
An Empirical Study of Bugs in Machine Learning Systems

Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang
School of Information Systems

Singapore Management University, Singapore
{ferdianthung,shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

Abstract—Many machine learning systems that include var-
ious data mining, information retrieval, and natural language
processing code and libraries are used in real world appli-
cations. Search engines, internet advertising systems, product
recommendation systems are sample users of these algorithm-
intensive code and libraries. Machine learning code and toolkits
have also been used in many recent studies on software
mining and analytics that aim to automate various software
engineering tasks. With the increasing number of important
applications of machine learning systems, the reliability of
such systems is also becoming increasingly important. A
necessary step for ensuring reliability of such systems is to
understand the features and characteristics of bugs occurred
in the systems. A number of studies have investigated bugs and
fixes in various software systems, but none focuses on machine
learning systems. Machine learning systems are unique due to
their algorithm-intensive nature and applications to potentially
large-scale data, and thus deserve a special consideration.

In this study, we fill the research gap by performing an
empirical study on the bugs in machine learning systems. We
analyze three systems, Apache Mahout, Lucene, and OpenNLP,
which are data mining, information retrieval, and natural
language processing tools respectively. We look into their
bug databases and code repositories, analyze a sample set of
bugs and corresponding fixes, and label the bugs into various
categories. Our study finds that 22.6% of the bugs belong
to the algorithm/method category, 15.6% of the bugs belong
to the non-functional category, and 13% of the bugs belong
to the assignment/initialization category. We also report the
relationship between bug categories and bug severities, the time
and effort needed to fix the bugs, and bug impacts. We highlight
several bug categories that deserve attention in future research.

I. INTRODUCTION

Many real systems, such as search engines, social net-
works, and online library services, employ data mining,
information retrieval, natural language processing, and many
other algorithm-intensive solutions. In software engineering
research, many machine learning solutions are also used to
find bugs [22], localize bugs [7], recommend fixes [16], [30],
detect duplicate bug reports [15], [36], mine specification-
s [29], and many more. Analyzing and improving machine
learning systems has potentially much impact.

Bugs are prevalent in software systems. Machine learning
systems are no exceptions. Bugs could adversely affect
these solutions; they could give wrong output, crash without
running to completion, or runs too slow for it to be usable
by end users or systems. Preventing, detecting, and resolving
bugs in algorithm-intensive solutions are thus important.

An important step to reduce bugs is to analyze historical
bugs that have occurred in a system. Post-mortem analysis
of bugs for understanding various characteristics of various
bugs [8], [9], [24], [26], [27], [42] can have many benefits.
It can provide knowledge for guiding the design of bug
detection tools, triaging bug reports, locating likely bug
locations, suggesting possible fixes, gauging testing and
debugging costs, measuring software quality, and helping
to monitor and manage development processes.

To better understand the nature of bugs in machine
learning systems and to potentially help to prevent, resolve,
mitigate, or manage such bugs, this paper performs an
exploratory study of real bugs from such systems. There
have been a number of studies that investigate defects1

in other kinds of software systems [9], [21], [24], [31],
[32], [34], [42]. However, none so far focuses on machine
learning systems. Many software systems studied in prior
studies, such as email clients (e.g., Columba), text editors
(JEdit), integrated development environments (e.g., Eclipse),
web browsers (e.g., Mozilla), are primarily designed to
render user interfaces and handle user interactions. The user
interface-intensive systems are inherently different from data
mining, information retrieval, and natural language process-
ing systems that are algorithm-intensive, often repeatedly run
for a long period of time, and deal with large-scale datasets.

In this study, we analyze three algorithm-intensive ma-
chine learning systems/libraries: (1) Apache Mahout, a li-
brary of data mining solutions to analyze large scale data
by employing parallelization, (2) Apache Lucene, a library
of information retrieval solutions that support various ways
to retrieve relevant documents from a textual corpora given
a query efficiently, and (3) Apache OpenNLP, a toolkit of
various natural language processing (NLP) solutions.

To investigate bugs that appear in the three systems, we
analyze their bug repositories. The three libraries devel-
oped under Apache foundation use JIRA—a commercial
bug/issue tracking system—to store the reported bugs. We
choose libraries from Apache as their JIRA bug repositories
typically contain links from bug reports to a list of changes
in the corresponding source control repositories that fix those
bugs. Our initial manual investigation finds that most of
the links are correct and most of the closed bug reports

1In this paper, we use the term defects and bugs interchangeably.



are linked to all their corresponding changes. We manually
analyze a randomly selected sample of bugs to investigate
the nature of bugs in these systems.

Our study aims to answer a number of research questions
including: How often bugs appear in machine learning
systems? What kinds of bugs appear in such systems? How
severe are various categories of bugs? How long does it
take to fix various categories of bugs? How many files
are impacted by various category of bugs. We answer the
above questions by performing both manual and automated
analysis on a randomly sampled set of closed bug reports
and their corresponding bug fixing commits.

Our contributions are as follows:
1) We are the first to perform a large scale, semi-

automated analysis of bugs in machine learning systems
which are algorithm-intensive and should be considered
differently from user interface-intensive systems.

2) We manually categorize 500 bug reports and their
fixes from three machine learning systems into various
categories by using the bug categorization in [34].

3) We investigate the relationships between bug categories
and bug severities, bug fixing time and effort, and bug
impact to the system. To the best of our knowledge,
we are the first to investigate such relationships for a
variety of bug categories. We believe our analysis of the
bugs would provide guidance for preventing, detecting,
mitigating, resolving, and managing bugs in similarly
algorithm-intensive machine learning systems.

The rest of this paper is structured as follows. In Sec-
tion II we describe our dataset and methodology. Section III
presents our empirical study which describes our research
questions and their answers. Section IV describes related
work. We conclude and mentions future work in Section V.

II. DATASET & METHODOLOGY

In this section, we describe the three machine learning
systems used in this study. We then present our methodology.

A. Dataset

Apache Mahout is a library that provides various data
mining algorithms [2]. Various algorithms are implemented
in the library including clustering, classification, collabora-
tive filtering, and frequent pattern mining. The goal of the
project is to provide scalable data mining solution. Mahout
realizes this by building the algorithms on top of Apache
Hadoop which is an open source implementation of the
Map-Reduce framework. It has been developed since Jan
2008 based on the first entry in the source code repository.
Its latest release at the end of May 2012 is version 0.6.
It consists of 175,295 lines of code and 1,251 Java files
(on May 23, 2012). To analyze bugs that are reported for
Mahout, we analyze its JIRA issue repository located at:

https://issues.apache.org/jira/browse/MAHOUT

For our manual analysis, we randomly pick 200 bug reports
out of more than 1000 issues of various types (e.g., bugs,
improvements, new features, tasks, tests, wishes, brainstorm-
ing, etc.) contained in the JIRA repository of Mahout.

Apache Lucene is an information retrieval library written
in Java [1]. It supports full-featured high performance re-
trieval of documents from textual corpora. It has various
features including scalable indexing and powerful search
algorithms. It has been developed since Sep 2001 and the
latest release at the end of May 2012 is version 3.6. It
consists of 554,036 lines of code and 2,564 Java files (on
May 23, 2012). To analyze bugs that are reported for Lucene,
we analyze its JIRA issue repository located at:

https://issues.apache.org/jira/browse/LUCENE

For our manual analysis, we randomly pick 200 bug reports
out of more than 4000 issues contained in the JIRA reposi-
tory of Lucene.

Apache OpenNLP is a “machine learning based toolkit
for the processing of natural language text” [3]. It supports
various natural language processing tasks including tok-
enization, segmentation, chunking, parsing, part-of-speech
tagging, named entity resolution, and many more. It has been
developed since Dec 2010 and the latest release at the end
of May 2012 is 1.5.2. It consists of 78,224 lines of code and
697 Java files. To analyze bugs that are reported for Mahout,
we analyze its JIRA issue repository located at:

https://issues.apache.org/jira/browse/OPENNLP

For our manual analysis, we randomly pick 100 bug reports
out of more than 500 issues contained in the JIRA repository
of OpenNLP.

We analyze snapshots of JIRA repositories of Mahout,
Lucene, and OpenNLP dated up to 11 May 2012. We focus
on only closed bugs from the JIRA repositories, as bug
reports that are not closed may not be bugs or have no fixes
or enough information for our analysis yet. Table I shows the
numbers of closed bugs for Mahout, Lucene, and OpenNLP.
We also show the durations (in years) between the first and
last bugs in Column “Duration.”

Table I
NUMBERS OF CLOSED BUGS IN MACHINE LEARNING SYSTEMS

Application Size – Lines of Code Bug Count Duration
Mahout 175,295 (Version 0.6) 314 4.28 years
Lucene 554,036 (Version 3.6) 1,533 10.59 years

OpenNLP 78,224 (Version 1.5.2) 113 1.39 years

B. Methodology

Our empirical study consists of several steps:
1) Data Collection. We download the bug repositories

and source control repositories of the three software
systems. For many software systems, these two repos-
itories are often maintained separately and thus are
not properly linked (c.f. [41]). Fortunately, for many



Table II
BUG CATEGORIES BASED ON CODE DEFECT TYPES IN [34]

Category Definition
algorithm/method The implementation of an algorithm/method

does not follow the expected behavior.
assignment/initialization Error in assigning variable values.
checking Missing necessary checks that lead to an error

or a wrong error message.
data Wrong use of data structure.
external interface Error in interfacing with other systems or users,

such as using deprecated methods from other
systems, required updates to own external in-
terfaces for ease of usage, etc.

internal interface Error in interfacing with another component of
the same system, such as violating the contract
of inheritance, wrong use of operations from
other classes, etc.

logic Incorrect expressions in conditional statements
(e.g., if, while, etc.)

non-functional Violations in non-functional requirements,
such as improper variable or method names,
wrong documentation to the implementation of
a method, etc.

timing/optimization Error that causes concurrency or performance
issues, such as deadlock, high memory usage,
etc.

configuration Error in non-code (e.g., configuration files) that
affects functionality.

others Other bugs that do not fall into one of the above
categories.

programs in Apache Software Foundation, the JIRA
repositories store the linkages between reported bugs
and code commits in source control repositories that
fix them. Our initial analysis on a number of randomly
sampled links and bug reports finds that most links are
correct and most bug reports are properly linked to all
the commits that fix them. Thus, we base our analysis
on reported bugs, commits, and links between them.

2) Manual Bug Report Categorization. We then pick a
sample set of 500 bugs as described in Section II-A
for our analysis. We manually look into the description
of each bug report to decide its labels. We use the
set of categories proposed by Seaman et al. in [34]
and add one new category: configuration, to capture
bugs in configuration files. The categories and their
meaning are shown in Table II. The description of a
bug report is often short and ambiguous; for these cases,
we look not only at the textual description but also at
the code changes that fix the bug. This helps us to
find more about the nature of the bug and decide a
better category of a bug report. For example, Figure 1
shows a sample bug report. The description of the
report talks about “nightly builds” but is unclear what
the error actually is. The logs from the code commits
that fix the bug is clearer that it tells us the bug is
about producing invalid final offset for input containing
“</br>” in HTMLStripCharFilter, and we can confirm
this by looking into the files changed. Thus, we can
categorize this bug into the algorithm/method category.
Each of the first two authors manually labeled half of

Figure 1. Example of ambiguous description

the bug sample set, and they met for many hours and
verified each other’s labels to ensure their correctness.

3) Statistics Computation. We compute various statistics
for every bug category and for all bugs that we inves-
tigate. These statistics are used to answer the various
research questions that we have on the number of bugs
appearing in machine learning systems, the numbers
of different categories of bugs, and the relationships
between bug categories and bug severities, fixing time
and effort, and bug impact on the overall systems.

III. EMPIRICAL STUDY

This section presents our research questions and answers,
and discusses additional analysis and threats to validity.

A. Research Questions

We are interested in analyzing these research questions:
RQ1: How often bugs appear in algorithm-intensive ma-

chine learning systems?
RQ2: What kinds of bugs appear in algorithm-intensive

machine learning systems?
RQ3: How severe are various kinds of bugs?
RQ4: How long does it take to fix various bugs?
RQ5: How much effort is needed to fix various bugs?
RQ6: How many files need to be fixed for various bugs?

The first question investigates the density and speed of
bugs appearing in the three machine learning systems. The
second question analyzes occurring frequencies of each
kind of bugs. We investigate bug severities and the time
durations taken to fix bugs in the third and fourth questions
respectively. We analyze the bug-fixing effort by counting
the number of revisions needed to fix a bug in the fifth
question. We analyze the impact of the bugs in terms of the
number of files that need to be changed to fix the bugs in
the sixth question. We describe the answers to the questions
in the following subsections.

B. RQ1: Bug Frequencies

Based on bug counts shown in Table I in Section II, we
divide the number of historically closed bugs in a system by
the size of a snapshot of the system we find that Lucene has



the highest number of bugs (2.77 bugs/kLOC) followed by
Mahout (1.79 bugs/kLOC) and OpenNLP (1.45 bugs/kLOC)
(shown in Table III). This means that for every line of code,
developers of Lucene need to fix more bugs than those
of Mahout and OpenNLP. These numbers also seem to be
higher than those in operating systems as shown in previous
studies [9], [27], [31]. The last column of Table III shows
the average numbers of bugs occurred for the systems per
year. Lucene is the oldest system, while OpenNLP is the
youngest system. Lucene has the highest number of bugs
per year, followed by OpenNLP, followed by Mahout.

Table III
BUG DENSITIES IN MACHINE LEARNING SYSTEMS

Application Bug Count Per kLOC Bug Count Per Year
Mahout 1.79 bugs/kLOC 73.36 bugs/year
Lucene 2.77 bugs/kLOC 144.76 bugs/year

OpenNLP 1.45 bugs/kLOC 95.68 bugs/year

Note that high bug numbers or densities do not necessarily
imply low software quality as previous studies have shown
(e.g., [13]). Many factors, such as the popularity of a project
(e.g., the number of developers contributing to the project,
the number of users reporting bugs), the release cycles of
the project, and the size and complexity of the project, may
affect bug counts and densities. It is interesting future work
to explore and understand the factors that affect bug counts
in machine learning systems.

Lucene is more than 10 years old and has a higher bug
density (2.77 bugs per kLOC) than Mahout (about 5
years old, 1.79 bugs per kLOC) and OpenNLP (about
2 years old, 1.45 bugs per kLOC).

C. RQ2: Bug Types
We manually extract 500 randomly chosen bugs from

the three machine learning software systems. These bugs
are then manually labeled. The distribution of bugs based
on the 11 categories is shown in Table IV. We find that
most bugs are categorized as algorithm/method (22.60%),
followed by non-functional (15.60%), and followed by as-
signment/initialization (13.00%). Only 1% of the bugs falls
under the category others. This indicates that the other 10
categories are sufficient to cover most of the bugs.

Table IV
BUG TYPES

Type Count Percentage
algorithm/method 113 22.60%
non-functional 78 15.60%
assignment/initialization 65 13.00%
checking 57 11.40%
external interface 38 7.60%
internal interface 38 7.60%
data 28 5.60%
logic 27 5.40%
configuration 27 5.40%
timing/optimization 24 4.80%
others 5 1%

Algorithm/method bugs correspond to incorrect imple-
mentation of a defined algorithm. An example of such bugs

is shown in Figure 2. It describes a bug on the fuzzy search
algorithm that does not perform appropriate boosting.

Figure 2. Example of algorithm/method bug

Non-functional bugs correspond to bugs that do not affect
the actual functionality of the system. An example of such
bugs is shown in Figure 3. It describes an inconsistency
between the documentation and code.

Figure 3. Example of non-functional bug

Assignment/initialization bugs correspond to unassigned
or wrongly assigned variables. An example of such bugs
is shown in Figure 4. The QueryParser.getDefaultQuery
method does not set a default value for “slop.”

Figure 4. Example of assignment/initialization bug

Timing/optimization bugs have the least occurrences (a-
side from others). This might be the case as the machine
learning systems are often implemented based on well-
known and scalable algorithms and thus they are generally
scalable. It might be the case also because most performance
bugs are detected early and do not appear in the bug
repositories. It might also be possible that performance bugs
experienced by the users of the systems are hard to reproduce
or debug without the specific settings and data inputs used
by the users, and thus are not fixed or closed.

The most common categories of bugs in Ma-
hout, Lucene, and OpenNLP are: algorithm/method
(22.6%), non-functional (15.6%), and assignmen-
t/initialization (13.0%).



Table V
BUG COUNTS FOR VARIOUS BUG SEVERITIES

Type Severity Count Proportion Type Severity Count Proportion

algorithm/method

Blocker 1 0.88%

internal interface

Blocker 1 2.63%
Critical 3 2.65% Critical 0 0.00%
Major 70 61.95% Major 22 57.89%
Minor 33 29.20% Minor 11 28.95%
Trivial 6 5.31% Trivial 4 10.53%

assignment/initialization

Blocker 2 3.08%

logic

Blocker 0 0.00%
Critical 1 1.54% Critical 0 0.00%
Major 34 52.31% Major 15 55.56%
Minor 24 36.92% Minor 8 29.63%
Trivial 4 6.15% Trivial 4 14.81%

checking

Blocker 2 3.51%

non-functional

Blocker 0 0.00%
Critical 1 1.75% Critical 0 0.00%
Major 32 56.14% Major 38 48.72%
Minor 17 29.82% Minor 29 37.18%
Trivial 5 8.77% Trivial 11 14.10%

configuration

Blocker 0 0.00%

timing/optimization

Blocker 0 0.00%
Critical 0 0.00% Critical 0 0.00%
Major 19 70.37% Major 19 79.17%
Minor 6 22.22% Minor 5 20.83%
Trivial 2 7.41% Trivial 0 0.00%

data

Blocker 0 0.00%

others

Blocker 0 0.00%
Critical 1 3.57% Critical 0 0.00%
Major 15 53.57% Major 3 60.00%
Minor 12 42.86% Minor 0 0.00%
Trivial 0 0.00% Trivial 2 40.00%

external interface

Blocker 1 2.63%
Critical 1 2.63%
Major 21 55.26%
Minor 12 31.58%
Trivial 3 7.89%

D. RQ3: Bug Severity

Next, we investigate the relationship between various bug
types and their reported severities. There are five severity
levels2 that a bug reporter can assign: Blocker, Critical, Ma-
jor, Minor, and Trivial. Blocker is the most severe category
while trivial is the least severe category. Table V shows the
numbers and proportions of bugs at various severity levels
for various bug categories.

It is notable that the default severity level is major when
a user creates a new bug report in the JIRA issue tracking
systems. This may be a reason why major bugs dominate
every bug type since users are often unable to distinguish
well among the severity levels and simply leave the reported
bug at the default severity level [12]. To reduce biases, it
would be interesting future work to incorporate automated
techniques (e.g., [18], [28]) to infer more accurate severity
levels for bugs before carrying out more detailed analysis.

Nevertheless, from the table, we notice that no one bug
category predominates the blocker and critical bugs. Six
out of the eleven bug categories contain a bug with either
the blocker or critical severity label: algorithm/method,
assignment/initialization, checking, data, external interface,
and internal interface. Most serious bugs (labeled as blocker
and critical) are categorized as algorithm/method, assign-
ment/initialization, checking, and external interface. Each of
the data and internal interface categories has only one bug

2In JIRA bug reports, the word priority is used instead of severity.

with the critical or blocker severity label. Five out of the
eleven bug categories do not contain a bug with either the
blocker or critical severity label though: configuration, logic,
non-functional, timing/optimization, and other.

Looking at the proportion of trivial bugs, category others
has the highest proportion of trivial bugs, followed by the
logic and the non-functional categories. This is intuitive as
logic bugs often capture corner cases that rarely happen and
non-functional bugs are relatively unimportant to the correct
working of the systems—many of them are minor issues
related to poor variable and method naming.

Most severe bugs (blocker and critical) are cat-
egorized as: algorithm/method (4/14), assignmen-
t/initialization (3/14), checking (3/14), and external
interface (2/14). Among the 11 categories, others has
the highest proportion of trivial bugs (40%).

E. RQ4: Bug-Fixing Duration

Next, we investigate the relationship between bug cate-
gories and bug-fixing time. We measure bug-fixing time by
the number of days that have passed until a bug report is
closed and not re-opened (at least until the time we crawled
the repositories in May 2012). Table VI shows the minimum,
maximum, mean, and median numbers of days that have
elapsed before bugs of various categories are fixed.

We notice that the minimum period between the time
when a bug is reported and the time when the bug is fixed
for all bug categories is just a few seconds. Most of such



Table VI
BUG-FIXING DURATIONS IN TERMS OF DAYS

Type Min Max Mean Median
algorithm/method 0.0022 2433.7033 91.7238 3.8740
assignment/initialization 0.0003 160.9271 9.9160 0.5000
checking 0.0017 195.7766 17.1335 1.1175
configuration 0.0016 195.9011 22.3583 2.8032
data 0.0014 676.3825 40.8279 2.2666
external interface 0.0006 1700.5871 69.2463 0.4275
internal interface 0.0029 1688.5275 93.3543 2.4852
logic 0.0016 59.8305 6.8892 1.2537
non-functional 0.0006 1330.4142 47.8057 0.6949
timing/optimization 0.0017 569.7309 71.6649 3.3596
others 0.0005 1.3128 0.3344 0.0594

bugs are reported and fixed by the developers themselves:
The developers may have noticed the bug much earlier; they
just report the bug to the bug repository for future post-
mortem analysis after they find a solution for the bug and
right before they commit the necessary code changes to the
source control repository. This fact follows the observation
made by Lamkanfi and Demeyer [20] and such cases may
need to be filtered before further analysis on bug-fixing time.

The maximum bug-fixing time, however, can take a few
months or years. Three bug categories with the highest
maximum bug-fixing time are algorithm/method, external
interface, and internal interface, which could take more
than 1,500 days. In terms of mean bug-fixing time, internal
interface, algorithm/method, and timing/optimization bugs
take the longest to be closed (more than 70 days). Table VII
gives further breakdowns of durations into a month, a year,
and more than a year for various bug categories, and we see
that most bugs are fixed within a month.

We look deeper into the average days for fixing these
types of bugs by splitting them into high severity bugs
(Blocker, Critical), medium severity bugs (Major, the default
severity level when a user creates a new bug report), and
low severity bugs (Minor, Trivial) as shown in Table VIII.
We notice that, in terms of mean and median, low severity
algorithm/method and internal interface bugs take longer to
be fixed than high severity ones. This may be the case as
developers are generally more concerned with high severity
bugs than low severity ones. For external interface bugs,
the reverse happens. We manually investigate the bugs to
understand what the cause may be. We find some bugs
that were only fixed after many years. An sample bug is
a compatibility issue with older versions of JDK and an
external library; the developers might have ignored the bug
as users could simply upgrade their JDK or external library
to avoid the issues. Due to the small sample sizes of bugs
of various categories, our results may not be statistically
significant. It would be future work to collect more relevant
bug samples for further analysis.

Note that there can be many other factors besides bug
category and severity that may affect bug-fixing durations,
such as the release cycles of a project, special organized
bug-fixing activities, popularity of a project, etc. It would

be interesting to investigate what could be done to shorten
bug-fixing durations.

In terms of median bug-fixing duration, bugs in algo-
rithm/method (3.87 days), timing/optimization (3.36
days), and configuration (2.80 days) take the longest
to be fixed.

F. RQ5: Bug-Fixing Effort

Next, we measure the bug-fixing effort each bug category.
We define bug-fixing effort as the number of revisions it
takes to fix a bug such that the corresponding bug report
is closed and not re-opened again (until the last time
when we collected the data in May 2012). Table IX shows
the minimum, maximum, mean, and median numbers of
revisions needed to fix bugs in various categories.

We notice that a bug in the checking category requires
11 revisions to be fixed. It involves changes to code in the
main trunk and in the branches. The developer performed
one commit to the trunk. After some months, the same
fix was propagated to other branches. Another bug in the
category of algorithm/method needs 9 revisions to be fixed.
For this bug, the developer performed an initial fix and then
several subsequent fixes to address several sub-problems.
The developer did the changes over multiple days, and made
separate code commits for different parts of the problem.

Considering the average numbers of revisions need-
ed to correct various kinds of bugs, we find that tim-
ing/optimization bugs require the most number of revisions,
although we find that timing/optimization bugs occur the
least often as shown in Table IV (besides “others”).

Note that the number of revisions needed to fix a bug may
only be a weak proxy of bug-fixing efforts since revision
check-in patterns may vary widely across developers and
projects, and do not reflect the actual amount of time
spent by developers in fixing bugs3. There is prior work
studying bug-fixing efforts (in terms of actual time spent).
For example, Weiß et al. [40] have studied 125 bugs from
the JBOSS project where effort data is available; they find
that the average effort for fixing a bug is about 4.8 ± 6.3
hours. Future work would be to improve our study by
collecting effort data for machine learning systems, and
adapting techniques to more accurately estimate bug-fixing
effort.

In this paper, we further investigate the numbers of bugs
in each category that require 1 revision, 2 revisions, and
more than 2 revisions to be fixed. Table X provides this
information. We note that 81.84% of the logic bugs (i.e.,
bugs in a conditional expression) were fixed in one revision.
Also, 78.46% of the assignment/initialization bugs were
fixed in one revision. On the other hand, only 25% of the
timing/optimization bugs were fixed in one revision; most

3Such actual bug-fixing time is different from bug-fixing duration which
measures the whole lifespan of a bug.



Table VII
NUMBERS OF BUGS FIXED WITHIN VARIOUS DURATIONS

Type Duration Count Proportion Type Duration Count Proportion

algorithm/method
within a month 80 70.80%

internal interface
within a month 28 73.68%

within a year 30 26.55% within a year 7 18.42%
more than a year 3 2.65% more than a year 3 7.89%

assignment/initialization
within a month 61 93.85%

logic
within a month 25 92.59%

within a year 4 6.15% within a year 2 7.41%
more than a year 0 0.00% more than a year 0 0.00%

checking
within a month 50 87.72%

non-functional
within a month 65 83.33%

within a year 7 12.28% within a year 10 12.82%
more than a year 0 0.00% more than a year 3 3.85%

configuration
within a month 22 81.48%

timing/optimization
within a month 16 66.67%

within a year 5 18.52% within a year 6 25.00%
more than a year 0 0.00% more than a year 2 8.33%

data
within a month 23 82.14%

others
within a month 5 100.00%

within a year 4 14.29% within a year 0 0.00%
more than a year 1 3.57% more than a year 0 0.00%

external interface
within a month 28 73.68%
within a year 9 23.68%

more than a year 1 2.63%

Table VIII
AVERAGE BUG-FIXING DURATION PER SEVERITY GROUP FOR TOP-3

CATEGORIES (BASED ON MEAN BUG-FIXING DURATION)
Bug Type High Medium Low

Mean Median Mean Median Mean Median
algorithm/method 62.60 0.73 51.88 4.90 166.21 3.21
internal interface 1.08 1.08 110.42 2.49 74.46 3.09
external interface 57.21 57.21 104.29 0.23 21.79 0.34

Table IX
NUMBERS OF REVISIONS NEEDED TO FIX A BUG

Type Min Max Mean Median
algorithm/method 1 9 1.9646 1
assignment/initialization 1 4 1.2923 1
checking 1 11 1.7544 1
configuation 1 5 1.7037 1
data 1 5 1.6429 1
external interface 1 6 1.7368 1
internal interface 1 8 1.8947 1
logic 1 4 1.2593 1
non-functional 1 6 1.5641 1
timing/optimization 1 7 2.4167 2
others 1 1 1.0000 1

of the timing/optimization bugs need multiple revisions to
be completely resolved.

In terms of mean revisions needed to fix bugs,
timing/optimization bugs require the most effort (2
revisions) to fix. Most bugs in other categories can
be fixed in one revision.

G. RQ6: Bug Impact

Finally, we analyze the relationships between bug cate-
gories and their impact. We measure the impact of a bug
as the number of files that need to be changed to fix the
bug. Table XI shows the minimum, maximum, and average
numbers of files impacted by various categories of bugs.

Non-functional bugs impact the largest maximum number
of files. There is a bug that impacts 676 files. The fix to this
bug requires fixing an inconsistent line ending style and has
to be done in many files. There is a data bug that affects
124 files since many classes need to be changed from using
one data structure to another.

In terms of median number of files impacted, tim-
ing/optimization bugs are ranked first again. In terms of the
mean numbers of files impacted, non-functional bugs are
ranked first. Many non-functional bugs are formatting issues
and need to be applied to many files.

We investigate further the numbers of bugs in each
category that impact 1-2 files, 3-5 files, and more than 5
files. Table XII provides the statistics. We note that 81.84%
of the logic bugs (i.e., bugs in a conditional expression)
only impact one file. Also, 70.37% of the configuration bugs
only impact one file. On the other hand, only 29.17% of the
timing/optimization bugs impact one file; most of the tim-
ing/optimization bugs require changes to more than 2 files
to be fixed. Again, this may imply that timing/optimization
bugs may be hard to fix.

In terms of median number of files needed to be fixed,
timing/optimization bugs have the most impact. In
terms of maximum number of files needed to be fixed,
non-functional bugs may have the most impact.

H. Additional Analysis

The algorithm/method category deserves special attention:
this category has the most number of bugs; many severe
bugs belong to this category, which may be related to the
algorithm-intensive nature of machine learning systems; its
bug-fixing time is long; and it is among the bug categories
that require the most effort to fix. Another bug category
that deserves attention is timing/optimization bugs. Although
this category has the least number of bugs, it requires the
most effort to fix, and it is among the categories with
longest bug-fixing time. Thus, there may be a need for
techniques that could help to reduce algorithm/method and
timing/optimization bugs in machine learning systems.

It may also be interesting to investigate techniques that
can help to propagate changes needed to fix non-functional,
external interface, and data bugs that affect many files.



Table X
BUG-FIXING EFFORT (DETAILED)

Type Effort Count Proportion Type Effort Count Proportion

algorithm/method
1 71 62.83%

internal interface
1 25 65.79%

2 17 15.04% 2 3 7.89%
>2 25 22.12% >2 10 26.32%

assignment/initialization
1 51 78.46%

logic
1 22 81.84%

2 11 16.92% 2 4 14.81%
>2 3 4.62% >2 1 3.70%

checking
1 32 56.14%

non-functional
1 54 69.23%

2 16 28.07% 2 14 17.95%
>2 9 15.79% >2 10 12.82%

configuration
1 16 59.26%

timing/optimization
1 6 25.00%

2 7 25.93% 2 10 41.67%
>2 4 14.81% >2 8 33.33%

data
1 16 57.14%

others
1 5 100.00%

2 8 28.57% 2 0 0.00%
>2 4 14.29% >2 0 0.00%

external interface
1 26 68.42%
2 5 13.16%
>2 7 18.42%

Table XI
NUMBERS OF IMPACTED FILES PER BUG

Type Min Max Mean Median
algorithm/method 1 117 11.7434 3
assignment/initialization 1 74 5.2459 2
checking 1 115 7.2982 2
configuration 1 40 5.2692 1
data 1 124 12.3571 3
external interface 1 92 13.3514 3
internal interface 1 52 7.6842 4.5
logic 1 15 2.7778 2
non-functional 1 676 16.7143 2
others 1 47 10.2000 1
timing/optimization 1 69 11.5833 5

Interestingly, logic bugs (i.e., errors on conditional state-
ments) which are often studied in fault localization studies
(e.g., [23], [25]) do not appear frequently. This category
is also among the categories of bugs with the highest
proportion of trivial bugs. It is also among the categories
of bugs that require the lowest bug-fixing effort. Similarly,
assignment/initialization bugs, which are also often studied
in fault localization studies, are among those that require the
lowest bug-fixing effort. Thus there is a need to investigate
the effectiveness of existing fault localization tools or devel-
op new methods for algorithm / method bugs and other bug
categories which are considered less in existing studies.

I. Threats to Validity

There are further threats that may potentially affect the
validity of our findings. Threats to internal validity relate
to experimenter bias and errors. Our study involves manual
inspection of bugs. This process is potentially error-prone.
To reduce this threat, each bug report is labeled by one
person and is checked by at least another. Any discrepancy
is discussed until a consensus is reached.

Threats to external validity relate to the generalizability
of our findings. We have analyzed three machine learning
systems: Mahout, Lucene, and OpenNLP. To improve the
generalizability of our findings we intentionally pick three

systems from different branches of machine learning tech-
niques that are widely used in software engineering research,
including data mining, information retrieval, and natural
language processing. However, they are all Apache Software
Foundation projects which use the JIRA repositories and the
characteristics of the bugs we find in this paper may be due
to the Apache development and bug-fixing processes and/or
the capabilities of JIRA. There are many other machine
learning libraries and systems that we have not analyzed.
Also, we only manually analyze 500 randomly sampled bug
reports. Although it is not a very large number, we believe
it is a good sample size as past studies, such as [4], [6],
[37], [41], investigate similar numbers of manually labeled
data. We plan to reduce this threat to external validity in the
future by analyzing more systems and bug reports.

There are possible threats to construct validity. Our study
aggregates bugs from different projects together; it may
conceal specificities of bugs from each project. We will
investigate whether bug statistics would be different when
the bugs from different projects are analyzed separately.

IV. RELATED WORK

A. Empirical Study on Bugs

Seaman et al. investigate bugs in various projects with
NASA and come up with various categories of bugs depend-
ing on where these defects occur: requirement documents,
code, and test plans [34]. Their paper mostly describes how
they come up with the categorization and how they label
bugs following the categorization. It is unclear what types
of projects are used in their study, possibly because the data
comes from NASA and may not be publicly shared. In this
study, we make use of their categorization and perform study
on bugs from algorithm-intensive machine learning systems.

Pan et al. investigate bug fixes in a number of systems
written in Java [32]. They categorize the types of bug fixes
based on syntax of the code changes, such as addition
of precondition check (IF-APC), addition of post-condition



Table XII
BUGS WITH VARIOUS NUMBERS OF IMPACTED FILES

Type Impact Count Proportion Type Impact Count Proportion

algorithm / method
1-2 38 33.63%

internal interface
1-2 14 36.84%

3-5 33 29.20% 3-5 7 18.42%
>5 42 37.17% >5 17 44.74%

assignment / initialization
1-2 43 66.15%

logic
1-2 22 81.48%

3-5 10 15.38% 3-5 2 7.41%
>5 8 12.31% >5 3 11.11%

checking
1-2 29 50.88%

non-functional
1-2 40 51.28%

3-5 16 28.07% 3-5 13 16.67%
>5 12 21.05% >5 24 30.77%

configuration
1-2 19 70.37%

others
1-2 4 80.00%

3-5 2 7.41% 3-5 0 0.00%
>5 5 18.52% >5 1 20.00%

data
1-2 13 46.43%

timing / optimization
1-2 7 29.17%

3-5 8 28.57% 3-5 6 25.00%
>5 7 25.00% >5 11 45.83%

external interface
1-2 17 44.74%
3-5 8 21.05%
>5 12 31.58%

check (IF-APTC), and others. Different from their work,
we focus on bugs in algorithm-intensive systems, and our
categorization, adapted from [34], is more semantic-aware.

Zaman et al. study security and performance bugs in
Firefox [42]. They investigate questions such as how fast
bugs are fixed, who fix bugs, and what characteristics the
bug fixes have. Lu et al. study concurrency bugs in MySQL,
Apache Web Server, Mozilla, and OpenOffice [24]. They
study questions such as what the types of concurrency bugs
are, how many threads and variables are involved in the
bugs, etc. Li et al. analyze bugs in Mozilla and Apache Web
Server [21]. They categorize bugs in three dimensions: root
cause, impact, and software component. Chou et al. inves-
tigate bugs in operating systems which investigate bugs in
the Linux and OpenBSD kernels [9]. They analyze questions
such as where the bugs are, how the bugs are distributed,
how long bugs live, how bugs are clustered, and how bugs
in different operating systems differ. A similar study was
performed a decade later by Palix et al. [31]. Maji et al. study
defects in mobile operating systems, including Android and
Symbian [27]. Different from these studies, we consider a
wider variety of bugs following the categorization in [34]
and analyze how they affect machine learning systems.

B. Bug Categorization

Many studies have proposed automated approaches to
categorize bugs. Huang et al. propose a semi-automated
technique that can automatically categorize bugs into various
categories, such as reliability, capability, integrity/security,
usability, and requirements [14].

Some other studies automatically assign severity labels
to bug reports. Menzies and Marcus predict the severities
of bug reports from NASA [28]. Extending the work of
Menzies and Marcus, Lamkanfi et al. investigate bug re-
ports in open source projects and develop a technique that
predicts coarse-grained severity labels (i.e., severe and non-
severe) [18]. After that, Lamkanfi et al. explore various

classification algorithms and investigate their effectiveness
in predicting the severities of bugs [19].

There are also a number of studies that predict if a
reported bug is a duplicate or not. Runeson et al. [33], Wang
et al. [39], Jalbert and Weimer [15], Sun et al. [35], [36],
Kaushik et al. [17], and Tian et al. [38] propose various
approaches to identify if a bug report is a duplicate or
not. The approach by Wang et al. [39] also use additional
information, such as execution traces, aside from the bug
reports. The approaches by Jalbert and Weimer [15] and Tian
et al. [38] are fully automated but have lower accuracies. The
other approaches are semi-automated and eventually needs
a developer to decide if a bug report is a duplicate or not.

C. Bug Fixing

Giger et al. use decision trees to predict whether a bug
may be fixed fast (i.e., takeing less time than the median
fix time) [10]. Weiß et al. build a machine learning model
to predict how long it takes for a bug to be fixed [40]. As
mentioned in Section III-F, their study focuses on the actual
amount of time spent by developers on a bug, instead of the
bug-fixing duration that measures the whole life of a bug.
Guo et al. build a model to predict whether a bug would
be fixed for Windows bugs [11]. Bhattacharya and Neamtiu
study hundreds of thousands of bug reports and suggest that
better models may be needed for predicting bug fix-times in
different kinds of software projects [5].

Jeffrey et al. propose an automated approach to fix bugs
using association rule mining [16]. Tien et al. propose a
graph mining based approach to fix bugs based on bug fixing
histories [30]. In this study, we perform an empirical study
that analyzes bug fixing time and effort for machine learning
systems and relate them to different categories of bugs.

V. CONCLUSION AND FUTURE WORK

With the increasing amount of data accumulated from
various domains, such as digital social networks, financial



markets, and space exploration, machine learning solutions
are being deployed and used in more and more situations.
Due to the high value of such systems, it is important to
analyze historical bugs occurred in the systems and learn to
prevent them from reoccurring.

In this study, we propose to investigate the characteris-
tics of bugs found in algorithm-intensive machine learning
systems that may be used with large-scale data. We focus
on three machine learning systems: Apache Mahout, Apache
Lucene, and Apache OpenNLP.

We investigate 500 fixed bugs randomly picked from the
three systems, and manually categorize the bugs. We note
that bugs in these systems may be more dense than open
source operating systems (e.g., Linux, Android), and bugs in
the algorithm/method category have the highest proportion
(22.6%). We also study various statistics of bug categories in
relation to bug severities, fixing durations, fixing efforts, and
impact. We find that the algorithm/method category contains
the highest number of most severe bugs and takes the longest
median time to be fixed. The timing/optimization bugs take
the second longest median time to be fixed and may require
the most effort to fix and have the largest median impact on
the source files in a machine learning system.

As future work, we plan to analyze more machine learning
systems and bugs. We also plan to develop a machine
learning technique to automatically categorize bugs into
one of the bug categories that we have. We also plan
to investigate the effectiveness of current bug finding and
localization solutions on machine learning systems and in
particular address algorithm/method and optimization/timing
bugs. We would also like to investigate approaches that
could help developers to propagate fixes for non-functional,
external interface, and data bugs.

ACKNOWLEDGEMENTS

We thank Foyzur Rahman and Prem Devanbu for pointing
us to the Apache JIRA repository that contains reasonably
accurate links between bug reports and corresponding code
changes. We also thank anonymous reviewers for providing
valuable comments to improve this paper.

REFERENCES

[1] “Apache Lucene,” http://lucene.apache.org/core/.
[2] “Apache Mahout,” http://mahout.apache.org/.
[3] “Apache OpenNLP,” http://opennlp.apache.org/.
[4] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y.-G. Guéhéneuc,

“Is it a bug or an enhancement? a text-based approach to classify
change requests,” in CASCON, 2008.

[5] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: can
we do better?” in MSR, 2011, pp. 207–210.

[6] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein, “LINKSTER:
Enabling efficient manual inspection and annotation of mined data,”
in SIGSOFT FSE, 2010, pp. 369–370.

[7] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug
signatures using discriminative graph mining,” in ISSTA, 2009.

[8] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray,
and M.-Y. Wong, “Orthogonal defect classification—a concept for in-
process measurements,” TSE, vol. 18, no. 11, pp. 943–956, 1992.

[9] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An
empirical study of operating system errors,” in SOSP, 2001.

[10] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in RSSE, 2010, pp. 52–56.

[11] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Charac-
terizing and predicting which bugs get fixed: an empirical study of
Microsoft Windows,” in ICSE, 2010, pp. 495–504.

[12] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles,
“Towards a simplification of the bug report form in eclipse,” in MSR,
2008, pp. 145–148.

[13] I. Herraiz, E. Shihab, T. H. D. Nguyen, and A. E. Hassan, “Impact
of installation counts on perceived quality: A case study on Debian,”
in WCRE, 2011, pp. 219–228.

[14] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “AutoODC:
Automated generation of orthogonal defect classifications,” in ASE,
2011, pp. 412–415.

[15] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in DSN, 2008.

[16] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, “BugFix: A learning-
based tool to assist developers in fixing bugs,” in ICPC, 2009.

[17] N. Kaushik and L. Tahvildari, “A comparative study of the perfor-
mance of IR models on duplicate bug detection,” in CSMR, 2012.

[18] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in MSR, 2010.

[19] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
CSMR, 2011.

[20] A. Lamkanfi and S. Demeyer, “Filtering bug reports for fix-time
analysis,” in CSMR, 2012, pp. 379–384.

[21] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now? an empirical study of bug characteristics in modern
open source software,” in ASID, 2006, pp. 25–33.

[22] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software code,”
in ESEC/SIGSOFT FSE, 2005, pp. 306–315.

[23] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: Statistical
model-based bug localization,” in ESEC/FSE, 2005.

[24] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in ASPLOS, 2008, pp. 329–339.

[25] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evaluation of
association measures for fault localization,” in ICSM, 2010.

[26] L. Ma and J. Tian, “Web error classification and analysis for relia-
bility improvement,” JSS, vol. 80, no. 6, pp. 795–804, 2007.

[27] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile OSes: A case study with Android and Symbian,”
in ISSRE, 2010, pp. 249–258.

[28] T. Menzies and A. Marcus, “Automated severity assessment of
software defect reports,” in ICSM, 2008.

[29] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
ESEC/SIGSOFT FSE, 2009, pp. 383–392.

[30] ——, “Recurring bug fixes in object-oriented programs,” in ICSE (1),
2010, pp. 315–324.

[31] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, and G. Muller,
“Faults in Linux: Ten years later,” in ASPLOS, 2011, pp. 305–318.

[32] K. Pan, S. Kim, and E. J. W. Jr., “Toward an understanding of bug
fix patterns,” Empirical Software Engineering, 2009.

[33] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in ICSE,
2007, pp. 499–510.

[34] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann,
Y. Guo, and S. Godfrey, “Defect categorization: making use of a
decade of widely varying historical data,” in ESEM, 2008.

[35] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011.

[36] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in ICSE,
2010.

[37] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing patches,”
in ICSE, 2012.

[38] Y. Tian, D. Lo, and C. Sun, “Improved duplicate bug report identifi-
cation,” in CSMR, 2012.

[39] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in ICSE, 2008, pp. 461–470.

[40] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in MSR, 2007.

[41] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: Recovering
links between bugs and changes,” in FSE, 2011, pp. 15–25.

[42] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in MSR, 2011, pp. 93–102.


