
Interactive Fault Localization Leveraging Simple User Feedback

Liang Gong1, David Lo2, Lingxiao Jiang2, Hongyu Zhang1
1School of Software, Tsinghua University, Beijing 100084, China

Tsinghua National Laboratory for Information Science and Technology (TNList)
2School of Information Systems, Singapore Management University, Singapore
{gongliang10@mails,hongyu@}.tsinghua.edu.cn,{davidlo,lxjiang}@smu.edu.sg

Abstract—Many fault localization methods have been
proposed in the literature. These methods take in a set of
program execution profiles and output a list of suspicious
program elements. The list of program elements ranked by
their suspiciousness is then presented to developers for manual
inspection. Currently, the suspicious elements are ranked in a
batch process where developers’ inspection efforts are rarely
utilized for ranking. The inaccuracy and static nature of
existing fault localization methods prompt us to incorporate
user feedback to improve the accuracy of the existing methods.

In this paper, we propose an interactive fault localization
framework that leverages simple user feedback. Our frame-
work only needs users to label the statements examined as
faulty or clean, which does not require additional effort
than conventional non-interactive methods. After users label
suspicious program elements as faulty or clean, our framework
incorporates such information and re-orders the rest of the
suspicious program elements, aiming to expose truly faulty
elements earlier. We have integrated our solution with three
well-known fault localization methods: Ochiai, Tarantula, and
Jaccard. The evaluation on five Unix programs and the
Siemens test suite shows that our solution achieves significant
improvements on fault localization accuracy.

I. INTRODUCTION

There has been a growing concern about the impact of
rapid increase in the complexity of software, which leads
to difficulties in writing correct computer programs. To
improve the quality of software systems, software testing,
debugging, and verification are widely used. However, these
activities are often labor-intensive, accounting for 30% to
90% of labor spent for a project [6], [7].

When a software error is revealed by testing or reported
by an end-user, the very first step of diagnosis is to locate
the root cause. However, this step also requires much manual
effort [10]. To address this issue, automatic fault localization
tools, which aim to reduce corrective maintenance cost and
create robust software more efficiently, have been proposed.

There are many fault localization techniques in the
literature. Spectrum-based Fault Localization (abbr. SBFL
e.g., [2], [4], [5]) is one kind of automated debugging
techniques that effectively narrows down the possible
locations of software faults and thus helps save developers’

The work was done while the author was visiting Singapore Management
University.

time. This type of techniques usually takes in a set of
program execution profiles along with their labels (i.e.,
passed or failed executions), and recommends suspicious
program elements to developers for manual inspection.

Although many spectrum-based fault localization tech-
niques have been reported to be helpful [1], [13], [15],
[16], there are still many drawbacks hindering their massive
application in industry. One of the most important issues
is the unsatisfactory accuracy of existing statistical fault
localization techniques [26]. This can partially be attributed
to the limited information provided by program spectra as
debugging often requires comprehensive understanding of
program semantics. Unfortunately, artificial intelligence and
machine learning techniques employed for fault localization
are still unable to automatically and completely comprehend
program semantics and its intended behavior.

Despite the fact that spectrum-based fault localization
utilizes dynamic execution information, this technique works
in a static way: it operates as a batch process where
user interaction is minimal. Specifically, after receiving the
program spectra, existing fault localization techniques build
models based on the provided input, calculate suspiciousness
scores and presents user a list of ranked suspicious program
elements. In contrast, human debugging often operates in
an interactive way: when a developer observes an abnormal
execution, she checks code that might be responsible, tries
to fix the problem, and re-executes the program. If the
problem still exists, she can rectify her previous judgment
on suspicious code and continue debugging, until the root
cause is found.

Inspired by manual debugging processes and the
drawbacks of existing spectrum-based fault localization
techniques, we pose the following key research question:

Can we perform spectrum-based fault localization in an
interactive way to improve accuracy while incurring little
additional cost?

In this paper, we propose a generic framework TALK,
which incorporates user feedback to spectrum-based fault
localization approaches. Each time a user inspects a
suspicious program element recommended by a fault
localization method, the user can judge the correctness of
the recommended element and provide this information as
feedback to TALK. Based on the feedback, our proposed

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 N ef N ep N nf N np Ochiai Tarantula Jaccard
main(){ s1
 int let, dig, other, c; s2
 let = dig = other = 0; s3
 while(c=getchar()){ s4
 if('A'<=c && 'Z'>=c) s5 ● ● ● ● ● ● ● ● ● ● ● 4 7 0 1 0.603 0.533 0.364
 let += 1; s6 ● ● ● ● ● ● ● ● ● 3 6 1 2 0.500 0.500 0.300
 else if('a'<=c && 'z'>=c) s7 ● ● ● ● ● ● ● ● ● ● ● 4 7 0 1 0.603 0.533 0.364
 let += 1; s8 ● ● ● ● ● 3 2 1 6 0.671 0.750 0.500
 else if('0'<=c && '9'>c) /*FAULT*/ s9 ● ● ● ● ● ● ● ● ● 4 5 0 3 0.667 0.615 0.444
 dig += 1; s10 ● ● ● ● ● ● 2 4 2 4 0.408 0.500 0.250
 else if(isprint(c)) s11 ● ● ● ● ● ● ● ● 4 4 0 4 0.707 0.667 0.500
 other += 1;} s12 ● ● ● ● ● ● ● 4 3 0 5 0.756 0.727 0.571
 printf("%d %d %d\n",let,dig,others);} s13 ● ● ● ● ● ● ● ● ● ● ● ● 4 8 0 0 0.577 0.500 0.333

pass/fail F F P P F P P P P P F P

Statement Test case Suspiciousness Metrics

● ● ● ● ● ● ● 8 0 0 0.577 0.500 0.333● ● ● ● ● 4

Figure 1. Running Example

interactive framework will re-order the elements that are yet
to be checked, and present an updated list of suspicious
elements. Unlike [11], [12], our method simply asks users
to judge if a particular program element is correct or not,
and thus needs only “simple” feedback from users.

To utilize simple feedback, we leverage the relationships
among false positives and potential root causes in program
spectra. When a false positive is identified by a user, all
program elements that are executed together with the false
positive in failed executions should be more suspicious than
before as one or a few of them must be the root cause(s)
causing the failures. We then adjust supiciousness by 1)
infering root cause from false positives and 2) focusing on
one failed profile with the least remaining program elements
covered. After that, the framework updates the recommended
list for further inspection.

We evaluate our framework on five real C programs
and seven Siemens programs from the Software-artifact
Infrastructure Repository (SIR). In total, we analyze 254
faults, and demonstrate that our approach outperforms
conventional non-interactive fault localization methods.

The main contributions of this paper are as follows:
1) We propose TALK, a novel framework for interactive

spectrum-based fault localization. TALK incorporates
user feedback to update the list of suspicious elements
while providing feedback requires no additional effort
than conventional non-interactive methods.

2) TALK is a one-size-fits-all approach that can be applied
to most existing static SBFL techniques.

3) We have evaluated our approach on 12 C programs. Our
evaluation demonstrates that simple user feedback can
help to significantly improve the accuracy of existing
fault localization approaches.

The rest of this paper is organized as follows: Section II
introduces preliminaries on fault localization and describe
the motivation of this work. Section III presents our
approach in detail. Section IV shows the empirical
evaluation and Section V describes related work. Finally,
Section VI concludes with future work.

Table I
SPECTRUM-BASED FAULT LOCALIZATION

Name Suspiciousness Calculation Formula

Tarantula

Nef (s)

Nef (s)+Nnf (s)

Nef (s)

Nef (s)+Nnf (s)
+

Nep(s)

Nep(s)+Nnp(s)

Ochiai
Nef (s)√

(Nef (s) +Nnf (s)) · (Nef (s) +Nep(s))

Jaccard
Nef (s)

Nef (s) +Nnf (s) +Nep(s)

II. PRELIMINARIES AND MOTIVATION

A. Fault Localization

Spectrum-based fault localization [1], [16], [19], [20]
aims to locate faults by analyzing program spectra which
often consists of information about whether a program
element (e.g., a function, a statement, or a predicate) is hit in
an execution. Statistical calculations are then performed on
passed and failed executions to obtain the suspiciousness
score for every element executed. All elements are then
sorted in descending order according to their suspiciousness
scores for developers to investigate.

Figure 1 shows a code snippet (taken from [9], [14])
which contains 13 statements s1...s13, where s9 is faulty
(the condition ‘9’>c should be ‘9’>=c). Suppose the
program has 12 test cases t1...t12. A • for a statement under
a test case means the corresponding statement is executed
(or covered) in the corresponding test case. With the spectra
for all of the test cases and their pass/fail information, fault
localization techniques may calculate various suspiciousness
scores for each of the statements and rank them differently.

The key for a spectrum-based fault localization technique
is the formula used to calculate suspiciousness. Table I lists
the formulae of three well-known techniques: Tarantula [16],
Ochiai [1], and Jaccard [1]. Given a program element s,
Nef (s) is the number of failed executions that execute s,
Nnp(s) is the number of passed executions that do not hit s,
Nnf (s) is the number of failed executions that do not hit s,

(A) Static Fault Localization

Developer

Fault Localization
Techniques

Static List of
Suspicious Elements

Program Spectra

(B) Interactive Fault Localization

Developer

Fault Localization
Techniques

Interactive List of
Suspicious Elements

FeedbackProgram Spectra

Figure 2. The Framework of Static and Interactive Fault Localization Techniques.

and Nep(s) is the number of passed executions that execute
s. In this case, three well-known techniques, Ochiai [1],
Tarantula [16], and Jaccard [1] all rank s12 as the most
suspicious statement (see the last three columns of Figure 1
and compare the suspiciousness score of s12 with those of
the other statements) and thus produce a false positive.

Each column for ti in Figure 1 is a spectrum. The columns
Nef , Nep, Nnf , and Nnp can thus be calculated from the
spectra. The suspiciousness scores of Tarantula, Ochiai, and
Jaccard for each statement are then calculated based on the
formulae in Table I.

B. Problem & Motivation

Conventional non-interactive fault localization techniques
work in a static way that does not incorporate user feedback.
Specifically, existing fault localization techniques (e.g.,
Ochiai and Tarantula) often take program spectra as input,
calculate a suspiciousness score for each program element
(i.e., function, predicate or statements) and output a ranked
list in which program elements are ranked in descending
order of their suspiciousness scores. Developers are expected
to examine the code along with the ranked list of suspicious
program elements. Figure 2 (A) shows the general process.

Although many studies [1], [13], [16] show that spectrum-
based fault localization is effective in helping to locate
faults, the performance of existing spectrum-based fault
localization techniques is still unsatisfactory [26]. In some
cases, developers have to examine many statements before
reaching the real root cause. Those statements are fault-free
but for some reasons appear frequently in failed executions
and relatively less in passed executions. As a result, these
statements are marked as highly suspicious by conventional
non-interactive spectrum-based fault localization (SBFL)
techniques but are identified as false positives after they are
examined by developers. User feedback in the form of the
identification of false positives could be collected one by
one as users investigate the sorted list of suspicious program
elements. These false positives indicate the imprecision of
existing fault localization approaches and thus collecting
them might be helpful for improving these techniques. This

prompts us to investigate the following question which is an
instantiation of the question introduced in Section I:

If we can ask a user to mark examined program elements
as faulty or clean and record these feedback one at a
time, how can we update a fault localization approach
to improve the accuracy of the fault localization process
for the remaining uninvestigated program elements?

C. Solution Intuition

To answer the question posed in the previous section, in
this section we introduce a simple scenario that illustrates
our interactive fault localization approach.

The difficulty of incorporating user feedback resides in the
SBFL models. Existing fault localization techniques (such as
Tarantula, Jaccard and Ochiai) calculate the suspiciousness
of each program element separately (see Figure 1, Table
I) and consequently establish no connections between
program elements. Thus, user marked labels on examined
elements cannot be used directly to adjust the suspiciousness
of remaining uninspected elements. Associations among
statements are needed to incorporate user feedback so that
the label of one examined statement (faulty or clean) can be
linked to the suspiciousness of other uninspected ones.

Investigating co-occurrences of program elements in
failed executions is one way to build such association
and help adjust existing fault localization techniques. Let
D represents the set of all elements covered by program
spectra and an execution profile be represented as ti =〈
ei1, ei2, ..., ei|D|

〉
, eij = 1 if the jth program element

is covered by the profile ti; otherwise eij = 0. Suppose,
in a failed profile ti, only two elements sx1

and sx2
are

covered (i.e., eij = 1 iff j = x1 ∧ j = x2). If a user
checks sx1 and finds that sx1 does not contain a fault,
under the assumption that the collected profile is accurate,
we are highly confident that sx2

is faulty1, no matter what
information is provided by other execution profiles. In this
case, we can transfer the suspiciousness score of sx1

to that
of sx2 so that sx2 will be considered as the most promising

1In some cases this is not necessarily true, e.g., omission errors [31].

candidate for inspection. Generalizing this scenario, if a
failed profile ti covers multiple unchecked statements, we
split the suspiciousness score of a checked clean statement
to those unchecked statements.

Consider Figure 1 as an example. After inspecting s12 and
s11 following the list recommended by Ochiai, a developer
will identify them as clean. According to the initial rank list,
the user will first check s8 followed by s9, as the former gets
a relatively higher suspiciousness score. However, among all
failed executions that cover s12 and s11 (i.e., t1, t2, t5 and
t11), s9 appears 4 times (thus, all of them) while s8 appears
3 times (not covered by t1). In this case, using our interactive
approach, s8 gets less shares from the suspiciousness scores
of s11 and s12, thus s8 is less likely than s9 to be the root
cause of these four failures—indeed s8 is not the root cause
of t1’s failure, as it is not covered in that execution profile.

III. FAULT LOCALIZATION BASED ON USER FEEDBACK

In this section we introduce our approach: Spectrum-
based FaulT LocAlization Leveraging User FeedbacK
(abbr. TALK). TALK leverages user feedback to adjust
suspiciousness scores of program elements during fault
localization process. In the subsections, we show interactive
SBFL framework and describe the details of our approach.

A. Framework Utilizing User Feedback

Figure 2 shows the differences in debugging process
between conventional static fault localization methods and
our interactive approach considering user feedback. The
overall process of TALK is shown in Figure 2(B) in which
a spectrum-based fault localization model f (e.g., Ochiai)
recommends suspicious program elements in an iterative
way. In the first round, f takes in a program spectra T ,
builds a model fT based on the input T , calculates a
suspiciousness score fT (s) for each program element s
using the model and outputs a ranked list in descending
order of their suspiciousness scores. Developers are then
expected to inspect one or a set of program elements Si

(i is the iteration number) at the top of the ranked list of
program elements and label each element in Si (i.e., either
clean or faulty). Let those statements and corresponding
labels be denoted as Fi. Having received the label set Fi,
our framework will incorporate Fi to update the current
fault localization model fT → f(T,

⋃
i
Fi) and recalculate the

suspiciousness of each uninspected program elements by the
new model. It then ranks the program elements according to
their new suspiciousness scores and outputs a new ranked
list for developer’s inspection. In the next iteration, the
developer can continue to provide more feedback if they
are not satisfied with the current recommendation.

Illustrated in Figure 3, our proposed interactive approach
provides options for the developer to mark the label of
program elements as clean or faulty. After a developer
commits the label(s), our framework will incorporate the

Program ElementNo.

Commit

Buggy?Susp.

other += 1;}

else if(isprint(c))
let += 1;

else if('0'<=c && '9'>c)

if('A'<=c && 'Z'>=c)

S12

S11

S8
S9

S5

0.756

0.707

0.671
0.667

0.603

Figure 3. Interactive Ranked List of Suspicious Program Elements

labels and update the existing fault localization model. A
newly ranked list is then generated. The interactive user
interface will update and show the new result which only
contains uninspected program elements.

Our framework in general allows developers to label any
element in the ranked list, not just the top ones. Of course,
the effectiveness of the feedbacks from labelling different
elements would be different. Our study assumes developers
always label the top elements, and leave the investigation of
different labeling strategies of users as future work.

B. Suspiciousness Updating Rules

Rule R1: Identifying a Root Cause from Its Symptom.
Some program elements are deemed highly suspicious based
on their coverage profile, as they appear frequently in failed
executions and relatively less in passed executions. However,
in many cases, those program elements are not faulty and
thus are identified as false positives after inspection. A
false positive is triggered by its root cause in a certain
scenario. For example, in Figure 1, s12 is covered in all
failed executions, but appears in a few passed executions.
Consequently it is considered as the most suspicious element
by Ochiai, Jaccard and Tarantula. However, s12 does not
contain a fault. Analyzing the code snippet, we can find that
s9 has been seeded a fault(‘9’>=c → ‘9’>c) so that for
each input with a character ‘9’, s9 will mistakenly direct
the control flow to s11. Since character ‘9’ is printable, the
predicate in s11 is always true, which leads to the execution
of s12. As a result, s12 is covered in every failed execution
profiles and gets a high suspiciousness score. Statements
like s12 are only a manifestation of an incorrect program
behavior, rather than the root cause of failures, and thus
we call it a symptom. Symptoms are triggered by their root
causes and are mere false positives.

In our method, we adjust the suspiciousness of a possible
root cause of a symptom. To identify the root cause (e.g.,
s9) of the symptom (e.g., s12), we need to associate2 related
program elements together. Under this model, when false
positives are identified, we can adjust the suspiciousness
scores of other related program elements. Here is our
approach to update suspicious scores when a program
element s is considered as clean:

2Causality is approximated as association with clean elements here.

First of all, we identify the possible root cause of the
symptom s. We isolate the set of all failed profiles that cover
s—denoted as Tfail(s) and calculate the likelihood of an
element sc to be the root cause by the following equations:

Ps(sc) =
∑

t∈Tfail(s)∧sc∈t

|D|
|{s′|s′ ∈ t ∧ s′ /∈ I}|

(1)

where sc ∈ t means that the element sc is covered by
the profile t. Set D includes all elements executed in the
input program spectra T and set I contains all the elements
that have already been inspected. With this equation, we
give a score to each element indicating the number of co-
occurrences of s and sc in failed profiles weighted by the
lengths of the failed profiles, where the length of a profile
is the number of elements covered by the execution profile.
Profiles with fewer elements will contribute more to this
likelihood score.

Then, the possible root cause sr of a symptom s is
selected in the following equation. Intuitively speaking,
we select an uninspected statement as the root cause if it
coappears the most frequently with the symptom in failed
traces covering limited number of uninspected program
elements.

sr ← argmax
sc∈T

{Ps(sc)} (2)

Next, we want to adjust the suspiciousness score of sr.
Let us denote all profiles that cover program element sr as
T (sr) and profiles that do not cover program element sr
as T (sr). Let us build the fault localization models fT (sr)

and fT (sr) based on each of the two profile sets respectively.
fT (sr)(si) means the suspiciousness score of statement si in
model fT (sr); likewise fT (sr)(si) is the suspiciousness score
of si in model fT (sr). Then we adjust the suspiciousness
score of sr as follows:

Suspsr = fT (sr) +Wsr→s · fT (s) (3)

Wsr→s = fT (sr)(s)− fT (sr)(s) (4)

In the equation, s is the program element examined by
the user and is identified as clean(i.e., the symptom). To
update the suspiciousness score of sr, we contribute a
part of the suspiciousness score of s to sr based on the
difference between fT (sr)(s) and fT (sr)(s). The intuition
is straightforward: if sr is the root cause for these failed
executions, then the suspiciousness of s in program spectra
which covers sr should be higher than the suspiciousness of
s in spectra where sr is not executed. Otherwise if sr is not
the root cause, Wsr→s should intuitively be small.

Note that this rule only adjusts the suspiciousness score
for one program element that is most likely to be the root
cause for each symptom. We do this because there are often
a substantial number of elements that are coincidentally

executed in failed executions which might seem to be the
root causes, but real faults in the program may often involve
only a limited number of program elements. We thus only
adjust the suspiciousness for one element to minimize the
impact of coincidental candidates.

Rule R2: Focusing on a Single Failed Execution Profile.
This heuristic makes the fault localization model focus on
only one failed execution. Suppose there are two failed
execution profiles t1 and t2: t1 covers 5 program elements,
and t2 covers 50 program elements. As the root cause must
be executed in a failed profile, focusing on the profile with
the least number of elements covered by it will help locate
faults more easily. In this example, focusing on elements
executed by t1 is better because at most 5 statements have
to be inspected to locate the root cause.

In our approach, we scan all profiles and find out the
failed profile tmin covering the least number of unexamined
elements. For each program element si that is covered in
tmin, we adjust their suspiciousness scores as follows:

Susp
′

si = Ksi · Suspsi (5)

where Ks is a constant that guarantees ∀si ∈ tmin, sj /∈
tmin Susp

′

si > Susp
′

sj . In the experiment, we set Ks =
10 (any other values that are larger than 10 is fine) when
element s is covered by tmin, otherwise Ks = 1.

In this rule, feedback is taken into consideration
when multiple faulty lines exist. To focus on remaining
undiscovered faulty lines, we also exclude the profiles
covering the faulty lines that have already been identified by
prior user feedback when choosing tmin (see the pseudocode
in Figure 4 and its explanations in Section III-C)

C. Overall Approach

The pseudocode of TALK is shown in Figure 4. To
start the process, at lines 1-3 we first build a fault
localization model fT based on the input program spectra T
only. Procedure show result(L) presents the ranked list of
suspicious program elements L to the user. LT is an internal
data structure that stores a temporary ranked list of program
elements. Procedure wait feedback() returns true if a user
submits a new feedback. obtain feedback() returns the new
feedback as a set of 〈element, label〉 pairs.

If a statement does not contain a fault (i.e., the statement
is a symptom), at lines 10-12, we identify its root cause and
update the suspiciousness score of the root cause according
to Equation 3. The method will record a faulty element if it
is identified as such by the user (line 13-14).

At lines 16-18, we adjust the suspiciousness scores of
the program elements following the the second rule. To
focus on remaining defect in both single and multiple
faulty lines cases, procedure least fail profile(E) returns the
failed profile that 1) covers the least number of elements
uninspected and 2) does not cover any element in set E .

Procedure TALK
Input:
T - Program spectra

Output:
L Ranked list of suspicious program elements

Method:

1: Build a fault localization model fT using T
2: Obtain a ranked list LT according to fT
3: L ← LT ; show result(L)
4: while wait feedback() do
5: F ← obtain feedback()
6: for each 〈s, ls〉 ∈ F do
7: LT ← LT \ s ; I ← I

⋃
{s}

8: if ls =clean then
9: //Identify the root cause

10: ∀sc ∈ T , calculate Ps(sc) by Equation 1
11: Select sr by Equation 2
12: Update Suspsr in LT according to Equation 3
13: else if ls =faulty then
14: E ← E

⋃
{s}

15: end if
16: L ← LT
17: //Focus on one failed profile
18: tmin ←least fail profile(E)
19: Update Suspsr in L according to Equation 5
20: show result(L)
21: end for
22: end while
23: return L

Figure 4. TALK: The Proposed Approach

IV. EMPIRICAL EVALUATION

In this section we present an empirical evaluation
that analyzes the impact of user feedback on existing
spectrum-based fault localization methods, and compares
the diagnostic costs of conventional non-interactive SBFL
and TALK. Section IV-A describes the experimental setup in
detail and gives descriptive statistics of the subject programs.
Section IV-B presents the research questions investigated in
our study. Section IV-C shows the results. Finally, Section
IV-D discusses the threats to validity.

A. Experimental Setup

Evaluation Metric. We compare the effectiveness of
different fault localization methods based on diagnostic cost
that calculates the percentage of statements examined to
locate a fault, which is commonly used in the literature [1],
[16], [22]. The diagnostic cost is defined as follows:

Cost =
|{j | fTS (dj) ≥ fTS (d∗)}|

|D|
, (6)

where D consists of all program elements appearing in the
input program. We calculate the cost as the percentage of
elements that developers have to examine until the root
cause of the failures (d∗) are found. Since multiple program
elements can be assigned with the same suspicious score, the

numerator is considered as the number of program elements
dj that have larger or equal suspicious scores as that of d∗.

Evaluation Assumption. To measure the effectiveness of
interactive fault localization methods with user feedback, we
assume that:

1) User inspects program elements following recom-
mended list from the most suspicious to the least.

2) Although our framework provides an option for a user
to submit either no or multiple feedback. For the
simplicity of evaluation, we assume that a feedback is
submitted after each program element is inspected and
a user will keep labeling until faults are found.

Experimental Dataset. We use five real C programs and
seven Siemens test programs from the Software-artifact
Infrastructure Repository (SIR) [8]. We refer to the five
real programs (sed, flex, grep, gzip, and space) as
UNIX programs. Table II shows the descriptive statistics
of each subject program, including the number of faults,
available test cases and code sizes. In these subjects,
different types of bugs are seeded (e.g., wrong conditional
expressions, additional statements, wrong return expressions,
etc.). Following existing studies [1], [15], we exclude faults
not directly observable by the profiling tool we use3.
Subjects are instrumented in statement level and in total we
study 254 faults.

Table II
SUBJECT PROGRAMS

Program Description LOC Tests Faults
tcas Aircraft Control 173 1609 41
schedule2 Priority Scheduler 374 2710 8
schedule Priority Scheduler 412 2651 8
replace Pattern Matcher 564 5543 31
tot info Info Measure 565 1052 22
print tokens2 Lexical Analyzer 570 4055 10
print tokens Lexical Analyzer 726 4070 7
space ADL Compiler 9564 1343 30
flex Lexical Parser 10124 567 43
sed Text Processor 9289 371 22
grep Text Processor 9089 809 17
gzip Data Compressor 5159 217 15

B. Research Questions

RQ1: Is user feedback helpful for improving fault localiza-
tion accuracy?

TALK is built upon conventional non-interactive fault
localization techniques by incorporating user feedback. We
would like to compare the accuracies of fault localization
before and after user feedback are incorporated. We created
Ochiai+, Jaccard+ and Tarantula+ which are the interactive
versions of Ochiai, Jaccard and Tarantula, using our
proposed TALK framework, respectively.

3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

RQ2: What is the relative effectiveness of the two rules
described in Section III to improve fault localization?

In Section III-B, we propose two rules to update
suspiciousness scores of program elements: 1) identifying
a root cause from its symptom; 2) focusing on a single
failed profile with the least number of uninspected elements.
To answer RQ2, we simply compare the diagnostic costs
of three variants of Ochiai+, Jaccard+, and Tarantula+

respectively: one that uses only the first rule, another that
uses only the second rule, and the third that uses both rules.

C. Experimental Results

This section presents our experimental results by
addressing the research questions.
RQ1: Is user feedback helpful for improving fault
localization accuracy?

Following [4], [5] and the Cost metric (Equation 6),
we compare the effectiveness of two fault localization
techniques f+ and f by using one of the methods (f)
as the reference measure. The Cost difference: Cost(f) −
Cost(f+) is considered as the improvement of f+ over
f . A positive value means that f+ performs better than f
(since a lower Cost is preferred). The difference corresponds
to the magnitude of improvement. For example, if the
diagnostic cost utilizing f+ is 30% and the diagnostic cost
utilizing f is 40%, then the improvement of f+ over f
is 10%, which means that developers would examine 10%
fewer statements if f+ is deployed.

‐16%

‐6%

4%

14%

24%

34%

44%

54%

1 11 21 31 41 51 61 71 81 91 101 111 121

Im
p
ro
ve
m
en

t

No. of Versions

Im
p
ro
ve
m
en

t

Figure 6. Improvement of Ochiai+ over Ochiai on all dataset.

Figures 6, 7, and 8 show the comparisons of diagnostic
costs between different fault localization techniques. The
horizontal axes represent the versions that show differences
in the diagnostic costs. The vertical axes represent the
percentage difference in the diagnostic costs. If our proposed
methods are better than the corresponding conventional non-
interactive fault localization methods, the area above the
horizontal axes will be larger. In the figure we show only
versions for which there are diagnostic cost differences.
Ochiai+ vs Ochiai. Figure 6 compares the diagnostic cost
utilizing Ochiai+ and the diagnostic cost utilizing Ochiai
over all faulty versions of Siemens and UNIX programs.

‐26%

‐16%

‐6%

4%

14%

24%

34%

44%

1 11 21 31 41 51 61 71 81 91 101 111 121

Im
p
ro
ve
m
en

t

No. of Versions

Figure 7. Improvement of Jaccard+ over Jaccard on all dataset.

Ochiai is used as the reference fault localization technique.
Each program version is a bar in this graph and we
remove versions from the graph that have no diagnostic
cost differences due to the limited space. The vertical axis
represents the magnitude of improvement of Ochiai+ over
Ochiai. If the bar of a faulty version is above the horizontal
axis, that means on this version Ochiai+ performs better than
Ochiai (positive improvement). However, bars below the
horizontal axis represent faulty versions for which Ochiai+

performs worse than Ochiai.
The result shows that in general Ochiai+ is better than

Ochiai. Out of 117 versions that show differences in
diagnostic cost, Ochiai+ performs better than Ochiai on 83
versions only performs worse on 34 versions. The positive
improvement ranges from 0.06% to 60.0%, with an average
of 12.29%.

‐35%

‐15%

5%

25%

45%

65%

1 21 41 61 81 101 121 141 161 181 201 221

Im
p
ro
ve
m
en

t

No. of Versions

Figure 8. Improvement of Tarantula+ over Tarantula on all dataset.

Jaccard+ vs Jaccard. Figure 7 compares the diagnostic cost
utilizing Jaccard+ and the diagnostic cost utilizing Jaccard
over all faulty versions of Siemens and UNIX programs.
Jaccard is used as the reference fault localization technique.
The result shows that in general Jaccard+ is better than
Jaccard on Siemens and UNIX programs. Out of the 120
versions that show differences in diagnostic cost, Jaccard+

performs better than Jaccard on 105 versions only performs
worse on 15 versions. The positive improvement ranges from
0.02% to 46.15%, with an average of 11.71%.
Tarantula+ vs Tarantula. Figure 8 compares the diagnostic
cost utilizing Tarantula+ and the diagnostic cost utilizing

0.679389313 Jaccard 0.173425776 0.152162755 0.150098879 0.128119253 0.122605887 0.134506516 0.261244459

0.148854962 Tarantula 0.190320193 0.161066384 0.140463204 0.115760757 0.153708381 0.261963736 0.39175788

0.171755725 Siemens

original h2 h3 h2+h3 R1 R2 R1+R2

max 0.719907407 Ochiai 0.256259778 0.209840562 0.244122897 0.192695179 0.181141246 0.04736163 0.248047505

mean 0.133673294 Jaccard 0.273056384 0.227534141 0.23630048 0.192059025 0.166713709 0.134609208 0.296632355

median 0.040692456 Tarantula 0.277056588 0.221121023 0.236685939 0.18491684 0.201892204 0.145712648 0.33256653

min 0.000387597 UNIX

66 70.77% max original h2 h3 h2+h3 R1 R2 R1+R2

25 22.04% mean Ochiai 0.083816652 0.083937223 0.073476419 0.071183851 0.014 0.123367286 0.150719473

48 14.50% median Jaccard 0.089230897 0.088468627 0.077252457 0.074085643 0.008542676 0.134240954 0.169731053

0.41% min Tarantula 0.11702183 0.110315985 0.059148217 0.057318998 0.057304227 0.494553994 0.51018543

75 71.99% max ochiai

11 11.00% mean R1 R2 R1+R2

22 2.83% median UNIX 0.014 0.123367286 0.150719473

0.04% min Siemens 0.181141246 0.04736163 0.248047505

cost improvement

cost improvement

0

0.05

0.1

0.15

0.2

0.25

0.3

UNIX Siemens Overall

%
 o
f
C
o
st
 R
e
d
u
ct
io
n
 o
ve
r

C
o
n
ve
n
ti
o
an

l M
e
th
o
d

Dataset Combination

Ochiai+ vs Ochiai

R1

R2

R1+R20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

UNIX Siemens Overall

Dataset Combination

Jaccard+ vs Jaccard

R1

R2

R1+R2
0

0.1

0.2

0.3

0.4

0.5

0.6

UNIX Siemens Overall

Dataset Combination

Tarantula+ vs Tarantula

R1

R2

R1+R2

Figure 5. The contributions of different rules.

Tarantula over all faulty versions of Siemens and UNIX pro-
grams. Tarantula is used as the reference fault localization
technique. The result shows that in general Tarantula+ is
better than Tarantula on Siemens and UNIX programs. Out
of the 217 versions that show differences in diagnostic cost,
Tarantula+ performs better than Tarantula on 178 versions
only performs worse than Tarantula on 39 versions. The
positive improvement ranges from 0.04% to 71.99%, with
an average of 13.37%.
Summary. Tables III and IV summarize the results of
comparing interactive fault localization approaches with
conventional fault localization approaches. We notice that for
each conventional approach (Ochiai, Jaccard, and Tarantula)
incorporating user feedback using TALK improves the
accuracy of the corresponding reference approach.

Table III
COMPARISON OF FAULT LOCALIZATION METHODS.

Fault Loc. Tech. Positive Negative Neutral
Ochiai+ vs Ochiai 31.68% 12.98% 55.34%

Jaccard+ vs Jaccard 40.08% 5.73% 54.20%
Tarantula+ vs Tarantula 67.94% 14.89% 17.18%

Ochiai has been shown to be the most accurate among the
three conventional approaches. From the first row of Table
III, we note that Ochiai+ performs better than Ochiai on
31.68% of the faulty versions, worse on 12.98% of the faulty
versions, and shows no improvement on 55.34% of the faulty
versions. The first row of Table IV characterizes the degree
of positive improvement of Ochiai+ over Ochiai. Half of
the 31.68% faulty versions with positive improvement values
have improvements between 0.06% and 7.50%, and the other
half have improvements between 7.50% and 60.0%. The
average positive improvement is 12.29%.

Table IV
DISTRIBUTION OF POSITIVE IMPROVEMENTS.

Fault Loc. Tech. Max Mean Median Min
Ochiai+ vs Ochiai 60.0% 12.29% 7.50% 0.06%

Jaccard+ vs Jaccard 46.15% 11.71% 7.00% 0.02%
Tarantula+ vs Tarantula 71.99% 13.37% 4.07% 0.04%

To further confirm the effectiveness of TALK, we also
conduct paired Wilcoxon signed-rank test [28] to check if
the differences in the mean diagnostic costs of Ochiai+

and Ochiai, Jaccard+ and Jaccard, and Tarantula+ and
Tarantula over the entire dataset are significant or not. The
statistical test results reject the null hypotheses and suggests
that Ochiai+, Jaccard+, and Tarantula+ are significantly
better than Ochiai, Jaccard, and Tarantula respectively, at
95% confidence interval.

Our interactive approach (Ochiai+) improves Ochiai by
reducing the amount of inspected code by up to 3047 lines of
code (LoC) for a bug. Among 40% of buggy versions where
there is a difference between our approach and Ochiai, we
reduce the amount of inspected code by at least 50 LoC. Half
of the bugs require examining less than 69 LoC using our
approach, while Ochiai requires less than 81 LoC. Ochiai+

successfully localizes 78 bugs by investigating at most 30
lines of code. Ochiai only successfully localizes 68 bugs.

We note that user feedback sometimes hurts rather than
helps. TALK considers only simple feedback that labels the
correctness of a statement, and uses a heuristic to decide
the root cause of a bug which may be inaccurate with
limited information. For example, some correct statements
may happen to co-appear frequently with symptoms. For a
minority of cases, the inaccuracy of this heuristic causes
user feedback to hurt rather than help. But as we can see
in Figure 6, 7, and 8, most of the negative improvements
of those versions are relatively small or even trivial when
compared to the positive improvements.

RQ2: What is the relative effectiveness of the two rules
described in Section III to improve fault localization?

Figure 5 shows the contributions of each rule to the
performance of interactive fault localization. Each bar in the
figure represents the percentage of diagnostic cost reduction
when either one or both of the rules are employed. For
example, applying Rule R1 alone to Ochiai on Siemens
programs incurs an average cost of 20.98% while static
Ochiai incurs an average cost of 25.63%. So the cost
reduction is 25.63%−20.98%

25.63% = 18.14%.
As shown in the figure, different rules contribute

differently to the effectiveness of the overall approach
(which incorporates both rules) on different datasets. For
example, Rule R1 alone reduces the average cost by 1.4%
and 18.14% on UNIX and Siemens programs respectively.
Rule R2 alone reduces the average cost by 12.34% and

4.74% on UNIX and Siemens programs respectively. Thus,
R1 contributes more to the accuracy of the overall approach
on Siemens programs, and R2 contributes more on UNIX
programs. This is probably due to the differences in program
sizes and types of seeded faults. Specifically, UNIX programs
are real-life programs which contain thousands of lines of
code. Focusing on a single failed profile (Rule R2) will
help to avoid examining a substantial amount of code.
Conventional methods perform poorly on Siemens programs
(e.g., 25.63% average cost using Ochiai) and thus a lot of
false positives can be found and reduced by feedback. This
manifests the usefulness of Rule R1 (inferring a root cause
from its symptom). Overall, when all rules are applied, the
performance is the best (an average reduction of 15.1% on
Siemens programs and 24.8% reduction on UNIX programs).
Conclusively, both rules contribute to the effectiveness of
interactive fault localization.

D. Threats to Validity

Threats to construct validity refers to the suitability of
our evaluation metric. We use a cost metric that has been
utilized to evaluate past fault localization techniques [4], [5].
We believe this is a fair and well-accepted metric.

Threats to external validity refers to the generalizability of
our findings. In this study, we have evaluated our approach
on not only Siemens programs but also five real programs.
All of our programs, however, are written in C. In the future,
we plan to investigate more programs written in various
programming languages and to explore more strategies for
utilizing user feedback to enhance our approach.

Another threat to validity relates to the effect if users
are not always correct in deciding the label of inspected
program elements. User feedback is just one of the two
labels: buggy or clean. A user mistake would either be 1)
considering a correct statement as buggy, or 2) considering
a faulty statement as clean. The user would need to fix
the “bug” after making a mistake of the first type, which
would require further careful code examination, and the user
would eventually realize the mistake. Also, to the best of our
knowledge, all fault localization techniques are evaluated by
assuming a user is always correct when ascertaining if a
program element is buggy or correct.

V. RELATED WORK

In this section, we describe related work on fault
localization and defect prediction. The survey here is by
no means a complete list.

Fault Localization. Over the past decade, many automatic
fault localization and debugging methods have been
proposed. Renieris and Reiss propose a nearest neighbor
fault localization tool called WHITHER [27] that compares
failed executions to correct executions and reports the most
suspicious locations in the program. Zeller applies Delta
Debugging to search for the minimum state differences

between a failed execution and a successful execution that
may cause the failure [29]. Liblit et al. profile predicates,
measure the correlations between the true evaluation of
the predicates and program failures [18], and consider the
predicates with high correlations to be the root causes.
Tarantula [15], [16] and Ochiai [3] analyze spectra and
compute suspiciousness of various program elements with
different formulae (see Table I).

Although fault localization techniques do not handle all
kinds of bugs, they are shown to be useful for debugging
(e.g., [26]). Even though bugs may not be exactly located,
such tools help to point developers to the right direction.
This paper aims to improve the accuracy of existing
techniques by incorporating simple user feedback; it doesnt
propose an independent fault localization technique or
address the general problems faced by fault localization
techniques (e.g., multi-threaded, nondeterministic, multiple
bugs), which we leave for future work.

The closest to our work, is the work by Hao et al. which
propose a method to interactively recommend checking
points (or break points) [11]. Their method requires both
coverage profiles and more detailed traces containing the
order of various program elements that are executed. The
latter would be very expensive to collect especially on large
real programs. In their approach, developers are asked to
build connections between false positives and potential faults
by determining whether the fault is executed before or after
the checking point. Although debugging tools exist (e.g.,
[23]), providing this kind of feedback is often a difficult and
error-prone task. Different from their approach, our method
only requires coverage profile and simply asks users to judge
if a particular program element is clean or buggy which is
a simple feedback. In standard (i.e., static) fault localization
approaches, users would also need to examine recommended
elements to remove the false positives and find the faults.

Lucia et al. adopt user feedback for clone-based bug
detection approaches [21]. Their method extracts code
features by static analysis and incorporates user feedback to
automatically refines a classification model for identifying
anomalies and re-sorts the remaining of the reports.

In [12], Insa et al. propose a strategy for algorithmic
debugging which interatively selects nodes from a execution
tree and asks user questions concerning program state. They
also prove that their method is optimal for algorithmic
debugging. However, answering questions about correct
program variable value when a program is at a particular
state is not an easy task for medium-sized or large programs.
Defect Prediction. Defect prediction is similar to fault
localization but often considers a coarser level of granularity.
Many such studies [24], [25] use code sizes, complexity
metrics, and variations of various variables, e.g., developer’s
experience, etc, in software development processes to build
prediction models. For example, Nagappan et al. [24] use
regression models with principal component analysis on the

code metrics to predict post-release defects. In [25], Ostrand
et al. utilize information about the relationships between
programmer and artifacts to predict defects. In [30], Zhang et
al. propose methods that construct defect prediction models
based on a small number of randomly sampled program
files. In [17], a new method is further proposed that actively
selects sample files for defect prediction.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a novel method TALK for fault
localization, which aims to improve fault localization
accuracy by leveraging user feedback while limiting the
additional manual cost incurred. In comparison with existing
non-interactive spectrum-based fault localization techniques
on 12 C programs, we have shown that our proposed method
can reduce diagnostic cost by up to 71.99% in up to 67.94%
of the buggy program versions. Using Wilcoxon rank sum
test, we have also shown that our approach statistically
significantly outperforms conventional approaches.

Future work includes trying different strategies (e.g., a
different formula for identifying root causes) to further
utilize user feedback, using different experimental setups
(e.g., when a user provides multiple feedbacks in various
labeling orders rather than one by one following the
recommended list), and evaluating in scenarios where
multiple bugs exist. It would also be interesting to enhance
TALK by allowing users to rollback their feedback if they
made mistakes.

ACKNOWLEDGEMENT

This work is partially supported by NSFC grant 61073006
and Tsinghua University project 2010THZ0. We would
like to thank the researchers who make the Siemens
Test Suite available, and researchers maintaining Software-
artifact Infrastructure Repository (SIR) for making the
other C programs available. We would also like to thank
the anonymous reviewers for providing us constructive
comments and suggestions.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund,
“A practical evaluation of spectrum-based fault localization,”
Journal of Systems and Software, 2009.

[2] R. Abreu, “Spectrum-based fault localization in embedded
software.” Ph.D. dissertation, Delft University of Technology,
2009.

[3] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-
Based Multiple Fault Localization,” in ASE, Auckland, New
Zealand, 2009.

[4] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal
inference for statistical fault localization,” in ISSTA, 2010,
pp. 73–84.

[5] ——, “Mitigating the confounding effects of program
dependences for effective fault localization,” in SIGSOFT
FSE, 2011, pp. 146–156.

[6] B. Beizer, Software Testing Techniques, 2nd ed. Boston:
International Thomson Computer Press, 1990.

[7] J. S. Collofello and S. N. Woodfield, “Evaluating the
effectiveness of reliability-assurance techniques,” Journal of
Systems and Software, vol. 9, no. 3, pp. 191–195, 1989.

[8] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact.” Empirical Software
Engineering: An International Journal, vol. 10, no. 4, pp.
405–435, 2005.

[9] A. González-Sanchez, É. Piel, R. Abreu, H.-G. Groß, and
A. J. C. van Gemund, “Prioritizing tests for software fault
diagnosis,” Softw., Pract. Exper., vol. 41, no. 10, pp. 1105–
1129, 2011.

[10] B. Hailpern and P. Santhanam, “Software debugging, testing,
and verification,” IBM Systems Journal, vol. 41, no. 1, pp.
4–12, 2002.

[11] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Interactive
fault localization using test information,” Journal of Computer
Science and Technology, vol. 24, no. 5, 2009.

[12] D. Insa and J. Silva, “An optimal strategy for algorithmic
debugging,” in ASE, 2011, pp. 203–212.

[13] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using
value replacement,” in ISSTA, 2008.

[14] B. Jiang, W. K. Chan, and T. H. Tse, “On practical adequate
test suites for integrated test case prioritization and fault
localization,” in QSIC, 2011, pp. 21–30.

[15] J. Jones, M. Harrold, and J. Stasko, “Visualization of test
information to assist fault detection,” in ICSE, 2002.

[16] J. Jones and M. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in ASE,
2005.

[17] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based
software defect prediction with active and semi-supervised
learning,” Autom. Softw. Eng., vol. 19, 2012.

[18] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in PLDI, 2003.

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in PLDI, 2005.

[20] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER:
Statistical model-based bug localization,” in ESEC/FSE, 2005.

[21] Lucia, D. Lo, and L. Jiang, “Active refinement of clone
anomaly reports,” in ICSE, 2012.

[22] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive
evaluation of association measures for fault localization,” in
ICSM, 2010.

[23] N. Matloff and P. J. Salzman, The Art of Debugging with
GDB, DDD and Eclipse. No Starch Press, Inc, 2008.

[24] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to
predict component failures,” in Proc. of ICSE ’06, New York,
NY, USA, 2006, pp. 452–461.

[25] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Programmer-
based fault prediction,” in Proc. of PROMISE ’10, 2010.

[26] C. Parnin and A. Orso, “Are Automated Debugging
Techniques Actually Helping Programmers?” in Proc. of
ISSTA, 2011, pp. 199–209.

[27] M. Renieris and S. Reiss, “Fault localization with nearest
neighbor queries,” in ASE, 2003, pp. 141–154.

[28] F. Wilcoxon, “Individual comparisons by ranking methods,”
in Biometrics, 1943, pp. 80–3.

[29] A. Zeller, “Isolating cause-effect chains from computer
programs,” in FSE, 2002, pp. 1–10.

[30] H. Zhang and R. Wu, “Sampling program quality,” in ICSM,
2010, pp. 1–10.

[31] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards
locating execution omission errors,” in PLDI, 2007, pp. 415–
424.

