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Abstract—Ethereum has become a widely used platform to
enable secure, Blockchain-based financial and business transac-
tions. However, a major concern in Ethereum is the security
of its smart contracts. Many identified bugs and vulnerabilities
in smart contracts not only present challenges to maintenance
of blockchain, but also lead to serious financial loses. There is
a significant need to better assist developers in checking smart
contracts and ensuring their reliability. In this paper, we propose
a web service tool, named SMARTEMBED, which can help Solidity
developers to find repetitive contract code and clone-related bugs
in smart contracts. Our tool is based on code embeddings and
similarity checking techniques. By comparing the similarities
among the code embedding vectors for existing solidity code
in the Ethereum blockchain and known bugs, we are able to
efficiently identify code clones and clone-related bugs for any
solidity code given by users, which can help to improve the users’
confidence in the reliability of their code. In addition to the uses
by individual developers, SMARTEMBED can also be applied to
studies of smart contracts in a large scale. When applied to
more than 22K solidity contracts collected from the Ethereum
blockchain, we found that the clone ratio of solidity code is close
to 90%, much higher than traditional software, and 194 clone-
related bugs can be identified efficiently and accurately based on
our small bug database with a precision of 96%. SMARTEMBED
can be accessed at http://www.smartembed.net. A demo video of
SMARTEMBED is at https://youtu.be/o9ylyOpYFq8

I. INTRODUCTION

In recent years, with the adoption and development of
cryptocurrencies on distributed ledgers (a.k.a., blockchains),
Ethereum has attracted increasingly attention as a blockchain
platform. At the heart of the Ethereum platform are smart
contracts. A Smart contract is a computer program that can
be triggered to execute any task when specifically predefined
conditions are satisfied. A major concern in the Ethereum
platform is the security of smart contracts. A smart contract
in the blockchain often involves cryptocurrencies worthy of
millions of dollars (e.g., DAO1, Parity2 and many more).
Moreover, different from a traditional software program, the
smart contract code is immutable after its deployment. They

1https://en.wikipedia.org/wiki/TheDAO(organization)
2https://paritytech.io/security-alert-2/

cannot be changed but may be killed when any security issue
is identified within the smart contracts. This introduces chal-
lenges to blockchain maintenance and gives much incentive
to hackers for discovering and exploiting potential problems
in smart contracts, hence there is a very significant need to
check and ensure the robustness of smart contracts before
deployment.

Many prior works have investigated bug detection of smart
contracts (e.g., [1]–[3]). A major disadvantage is that all these
existing tools require certain bug patterns or specification rules
defined by human experts. Considering the high stakes in smart
contracts and race between attackers and defenders, it can
be far too slow and costly to write new rules and construct
new checkers in response to new bugs and exploits created
by attackers. Recently, there are also studies on clones and
clone detection for Ethereum smart contracts (e.g., [4], [5]).
However, they use expensive symbolic transaction sketch or
pair-wise comparisons which affect their efficiency and they
are limited to clone detection. Machine learning and deep
learning techniques have been used for clone detection and
bug detection problems (e.g. [6], [7]) in traditional software
programs too, but little has been applied for smart contracts.

In this paper, we present SMARTEMBED, a web service
tool which can be accessible at http://www.smartembed.net.
SMARTEMBED can efficiently and effectively check smart
contracts for clones and bugs, and can evolve bug checking
rules easily along with additions of new bugs. The main idea
of SMARTEMBED is two folds. (1) Code Embedding: utilizing
basic program analyses and the availability of many open-
source smart contracts, we encode each code element and
bug pattern automatically, including their lexical, syntactical,
and even some semantic information, into numerical vectors
via techniques adapted from word embeddings (e.g., [8]). (2)
Similarity Checking: utilizing efficient similarity comparisons
among the numerical vectors representing various kinds of
code elements at various levels of granularity in smart con-
tracts, we can detect clones similar to each other and bugs
similar to known ones.
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SMARTEMBED is unique in that it utilizes deep learning and
similarity checking techniques to unify clone detection and
bug detection together efficiently and accurately for Ethereum
smart contracts. When applied to more than 22K solidity con-
tracts curated from the Ethereum blockchain, SMARTEMBED
effectively tells us that the clone ratio of the Solidity code is
at around 90% and 194 out of 202 reported clone-related bugs
are true bugs.

The rest of the paper is organized as follows. Section II
presents overall workflow of our approach and details of each
step. Section III introduces the implementation details of our
tool and its usages. Section IV shows the experimental results
of our evaluation. Section V concludes our work.

II. APPROACH

A. Overview

Fig.1 illustrates the overall framework of SMARTEM-
BED. Based on code embeddings and similarity checking,
SMARTEMBED targets two tasks in a unified approach: clone
detection and bug detection. For clone detection, SMARTEM-
BED can identify similar smart contracts. For bug detection,
based on our bug database, SMARTEMBED can detect bugs
in the existing contracts in the Ethereum blockchain and/or in
any smart contract given by solidity developers that are similar
to any known bug in the database. Our approach contains two
phases: a model training phase and a prediction phase.

There are mainly 4 steps during the model training phase.
We built a custom Solidity parser for smart contract source
code. The parser generates an abstract syntax tree (ASTs) for
each smart contract in our collected dataset, and serializes the
parse tree into a stream of tokens depending on the types of
the tree nodes (step 1). After that, the normalizer reassembles
the token streams to eliminate nonessential differences (e.g.,
the stop word, values of constants or literals) between smart
contracts (step 2). The output token streams are then fed into
our code embedding learning module, and each code fragment
is embedded into a fixed-dimension numerical vector (step 3).
After the code embedding learning step, all the source code
is encoded into the source code embedding matrix; in the
meanwhile, all the bug statements we collected are encoded
into the bug embedding matrix (step 4).

In the prediction phase, any given new smart contract is
turned into embedding vectors by going through the steps
1,2,3 and utilizing the learned embedding matrices. Similarity
comparison is performed between the embeddings for the
given contract and those in our collected database (step 5),
and similarity thresholds are used to govern whether a code
fragment in the given contract will be considered as code
clones or clone-related bugs (step 5-6).

B. Details

1) Parsing: SMARTEMBED employs ANTLR3 and a cus-
tom Solidity grammar4 to generate ASTs for each smart

3https://www.antlr.org/
4https://github.com/solidityj/solidity-antlr4

contract. Listing 1 shows a simple example of a smart con-
tract defined in Solidity. Depending on the types of the tree
nodes, the ASTs is serialized differently for contract-level
and statement-level program elements to capture structural
information in and around the focal elements.

1 pragma s o l i d i t y ˆ 0 . 4 . 1 5 ;
2

3 c o n t r a c t Overf low {
4 u i n t p r i v a t e r =0 ;
5

6 f u n c t i o n addValue ( u i n t v a l u e ) r e t u r n s ( boo l ) {
7 / / p o s s i b l e o v e r f l o w
8 r += v a l u e ;
9 }

10 }

Listing 1. An Example Solidity Program

Contract Level Parsing: All terminal tokens are extracted
from the ASTs by an in-order traversal. The contract level
parsing result of the sample code is shown below (1 10 stands
for the line range of this contract).

1 1 10 : pragma s o l i d i t y ˆ v e r s i o n l i t e r a l ; c o n t r a c t
Overf low { u i n t p r i v a t e r = 0 ; f u n c t i o n
addValue ( u i n t v a l u e ) r e t u r n s ( boo l ) { r
+= v a l u e ; } }

Statement Level Parsing: For statement parsing, more struc-
tural information (containment and neighbouring) as well
as some semantic information (data-flow) is added to the
sequences. The statement level parsing result of line 8 is given
as follows.

1 8 8 : s o u r c e U n i t c o n t r a c t D e f i n i t i o n c o n t r a c t P a r t
f u n c t i o n D e f i n i t i o n b l o c k s t a t e m e n t
s i m p l e S t a t e m e n t r += v a l u e ; f u n c t i o n addValue
add v a l u e ( u i n t v a l u e ) r e t u r n s ( boo l )
c o n t r a c t Overf low o v e r f l o w { }

2) Normalization: SMARTEMBED normalizes the parsing
sequence to remove some semantic-irrelevant information. All
simple variables, non-essential punctuation marks and different
type of constants are replaced or removed. The following code
snippet exemplifies the operation of this step:

1 u i n t p r i v a t e r = 0 ;
2 ==>
3 u i n t p r i v a t e SimpeVar = dec imalnumber

3) Code Embedding Learning: SMARTEMBED embeds
code elements and bug patterns, including their lexical, syntac-
tical, and some semantic information into numerical vectors
via techniques adapted from word embeddings. We choose
Fasttext [8] as the code embedding algorithm as it performed
on par or better compared with traditional word2vec.

Token Embedding: The normalized token streams with struc-
tural information generated by the normalizer for the solidity
contracts we collected from the Ethereum blockchain are used
as the training corpus. We adapted the Fasttext algorithm to
train code embedding models. After the training, each token in
the training corpus, including the tokens representing structural
information, is mapped to fixed-dimension vector with real
values.
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Fig. 1. Overview of Our Approach

Higher Level Embedding: Based on the basic vector repre-
sentation for each token, the code embeddings for higher-level
code fragments (e.g., statements, functions, subcontracts, and
contracts) are composed together. To be more specific, we
define the code embeddings for a particular code fragment as
the summation of the embeddings of all its constituent tokens.

4) Embedding Matrices: By stacking individual vectors
together, we obtain a source code embedding matrix Cc×d

for clone detection and a bug statement embedding matrix
Bb×d for bug detection.
Source Code Embedding Matrix Cc×d: The first dimension c
is the total number of contracts; the second dimension d is the
code embedding size we set previously. The ith element Ci

(i = 1, 2, ..., c) is the vector representation for the ith contract.
Bug Statement Embedding Matrix Bb×d: The first dimension
b corresponds to the total number of bug statements in our bug
database, and each row of the matrix, i.e., Bi (i = 1, 2, ..., b)
represents the code embedding for a specific bug statement.

5) Similarity Checking: We define a similarity metric,
which is used in the downstream tasks of clone detection and
bug detection.
Definition: Let C1 and C2 be two code fragments, and e1 and
e2 be their corresponding code embeddings. We define the
semantic distance as well as similarity between the two code
snippets as follows:

Distance(C1, C2) =
Euclidean(e1, e2)

‖e1‖+‖e2‖
(1)

Similarity(C1, C2) = 1−Distance(C1, C2) (2)

Given any two code fragments Ci and Cj , if their similarity
score is over a specific similarity threshold δ, Ci and Cj are
viewed as a clone pair.

6) Clone Detection and Bug Detection: Both clone de-
tection and bug detection tasks can be viewed as variants
of the problem of finding “similar” code, depending on the
definition of similarity. For clone detection, we measure the
similarity between pairs of smart contracts, and identify them
as clones if the similarity score is over a predefined threshold
for clones. For bug detection, we search for code fragments in

given contracts that are more similar to the known bugs than
a predefined threshold for bugs.

III. IMPLEMENTATION DETAILS & TOOL USAGE

We have implemented SMARTEMBED as a standalone web
service to facilitate Solidity developers in checking their smart
contracts. The source code and data can be found in our Github
repository5.

Data Collection. We collected 22,275 verified Solidity smart
contracts using EtherScan6, which is a block explorer and an-
alytics platform for Ethereum. The contracts contain 135,239
subcontracts, 631,261 functions, around 2 million statements,
and more than 7 million lines of code. In the meanwhile,
we collected 22 well-known vulnerable smart contracts and
pinpointed 37 buggy statements in the contracts, which served
as the bug database for SMARTEMBED.

Backend Model. The collected source code of contracts are
inputted into the workflow of our approach described in
Section II, and the output is the code embeddings which are
used by SMARTEMBED as the backend model for similarity
checking.

Frontend User Interface. On the user interface, SMARTEM-
BED provides an input box for Solidity developers to submit
their source code (cf. Fig. 2 and Fig. 3). After a Solidity
developer submits his/her source code to the server, the source
code is parsed and normalized, then the contract and each
statement is converted into a vector by our code embedding
model for similarity checking. The outputs are organised into
two separate result tabs for clone detection and bug detection
respectively. For the clone detection result tab, SMARTEMBED
returns top-5 most similar clone contracts in our code base
together with the similarity scores and links to their locations
in EtherScan (cf. Fig. 2). For the bug detection result tab, the
SMARTEMBED highlights the buggy lines in the submitted
source code and reports the bug types back to the developer
(cf. Fig. 3).

5https://github.com/beyondacm/SmartEmbed
6https://etherscan.io/
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User Input

Clone Detection Result

Fig. 2. Sample Results of Clone Detection

Bug Type of SMARTEMBED

Bug statement identified 
         in user input

User Input

Fig. 3. Sample Results of Bug Detection

IV. EVALUATION

We compared SMARTEMBED with two well-known tools
that are specific for clone detection (DECKARD [9] extended
for Solidity) and bug detection (SmartCheck [3]) respectively.
For clone detection, we run DECKARD and SMARTEMBED
against 22,725 smart contracts source code, the experiment
results show that both tools identified around 6.6 million lines
of code as code clones, while the total lines are just 7.3 million,
which means the clone ratio of solidity code is at around
90%, much higher than traditional software. One main reason
for introducing clones is the irreversibility of smart contracts
stored in Ethereum blockchain. By manually checking some
clones detecked by our approach but not by DECKARD, we
found code clones such as type-III or even type-IV semantic
code clones can also be detected, which means SMARTEMBED
is highly effective to identify the code clones in smart contract.
For bug detection, SMARTEMBED can identify clone related

bugs in Ethereum blockchain efficiently and accurately. When
the similarity threshold is set to 0.95, our tool reports 202
clone related bugs, we manually validate these candidate bugs
and 194 of which are labelled as true bugs, while SmartCheck
can only detect 117 of these verified bugs by using the same
bug pattern type within our bug database.

V. SUMMARY AND FUTURE WORK

This paper presented SMARTEMBED, a web service tool for
detecting code clones and bugs in smart contracts accurately
and efficiently. It develops a code embedding technique for
tokens and syntactical structures in Solidity code and utilizes
similarity checking to search for “similar” code satisfying
certain thresholds. The approach is automated on the contract
and bug data collected from the Ethereum blockchain. It helps
developers to find repetitive contract code and clone-related
bugs in existing contracts, which helps to improve developers’
confidence in the reliability of their contracts. It also helps to
efficiently validate given smart contracts against known set
of bugs without the need of manually defined bug patterns.
Its backend model can be easily updated to recognize new
contract clones and new kinds of bugs when the contract code
and bugs evolve. In the future, we plan to enrich the contract
and bug databases so that SMARTEMBED can detect more
clones and bugs.
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