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Abstract—Automatic speech recognition (ASR) systems are
ubiquitous parts of modern life. It can be found in our
smartphones, desktops, and smart home systems. To ensure its
correctness in recognizing speeches, ASR needs to be tested.
Testing ASR requires test cases in the form of audio files and their
transcribed texts. Building these test cases manually, however, is
tedious and time-consuming.

To deal with the aforementioned challenge, in this work, we
propose CrossASR, an approach that capitalizes the existing Text-
To-Speech (TTS) systems to automatically generate test cases for
ASR systems. CrossASR is a differential testing solution that
compares outputs of multiple ASR systems to uncover erroneous
behaviors among ASRs. CrossASR efficiently generates test cases
to uncover failures with as few generated tests as possible; it does
so by employing a failure probability predictor to pick the texts
with the highest likelihood of leading to failed test cases. As a
black-box approach, CrossASR can generate test cases for any
ASR, including when the ASR model is not available (e.g., when
evaluating the reliability of various third-party ASR services).

We evaluated CrossASR using 4 TTSes and 4 ASRs on
the Europarl corpus. The experimented ASRs are Deepspeech,
Deepspeech2, wav2letter, and wit. Our experiments on a ran-
domly sampled 20,000 English texts showed that within an hour,
CrossASR can produce, on average from 3 experiments, 130.34,
123.33, 47.33, and 8.66 failed test cases using Google, Respon-
siveVoice, Festival, and Espeak TTSes, respectively. Moreover,
when we run CrossASR on the entire 20,000 texts, it can generate
13,572, 13,071, 5,911, and 1,064 failed test cases using Google,
ResponsiveVoice, Festival, and Espeak TTSes, respectively. Based
on a manual verification carried out on statistically representative
sample size, we found that most samples are actual failed test
cases (audio understandable to humans but cannot be transcribed
properly by an ASR), demonstrating that CrossASR is highly
reliable in determining failed test cases. We also make the
source code for CrossASR and evaluation data available at
https://github.com/soarsmu/CrossASR.

Index Terms—Automatic Speech Recognition, Text-to-Speech,
Test Case Generation, Differential Testing, Failure Probability
Predictor

I. INTRODUCTION

Automatic speech recognition (ASR) can be found any-
where we go. In our mobile devices, there are ASRs that
we can use to type texts or communicate with a mobile
virtual assistant (e.g., Siri1 and Google Assistant2). Similar
functionality is also available in our desktop PC (e.g., to speak
with Cortana3 virtual assistant in Windows PC). In our smart

1https://www.apple.com/siri/
2https://assistant.google.com/
3https://www.microsoft.com/en-us/cortana/

home systems, Alexa4 has a built-in ASR to understand our
instructions, such as turning off the light, playing music, etc.

The ubiquity of ASR makes it important to ensure that it
works correctly. To test ASR, one needs a benchmark of audio
files, which can be constructed by recording speeches, and
their corresponding transcribed texts [1]. This process requires
significant human effort and time.

Software testing is a crucial stage in a software develop-
ment life cycle, where software quality is assessed [2]. The
effectiveness of software testing is directly affected by the
generation and selection of test cases [3]. Good test cases can
be generated by a careful manual process, but such a process
can be laborious and expensive. Also, due to the complexity of
software systems, it is often easy for a tester to miss important
test cases that can uncover failures. To reduce the cost and time
in the testing process, and help uncover failures early, much
research has been conducted on automated test generation [4].

Due to the rapid growth of AI and the proliferation of AI-
powered systems, recently, many works have been proposed
to test such systems, e.g., [5]–[8]. Although AI testing is
a very active area, unfortunately, only a few are designed
for ASRs. A recent survey by Zhang et al. [9], highlighted
that: “The testing tasks currently tackled in the literature,
primarily center on image classification. There remain open
exciting testing research opportunities in many other areas,
such as speech recognition, natural language processing, and
agent/game play.”. Due to the ubiquity of ASR, there is
certainly a need for more work on ASR testing.

One of the most recent ASR testing work is Deep-
Cruiser [10]. It is a pioneering approach that performs
coverage-guided fuzzing using the idea of metamorphic test-
ing. It applies several metamorphic transformations on audios,
such as changing audio speed and volume, with the goal of
generating audios that are incorrectly transcribed by ASRs.
It performs an RNN abstraction and extracts the RNN’s
probabilistic transition model. It defines a stateful testing
criterion and used it to guide the generation of tests for
Deepspeech5 ASR. It has the following limitations though:
(1) It requires access to the ASR model. This kind of access
may not always be possible, e.g., when the ASR is only
available through APIs. Examples of such an ASR are Amazon

4https://developer.amazon.com/en-GB/alexa
5https://github.com/mozilla/DeepSpeech

https://github.com/soarsmu/CrossASR
https://www.apple.com/siri/
https://assistant.google.com/
https://www.microsoft.com/en-us/cortana/
https://developer.amazon.com/en-GB/alexa
https://github.com/mozilla/DeepSpeech


Transcribe6 and Google Cloud Speech-To-Text7; (2) It can
only generate test cases for RNN-based ASRs. There are ASRs
developed using other techniques, including other deep neural
network architectures, Hidden Markov Model, etc.; and (3)
It also requires existing audio files and their corresponding
transcribed texts as input.

In this work, we present CrossASR, which complements
DeepCruiser and addresses its limitations. CrossASR is de-
signed to efficiently generate test cases for ASRs by employing
differential testing with no requirement for manually labelled
data (i.e., transcribed texts of audio files). CrossASR achieves
its efficiency by using a failure probability predictor to select
texts that are likely to lead to failed test cases, saving time
needed to generate and run many tests that do not lead to
failures. CrossASR performs a black-box differential testing
to uncover erroneous behaviors on ASR systems by cross-
referencing different ASRs to detect different transcriptions
from ASRs. CrossASR employs Text-to-Speech (TTS) engines
to synthesize test inputs from texts and treats the texts as the
ground truth labels, removing the need of manually transcrib-
ing audio files for getting labelled data.

Given a text collection, CrossASR works in multiple it-
erations. In the first iteration, CrossASR randomly selects a
batch of texts from the collection. In the subsequent iterations,
from the remaining texts in the collection, CrossASR utilizes
a classifier trained from test cases generated in the previous
iterations as a failure probability predictor. The classifier is
used to pick the text having the highest probability of leading
to failed test cases, thereby improving the efficiency of failed
test case generation. CrossASR generates test cases until either
a target number of failed test cases has been reached, a
certain number of iterations has been completed, a time budget
has been exhausted, or the whole text collection has been
processed.

Each iteration of CrossASR proceeds as follows: CrossASR
processes a batch of text; and each piece of text in the batch
is fed to a TTS. The TTS synthesizes a speech audio, which
is then fed to ASRs. ASRs output transcribed texts that they
recognize. These ASR-transcribed texts are compared with the
text that was input to the TTS. For each ASR, if the ASR-
transcribed text matches with the text input to TTS, CrossASR
determines the speech audio as a successful test case. If the
ASR-transcribed text does not match the text input to TTS and
there is another ASR’s transcribed text that matches with the
text input to TTS, CrossASR determines the speech audio as a
failed test case. We consider cases where all ASRs’ transcribed
texts differ from the input text as indeterminable cases – as
possibly the error resides in the TTS.

We evaluated the performance of CrossASR on 20,000
English texts (i.e., sentences) in the Europarl corpus [11], a
corpus of parallel texts in 11 languages from the proceedings
of the European Parliament8. We use 4 TTSes (i.e., Google9,

6https://aws.amazon.com/transcribe/
7https://cloud.google.com/speech-to-text
8http://www.statmt.org/europarl/
9https://cloud.google.com/text-to-speech

ResponsiveVoice10, Festival11, and Espeak12) and 4 ASRs (i.e.,
Deepspeech13, Deepspeech214, wav2letter++15, and wit16). We
use more than one TTS to avoid bias that comes from a
particular TTS. The experiment was ran separately for each
TTS.

Our experiments show that, in terms of failed test case
generation rate, CrossASR can generate, on average over 3 ex-
periments, 130.34, 123.33, 47.33, and 8.66 failed test cases in
the first hour using Google, ResponsiveVoice, Festival, and Es-
peak TTSes, respectively. When running on the entire 20,000
texts, CrossASR generates 13,572, 13,071, 5,911, and 1,064
failed test cases using Google, ResponsiveVoice, Festival, and
Espeak TTSes, respectively. For the set of failed test cases,
we take a random and statistically representative sample size.
Our manual checks uncover that 96.96% of them are actual
failed test cases, showing that CrossASR is highly reliable in
determining failed test cases. Using the best TTS, the number
of failed test cases generated for DeepSpeech, DeepSpeech2,
wav2letter++, and wit are 4,036, 2,539, 2,202, and 4,795.
Thus, CrossASR can also gauge the relative reliabilities of
the ASRs.

The novel contributions of our work are as follows:
• We propose CrossASR, the first differential testing ap-

proach for ASRs. Prior approaches, including Deep-
Cruiser, are based on metamorphic testing.

• Different from prior works, CrossASR does not require
audio files and manually transcribed texts by leveraging
TTSes.

• Also, CrossASR efficiently generate test cases for ASRs
guided by a failure probability predictor. It differentiates
itself from the many existing AI testing work that is
coverage-guided, e.g., [5], [8], [12].

• We have evaluated CrossASR and showed that it can
generate many failed test cases for 4 ASRs.

The rest of this paper is structured as follows. In Section II,
we present our proposed approach. In Section III, we describe
our dataset, experimental settings, and results. Section IV
discusses sample generated test cases and false positives in the
results. Section V presents related work. Finally, Section VI
concludes the paper and mentions future work.

II. CROSSASR

In this section, we present the overall architecture of
CrossASR (Section II-A) and elaborate the details of its key
component (Section II-B).

A. Architecture

CrossASR’s architecture is shown at Figure 1. CrossASR
accepts a Text Collection and returns a set of Generated Test

10https://responsivevoice.org/
11http://www.cstr.ed.ac.uk/projects/festival/
12http://espeak.sourceforge.net/
13https://github.com/mozilla/DeepSpeech
14https://github.com/PaddlePaddle/DeepSpeech
15https://github.com/facebookresearch/wav2letter
16https://wit.ai/
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Fig. 1. Architecture of CrossASR

Cases. Given a Text Collection, the Test Selection Engine
selects a Text Batch. Each Text in the Text Batch is then fed
into the Text-To-Speech Engine (TTS). The TTS converts the
Text into a Speech Audio. The Speech Audio is then fed to the
Automatic Speech Recognition (ASR) Engines. These engines
consist of m ASRs, thereby producing m texts for each speech
audio. In total, for each batch with n number of texts, there
are n × m transcribed texts, which we refer to as ASRs
Transcribed Texts.

Test Selection Engine performs differential testing by cross-
referencing ASRs Transcribed Texts to detect incorrect behav-
iors of ASRs. It compares the ASRs Transcribed Texts with
the input Text and considers three possible cases:

Case 1: All ASR transcribed texts matches the input Text.
In this case, there is a low likelihood that the generated

speech audios do not match with the input Text. Therefore,
CrossASR considers all ASRs to have successfully transcribed
the audio. CrossASR then generates m 5-tuples, each corre-
sponding to a successful test case for one of the m ASRs. Each
5-tuple is of the format 〈t, s, a, t′, l〉, where t is the input text,
s is the TTS generated audio, a is the ASR used to transcribe
t, t′ is the ASR transcribed text, and l is the status of the test
case (in this case: success). The m 5-tuples are put in the set
of Generated Test Cases.

Case 2: At least one of the ASR transcribed texts that matches
with the input Text while at least one of the other ASR
Transcribed Texts do not match with the input Text.

In this case, CrossASR considers cases where the tran-
scribed text does not match input text as failed test cases;
it considers the other cases as successful test cases. It will

generate the corresponding m 5-tuples 〈t, s, a, t′, l〉, whereas
l = success (iff t 6= t′) or failed (otherwise). These test cases
are put in the set of Generated Test Cases.

Case 3: All ASR transcribed texts do not match with the input
Text.

This may occur due to the limitation of the TTS. Therefore,
CrossASR cannot confidently determine whether the test cases
are successful or failed test cases. CrossASR considers all m
5-tuples corresponding to such test cases as Indeterminable
Test Cases and also put them in the collection of Generated
Test Cases.

B. Test Selection Engine

Test Selection Engine has two different workflows depend-
ing on the availability of Generated Test Cases. The first
workflow is used when there are no available test cases,
which we refer to as Test Selection Engine’s First Iteration.
The second workflow is used when there are available test
cases, which we refer to as Test Selection Engine’s Subsequent
Iterations. We present the detail of these workflows below:

Test Selection Engine’s First Iteration

The Test Selection Engine’s First Iteration workflow is
shown in Figure 2. The numbers in the figure specify the
execution order.

Steps 1-3: The Batch Feeder takes a batch of n randomly
sampled texts from the Text Collection and feed it to the Text
Preprocessor. The Text Preprocessor lowercases the text, re-
moves punctuation from it, and normalizes non-standard words
(e.g., abbreviations, numbers, date, and currency expressions).
The text normalization algorithm is based on Flint et al.’s



Fig. 2. Workflow of the Test Selection Engine for the First Iteration

work [13]. This normalization is intended to ensure that the
text are pronounced properly by TTS. One of the normalization
step is a rule-based substitution. We find the rules insufficient,
therefore we added a few more rules. For example, we add
a rule that replaces the word “mr” to “mister” and “mrs” to
“missus”.

Step 4: The preprocessed batch of n texts are output as
Text Batch. Text Batch, its corresponding Speech Audios, and
ASRs Transcribed Texts that has been preprocessed by Text
Preprocessor are then fed into Test Case Determiner. Test Case
Determiner categorizes each test case as either a Success Test
Case, a Failed Test Case, or an Indeterminable Test Case.
The result is a set of 5-tuples that is output as Generated Test
Cases.

Test Selection Engine’s Subsequent Iterations

The workflow of Test Selection Engine’s subsequent itera-
tions is shown in Figure 3. The numbers in the figure specify
the execution order.

Steps 1-5: The Classifier Builder trains a classifier using the
Generated Test Cases from the previous iterations. The Batch
Feeder takes a batch of n randomly selected texts from the Text
Collection (that were not included in earlier batches), and feed
it to the Text Preprocessor. Texts are preprocessed similarly
like in Test Selection Engine’s First Iteration. The Text Selector
utilizes the trained classifier as a failure probability predictor
to select texts from the batch according to their likelihood of
leading to failed test cases. The selected texts are output as
Text Batch, which would be fed to the TTS.

Step 6: Next, Text Preprocessor preprocessed ASR Transcribed
Texts and input it to the Test Case Determiner, which cate-
gorizes each test case into a Success Test Case, a Failed Test
Case, or an Indeterminable Test Case. The result is a set of test
cases (in the form of 5-tuples) that is added to the Generated
Test Cases. At this point, the updated Generated Test Cases
are used to re-train the classifier in the next iteration and the
whole process is repeated until a target number of Failed Test

Cases has been reached, a certain number of iterations has
been completed, a time budget has been exhausted, or the
whole Text Collection has been explored.

Fig. 3. Workflow of the Test Selection Engine for Subsequent Iterations

The Classifier Builder and Text Selector deserve further
elaboration, which is provided below. Classifier Builder con-
structs a two-stage classifier given Generated Test Cases,
which is a set of 5-tuples. In the first stage, the classifier is
trained using the Generated Test Cases to classify a text into
two labels: determinable (success or failed) vs. indeterminable.
In the second stage, the classifier is trained using failed and
successful test cases in Generated Test Cases to classify a text
into one that likely leads to failed test cases and one that likely
leads to successful test cases. For this training, a text has m
labels, each corresponds to an ASR. The text is only labeled
as one that likely leads to successful test cases if and only if
all m labels are success. The Text Selector uses the first stage
classifier to select texts that are likely to lead to determinable
(failed or success) test cases.

The Text Selector picks only the top-k text from the ranked
list of selected texts sorted in descending order of their
likelihood to lead to determinable test cases. From these top-k
texts, the Text Selector then uses the second stage classifier to
select texts that are likely to lead to failed test cases. We use
the probability outputs by the second stage classifier as the
failure probability.

CrossASR utilizes ALBERT [14], a Transformer-based deep
neural network, as its classifier since Transformer [15] has
shown state-of-the-art performances for NLP tasks in recent
years. ALBERT is an upgrade of BERT [16] that advances the
state-of-the-art performance on several NLP tasks including



text classification. We use the ALBERT pre-trained model
to reduce the training time. This pre-trained model has been
trained on a large set of unlabelled texts and the knowledge
from this set can be transferred to our task when training using
our labelled texts, thereby speeding up the training time.

III. EXPERIMENTS

In this section, we describe the dataset and the experimental
settings used in our experiments. We also present our research
questions and findings. We end the section by discussing
threats to validity.

A. Dataset

Our dataset is taken from Europarl [11], a corpus of
parallel texts in 11 languages from the proceedings of the
European Parliament17. We collect all English texts in the
corpus and discard texts from other languages. These texts
have been carefully segmented and aligned using Church and
Gale Algorithm. In total, there are 22,683,244 English texts.
After dropping the empty and duplicate texts, we are left
with 2,398,750 texts. We randomly pick 20,000 texts for our
experiment.

B. Experimental Settings

Our experiments are performed on a desktop computer run-
ning Ubuntu 18.04 OS with Intel(R) Core(TM) i7-9700K CPU
@ 3.60GHz processor, 64GB RAM, and NVIDIA GeForce
RTX 2080. We experiment with TTSes and ASRs listed in
Tables I and II, respectively. We set n to 210, which is an
average number of texts that can be processed within an
hour, and k to 400. We use SimpleTransformers 18 library to
implement the ALBERT classifier. Specifically, we use albert-
base-v2 pre-trained model19.

TABLE I
TTSES IN OUR EXPERIMENT

Name URL
GoogleTTS https://cloud.google.com/text-to-speech
Festival http://www.cstr.ed.ac.uk/projects/festival/
ResponsiveVoice https://responsivevoice.org/
Espeak http://espeak.sourceforge.net/

TABLE II
ASRS IN OUR EXPERIMENT

Name URL
Deepspeech [17] https://github.com/mozilla/DeepSpeech
DeepSpeech2 [18] https://github.com/PaddlePaddle/DeepSpeech
wav2letter [19] https://github.com/facebookresearch/wav2letter
wit https://wit.ai/

17http://www.statmt.org/europarl/
18https://simpletransformers.ai/
19https://huggingface.co/transformers/pretrained models.html

C. Research Questions

RQ1: How many failed test cases can be generated by
CrossASR in the first iteration?

In this research question, we measure the failed test case
generation rate. To do so, we run CrossASR for one iteration
(one hour) and count the total number of failed test cases
generated. Due to the randomness of initial texts selection,
the experiments are repeated 3 times and the reported metrics
are averaged.

RQ2: How useful is the Failure Probability Predictor (FPP)
in CrossASR?

We investigate how efficient CrossASR in generating failed
test cases if it uses the FPP. To do so, we run CrossASR for 5
iterations and count the number of failed test case obtained
for each iteration. We compare the number of failed test
cases generated by CrossASR with and without FPP. Due to
the randomness of initial texts selection, the experiments are
repeated 3 times and the reported metrics are averaged.

RQ3: How many failed test cases can be generated by
CrossASR after processing the entire 20,000 texts?

We run CrossASR on the entire 20,000 texts for all combina-
tions of ASRs and TTSes. We then count the total number of
failed test cases that is generated from these 20,000 texts.

RQ4: How accurate is CrossASR in determining whether a
test case is a failed test case?

CrossASR analyzes the differences between the text input to
TTS and its corresponding ASR-transcribed texts to determine
whether a test case is a Success Test Case, Failed Test Case,
and Indeterminable Test Case. To measure the reliability of
CrossASR in determining failed test cases, we ask a native
English speaker, who is not an author of this paper to verify
whether the failed test cases generated by CrossASR are actual
failed test cases. We then calculate the False Positive Rate
(FPR), which is the proportion of the failed test cases that are
incorrect (e.g., they are actually not failed test cases).

TABLE III
NUMBER OF FAILED TEST CASES GENERATED IN THE FIRST ITERATION

(AN HOUR)

TTS DS DS2 W2L Wit Total
Google 38.00 25.67 21.67 45.00 130.34
RV 44.33 23.33 15.67 39.00 123.33
Festival 15.33 9.67 8.33 14.00 47.33
Espeak 2.67 2.33 0.33 3.33 8.66
Total 100.33 61.00 46.00 101.33 308.66
RV: ResponsiveVoice
DS: Deepspeech
W2L: Wav2Letter++

D. Results

RQ1: Average Number of Failed Test Cases Generated in The
First Iteration
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Table III shows the number of failed test cases generated
for each combination of TTSes and ASRs in the first hour of
running CrossASR. Using Google, ResponsiveVoice, Festival,
and Espeak TTSes, our CrossASR generates an average of
130.34, 123.33, 47.33, and 8.66 failed test cases in the first
iteration (1 hour).

If we look from the point of view of ASRs, Deepspeech,
Deepspeech2, Wav2letter++, and Wit has 100.33, 61.00, 46.00,
and 101.33 generated failed test cases in the first hour. The
number of failed test cases can be used to measure the
reliability of ASR in recognizing speech audios. If the number
of the failed test case generated for an ASR is low, the ability
of the ASR in recognizing speech audios is high. If the number
of the failed test case generate for an ASR is high, the ability
of the ASR in recognizing speech audios is low. From this
perspective, Wit can be considered as the worst ASR among
the 4 since it has the highest number of failed test cases.
Wav2Letter++ can be considered as the best ASR since it has
the lowest number of failed test cases.

RQ2: Average Number of Failed Test Cases Generated for 5
Iterations Running CrossASR with and without FPP

Figure 4 shows a detailed comparison of the number of
failed test cases generated for every iteration with and without
FPP. The graph shows that CrossASR without FPP generates
less failed test cases for all combinations of TTSes and ASRs,
thereby demonstrating the usefulness of FPP. The largest drops
in number of generated failed test cases can be observed for
DeepSpeech and wit, while the smallest drops can be observed
for wav2letter.

Figure 5 shows the cumulative number of failed test cases
using 4 TTSes across 4 ASRs. FPP is successful in selecting
texts that lead to failed test cases, as demonstrated by the
higher number of failed test cases generated over time when
FPP is used. Table IV shows the speed up with FPP in finding
failed test cases at the end of the 5th iteration. Our experiment
shows that for each TTS, by using FPP, the minimum speed
up of the failed test case generation rate is 2.35 times. FPP
achieves the best speed up for Espeak, with 14.91 times speed
up, generating 655.6 failed test cases in 5 hours.

TABLE IV
THE SPEED-UP OF CROSSASR IN FINDING FAILED TEST CASES

WITH FPP

TTS # Number of Failed Test Case Speed UpWith FPP Without FPP
Google 1,566.67 665.68 2.35
ResponsiveVoice 1,886.01 635.32 2.97
Festival 1,403.31 198.34 7.08
Espeak 655.6 43.98 14.91

RQ3: Number of Failed Test Cases Generated from the Entire
20,000 Texts

Table V shows the total number of failed test cases that is
generated from the entire 20,000 texts for all combinations of
experimented TTSes and ASRs. Using 4 TTses and 4 ASRs,
there will be a total 320,000 test cases generated in the form

TABLE V
NUMBER OF FAILED TEST CASES GENERATED FOR EACH COMBINATION

OF TTSES AND ASRS

TTS # Failed Test Case TotalDS DS2 W2L Wit

Google 4,036 2,539 2,202 4,795 13,572
RV 4,510 2,436 1,911 4,214 13,071
Festival 1,819 1,229 1,035 1,908 5,911
Espeak 359 326 44 335 1,064
Total 10,724 6,530 5,192 11,252 33,618
RV: ResponsiveVoice
DS: Deepspeech
W2L: Wav2Letter++

of failed test cases, success test cases and indeterminable
test cases. Our experiment showed that CrossASR generates
13,572, 13,071, 5,911, and 1,064 failed test cases for all ASRs
when using Google, ResponsiveVoice, Festival, and Espeak
TTSes, respectively. Google TTS produces the highest number
of failed test cases overall and for each of the experimented
ASRs. It produces 4,036, 2,539, 2,202, and 4,795 failed test
cases for DeepSpeech, DeepSpeech2, wav2letter++, and wit,
respectively. On average, for each 100 processed texts, it can
produce 16.96 failed test cases for each ASRs. Espeak is the
worst among others. On average, for each 100 processed texts,
it can produce only 1.33 failed test cases for each ASRs.

RQ4: Accuracy of CrossASR in Determining Failed Test Cases
for Each ASR

The effectiveness of CrossASR in determining failed test
cases is shown in the Table VI. For each ASR, we asked a
native speaker non-author to verify whether the ASR tran-
scribed text matches with the speech input to ASR while the
speech input is matched with the ground truth text generated
from Text Collection. We take a random sample of failed test
cases with a 95% confidence level and 5% confidence interval.
The non-author verified that in the random sample, CrossASR
generates failed test cases with the highest and lowest FPR of
9% and 0%, respectively. From all combination of TTSes and
ASRs, the FPRs are low, which means that the failed test cases
that are detected by CrossASR actually highlight a deficiency
in the corresponding ASR (it is a true positive). It shows that
CrossASR is reliable in determining failed test cases for ASRs.

E. Threats to Validity

Internal Validity. The results for RQ2 and RQ3 depend
upon the randomness of selecting a batch of texts from the
Text Collection. It is possible that the results are different from
randomly selected texts. To mitigate this threat, we rerun the
experiment 3 times with different randomizations. We report
the average results across the three experiments.

External Validity. Text-to-Speech is a crucial part of
CrossASR system. The quality of a generated speech by
TTS affects the number of test cases generated. Instead of
running the experiment using one TTS, we run on 4 TTSes
to minimize a potential bias that come from the usage of
one TTS. The result shows that for 4 TTSes used in our
experiment, CrossASR is able to generate highly reliable failed
test cases automatically.



Fig. 4. Comparison of The Number of Failed Test Cases Generated by CrossASR (with and without FPP). A row indicates the number of failed test cases
generated using a TTS for different ASRs (the columns).

TABLE VI
ACCURACY OF CROSSASR IN DETERMINING FAILED TEST CASES FOR EACH ASR

TTS Deepspeech Deepspeech2 wav2letter++ Wit
# Sample # FP FPR # Sample # FP FPR # Sample # FP FPR # Sample # FP FPR

Google 47 3 6% 30 0 0% 26 1 3% 55 0 0%
ResponsiveVoice 52 1 1% 28 1 3% 22 0 0% 51 2 9%
Festival 21 1 4% 15 0 0% 12 1 8% 22 1 4%
Espeak 5 0 0% 4 0 0% 1 0 0% 4 0 0%
FP: False Positive
FPR: False Positive Rate



Fig. 5. Comparison of The Cumulative Number of Failed Test Cases Generated Across ASRs (with and without FPP) when using different TTSes

IV. DISCUSSION

In this section, we provide examples of failed test cases
generated by CrossASR. We also analyze false positive failed
test cases found by our manual verification.

A. Examples of Success Test Case, Failed Test Case, and
Indeterminable Test Case

Our dataset contains 20,000 texts. Each text is used to
generate 4 test cases, each corresponds to an ASR. Since we
use 4 TTSes, we will have a total of 320,000 generated test
cases. Table VII shows the number of test cases generated
using each TTS. Among these test cases, 33,618, 25,806, and
260,576 of them are failed, successful, and indeterminable test
cases, respectively.

TABLE VII
NUMBER OF TEST CASES GENERATED

TTS # FTC # STC # ITC
Google 13,572 11,128 55,300
ResponsiveVoice 13,071 10,049 56,880
Festival 5,911 4,213 69,876
Espeak 1,064 416 78,520
Total 33,618 25,806 260,576
FTC: Failed Test Case
STC: Success Test Case
ITC: Indeterminable Test Case

Table VIII shows an example of a success test case for all
ASRs. Tables IX, X, XI, and XII show examples of failed test
cases for DeepSpeech, DeepSpeech2, wav2letter++, and wit
respectively. DeepSpeech mistakenly transcribed “consulted”
to “controlled”. DeepSpeech2 mistakenly transcribed “and the
mess” to “in the met”. Wav2letter++ mistakenly transcribed
“transport” to “trains”. Wit mistakenly transcribed “an old
objective” to “another project”.

TABLE VIII
AN EXAMPLE OF TEXTS THAT ARE A SUCCESS TEST CASE

Type Text
Original Text they have both been guardians of the treaty

as well as guardians of the general interests
of europe

Human Transcribed Text they have both been guardians of the treaty
as well as guardians of the general interests
of europe

TABLE IX
AN EXAMPLE OF TEXTS FROM A FAILED TEST CASE FOR DEEPSPEECH

Type Text
Original Text they can be consulted without difficulty
ASR Transcribed Text they can be controlled without difficulty
Human Transcribed Text they can be consulted without difficulty

TABLE X
AN EXAMPLE OF TEXTS FOR A FAILED TEST CASE FOR DEEPSPEECH2

Type Text
Original Text as far as this is concerned it is up to both

the commission and the mess to make this
even clearer to these consumers

ASR Transcribed Text as far as this is concerned it is up to both
a commission in the met to make this
even clearer to these consumers

Human Transcribed Text as far as this is concerned it is up to both
the commission and the mess to make this
even clearer to these consumers

TABLE XI
AN EXAMPLE OF TEXTS FOR A FAILED TEST CASE FOR WAV2LETTER++

Type Text
Original Text the proposed maximum transport time

however is not totally adequate
ASR Transcribed Text the proposed maximum trains time however

is not totally adequate
Human Transcribed Text the proposed maximum transport time

however is not totally adequate

TABLE XII
AN EXAMPLE OF TEXTS FOR A FAILED TEST CASE FOR WIT

Type Text
Original Text a new strategy for an old objective
ASR Transcribed Text a new strategy for another project
Human Transcribed Text a new strategy for an old objective

Table XIII shows an example of an indeterminable test
case. DeepSpeech mistakenly transcribes “estimates” to “at
the mates” and “could” to “would”. DeepSpeech2 mistakenly
transcribe “income among” to “intermont”. Wav2letter++ mis-
takenly transcribe “that” to “them”. Wit mistakenly transcribes
“losses of income among” to “loss of income mile”.



TABLE XIII
AN EXAMPLE OF TEXTS FROM AN INDETERMINABLE TEST CASE

Type Text
Original Text experts estimate that making such an agreement could result in very large losses of income among farmers
Deepspeech Transcribed Text experts at the mates that making such an agreement would result in very large losses of income among farmers
Deepspeech2 Transcribed Text experts estimate that making such an agreement could result in very large losses of intermont farmers
Wav2letter++ Transcribed Text experts estimate them making such an agreement could result in very large losses of income among farmers
Wit Transcribed Text experts estimate that making such an agreement could result in very large loss of income mile farmers
Human Recognized Text experts estimate that making such an agreement could result in very large losses of income among farmers

B. Analysis of False Positive Failed Test Case from Manual
Verification

From 33,618 failed test cases, we manually verified a
statistically representative sample of size 395 and found 12 of
them to be false positives. We analyze these false positives and
observed that they can be categorized into 4 different cases:

(1) Human deems the audio to be the same as the transcribed
text, but different from the original text. This highlights a
problem with the TTS.

Original Text
so we need more europe and a european policy which produces
tangible benefits throughout the european continent
ASR Transcribed Text
so we need more europe and a european policy which reduces
tangible benefits throughout the european continent

The speech audio is matched with the word ”reduces” in the
transcribed text, instead of the word ”produces” in the original
text. This may be triggered by the TTS when generating the
speech. This case is found in an experiment using Google TTS
and Deepspeech ASR.

(2) Human deems the audio to be different from both tran-
scribed and input text. This indicates a problem with the TTS.

Original Text
chorus is due to be accepted as a new member state of the
european union on one may two thousand and four
ASR Transcribed Text
corridor to be accepted as a new member state of the european
union on one mat thousand and four

This problem may be caused by the TTS inability in
generating uncommon words such as ”chorus” in the original
text. We found this case in ResponsiveVoice and Festival.

(3) Cases highlighting limitations of our Text Preprocessing
step. The text normalization substep of our text processing
step is not perfect. Sometimes there is just a small syntactic
difference between the original and ASR transcribed text.

Original Text
this is obviously important because we are spending taxpayers
money

ASR Transcribed Text
this is obviously important because we are spending tax payers
money

This example occured in Wav2letter++ where the word
“taxpayers” is transcribed to “tax payers”. Another example
occured in Wit, the word “may be” is transcribed to “maybe”.
To handle this problem, we make use of a previous work
by Flint et al. on text normalization. It uses a rule-based
substitution to standardize the words as described in Section II.
We add a few more rules to such as changing the word “mr” to
“mister” and “mrs” to “missus”. However, there are no rules
for the words mentioned above. The correctness of CrossASR
in detecting a failed test case relies on checking for perfect
syntactic matches. This causes false positives for texts that
are semantically equivalent but have minor syntactic variations
(e.g., words that can appear in several forms). We can improve
our text-processing step to address this issue.

(4) Audio is ambiguous; It can match both texts. For this case,
by listening to the audio, the original text and ASR transcribed
text can not be differentiated from each other easily. The
speech articulation is similar to both original text and ASR
transcribed text. We found two instances of this case. Both
involve Google TTS and Wav2letter++ ASR. In this example,
the word ”socioeconomic” in the original text sounds similar
to the word ”social economic” in the ASR transcribed text.

Original Text
i entirely agree with all those who have talked today about the
need to pursue a policy of peace by economic means as well and
to remove the socioeconomic causes of instability and i think
that this is a field where the european union is already doing a
great deal for the outside world
ASR Transcribed Text
i entirely agree with all those who have talked to day about the
need to pursue a policy of peace by economic means as well
and to remove the social economic causes of instability and i
think that this is a field where the european union is already
doing a great deal for the outside world

V. RELATED WORK

In this section, we present the previous works on ASR
testing and AI testing.



A. ASR Testing

Previous works on generating test cases for ASR came from
both the software engineering community and the artificial
intelligence community. To the best of our knowledge, Deep-
Cruiser [10] was the only work from the software engineering
community. We have presented DeepCruiser and its differ-
ences with CrossASR in Section I.

From the artificial intelligence community, there are several
works that perform adversarial attacks targeting ASR systems
(a.k.a. adversarial test case generation) [20]–[25]. Similar to
DeepCruiser, these approaches utilize metamorphic relation as
test oracle; specifically, they produce audio files by applying
imperceptible perturbations to existing audio files. Also, like
DeepCruiser, these approaches require existing audio files and
their corresponding transcribed texts as input. Moreover, these
approaches test robustness of ASRs (its ability to produce the
same output in the face of minor perturbations). Different from
these works, CrossASR performs differential testing by cross-
referencing different ASRs as test oracle. Also, CrossASR is
concerned in assessing correctness of ASRs instead of their
robustness. Robustness and correctness (aka. accuracy) have
been shown to be two competing goals; and both are important,
c.f., [26].

B. AI Testing

There are many works on AI testing. Here, due to page limit,
we only highlight a few. For a a comprehensive treatment of
the subject, please refer to the survey by Zhang et al. [9].

Test Input Generation. DeepXplore [5] originally introduces
neuron coverage for systematically measuring the parts of a
deep learning system exercised by test inputs. DeepConcolic
[27] proposes a white-box deep learning testing technique
to generate inputs based on concolic testing. DeepStellar
[8] proposes a set of metrics for recurrent neural networks
based on state modeling, which are applied to adversarial
sample detection and coverage-guided test input generation.
DeepHunter [12] proposes a metamorphic mutation strategy
to generate new semantically preserved tests, and leverage
multiple extensible coverage criteria as feedback to guide
the test generation. DeepCheck [28] generates inputs for text
classification by using a fuzzing approach that considers the
text grammar and the distance between inputs. Sun et al. [29]
tested an automatic translation system by mutating words
in translation inputs. Different than the above approaches,
CrossASR generates inputs specifically for testing ASRs – in
the form of speech audios and their corresponding texts.

Test Oracles. Several popular types of test oracles have been
studied for AI testing, e.g., metamorphic relations and cross-
referencing [9]. Metamorphic relations transform training or
test data to yield certain expected changes in the output pre-
diction [30]. Metamorphic relation was applied in real-world
problems, e.g., autonomous driving [7], [31]. For example,
DeepTest [7] automatically generates test cases leveraging
real-world changes in driving conditions like rain, fog, and
lighting conditions. DeepRoad [31] automatically synthesized

large amounts of diverse driving scenes with various weather
conditions.

Cross-referencing as test oracle has been used in differential
testing and N-version programming. For example, CRADLE
[32] finds and localizes bugs in the implementations of
deep learning models by cross-checking multiple backends,
i.e. TensorFlow, CNTK, and Theano. DiffChaser [33] is an
automated black-box differential testing technique to detect
disagreements between version variants of a DNN. DLFuzz [6]
uses predicted difference between original and mutated inputs
as test oracles. Qin et al. [34] synthesized a mirror program
and used its behaviour as pseudo oracles. Differential testing
in ASR has not been studied yet. CrossASR is the first to use
differential testing to detect failed test cases in ASR systems.
Differing transcriptions among multiple ASR systems are an
indicator of bug.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose CrossASR, an approach to
automatically generate test cases for ASR systems using
text-to-speech engines. CrossASR performs differential test-
ing by cross-referencing multiple ASR systems. In addition,
CrossASR employs a failure probability predictor to efficiently
guide the test case generation for ASR systems. In terms
of efficient generation of failed test cases, within an hour,
CrossASR can produce, on average, 130.34, 123.33, 47.33,
and 8.66 failed test cases using Google, ResponsiveVoice,
Festival, and Espeak TTSes, respectively. Our experiment on
running CrossASR on 20,000 texts showed that CrossASR can
generate 13,572, 13,071, 5,911, and 1,064 failed test cases
using Google, ResponsiveVoice, Festival, and Espeak TTSes,
respectively. CrossASR is highly reliable in determining failed
test cases, as demonstrated by manual verification. Almost
all of the failed test case samples inspected are actual failed
test cases (audio understandable to humans but cannot be
transcribed properly by an ASR).

In the future, we plan to evaluate CrossASR using additional
ASRs and TTSes. We also plan to experiment using another
text dataset, including software engineering (SE) dataset such
as StackOverflow, GitHub comments, GitHub source code, and
software bug reports. SE datasets can be used to determine
the reliability of current ASRs for speech-based programming
environments [35], [36]. We want to add some metamorphic
transformations to generate more speech audios that can lead
to failed test cases. Additionally, we plan to design a technique
that can synthesize new text (rather than selecting from a text
collection) that likely leads to failed test cases. Moreover, it
would be interesting to investigate ways to repair ASRs given
a set of failed test cases.

Replication Package. The source code for CrossASR is
available at https://github.com/soarsmu/CrossASR
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