional Equivalence) Two code fragments C1

and C2 are functionally equivalent if there exist two permutations
p1, p2 : I → I, such that ∀I ∈ I, C1(p1(I)) = C2(p2(I)), where
“=” is the standard set equivalence operator.

The definition has several interesting aspects:

• Considering the fact that the ordering of input variables for
two functionally equivalent code fragments should not mat-
ter, the definition allows different permutations of an input
for C1 and C2. For example, one can see that x1 in the fol-
lowing code functions the same as y2 and y1 functions the
same as x2, but they appear in different orderings in the head-
ers of foo and bar. Then, for any given input I = 〈i1, i2〉,
we need to instantiate <x1,y1> as 〈i1, i2〉, but <x2,y2> as
〈i2, i1〉, in order for the two pieces of code to generate the
same (in the sense of set equivalence) outputs. Adding the
permutation functions in the definition is to allow such dif-
ferent orderings among functionally equivalent code.

foo(int x1, int y1) {
a1 = x1 + y1;
b1 = x1 - y1;

}

bar(int x2, int y2) {
a2 = y2 - x2;
b2 = y2 + x2;

}

On the other hand, considering that the ordering of input vari-
ables in any individual code fragment is fixed, the definition
requires the same permutation functions for all inputs, i.e.,
p1 and p2 should be fixed for all inputs for the same pair of
functionally equivalent code fragments.

• An output of C1 and that of C2 are compared as sets, instead
of sequences. This flexibility accommodates code fragments
that perform the same computation but output their results
in different orders. The need is also illustrated by the above
code example: given an input I = 〈i1, i2〉, foo outputs 〈i1+
i2, i1 − i2〉 according to the sequential ordering of a1 and b1
and bar outputs 〈i1 − i2, i1 + i2〉, thus it is necessary to
compare the outputs as unordered sets so that foo and bar
can be detected as functionally equivalent.

• Considering that different code fragments can perform the
same computation with different numbers or types of input
variables, the definition defines the behavior of a code frag-
ment C w.r.t. an input I (a sequence of concrete primitive
values), instead of the input variables I of C. For example,
the following code can be considered functionally equivalent
to the above foo and bar:
fun(struct {int x3, y3;} X) {

a3 = X.x3 + X.y3;
b3 = X.x3 - X.y3;

}

Also, despite the differences in their input variables, we can
use any I = 〈i1, i2〉 to instantiate the only input variable X
in fun as X={i1,i2} (in the syntax of C language).

Thus, although the definition requires the inputs used for dif-
ferent code fragments to be the same, it does not require them
to have the same numbers or types of input variables. Simi-
larly, an output of a code fragment is viewed as a set of con-
crete primitive values, instead of possibly ordered or com-
plex values for output variables of different types.

• In addition, we assume all side effects of each code fragment
can be captured by its output variables and each fragment
interacts with its environment only through I and O.

Section 2.6 and 3 will describe our strategies for realizing the
definition for mining functionally equivalent code in practice.

2.3 Code Chopping
As mentioned in Section 2.1, code fragments are extracted from

each function to be used for later steps. Given a sequence of n pri-
mary statements, there may be n(n+1)

2
consecutive subsequences of

the statements. Since code fragments that across statement bound-
aries, such as the fragment containing Line 2–11 from the code
snippet in Section 2.1, are syntactically invalid and may not be in-
teresting units for functionality study, our code chopper thus avoids

Algorithm 1 Code Fragment Generation
1: function CODEGEN(F)
2: Input: F : a function in a syntax tree
3: Output: a set of code fragments C = {ci}
4: C ⇐ ∅
5: S ⇐ (pre-order traversal of all statements in F)
6: for all statement si ∈ S, where i is the index of si in S do
7: ci ⇐ 〈〉 /* empty list */
8: for all statement sj ∈ S, where j ≥ i do
9: ci ⇐ append(ci, sj)

10: if sj , si not in the same statement scope then
11: continue
12: end if
13: if j − i + 1 ≥ minStmtNum then
14: C ⇐ C ∪ {ci}
15: vectorGen(ci) /* for use in Section 4.3.2 */
16: end if
17: end for
18: end for
19: end function

generating such subsequences. Also, we use a parameter minStmt-
Num to exclude code fragments that contain fewer than minStmt-
Num primary statements. An obvious benefit of these two options
is that it helps reduce the number of candidate code fragments and
relatively improves the scalability of our approach.

Algorithm 1 illustrates the mechanism of the code chopper. Given
a syntax tree of a C function, it utilizes a pre-order traversal (S) of
the primary statements in the function and a sliding window con-
trolled by a starting point (si) and an ending point (sj) on the state-
ment sequence to generate code fragments that respect statement
boundaries (Line 10) and minStmtNum (Line 13).

2.4 Code Transformation
The main tasks for the code transformer are to identify the input

and output variables of each code fragment extracted by the code
chopper and make it compilable and executable.

2.4.1 Input Variables
Since variables in C code are often required to be initialized (i.e.,

defined) before their uses, a variable in a code fragment should
get its value from the environment and thus be treated as an input
variable if it is not defined in the code fragment before its first use.
Hence, comes the following definition:
Definition 2.2 (Input Variables) A variable v used in a code frag-
ment c is an input variable for c if there is no definition for v before
some use of v in c, where “before” or “after” is measured along
the directions of any control flow path in c.

Liveness analysis [28] for a function F can tell us which vari-
ables should be live at the entry point of F , i.e., undefined before
their first uses in F and thus the input variables for F . Similarly,
we use a local version of liveness analysis for any code fragment
c extracted from F to decide which variables are live at the en-
try point(s) of c and should be the input variables for c. The local
liveness analysis is the same as standard backwards-may liveness
analysis except that it propagates liveness information only on a
subgraph of the control flow graph of F that corresponds to c.

Functions called in c are also live at the entry point(s) but handled
differently from variables (cf. Section 2.4.4). Undefined labels in
goto statements imply the target statements are not contained in the
code fragment c and we can terminate the executions of c whenever
they reach such gotos. Thus, we simply transform gotos with
undefined labels to “goto _dummy_label;”, and add, as the last
statement of c, an empty statement “_dummy_label: ;”.

2.4.2 Output Variables
Given an arbitrary code fragment c, it is non-trivial to decide

which variables hold the data intended by the programmer to be
externally observable (i.e., part of its output). We use the following
heuristics to make the decision:

• A definition d for a variable v in c should serve some purpose
(i.e., to be used somewhere in c or later): if v is used after
d, v may not be needed any more since its value has served
some purpose; if v is not used after d, it should be an output
variable if we want d to be used somewhere later.

• return statements in c may indicate that the programmer
wants the return value to be part of an output. Thus, we trans-
form all return statements in c so that a specially-named
variable is assigned the return value before each return and
considered as an output variable for c.

Definition 2.3 (Output Variables) A variable v in a code frag-
ment c is an output variable for c if it is a specially-named variable
for a return statement in c or there is no use of v after a definition
of v on some control flow path in c.

Reaching definition analysis [28] for a function F can tell us
which definitions may reach the exit point of F and thus be the out-
put for F . Similarly, we use a local version of reaching definition
analysis for any code fragment c extracted from F to decide which
variable definitions may reach the exit point(s) of c and should be
the output variables for c. The local reaching definition analysis
is the same as standard forwards-may reaching definition analysis
except that it propagates reaching information only on a subgraph
of the control flow graph of F that corresponds to c.

We can also strength Definition 2.3 by changing some control
flow path to all control flow path, then the reaching definition anal-
ysis will be a forwards-must analysis, and only those variable defi-
nitions that must reach the exit point(s) of c will be included in the
set of output variables. The alternative definition will obviously
change the output of a code fragment, and may affect the results of
mining functionally equivalent code. Section 4.3 will mention an
example for this effect in our benchmark program.

2.4.3 Type Definitions
To make a code fragment c compilable, the first thing is to define

every type referenced in c. One option is to traverse the code and
identify which types are used in c and search in the source files for
the definitions of the used types. Since a used type may refer to an-
other type not explicitly used in c, we need to compute a closure of
the referenced types. In this paper, we adopt the following simpler
option which may include extra unused types: GCC preprocessor is
invoked on the original source file f from which c is generated, then
the preprocessed file naturally contains all types defined in any file
included by f ; Thus, as long as as the code chopper includes all
the preprocessed type definitions with c, the problem is resolved,
assuming the original file is compilable.

2.4.4 Function Calls
Each code fragment c may call other functions, some of which

are library functions, some of which are functions defined some-
where else in the original source code. Strictly speaking, for two
code fragments to be functionally equivalent, we should take the
side-effects of the function calls into account and include all those
function definitions with c.

In this paper, we take an alternative look at function calls: we
view each callee as a random value generator and ignore its side-
effects besides assignments through its return values (i.e., the ran-
dom values). Thus, n function calls in c are viewed in this paper
as n extra input variables for c whose values will be generated ran-
domly. Such a strategy helps to limit the execution time of each

code fragment and improve the scalability of our approach. As fu-
ture work, it may be possible to replace function calls with a learned
mapping between inputs and outputs for the callees (i.e., a summary
of the behavior of the callees) to model them more accurately and
modularly but still keep our approach scalable.

2.5 Input Generation
For each execution of a code fragment c, we need to instantiate

its input variables with an input that may also be used for other
code fragments. To make it easier to instantiate different types of
input variables, we only separate input variables into two categories
(non-pointers and pointers, and arrays are treated as pointers) and
our input generator aims to generate generic values that may be
used for all types. We thus encode each input as a sequence of
concrete values, each of which may be assigned to a variable of
primitive types, and a sequence of p0 and p1, each of which may
indicate a null or non-null pointer.

For example, an input I = {48,−1, p1, p0} is able to instantiate
variables of different types in the following way: if a variable v is
of type float, v will be instantiated with 48.0; if v is of type char,
v will be the character ’0’ (ASCII code 48); if v is of type

struct node {int value; struct node * next;}

v will be a struct containing value=48 and a non-null next point-
ing to another struct, allocated at run-time, containing value=-1
and a null next. If an input contains fewer values than required by
a variable or a set of variables, zeros are used. For example, if v is
of the following type:

struct three {int a; char b; float c;}

v will be a struct containing a=48; b=EOF(-1); c=0.0, and the
p1 and p0 are not used in this case.

With such an encoding scheme, generating random inputs and
instantiating input variables can be separated into two phases. It
helps the input generator to generate random inputs independently
from any code fragment.

On the other hand, considering certain code specific properties
may help the input generator to generate inputs more effectively
and help reduce invalid code executions in the following code clus-
tering step. In particular, we consider (1) the probability for gen-
erating p0 versus p1 and (2) the number of generated values in an
input that may suit the need of a code fragment the best.

For (1), we consider limiting the probability of generating non-
null pointers to avoid generating deeply linked data structure, such
as trees, and help limit code execution time. We use exponential
decay on the probability of generating p1: the more pointer values
are added in an input, the more unlikely for p1 to occur, i.e., when
generating the first pointer value for an input, the probability of
generating p1 is 1

2
; when generating the second pointer value, the

probability of generating p1 will be 1
22 ; and so on.

For (2), we consider generate enough concrete values in an input
for input variable instantiation, while generating as few values as
possible in order to limit the number of possible permutations of
an input that may be required to check functional equivalence as
defined in Definition 2.1. We thus statically estimate the possible
number of concrete primitive values needed by a code fragment by
assuming the “first-level” pointers are non-null and counting the
needed values (the counters are initialized to 0):

• If a variable is of a primitive type, the counter will be in-
creased by one.

• If a variable is a struct, the counter will be increased by
the number of concrete values needed by all the non-pointer
fields in the struct. This rule may be recursively applied.

• If a variable is a pointer, the counter will be increased by
the number of concrete values needed by a variable of the
pointed type, which is then recursively counted.

Algorithm 2 Code Execution and Clustering
1: function CODEEXE(I, C)
2: Input: I: a finite set of inputs
3: Input: C: a finite set of code fragments
4: Output: a set of code clusters C = {Ci}
5: C ⇐ ∅
6: for all I ∈ I do
7: for all c ∈ C do
8: O ⇐ ∅
9: for all permutation p of I do

10: O ⇐ O
S

c(p(I)) /* code execution */
11: end for
12: for all Ci ∈ C do /* code clustering */
13: /* Oi is the representative outputs for Ci */
14: if O

T

Oi �= ∅ then
15: Ci ⇐ Ci ∪ c
16: break
17: end if
18: end for
19: if ∀Ci ∈ C, c /∈ Ci then
20: C|C|+1 ⇐ {c}
21: O|C|+1 ⇐ O /*record representative outputs*/
22: C ⇐ C

S

C|C|+1

23: end if
24: end for
25: end for
26: end function

The number of needed pointer values is estimated similarly:

• If a variable is of a primitive type, the counter will be kept
the same.

• If a variable is a struct, the counter will be increased by the
sum of the number of pointer fields and the number of pointer
values needed by other non-pointer fields in the struct.

• If a variable is a pointer, the counter will be increased by
one plus the number of pointer values needed by a variable
of the pointed type, which is then recursively counted using
these three rules. Note that pointers pointed to by a pointer
are recursively counted, but pointer fields in a struct are not.
This is what we mean by “first-level” pointers.

Then, the number of values needed in an input for a set of code
fragments is determined by the minimum among the estimations
for all code fragments. Using such a minimum helps avoid redun-
dant values in inputs and reduce the input permutations and code
executions that may be required to check functional equivalence
among all the code fragments. Section 3 will also introduce a code
fragment grouping strategy that may help to accommodate code
fragments that require differently sized inputs.

2.6 Code Execution and Clustering
The goal of the code clustering component is to execute every

code fragment generated and transformed in previous steps and
separate them into functionally equivalent code clusters. Algo-
rithm 2 illustrates the code execution and clustering process.

Algorithm 2 uses what we call representative-based partitioning
strategy to make the code execution and clustering process incre-
mental and scalable. Notice that any difference between the out-
puts of two code fragments should cause the two fragments to be
separated into two clusters, and given the output set O of a code
fragment c on a given input I and an existing cluster Ci, we only
need to compare O with the output set Oi of the representative
code fragment in Ci to decide whether c can be put into Ci, avoid-
ing quadratic number of comparisons (Line 13–17). To make the
algorithm incremental, we design it in such a way that it does not

execute one code fragment on all generated inputs; instead, it tries
to execute all code fragment (Line 7) on one input first and partition
them into smaller sets (also called code clusters). Thus, the whole
set can be gradually partitioned into functionally equivalent clus-
ters with more and more inputs (Line 6). Also, the outputs of the
representative code fragment (the first code fragment put into the
cluster) are kept (Line 19–23) for comparison with coming code
fragments during the incremental partitioning.

A difficulty with the incremental scheme is to find one permu-
tation of all inputs that satisfies the requirements of Definition 2.1.
We observe that it is unlikely for two functionally different code
fragments to produce a same output even when different permuta-
tions for different inputs are allowed. We thus relax Definition 2.1
in Algorithm 2 to reflect the observation and look for a permutation
for each input independently (Line 9–18). Section 3 also presents
a strategy to reduce the complexity introduced by n! permutations.

During output comparison, we use concrete values of output
variables except for pointers for which we use p0 or p1, depending
on whether the pointer is null or non-null, and the values pointed to
by the pointer (recursions may occur if the pointer is multi-level).

Note that we do not consider input validity: randomly generated
inputs may not satisfy implicit invariants required by each code
fragment, and thus an execution of a fragment may not generate
any output due to problems such as segmentation faults and infinite
loops. We treat the outputs of all failed executions as a same special
value, and compare the value in the same way as other outputs.

It is also worth mentioning that the executions of different code
fragments for the same input can be easily parallelized, and so can
the execution and clustering for each code cluster. Thus, the algo-
rithm can be implemented as a parallel program and its degree of
parallelism increases as it makes progress on code clustering.

3. IMPLEMENTATION
We have implemented our approach as a prototype, called EQMINER.

This section discusses our implementation strategies for EQMINER.
The code chopper, the code transformer, and the input generator

are implemented based on CIL [27]. The code clustering compo-
nent is implemented as Python and Bash scripts.

Data storage. All the code fragments and their inputs and out-
puts are stored in plain text for convenient inspection. A significant
disadvantage is that it may take a large amount of disk space when
the number of code fragments is large even if each text file is very
small. Also, since a file system often limits the number of subdirec-
tories and files in a directory, we added a layer of file management
in the code chopper and the code clustering to split or merge direc-
tories as needed. A future improvement will be to store compressed
files in database system to avoid slow file operations.

Code compilation. Although it is easy and convenient to make
each code fragment independent from each other, it can waste a lot
of disk space and take much longer time to compile if many code
fragments include common contents, such as the required type def-
initions. When millions of code fragments are possible, it is worth-
while to extract the common contents from code fragments and
compile the common contents just once as shared libraries, and just
link the share libraries with much smaller code fragments. Such an
optimization was justified in our evaluation on the Linux kernel.

Input generation. The main complexity in Algorithm 2 is to use
all possible n! permutations of an input containing n values to ex-
ecute each code fragment c. We argue that the exponential number
of input permutations is largely unnecessary, based on these as-
sumptions: (1) Random orderings of input variables mostly occur
when computations on the variables are (conceptually) associative,
such as addition and sorting. For such associative computations,

different input permutations should lead to the same output. (2)
Most computations in the code fragments are not associative, and
when they are not, programmers are more likely to follow certain
customs (such as the ordering of involved operands or the flow of
computation) to order the input variables, instead of randomly.

In EQMINER, we impose an empirical limit 5! on the number
of permutations allowed for each input (based on the numbers of
input variables from the Linux kernel, cf. Section 4.3) Also, we no
longer perform regular permutations on an input since it is better to
randomly select the limited permutations from all possible permu-
tations. For this purpose, we use random shuffling of an input to
implement the Line 9 in Algorithm 2 as:

for all (upto 5!) a random shuffle p of I do
Also, to allow converting a randomly generated concrete value

into different primitive types in C, we limited the range of the value
to [−127, 128] so that it can be casted into many types, e.g., char,
short int, unsigned int, float, etc.

Parallelization. We also observe that certain properties of each
code fragment, such as the numbers of input and output variables,
may provide opportunities for higher degrees of parallelism. The
intuition is that useful functionally equivalent code is likely to ex-
ecute on similar types of inputs and generate similar types of out-
puts. For example, different sorting algorithms often take the same
array type as their input and output the same sorted array type.
Code fragments with significantly different amount input and out-
put variables are much less likely to be functionally equivalent.

Given a large set of code fragments, we first separate them into
different groups according to the number of input and output vari-
ables they have—the fragments in a same group have the same
numbers of input and output variables, then invoke Algorithm 2
on every group in parallel. Alternatively, to prevent missing cer-
tain functionally equivalent code, such as those mentioned in Sec-
tion 2.2, we can group the code fragments based on their estimated
numbers of needed concrete values. Besides increased degree of
parallelism, another benefit of this grouping strategy is that we can
generate inputs containing different numbers of concrete values for
different groups so that groups with more input variables can have
more values for increased testing accuracy.

4. EMPIRICAL EVALUATION
This section discusses our empirical experience with EQMINER

on a benchmark program and the Linux kernel 2.6.24. The eval-
uations were carried out on a Fedora Core 5 system with a Xeon
3GHz CPU and 16GiB of memory, and a ROCKS computer clus-
ter system with the SGE roll and varying numbers of hosts with an
Opteron 2.6GHz CPU and 4GiB of memory.

4.1 Subject Programs
Sorting benchmark. We first used a benchmark program which
contains several implementations of different sorting algorithms,
including bubble sort, selection sort, recursive and non-recursive
quick sort, recursive and non-recursive merge sort, and heap sort,
to evaluate the effectiveness and accuracy of EQMINER.

Since the input generator in the prototype does not handle arrays,
we wrote the benchmark in a way that the sorting algorithms accept
a single struct containing a fixed number (7) of integers as their in-
put variable, but they internally cast the struct to an array before
actual sorting. Also, the coexistence of recursive and non-recursive
versions was used to evaluate the effects of the way EQMINER han-
dles function calls (cf. Section 2.4.4).

There are about 350 lines of code in the program and 200 code
fragments were generated when the minStmtNum was set to 10.

Linux Kernel 2.6.24. We used the Linux kernel as it is a large

project with a relatively long history of development and a large
number of participating developers, thus we can (1) evaluate the
existence of functionally equivalent code in a popular software and
(2) test the scalability of our approach.

The Linux kernel 2.6.24 contains 9, 730 C files of more than 6.2
million lines of code. Since our code chopper requires compilable
code to obtain abstract syntax trees and control flow graphs, we
only consider a subset of the kernel that is compilable on our Fe-
dora Core 5 system. Specifically, we used the default setting when
configuring the kernel before compilation, and saved the interme-
diate files (preprocessed C files with the suffix .i) for chopping.

We obtained 4, 750 preprocessed C files which correspond to
about 2.8 million lines of code in the original source code. Each
such file is a compilable unit and can be processed by the code
chopper independently from other files. The total number of lines
of code contained in the preprocessed files is not interesting due to
the fact that these preprocessed files contain a lot of commonly used
type definitions and function declarations and definitions. On the
other hand, it is interesting to know the numbers of functions and
statements contained in those functions since they directly affect
the number of code fragments generated by the code chopper.

Among the 4, 750 preprocessed files, CIL can successfully parse
and construct ASTs and CFGs for 3, 748 files. There are 41, 091
functions with unique names in the 3, 748 preprocessed files, about
1
3

of the total number of functions (more than 136K) in the Linux
kernel [14]. If duplicated functions or functions with the same
names in different files are also counted, the number would be more
than 67K. We used these 67K functions for our following study and
used the containing file and function name and line numbers as the
unique identifier for each code fragment.

We calculated the numbers of primary statements contained in
each function to estimate the total number of generated code frag-
ments. Data showed that more than 26K functions contain fewer
than 10 primary statement, while there are several functions con-
tain more than 1, 000 statements. Since we set the minStmtNum to
10, our code chopper ignored the code fragments for those small
functions. Without respecting the statement boundaries, the code
chopper generated more than 20 million code fragments since more
than ten functions contain thousands of statements. The number
was reduced to about 6.5M when we respect boundaries.

4.2 Code Execution
An important decision we need to make is which code fragments

we should use and how many test cases we should execute for each
code fragment. Ideally, the more code fragments, the more func-
tionally equivalent code we may find; the more test cases used, the
more accurate the mined functionally equivalent code may be. On
the other hand, even if each execution takes only one tenth of a sec-
ond, it can take more than a week to sequentially execute each of
the 6.5M code fragments once. In the following, we apply several
heuristic strategies to address the scalability issue.

Code fragment sampling. Our code chopper generates quadratic
number of code fragments w.r.t. the number of statements in a func-
tion. For example, a function named serpent_setkey has more
than 1, 600 sequential expression statements which led to more
than 1.3M fragments for this function only. It appears uninterest-
ing to consider every one of them for functional equivalence, but it
is still interesting to consider some fragments that are “representa-
tive” and collectively cover significant portions of the function.

Our data showed that most functions (more than 85%) in the
Linux kernel have fewer than 15 statements, implying most func-
tions will have fewer than 120 code fragments generated. Thus, we
again used random sampling: we randomly selected up to 100 code
fragments from all the code fragments in each function to be used

in our following study. With this strategy, the total number of code
fragments that require further executions became 830, 319, more
than seven times smaller than the original 6.5M, but still covering
more than 1.6 million lines of code. 2

Limiting code execution time. Intuitively, Most code fragments
are small and their executions should finish quickly. On the other
hand, there are code fragments that can fall into infinite loops if the
randomly generated inputs do not satisfy certain requirements of
the code. For example, one code fragment from the non-recursive
merge sort in our benchmark looks like the following:
for(s=0; s < ArrayLength-b; s+=2*b) {

...
}

Since the variable b is identified as an input variable, random values
will be fed into b. If 0 is used, the increment statement in the for
loop will never change the value of s and cause an infinite loop.

Therefore, we imposed a limit on how long each execution of
a code fragment can take. Preliminary evaluations on hundreds of
fragments showed that if a fragment ever finishes, it finished within
0.2 second. Thus, we set the limit to 0.5 second and kill the process
if it exceeds that limit, and the output of the execution is marked as
a failure for later use. This strategy helped save at least an order of
magnitude of CPU time based on our experience.

Limiting the number of test cases. Our current study focuses on
functionally equivalent code, and any output difference between
two pieces of code fragments will set them apart based on our code
clustering algorithm. Assuming the input space of any code frag-
ment, including invalid ones is uniformly sampled by our random
input value generator, we have reason to believe if two code frag-
ments have the same outputs in ten out of ten test cases, they are
likely to be functionally equivalent. On the other hand, even if uni-
form sampling is achieved, two code fragments may behave differ-
ently only on very rare cases and it may not be practical to distin-
guish one from another using random executions. This limitation
is similar to that of traditional random testing [8,29]. For example,
the following two code fragments only differ at the if condition
and they will only exhibit different behavior when input happens
to be 23456, which is very unlikely, even if we did not limit the
range of random generated values (cf. Section 3).

if (input < 23456) {
...

} else {
...

}

if (input < 23457) {
...

} else {
...

}

Fortunately, we could consider such code fragments functionally
similar, although not equivalent, since they only differ at rare cases.
Section 5 will discuss more about the concept of similarity.

Based on the above considerations, we set the limit for the num-
ber of test cases to 10. Thus, each code fragment will be executed
at most 5! × 10 = 1200 times, taking at most 10 minutes.

In the next section, we will look at the properties of the mined
functionally equivalent code clusters.

4.3 Functionally Equivalent Code Fragments

4.3.1 Sorting Benchmark
Within 104 minutes of sequential executions (no parallel execu-

tions at all), the 200 code fragments (no grouping at the beginning)
were partitioned into 69 equivalence clusters. The following sum-
marizes the results of our inspection.

2Note that, unlikely the previous numbers for lines of code counted w.r.t. the kernel
source files, this number was calculated w.r.t. preprocessed files for simplicity. Also,
it may be better during the sampling process to ensure the selected code fragments
accumulatively cover most statements in each function so that we may miss less func-
tionally equivalent code.

Most of the code fragments in the clusters are portions of the
functions they belong to, instead of the whole functions. Their ap-
pearance in the same clusters are mainly due to two facts: (1) some
portions of the different sorting algorithms are indeed functionally
equivalent to each other, e.g., portions of the recursive and non-
recursive merge sort, and portions of bubble sort and selection sort;
(2) some code fragments overlap with each other so much and there
is no functional difference among them. While the second kind
of functional equivalence is trivial, the first kind is more interest-
ing since the existence of such functionally equivalence code frag-
ments may indicate the need for extracting commonly used build-
ing blocks for certain functionalities, which is one of the reasons
why we are carrying out the study on functionally equivalent code.

At the whole-function level, EQMINER correctly clustered the
fragments that correspond to bubble sort, selection sort, non-recursive
merge sort, and non-recursive quick sort into the same cluster. It is
not surprising to see recursive merge sort and recursive quick sort
were not in the cluster due to the current way EQMINER handles
function calls (cf. Section 2.4.4). For the heap sort, we noticed that
a local variable in the function was identified as an output vari-
able, which tricked the output comparison to view the code frag-
ment differently. This is so because the local variable is defined
as a flag that can affect the control flows of the code; it may not
be used in one of the paths and is considered an output variable
by our local reaching definition analysis (cf. Section 2.4.2). After
we added a superficial statement that uses the local variable at the
end of the heap sort function, the variable was no longer considered
an output variable and the corresponding code fragment was then
clustered with the code fragments for the other four algorithms. Al-
ternatively, we used the strengthened definition of output variables
(cf. Section 2.4.2), the above flag variable was no longer an output
variable; however, it led to an opposite problem that some func-
tionally significant variables, e.g., the variable storing the sorted
data, were left out, causing both false positives and negatives. Bet-
ter semantic-aware analyses may be needed to help identify output
variables more accurately.

The evaluation based on the sorting algorithms shows the capa-
bility of EQMINER on mining functionally equivalent code frag-
ments with satisfying accuracy. On the other hand, it shows the
sensitivity of EQMINER on the automatically identified input and
output variables. At the function level, it is often easy to improve
the validity of the identified input and out variables based on the
parameters of the function and its side effects and return values,
but it is not obvious how to identify input and output variables for
arbitrary portions of the function in general. The def-use analy-
ses used in our approach is a reasonable semantic-aware heuristic,
but it will still be worthwhile to investigate other heuristics in the
future that can identify functionality-significant variables as inputs
and outputs to help reduce both false positive and negative rates.

4.3.2 Linux Kernel
As mentioned in Section 4.2, 830, 319 code fragments were used

as candidates for functionally equivalent code.
Based on the numbers of input and output variables every can-

didate code fragment has, the code fragments were first separated
into 2, 909 groups of various sizes. The numbers of input variables
in the code fragments range from 0 to 511, and the numbers of out-
put variables range from 0 to 118. Figure 2 show the histograms
of the numbers of input and output variables in the code fragments
respectively. We can see that most of the code fragments (51%)
have fewer than 6 input variables so that our execution strategy on
limiting the possible input permutations to 5! is not unreasonable.

The sizes of the groups (i.e., the numbers of code fragments in
the groups) range from 1 to 76972. The largest group corresponds
to code fragments that have 2 input variables and 1 output vari-

0 100 200 300 400 500 600
0

1

2

3

4

5

6

#s of Input Variables in Each Code Fragment

of

 C
od

e
F

ra
gm

en
ts

 (
Lo

g1
0

S
ca

le
: 1

0n)

(a) Semi-Log Histogram of the Numbers of Input Variables

0 20 40 60 80 100 120
0

1

2

3

4

5

6

#s of Output Variables of Each Code Fragment

of

 C
od

e
F

ra
gm

en
ts

 (
Lo

g1
0

S
ca

le
: 1

0n)

(b) Semi-Log Histogram of the Numbers of Output Variables
Figure 2: Histograms for Code Fragments.

able. Most groups (more than 90%) contain fewer than 200 code
fragments, and more than 1, 000 groups contain only one code frag-
ment and there is no need to execute the code fragments in those
groups. Also, only 18 groups (fewer than 1%) contain more than
10, 000 code fragments. These data suggest that the time required
to perform the executions for mining functionally equivalent code
should be acceptable on our systems.

The executions of the code fragments in different groups were
parallelized. We also parallelized the executions of the code frag-
ments as mentioned at the end of Section 2.6 to speed up the clus-
tering process on groups with large numbers of code fragments.

Since there are many users on our computer cluster system, the
number of available hosts on the system varied significantly during
the time period when we had our evaluations. Thus, the degree of
parallelism was limited, ranging from several to 36 processes at a
time. Also, the NFS server which we used to store all the code
fragments and related data may have been a bottleneck that limited
the actual degree of parallelism. We did not measure how many
code executions were parallelized or how much CPU and disk time
were. We simply recorded the wall clock time of all the executions,
rounded to hours, and that is 189 hours, within 8 days.

The 830, 319 code fragments were separated into 269, 687 clus-
ters. Most (164, 994, more than 60%) of the clusters contain only
one fragment, which means most fragments are not functionally
equivalent to others. About 30% (82, 907) of the clusters contain
two to five fragments. Fewer than 1% (1, 675) of the clusters con-
tain more than 100 fragments. Many fragments in these large clus-
ters actually overlap with each other, and may be considered trivial.
Also, many of these fragments came from functions that are com-
monly included by many source files. For example, one cluster
contained 33, 225 fragments, most of which were generated from
the same inline, static function kmalloc that is included in many
preprocessed C files. Although such code fragments are trivially
functionally equivalent, it shows the capability of EQMINER on
detecting them; When we excluded such code fragments, only 159
non-overlapping fragments were left in the cluster.

Quantity of functionally equivalent code. We used a code fil-
ter to filter out all but one trivial code fragments in each cluster
(which one to keep relies on the order of the occurrence of the
overlapping fragments), and remove the cluster if only one code
fragment is left in the cluster. We then obtained a set of 32, 996
clusters that can be viewed as functional equivalence code clusters,
covering about 624K lines of code in the Linux kernel. Figure 3
shows the histogram of the sizes of the clusters. Most of clusters
(25, 935) contain just two code fragments; very few (14) clusters

1

10

100

1000

10000

100000

2 3 4 5-10 11-20 21-100 101-3842

Sizes of Clusters

of

 C
lu

st
er

s (
Lo

g1
0

Sc
al

e)

Figure 3: Histogram of the Sizes of Functionally Equivalent Clusters.

contain more than 100 code fragments. On the other hand, there
are still several clusters containing thousands of code fragments,
and the largest one is 3, 842.

The following code represents a common pattern of the code
fragments in the largest cluster. A single output variable is iden-
tified, and it is assigned a value near the end of the code fragment
through an input variable which is introduced due to various rea-
sons, such as a function call or an undefined variable.

output = 0;
... /* defs and uses of various variables */
output = input;

Assuming the input and output variables identified by EQMINER

for these code fragments are appropriate, such code fragments are
indeed functionally equivalent according to our definition. How-
ever, whether it is really useful to consider them functionally equiv-
alent is still a question worth of future investigation.

Figure 4 shows the spatial distribution of the mined functionally
equivalent code in the Linux kernel directories. We can see that the
drivers directory contains the most functionally equivalent code
fragments (more than 35K), while the block directory contains the
fewest (only 13). This distribution is similar to that of syntactically
equivalent code fragments, which we will discuss next.

Differences from syntactically equivalent code. Since many ex-
isting techniques can detect syntactically similar code, one may
wonder what different results our approach can bring. Answering
this question would also help to justify the significance of min-
ing functionally equivalent code fragments in addition to syntacti-
cally similar ones. In the following, we thus compare the results
of EQMINER with the results from a tree based tool for detecting
syntactically similar code–DECKARD [18].

1

10

100

1000

10000

100000

arc
h

blo
ck

cry
pto

dri
ve

rs fs ini
t

ipc
ke

rne
l lib mm ne

t

sec
uri

ty
sou

nd

Directory Names in the Linux Kernel

of

 C
od

e
Fr

ag
m

en
ts

 (L
og

10
 S

ca
le

)

Functionally
Equivalent

Syntactically
Equivalent

Figure 4: Spatial Distribution of Functionally and Syntactically
Equivalent Code in the Linux Kernel.

DECKARD detects syntactically similar code by characterizing
the syntax tree of a program as a set of vectors and searching for
code fragments that have similar characteristic vectors. To have a
common ground for comparison, we added the Line 15 in Algo-
rithm 1 to generate a characteristic vector for any code fragment
generated by EQMINER, and asked DECKARD to use the set of
vectors that correspond to the 830, 319 fragments in our study to
search for syntactically equivalent code (i.e., set its similarity pa-
rameter to 1.0, but token level differences are allowed).

On one hand, the spatial distribution of syntactically equivalent
code fragments detected by DECKARD is similar to that of func-
tionally equivalent ones (Figure 4). On the other hand, the two
sets of code equivalence clusters are different in terms of the code
fragments contained in the clusters.

We calculated the percentage of the code fragments that are con-
tained in the clusters reported by EQMINER but not contained in
the clusters reported by DECKARD. To our surprise, the percent-
age was close to 91%, which means only 9% of the functionally
equivalent code fragments are also syntactically equivalent. No-
tice that if there were overlapping code fragments in a cluster, all
but one of them (often the first one in the clusters) are removed
from the cluster by our code filter, while which one is the first may
be different from cluster to cluster, causing the high number of
unmatched code fragments between the two sets of clusters. Af-
ter disabling the code filter, the difference percentage decreased to
less than 58%, which means more than 42% functionally equiv-
alent code fragments are syntactically equivalent. We also found
that many code fragments reported by DECKARD (more than 36%)
were not reported by EQMINER, which means many syntactically
equivalent code are functionally different. The still relatively large
difference set between the two sets of clusters may be an indication
that the two kinds of code detection techniques, functionality-based
and syntax-based, can complement each other.

Through a preliminary manual inspection on the difference sets
of the clusters, we noticed several categories of the code fragments
in the difference set that contribute to the differences:

(1) Many functionally equivalent code is indeed syntactically
different. For example, the following two examples are two types
of such code that we saw the most; they are functionally equivalent
to “output = input;” in C programs:

output = 0;
while(output < input) {

...
output++;

}

if (0) {
...

} else {
output = input;

}

(2) Lexical differences cause syntactically equivalent code to
function differently. For example, DECKARD considers the code
“if(input < 10) output = 10” syntactically equivalent to the

code “if(input < 100) output = 100”, while EQMINER con-
siders different. As another example, the following pair of code
fragments only differ at a single variable name and are syntacti-
cally equivalent, but they are functionally different.

output = 0;
if (output < input) {

...
output = input + 1;

}

output = 0;
if (output < input) {

...
output = output + 1;

}

(3) False positives produced by EQMINER may have contributed
to a large portion of the difference sets. For example, DECKARD

recognizes function calls and will consider calls with different num-
bers of parameters are syntactically different, but EQMINER treats
any function call as a random input variable and thus may report
false functionally equivalent code fragments. In the following para-
graphs, we discuss the accuracy of EQMINER further.

Accuracy. As we mentioned above, we limited the number of
test cases executed for each code fragment to 10. This restriction
helped improve the performance of EQMINER, but it may cause
false positives in the sense that it may incorrectly put functionally
different code fragments in a same cluster.

We used additional test cases to evaluate the accuracy of EQMINER.
Two different measurements, one stricter than the other, were used
to calculate false positive (FP) rates:
First FP Rates: Given a cluster C, its first false positive rateR1(C)

is the number of the code fragments in C that have differ-
ent outputs from its representative’s outputs during the addi-
tional testing over the number of all code fragments in C. As
a special case, if the former number is just one smaller than
the latter, i.e., no code fragments in the cluster are function-
ally equivalent, we increase the former number by one and
thus let R1(C) be 100%.

Given a set of clusters C, its first false positive rate R1(C) is
the number of all such code fragments in C that have differ-
ent outputs from its corresponding representative’s outputs
during the additional testing over the total number of all code
fragments in C. The special cases when no code fragments
in a cluster are functionally equivalent are handled in a way
similar to the above.

Second FP Rates: Given a cluster C, its second false positive rate
R2(C) is the number of singleton clusters generated dur-
ing the additional testing (i.e., the number of code fragments
considered functionally nonequivalent to any other code frag-
ments in C) over the number of all code fragments in C.

Given a set of clusters C, its second false positive rate R2(C)
is the number of all such code fragments in C that are put into
singleton clusters during the additional testing over the total
number of all code fragments in C.

The first false positive rate is more strict in the sense that it tells
how many code fragments in a cluster may not belong to the cluster,
while the second false positive rate tells how many code fragments
in a cluster may not belong to any functionally equivalent cluster.

Ideally, we should carry out additional tests for every cluster.
Due to the limitation of computing resources, we only focused on
128 clusters each of which contains fewer than 100 code fragments:
we randomly selected 50 clusters from the clusters sized between
2 and 4, another 50 clusters from the clusters sized between 5 and
20, and included all of the clusters (28) sized between 20 and 100.
We did not choose the clusters in a uniformly random way since
the sizes of the clusters are not distributed uniformly (cf. Figure 3)
and we were trying not to spend too much time on large clusters.
The set of clusters we chose contain 1, 913 code fragments, and we
denote the whole set as E. We then allowed each code fragment
from E to execute with 100 randomly generated inputs.

To compute the first false positive rate R1(E), we first executed
the representative in every cluster in E with 100 random inputs and
recorded their outputs for each of the inputs. Then, we executed all
other code fragments in E with the same inputs in parallel. For each
code fragment, whenever it generates an output different from the
corresponding output of its representative, it is marked as a false
positive and its execution is terminated. In addition, if all code
fragments in a cluster except for the representative are marked, the
representative is also marked as a false positive. This process was
finished in about 13 hours on our cluster system, and we obtained
the false positive rate R1(E) = 28%.

To compute the second false positive rate R2(E), we used a dif-
ferent strategy from the above: we simply invoked Algorithm 2 on
each of the cluster in E, in parallel, with the number of test cases
set to 100. The process was finished in about 16 hours on our
cluster system. Although the number of clusters increased to 206
from 128, only 57 code fragments were in singleton clusters, which
means the false positive rate R2(E) is within 3%.

In addition, we excluded the false positives marked during the
calculation of R1(E) from E and executed an additional 100 ran-
dom tests on the rest of E in order to further justify the false posi-
tive rates. We noticed that there were additional 69 code fragments
marked as false positives, increasing the false positive rate R1(E)
to 32%. Also, we invoked Algorithm 2 on the resulting clusters
(excluding singleton clusters) generated during the calculation of
R2(E) with additional 100 tests, and we only noticed 6 new sin-
gleton clusters, increasing the false positive rate R2(E) to 3.5%.

On one hand, the relatively low second false positive rate shows
that the code fragments mined by EQMINER are very likely to func-
tionally equivalent to some others. On the other hand, we noticed
that several factors may have contributed to the relatively high first
false positive rate related to execution failures due to many invalid
inputs and inadequate test coverage, besides implementation limi-
tations. Further investigation may help to decide whether directed
random testing techniques that combine concrete and symbolic ex-
ecutions [15, 34] can help alleviate our problem which existed in
traditional random testing as well [8, 29].

5. DISCUSSIONS
Scalability. As described in Section 4.2, EQMINER employed
various heuristics to reduce the expenses of computing resources.
Some of the heuristics, such as limiting the number of code frag-
ments by sampling, may lead to missed functionally equivalent
code (i.e., false negatives), while others, such as limiting the num-
ber of test cases, may increase false positive rates. It will be a
challenging and interesting task to scale EQMINER to as many
code fragments as possible with as many test cases as possible.
It may require the combination of novel techniques and significant
engineering efforts to simplify the problem or explore the degree
of parallelism in this problem further. Existing program analysis
techniques may be of some help. For example, directed testing that
combines symbolic and concrete executions [15, 34] may help re-
duce the number of test cases required for exhibiting the function-
ality of each code fragment, thus reduce expenses on code execu-
tions without increasing false positive rates. Also, program slicing,
either static or dynamic [3, 16, 36], may help our code chopper to
focus on the most relevant code portions.

Code chopping. In this paper, we generate code fragments mainly
based on the syntax of a sequence of statements. In fact, many syn-
tactically consecutive statements may not be semantically related
to each other, as shown in [14] that more than half of the func-
tions in the Linux kernel perform more than one unrelated compu-
tations. It is intuitively uninteresting to put statements for different
computations in a same code fragment and consider it a candidate

for functionally equivalent ones. Thus, utilizing program depen-
dency information and generating code fragments based on pro-
gram slices may help to exclude uninteresting candidates and leave
with us more semantic-relevant ones for further consideration; also,
since program slices are often smaller than a whole function body,
the number of code fragments generated by our code chopping will
be smaller and help scale up EQMINER.

Identifying input/output variables. Section 4.3.1 has discussed
that EQMINER can be sensitive to the input and output variables
identified for each code fragment. The liveness and reaching defini-
tion analyses used in EQMINER may include functionally insignif-
icant variables in the sets of input and output variables, causing
false positives and negatives. If the code chopping was carried out
on program slices, such mis-identifications can be fewer since in-
put and output variables are often more prominent and meaningful
along the data flows within slices. Other heuristics, such as statis-
tical learning, may leverage programmers’ knowledge and help to
identify more appropriate variables as inputs and outputs.
Functional equivalence definition. We in this paper define func-
tional equivalence based on the same I/O behavior, which is differ-
ent from the traditional concept of semantic equivalence defined
on program semantics, such as operational semantics. Thus, we in
effect do not consider intermediate program states in our definition
and have not attempted to detect semantically equivalent code yet.
As a result, our approach may not be directly applicable for plagia-
rism detection, for example, among student programming home-
work. In principle, we can use functional equivalence to search
for semantically equivalent code: first identify the smallest units
of code (e.g., a statement) that are functionally equivalent to some
others, then look for compositions of such code units that are con-
secutive and still functionally equivalent to some others. Repeated
compositions of consecutive code units may thus form larger code
fragments that are semantically equivalent. It would be future work
to investigate the feasibility and complexity of such a problem.

We have not explored the concept of functional similarity in the
sense that we only considered code fragments that are equivalent
and have not considered code fragments that are equivalent on cer-
tain inputs but different on others. It would be ideal to have a gen-
eral definition for similarity so that functional differences between
code fragments may be quantified and studied further. For exam-
ple, we may say the following pair of code has a similarity 0.8 since
they behave differently on two out of ten inputs:

if (input % 10 == 0) {
output = 0;

} else {
output = 1;

}

if (input % 10 == 1) {
output = 0;

} else {
output = 1;

}

Categorization and application. Categorizing functionally equiv-
alent code fragments may help us to understand the characteris-
tics of the code and understand further about how equivalent code
occurs and evolves. One immediate application of such a study
will be functionality-based refactoring that helps extract function-
ally equivalent code into shared libraries for easy reuse. It will
be a valuable complement for syntax-based refactoring in the cur-
rent mainstream. Also, our study can enable semantic-aware code
search, in addition to syntax-based search approaches, that may
help improve developer productivity. In addition, small functional
differences among similar code may be useful for detecting pro-
gram errors, similar to many other types of inconsistencies that
have been used for bug detection [12, 13, 19].

We only performed limited study on the mined code clusters, and
have not derived general knowledge about the patterns or character-
istics of the code clusters. Future work will investigate in this direc-
tion, and aim to increase the confidence on the mined functionally
equivalent code fragments and explore their potential applications.

6. RELATED WORK
This section surveys additional closely related work. First, our

work is related to checking program equivalence [10], which is a
classic problem and is undecidable in general. Definitions of equiv-
alence based on operational semantics have also been proposed
long before [30,31]. Definitions based on input and output behavior
have also been investigated in the literature [7,11,37]. However, to
the best of our knowledge, this is the first work that proposes to use
random testing for large-scale analysis of functionally equivalence.
Although working on different granularities, our technique shares
a similar property with any software testing activity [6], such as re-
gression testing, that aims to uncover functional differences among
programs and specifications: it guarantees functional differences
when it separates code fragments into different clusters, but it can
rarely guarantee functionally equivalent.

This work is also related to studies that show much duplicated
code exists in large code bases [20,21,25]. Many such duplications
can be attributed to poor programming practices since programmers
often copy-paste code to quickly duplicate functionality.

There is also a large body of related efforts on detecting sim-
ilar code, most of which focus on detecting syntactically similar
code and can be classified into three categories: (1) String-based
approaches that use techniques like “parameterized” string match-
ing algorithms [1, 2], (2) Token-based approaches that split a pro-
gram into a token sequence which is scanned for duplicated token
subsequences [20, 25], and (3) Tree-based approaches that parse a
program into parse trees or abstract syntax trees which are scanned
for similar subtrees [4, 5, 18, 23, 26, 35]. There are a few semantic-
aware techniques for detecting similar code, which can be classi-
fied into two categories: (1) Graph-based approaches that repre-
sent certain semantic information as program dependency graphs,
which are then scanned for similar subgraphs [14, 22, 24], and (2)
Birthmark-based approaches used mainly for detecting illegal theft
code where a program is statically or dynamically fingerprinted and
is checked against the fingerprints of other programs [9,17,32,38].
Different from the above related work, our approach considers the
functional behavior of a program and our goal is to detect hidden,
but not malicious-intended code equivalence.

7. CONCLUSIONS
We have presented the first scalable algorithm that can automati-

cally discover functionally equivalent code fragments in large, real-
world programs. Our insight is that random testing can be used to
quickly partition code fragments to detect functional equivalence.
We also introduce various analyses and optimizations to enable a
large-scale study of code-level functional equivalence in the Linux
kernel source code. Our results have shown that functionally equiv-
alent, but syntactically different code fragments commonly exist,
which indicates that techniques like ours for detecting functional
equivalence is desirable and have many potential applications.

Acknowledgments
We thank Earl Barr, Mark Gabel, Zhongxian Gu, David Hamil-
ton, Andreas, Sæbjørnsen, Jeremiah Willcock, and the anonymous
ISSTA reviewers for their detailed and constructive feedback on
earlier versions of this paper.

8. REFERENCES
[1] B. S. Baker. On finding duplication and near-duplication in large software

systems. In Working Conference on Reverse Engineering (WCRE), pages
86–95, 1995.

[2] B. S. Baker. Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM Journal on Computing (SICOMP),
26(5):1343–1362, 1997.

[3] S. Bates and S. Horwitz. Incremental program testing using program
dependence graphs. In POPL, pages 384–396, 1993.

[4] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS R©: Program transformations
for practical scalable software evolution. In ICSE, pages 625–634, 2004.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection
using abstract syntax trees. In ICSM, pages 368–377, 1998.

[6] B. Beizer. Software Testing Techniques. The Coriolis Group, 2nd edition, 1990.
[7] M. Bertran, F.-X. Babot, and A. Climent. An input/output semantics for

distributed program equivalence reasoning. Electr. Notes Theor. Comput. Sci,
137(1):25–46, 2005.

[8] D. L. Bird and C. U. Munoz. Automatic generation of random self-checking
test cases. volume 22, pages 229–245, Riverton, NJ, USA, 1983. IBM Corp.

[9] C. S. Collberg and C. D. Thomborson. Software watermarking: Models and
dynamic embeddings. In POPL, pages 311–324, 1999.

[10] G. Cousineau and P. Enjalbert. Program equivalence and provability. In MFCS:
Symposium on Mathematical Foundations of Computer Science, 1979.

[11] R. L. Crole and A. D. Gordon. A sound metalogical semantics for input/output
effects. In Computer Science Logic (CSL): 8th workshop, volume 933 of LNCS,
pages 339–353, 1995.

[12] I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic
inconsistency inference. In PLDI, pages 435–445, 2007.

[13] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A
general approach to inferring errors in systems code. In SOSP, pages 57–72,
2001.

[14] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In
W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, ICSE, pages 321–330, 2008.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In PLDI, pages 213–223, 2005.

[16] A. Groce and R. Joshi. Exploiting traces in program analysis. In TACAS,
volume 3920 of LNCS, pages 379–393. Springer, 2006.

[17] H. il Lim, H. Park, S. Choi, and T. Han. Detecting theft of java applications via
a static birthmark based on weighted stack patterns. IEICE Transactions,
91-D(9):2323–2332, 2008.

[18] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate
tree-based detection of code clones. In ICSE, pages 96–105, 2007.

[19] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs. In
ESEC/FSE, pages 55–64, New York, NY, USA, 2007. ACM.

[20] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code. TSE,
28(7):654–670, 2002.

[21] M. Kim, V. Sazawal, and D. Notkin. An empirical study of code clone
genealogies. In ESEC/FSE, pages 187–196, 2005.

[22] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source
code. In International Static Analysis Symposium (SAS), pages 40–56, 2001.

[23] K. Kontogiannis, R. de Mori, E. Merlo, M. Galler, and M. Bernstein. Pattern
matching for clone and concept detection. Automated Soft. Eng., 3(1/2):77–108,
1996.

[24] J. Krinke. Identifying similar code with program dependence graphs. In
Working Conference on Reverse Engineering (WCRE), pages 301–309, 2001.

[25] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste
and related bugs in operating system code. In OSDI, pages 289–302, 2004.

[26] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection
of function clones in a software system using metrics. In ICSM, pages 244–254,
1996.

[27] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of c programs. In
International Conference on Compiler Construction, pages 213–228, 2002.

[28] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[29] A. J. Offutt and J. H. Hayes. A semantic model of program faults. In ISSTA,
pages 195–200. ACM Press, 1996.

[30] A. M. Pitts. Operational semantics and program equivalence. In Applied
Semantics, Advanced Lectures, volume 2395 of LNCS, Tutorial, pages
378–412. Springer-Verlag, 2002.

[31] J.-C. Raoult and J. Vuillemin. Operational and semantic equivalence between
recursive programs. Journal of the ACM, 27(4):772–796, Oct. 1980.

[32] D. Schuler, V. Dallmeier, and C. Lindig. A dynamic birthmark for Java. In ASE,
pages 274–283, Nov. 2007.

[33] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, 1980.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In FSE, pages 263–272, 2005.

[35] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer. Clone detection in
source code by frequent itemset techniques. In International Workshop on
Source Code Analysis and Manipulation, pages 128–135, 2004.

[36] B. Xin and X. Zhang. Efficient online detection of dynamic control dependence.
In ISSTA, pages 185–195, New York, NY, USA, 2007. ACM.

[37] V. A. Zakharov. To the functional equivalence of turing machines. FCT:
Fundamentals (or Foundations) of Computation Theory, 6, 1987.

[38] X. Zhou, X. Sun, G. Sun, and Y. Yang. A combined static and dynamic software
birthmark based on component dependence graph. In International Conference
on Intelligent Information Hiding and Multimedia Signal Processing, pages
1416–1421, 2008.

[39] R. Zippel. An explicit separation of relativised random polynomial time and
relativised deterministic polynomial time. Inf. Process. Lett., 33(4):207–212,
1989.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AachenBT-Bold
 /AachenBT-Roman
 /AdLibBT-Regular
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Alefbet-Normal
 /AlexeiCopperplate
 /Algerian
 /AlgerianBasD
 /AlgerianD
 /AllegroBT-Regular
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /Americana
 /Americana-Bold
 /AmericanaBT-Bold
 /AmericanaBT-ExtraBold
 /AmericanaBT-ExtraBoldCondensed
 /AmericanaBT-Italic
 /AmericanaBT-Roman
 /Americana-ExtraBold
 /Americana-Italic
 /AmericanGaramondBT-Bold
 /AmericanGaramondBT-BoldItalic
 /AmericanGaramondBT-Italic
 /AmericanGaramondBT-Roman
 /AmericanTextBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /AmericanUncD
 /AmerigoBT-BoldA
 /AmerigoBT-BoldItalicA
 /AmerigoBT-ItalicA
 /AmerigoBT-MediumA
 /AmerigoBT-MediumItalicA
 /AmerigoBT-RomanA
 /AmerTypewriterITCbyBT-Bold
 /AmerTypewriterITCbyBT-Medium
 /AmoebiaSans
 /Architecture-Normal
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArnoldBoeD
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /ArsisD-Regu
 /ArsisD-ReguItal
 /AtlanticInline
 /AuroraBT-BoldCondensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeGothicC-Book
 /AvantGardeGothicC-Demi
 /AvantGardeGothicC-DemiOblique
 /AvantGardeGothicC-Oblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BakerSignet
 /BakerSignetBT-Roman
 /BalloonBT-Bold
 /BalloonBT-ExtraBold
 /BalloonBT-Light
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Bard-Normal
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /BaskOldFace
 /BauerBodoniBT-Black
 /BauerBodoniBT-BlackCondensed
 /BauerBodoniBT-BlackItalic
 /BauerBodoniBT-Bold
 /BauerBodoniBT-BoldCondensed
 /BauerBodoniBT-BoldItalic
 /BauerBodoniBT-Italic
 /BauerBodoniBT-Roman
 /BauerBodoniBT-Titling
 /Bauhaus93
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bedrock-Normal
 /Beehive-Normal
 /Beesknees
 /BellGothic-Black
 /BellGothic-Bold
 /BellGothic-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BelweBT-Bold
 /BelweBT-Light
 /BelweBT-Medium
 /BelweBT-RomanCondensed
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BerlinSans-Bold
 /BerlinSans-Demi
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BerlinSans-Roman
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BibleScrT
 /BinnerD
 /Birch
 /BlackadderITC-Regular
 /BlacklightD
 /BlippoBT-Black
 /BodoniBE-Bold
 /BodoniBE-BoldExp
 /BodoniBE-BoldItalic
 /BodoniBE-BoldItalicExp
 /BodoniBE-BoldItalicOsF
 /BodoniBE-BoldOsF
 /BodoniBE-Italic
 /BodoniBE-ItalicExp
 /BodoniBE-ItalicOsF
 /BodoniBE-Light
 /BodoniBE-LightExp
 /BodoniBE-LightItalic
 /BodoniBE-LightItalicExp
 /BodoniBE-LightItalicOsF
 /BodoniBE-LightSC
 /BodoniBE-Medium
 /BodoniBE-MediumExp
 /BodoniBE-MediumItalic
 /BodoniBE-MediumItalicExp
 /BodoniBE-MediumItalicOsF
 /BodoniBE-MediumSC
 /BodoniBE-Regular
 /BodoniBE-RegularExp
 /BodoniBE-RegularSC
 /Bodoni-BoldCondensed
 /Bodoni-Book
 /Bodoni-BookItalic
 /BodoniBT-Bold
 /BodoniBT-BoldCondensed
 /BodoniBT-BoldItalic
 /BodoniBT-Book
 /BodoniBT-BookItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-PosterCompressed
 /Bodoni-PosterItalic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /BookmanITCbyBT-Demi
 /BookmanITCbyBT-DemiItalic
 /BookmanITCbyBT-Light
 /BookmanITCbyBT-LightItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Boulevard
 /BradleyHandITC
 /BremenBT-Black
 /BremenBT-Bold
 /Brisk-Normal
 /BritannicBold
 /Britannic-Bold-DTC
 /Britannic-Medium-DTC
 /Broadway
 /BroadwayBT-Regular
 /BroadwayEngravedBT-Regular
 /Brochure-Normal
 /BrodyD
 /Brush445BT-Regular
 /Brush738BT-RegularA
 /BrushScriptBT-Regular
 /BrushScriptMT
 /BusoramaITCbyBT-Medium
 /BusterD
 /BuxomD
 /CaflischScript-Bold
 /CaflischScript-Regular
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Calligraphic421BT-RomanB
 /Calligraphic810BT-Italic
 /Calligraphic810BT-Roman
 /CamelliaD
 /Cancun-Normal
 /Carleton-Normal
 /CarminaBT-Black
 /CarminaBT-BlackItalic
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /CasablancaAntique-Italic
 /CasablancaAntique-Normal
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastleT-Bold
 /CastleT-Book
 /CastleT-Ligh
 /CastleT-Ultr
 /Catalogfonts
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /CaxtonBT-Light
 /CaxtonBT-LightItalic
 /Centaur
 /CentaurMT
 /CentaurMT-Bold
 /CentaurMT-BoldExpert
 /CentaurMT-BoldItalic
 /CentaurMT-BoldItalicExpert
 /CentaurMT-BoldItalicOsF
 /CentaurMT-BoldOsF
 /CentaurMT-Expert
 /CentaurMT-Italic
 /CentaurMT-ItalicA
 /CentaurMT-ItalicAlternate
 /CentaurMT-ItalicExpert
 /CentaurMT-ItalicOsF
 /CentaurMT-SC
 /CentaurMT-SwashCapitals
 /Century
 /Century725BT-BoldCondensed
 /Century725BT-RomanCondensed
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldstyleBT-Bold
 /CenturyOldstyleBT-Italic
 /CenturyOldstyleBT-Roman
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /CenturySchoolbook-Italic
 /Charlesworth-Bold
 /Charlesworth-Normal
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondensed
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /ChiselD
 /CircleD
 /CityD-Bold
 /CityD-Ligh
 /CityD-Medi
 /ClarendonBT-Black
 /ClarendonBT-Bold
 /ClarendonBT-BoldCondensed
 /ClarendonBT-Heavy
 /ClarendonBT-Light
 /ClarendonBT-Roman
 /ClarendonBT-RomanCondensed
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CloisterBlackBT-Regular
 /CMBX10
 /CMBXSL10
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI9
 /CMR10
 /CMR5
 /CMR6
 /CMR7
 /CMR9
 /CMSL10
 /CMSL8
 /CMSS10
 /CMSS12
 /CMSY10
 /CMSY6
 /CMSY7
 /CMSY9
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialScriptBT-Regular
 /CommonBullets
 /CompactaBT-Black
 /CompactaBT-Bold
 /CompactaBT-BoldItalic
 /CompactaBT-Italic
 /CompactaBT-Light
 /CompactaBT-Roman
 /CooperBlack
 /CooperBT-Black
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-BlackItalicHeadline
 /CooperBT-BlackOutline
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopperplateGothic-Light
 /Copperplate-ThirtyOneAB
 /Copperplate-TwentyNineAB
 /CorporateSansBQ-Bold
 /CorporateSansBQ-BoldItalic
 /CorporateSansBQExp-Bold
 /CorporateSansBQExp-BoldItalicOsF
 /CorporateSansBQExp-ExtBoldItalicOsF
 /CorporateSansBQExp-ExtraBold
 /CorporateSansBQExp-ItalicOsF
 /CorporateSansBQExp-Light
 /CorporateSansBQExp-LightItalicOsF
 /CorporateSansBQExp-Medium
 /CorporateSansBQExp-MediumItalicOsF
 /CorporateSansBQExp-Regular
 /CorporateSansBQ-ExtraBold
 /CorporateSansBQ-ExtraBoldItalic
 /CorporateSansBQ-Italic
 /CorporateSansBQ-Light
 /CorporateSansBQ-LightItalic
 /CorporateSansBQ-Medium
 /CorporateSansBQ-MediumItalic
 /CorporateSansBQ-Regular
 /Cosmic-Normal
 /CosmicTwo-Normal
 /Cottage-Normal
 /CountdownD
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Critter
 /CroissantD
 /CurlzMT
 /Czar-Bold
 /Czar-BoldItalic
 /Czar-Italic
 /Czar-Normal
 /Dauphin-Normal
 /DavidaBoldBT-Regular
 /Decorated035BT-Regular
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /DeVinneBT-Italic
 /DeVinneBT-ItalicText
 /DeVinneBT-Roman
 /DeVinneBT-Text
 /DexGothicD
 /DextorD
 /DextorOutD
 /DiskusD-Medi
 /DomBoldBT-Regular
 /DomCasual
 /DomCasualBT-Regular
 /DomDiagonalBT-Bold
 /DomDiagonalBT-Regular
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-ExtraBoldItalic
 /Dutch801BT-Italic
 /Dutch801BT-ItalicHeadline
 /Dutch801BT-Roman
 /Dutch801BT-RomanHeadline
 /Dutch801BT-SemiBold
 /Dutch801BT-SemiBoldItalic
 /EckmannD
 /EdwardianScriptITC
 /Egyptian505BT-Bold
 /Egyptian505BT-Light
 /Egyptian505BT-Medium
 /Egyptian505BT-Roman
 /Eklektic-Normal
 /ElegantGaramondBT-Bold
 /ElegantGaramondBT-Italic
 /ElegantGaramondBT-Roman
 /Elephant-Italic
 /Elephant-Regular
 /EmbassyBT-Regular
 /Emboss
 /EmpireBT-Regular
 /EnglischeSchT-Bold
 /EnglischeSchT-DemiBold
 /EnglischeSchT-Regu
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasContour
 /ErasITC-Bold
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-Condensed
 /Eurostile-ExtendedTwo
 /EwieD
 /Exotic350BT-Bold
 /Exotic350BT-DemiBold
 /Exotic350BT-Light
 /Expo-Normal
 /ExPonto-Regular
 /FelixTitlingMT
 /Fences
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /FetteFraD
 /Firenze
 /FlamencoD
 /FlamencoInlD
 /Flareserif821BT-Bold
 /Flareserif821BT-Light
 /Flareserif821BT-Roman
 /FlashD-Bold
 /FlashD-Ligh
 /FlemishScriptBT-Regular
 /FootlightMTLight
 /FormalScript421BT-Regular
 /ForteMT
 /FrakturBT-Regular
 /FrankfurterHigD
 /FrankfurtGothic-Bold
 /FrankfurtGothic-BoldItalic
 /FrankfurtGothicHeavy-Italic
 /FrankfurtGothicHeavy-Normal
 /FrankfurtGothic-Italic
 /FrankfurtGothic-Normal
 /FrankHighlight-Normal
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FranklinGothic-Roman
 /Freeform710BT-Regular
 /Freeform721BT-Black
 /Freeform721BT-BlackItalic
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /Freehand471BT-Regular
 /Freehand521BT-RegularC
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScrD
 /FreestyleScript
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /FrysBaskervilleBT-Roman
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /FuturaBoldOblique
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-Condensed
 /Futura-CondensedBold
 /Futura-CondensedBoldOblique
 /Futura-CondensedExtraBold
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-CondensedOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /FuturaLtCnBTItalic
 /FuturaMdCnBTItalic
 /FuturaMedium
 /FuturaMediumOblique
 /Futura-Oblique
 /Galleria-Normal
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /GandoBT-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /GaramondICGHand
 /GaramondICGHandItalic
 /Garamond-Italic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondLight
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /GaramondLightItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondNo4CyrTCY-Medi
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /Gautami
 /GeographicSymbols-Normal
 /Geometric231BT-BoldC
 /Geometric231BT-HeavyC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /Geometric415BT-BlackA
 /Geometric415BT-BlackItalicA
 /Geometric415BT-LiteA
 /Geometric415BT-LiteItalicA
 /Geometric415BT-MediumA
 /Geometric415BT-MediumItalicA
 /Geometric706BT-BlackB
 /Geometric706BT-BlackCondensedB
 /Geometric706BT-BoldCondensedB
 /Geometric706BT-MediumB
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeometricSlab703BT-XtraBoldCond
 /GeometricSlab703BT-XtraBoldItal
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glacier-Italic
 /Glacier-Normal
 /GlaserSteD
 /GloucesterMT-ExtraCondensed
 /GoldMine-Normal
 /GorillaITCbyBT-Regular
 /Gothic725BT-BlackA
 /Gothic725BT-BoldA
 /Gothic821CondensedBT-Regular
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudyStout
 /Griffon-Normal
 /GriffonShadow-Normal
 /GrizzlyITCbyBT-Regular
 /Haettenschweiler
 /HandelGotD-Bold
 /HandelGotD-Ligh
 /HandelGothicBT-Regular
 /HarlowD
 /HarlowSolid
 /Harpoon-Normal
 /Harrington
 /HehenHebT-Bold
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboBT-Regular
 /Honda
 /HoratioD-Bold
 /HoratioD-Ligh
 /HoratioD-Medi
 /HorndonD
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist777BT-BlackB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HuxleyVerticalBT-Regular
 /IceAgeD
 /Imago-ExtraBold
 /Impact
 /ImpressBT-Regular
 /ImprintMT-Shadow
 /ImpulsBT-Regular
 /Incised901BT-Black
 /Incised901BT-Bold
 /Incised901BT-BoldCondensed
 /Incised901BT-Compact
 /Incised901BT-Italic
 /Incised901BT-Light
 /Incised901BT-Nord
 /Incised901BT-NordItalic
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Industrial736BT-Roman
 /Informal011BT-Black
 /Informal011BT-Roman
 /InformalRoman-Regular
 /IowanOldStyleBT-Black
 /IowanOldStyleBT-BlackItalic
 /IowanOldStyleBT-Bold
 /IowanOldStyleBT-BoldItalic
 /IowanOldStyleBT-Italic
 /IowanOldStyleBT-Roman
 /Ireland-Normal
 /ItcEras-Bold
 /ItcEras-Book
 /ItcEras-Medium
 /Jokerman-Regular
 /JuiceITC-Regular
 /Jupiter-Normal
 /KabarettD
 /KabelBd
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /Keypunch-Normal
 /Keystroke-Normal
 /Kids-Normal
 /KisBT-Italic
 /KisBT-Roman
 /Korinna-Bold
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /Korinna-KursivBold
 /Korinna-KursivRegular
 /Korinna-Regular
 /KristenITC-Regular
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /KunstlerScript
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LasVegasD
 /Latha
 /LatinExtraCondensedBT-Regular
 /LatinWidD
 /LatinWide
 /LcdD
 /LetterGothic
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LibertyBT-Regular
 /LibertyD
 /LibraBT-Regular
 /LithographBold
 /LithographLight-Normal
 /Lithograph-Normal
 /Lithos-Black
 /Lithos-Regular
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LuciaBT-Regular
 /LucianBT-Bold
 /LucianBT-Roman
 /Lucida
 /Lucida-Bold
 /Lucida-BoldItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /Lucida-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /MachineITCbyBT-Regular
 /Madrone
 /Magneto-Bold
 /MaiandraGD-Regular
 /MandarinD
 /Mangal-Regular
 /MariageD
 /MathematicalPi-Four
 /MathematicalPi-Three
 /MaturaMTScriptCapitals
 /MetropolitainesD
 /MICR10byBT-Regular
 /MICR12byBT-Regular
 /MICR13byBT-Regular
 /MicrogrammaD-BoldExte
 /MicrogrammaD-MediExte
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-BlackOsF
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-BoldItalicOsF
 /Minion-BoldOsF
 /Minion-Condensed
 /Minion-CondensedItalic
 /MinionCyr-Bold
 /MinionCyr-BoldItalic
 /MinionCyr-Italic
 /MinionCyr-Regular
 /MinionCyr-Semibold
 /MinionCyr-SemiboldItalic
 /Minion-DisplayItalic
 /Minion-DisplayItalicSC
 /Minion-DisplayRegular
 /Minion-DisplayRegularSC
 /MinionExp-Black
 /MinionExp-Bold
 /MinionExp-BoldItalic
 /MinionExp-DisplayItalic
 /MinionExp-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Regular
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-ItalicSC
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Minion-Regular
 /Minion-RegularSC
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Minion-SemiboldItalicSC
 /Minion-SemiboldSC
 /Minion-SwashDisplayItalic
 /Minion-SwashItalic
 /Minion-SwashSemiboldItalic
 /MiraraeBT-Bold
 /MiraraeBT-Roman
 /MisterEarlBT-Regular
 /Mistral
 /Modern20BT-ItalicB
 /Modern20BT-RomanB
 /Modern735BT-RomanA
 /Modern-Regular
 /MonaLisaRecut
 /MonaLisaSolid
 /MonotypeCorsiva
 /MotterFemD
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MT-Extra
 /MTMI
 /MTSY
 /MT-Symbol
 /MT-Symbol-Italic
 /MurrayHillBT-Bold
 /MusicalSymbols-Normal
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NevisonCasD
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /News701BT-BoldA
 /News701BT-ItalicA
 /News701BT-RomanA
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NicolasCocT-Blac
 /NicolasCocT-Regu
 /NicolasCocT-ReguItal
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NormandeBT-Italic
 /NormandeBT-Roman
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OkayD
 /OldEnglishTextMT
 /OldTowneNo536D
 /Onyx
 /OnyxBT-Regular
 /Optima-BoldOblique
 /Optima-Oblique
 /Optimum-Bold-DTC
 /Optimum-BoldItalic-DTC
 /Optimum-Roman-DTC
 /Optimum-RomanItalic-DTC
 /OrandaBT-Bold
 /OrandaBT-BoldCondensed
 /OrandaBT-BoldItalic
 /OrandaBT-Italic
 /OrandaBT-Roman
 /OrandaBT-RomanCondensed
 /Orator
 /OratorBT-FifteenPitch
 /OratorBT-TenPitch
 /OrbitBbyBT-Regular
 /OriginalGaramondBT-Bold
 /OriginalGaramondBT-BoldItalic
 /OriginalGaramondBT-Italic
 /OriginalGaramondBT-Roman
 /Ottawa-Bold
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Palette-Normal
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParisianBT-Regular
 /ParkAvenue
 /ParkAvenueBT-Regular
 /Pepper-Normal
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhyllisD
 /PioneerITCbyBT-Regular
 /Pipeline-Normal
 /PiranesiItalicBT-Regular
 /Playbill
 /PlaybillBT-Regular
 /PlazaD-Regu
 /Poetica-ChanceryI
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /Poplar
 /Posse-Normal
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Postino
 /Postino-Italic
 /President-Normal
 /PrincetownD
 /PrincetownSolid
 /Pristina-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /PTBarnumBT-Regular
 /PumpTriD
 /Quicksilver
 /QuillScript
 /Raavi
 /RageItalic
 /RaleighBT-Bold
 /RaleighBT-DemiBold
 /RaleighBT-ExtraBold
 /RaleighBT-Light
 /RaleighBT-Medium
 /RaleighBT-Roman
 /Ravie
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /RevueBT-Regular
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanaBT-Bold
 /RomanaBT-Roman
 /RunicMT-Condensed
 /SansExtended-Medium-DTC
 /SansExtended-Regular-DTC
 /SansExtended-RegularOblique-DTC
 /SansExtraBlackCondensed-DTC
 /Sanvito-Light
 /Sanvito-Roman
 /SchadowBT-BlackCondensed
 /SchneidlerBT-Black
 /SchneidlerBT-BlackItalic
 /SchneidlerBT-Bold
 /SchneidlerBT-BoldItalic
 /SchneidlerBT-Italic
 /SchneidlerBT-Light
 /SchneidlerBT-LightItalic
 /SchneidlerBT-Medium
 /SchneidlerBT-MediumItalic
 /SchneidlerBT-Roman
 /ScriptMTBold
 /SeagullBT-Bold
 /SeagullBT-Heavy
 /SeagullBT-Light
 /SeagullBT-Medium
 /SerpentineD-Bold
 /SerpentineD-BoldItal
 /ShelleyAllegroBT-Regular
 /ShelleyAndanteBT-Regular
 /ShelleyVolanteBT-Regular
 /ShotgunBlanksBT-Regular
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SkidoosD
 /SloganD
 /SnapITC-Regular
 /SnellBT-Black
 /SnellBT-Bold
 /SnellBT-Regular
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /Spartan-BookClassified
 /Spartan-HeavyClassified
 /Square721
 /Square721Blk
 /Square721BT-Bold
 /Square721BT-BoldCondensed
 /Square721BT-BoldExtended
 /Square721BTItalic
 /Square721BT-Roman
 /Square721BT-RomanCondensed
 /Square721BT-RomanExtended
 /Square721DmItalic
 /Square721DmNormal
 /SquareSlabserif711BT-Bold
 /SquareSlabserif711BT-Light
 /SquareSlabserif711BT-Medium
 /SquireD-Bold
 /SquireD-Regu
 /Staccato222BT-Regular
 /Staccato555BT-RegularA
 /Stencil
 /StencilBT-Regular
 /StopD
 /StuyvesantBT-Regular
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss911BT-ExtraCompressed
 /Swiss911BT-UltraCompressed
 /Swiss921BT-RegularA
 /Swiss924BT-RegularB
 /SwitzerlandNarrow-Bold
 /SwitzerlandNarrow-BoldItalic
 /SwitzerlandNarrow-Italic
 /SwitzerlandNarrow-Normal
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolProportionalBT-Regular
 /Tahoma
 /Tahoma-Bold
 /TangoBT-Regular
 /Technical-Italic
 /Technical-Normal
 /TektonMM
 /TektonMM-Oblique
 /TempusSansITC
 /ThunderbirdBT-Regular
 /Tiepolo-Book
 /TiffanyITCbyBT-Demi
 /TiffanyITCbyBT-DemiItalic
 /TiffanyITCbyBT-Heavy
 /TiffanyITCbyBT-HeavyItalic
 /TiffanyITCbyBT-Light
 /TiffanyITCbyBT-LightItalic
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /TimeScrD-Bold
 /TimeScrD-Ligh
 /TimeScrD-Medi
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Traffic
 /Trajan-Bold
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TriplexConBlackOldstyle
 /TrumpetLite
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UniversityRomanBT-Bold
 /UniversityRomanBT-Regular
 /UptightNeon
 /URWWoodTypD
 /Utopia-Italic
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRoundedBT-Regular
 /VAGRounded-Light
 /VAGRoundedLt
 /VAGRounded-Thin
 /VanDijk
 /Veljovic-Black
 /Veljovic-MediumItalic
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VictorianD
 /Viking-Normal
 /VinerHandITC
 /VinetaBT-Regular
 /Viva-BoldExtraExtended
 /VivaldiD
 /Vivaldii
 /Viva-Regular
 /VladimirScrD
 /VladimirScript
 /VolutaScript
 /VolutaScript-Alternates
 /VolutaScript-Swash
 /Vrinda
 /Webdings
 /WeddingTextBT-Regular
 /Willow
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Outline
 /WindsorBT-Roman
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-BoldExtended
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
 /ZzTeX-Doodads
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

