
When Would This Bug Get Reported?

Ferdian Thung1, David Lo1, Lingxiao Jiang1, Lucia1, Foyzur Rahman2, and Premkumar T. Devanbu2
1Singapore Management University, Singapore

2University of California, Davis, USA
{ferdianthung,davidlo,lxjiang,lucia.2009}@smu.edu.sg, {mfrahman,devanbu}@cs.ucdavis.edu

Abstract—Not all bugs in software would be experienced
and reported by end users right away: Some bugs manifest
themselves quickly and may be reported by users a few days
after they get into the code base; others manifest many months
or even years later, and may only be experienced and reported
by a small number of users. We refer to the period of time
between the time when a bug is introduced into code and the
time when it is reported by a user as bug reporting latency.
Knowledge of bug reporting latencies has an implication on
prioritization of bug fixing activities—bugs with low reporting
latencies may be fixed earlier than those with high latencies
to shift debugging resources towards bugs highly concerning
users. To investigate bug reporting latencies, we analyze bugs
from three Java software systems: AspectJ, Rhino, and Lucene.
We extract bug reporting data from their version control
repositories and bug tracking systems, identify bug locations
based on bug fixes, and back-trace bug introducing time based
on change histories of the buggy code. Also, we remove non-
essential changes, and most importantly, recover root causes
of bugs from their treatments/fixes. We then calculate the bug
reporting latencies, and find that bugs have diverse reporting
latencies. Based on the calculated reporting latencies and
features we extract from bugs, we build classification models
that can predict whether a bug would be reported early
(within 30 days) or later, which may be helpful for prioritizing
bug fixing activities. Our evaluation on the three software
systems shows that our bug reporting latency prediction models
could achieve an AUC (Area Under the Receiving Operating
Characteristics Curve) of 70.869%.

I. INTRODUCTION

Bugs are present in most software systems. Many bugs
can be uncovered when developers perform testing activities
or apply bug finding tools. However, due to time pressure
and budget limitations, not all such detected bugs can be
fixed before they get shipped to end users. Bug fixes may
also require additional regression tests to make sure the fixes
do not break other program behaviors that previously work
well. Thus, developers need to make an informed decision
on what bugs to fix and what not to fix prior to release. If
bugs are shipped to users, patches could be released later or
never, depending on the effects of the bugs on users.

Not all bugs have equal effects. Some bugs only affect
minor functionalities which might not be used by any user.
Others affect core functionalities that are used by many. The
former kind of bugs are seldom noticed early by end users,
possibly only by expert users who have used the program

for a long period of time. The latter kind of bugs are often
noticed soon after release and may be reported early. Thus,
ignoring bug reports that may not need to be fixed would
also help to reduce the developer efforts and improve the
utility of software testing and bug finding tools.

In this paper, we are interested in understanding the time
between the introduction of a bug into the code base of a
software system and the reporting of the bug by users after
they start to use the program. We refer to this time period
as the bug reporting latency. In effect, we want to provide
answers to the following research question:

When would a bug get reported?

This question has implications on what bugs should be
fixed first within the time budget before release, as bugs that
may be reported early should be fixed first so that developers
may focus on code cared more by users. Prediction models
that can provide qualitative measures about bug reporting
latencies could thus be useful for prioritizing bug fixing
activities. The following scenarios illustrate the benefits of
understanding bug reporting latencies.

Scenario 1: Ferdian noticed a bug in his code before release.
He started to fix it right away. However, the fix took more
time and effort than he thought, and he was not sure
whether the fix would introduce other bugs. So he carried
out additional regression tests and was happy to find no
other bugs. Then, he went ahead to release his code, but the
release was one month later than previously planned.

Scenario 2: Ferdian noticed a bug in his code before release.
He would like to fix it right away, but he was aware of two
complicating issues: a) fixing the bug takes time and effort,
and might introduce other bugs; b) this bug may not trigger
any failure for a long time in the field. So he started to
estimate how likely a user would actually experience and
report the bug, and he found that similar bugs in the bug
databases may not be noticed by any user in three months
after release. Based on the estimation, Ferdian chose to
release his code as planned and delay the fix of this bug
until the time when the next field upgrade would be issued.
Thus, he kept the promise to release his code at certain time
and had additional time to fix the bug and test the change.

Scenario 3: Ferdian noticed a bug in his code before release.
He would like to fix it right away, but he was aware of
the potential issues as those in Scenario 2. So he started

978-1-4673-2312-3/12/$31.00 c⃝ 2012 IEEE

to estimate how likely a user would actually experience
and report the bug, and he found that similar bugs in the
bug databases may be noticed by a user in one month after
release. Thus, Ferdian chose to fix the bug right away and
apply additional tests for the change. As a result, the effect
of this fix was the same as Scenario 1 where the bug was
fixed but the release of his code was delayed by one month.

There are studies aimed to predict the severity and priority
of bugs from corresponding bug reports [32], [33], [40]. Our
work is different from these studies in several aspects. First,
we prioritize bug fixing activities prior to release, while they
prioritize bug fixing activities after bugs are reported by
end users. Second, we predict bug reporting latencies which
are not provided by studies on bug severity and priority
prediction. Third, we investigate the code responsible for the
bug, while they investigate bug reports which may involve
various kinds of information, such as text description, call
stacks, core dumps, etc. There are also studies that can
prioritize bug reports before releases and help to improve
the accuracy of bug finding tools, such as [3], [28], [41],
[48], they mostly aim to differentiate true bug reports from
false positives bug reports and often make decisions based
on various code features or bug histories, while we prioritize
true bug reports only and make our decisions based on bug
reporting latencies. To the best of our knowledge, our work
on understanding and predicting bug reporting latencies is
new and orthogonal to previous work.

In this paper, we study reporting latencies for 190 bugs
from three Java software systems: AspectJ, Rhino, and
Lucene. We collect the bug and bug fix data for these
projects from iBugs [1] and JIRA [2] respectively. To
find the buggy code, we compare the corresponding bug
tracking system and source control system of each of the
three software systems. We find the reporting time for a
particular bug from the bug tracking system, and also find
code commits that fix the bug in the source control system.
By performing a diff between these commits and the ones
before it, we could find the treatments of the bugs. We
then perform a manual analysis to recover their root causes
(i.e., the faulty program elements responsible for the bugs)
from the treatments and the introduction time of the faulty
program elements. We find that the bug reporting latencies
for various bugs in various systems are very diverse, ranging
from one day to more than three years. Also, bug severities
seemingly have no effect on bug reporting latencies.

Based on the bug reporting latency data, we also develop
a prediction engine that can predict when a bug would get
reported. We first extract features from buggy code. We
consider a number of code features, such as the number of
conditional statements, the number of looping statements,
and betweenness centralities of the nodes in call graphs.
Then, these features are normalized and used to build
discriminative models with the aid of classifiers. The models
are then used to predict whether a bug would be reported

early (in less than 30 days) or not. We evaluate our prediction
models on the 190 bugs with 10-fold cross validations. Since
the data is skewed (much more bugs are reported in more
than 30 days) and has only two classes (early and late), we
measure the accuracy of our predictions with Area Under the
Receiver Operating Curve (AUC) [35], which has also been
used in prior studies on predicting bug report severities [32].
Our evaluation shows that an AUC of 70.869% could be
achieved when Support Vector Machines (SVM) [23] are
used as the classifier.

The contributions of our work are as follows:

1) We propose a new problem of studying bug reporting
latencies, namely the period of time between the intro-
duction of a bug and the time when it is reported by end
users. One goal of such a study is to help developers
prioritize bugs prior releases.

2) We propose an approach to collect bug reporting la-
tencies from software systems with version control
repositories and bug tracking databases.

3) We develop an approach to predict whether the bug
reporting latency for a bug would be low (below 30
days) or high. We extract features from buggy code and
build a discriminative model to predict report latencies.

4) We have investigated 190 bugs extracted from AspectJ,
Rhino, and Lucene and find diverse bug reporting
latencies. We show that our proposed prediction engine
could predict bug reporting latencies with good accu-
racy (AUC of 70.869%). We have also investigated a
number of classifiers and evaluated their performance
in predicting bug reporting latencies.

The structure of this paper is as follows. Section II
presents our approach in detail. Section III describes our
evaluation. We discuss related work in Section IV. Finally,
we conclude with future work in Section V.

II. PROPOSED APPROACH

In this section, first we present our overall approach, and
then present steps of the approach in detail.

A. Overall Approach

First, we set out to investigate and collect bug reporting
latencies from known bugs from existing software systems
so that we can build a ground truth about the existing
latencies. We analyze several software systems using their
repositories and bug tracking systems. We manually label
faulty lines and find out when the last time each faulty line is
changed. Using these times, we calculate the most likely bug
reporting latency for each bug.We present the investigation
we have performed for collecting latencies from various
systems in more details in Section II-B.

Then, we construct prediction models based on the col-
lected data. Our overall prediction flow is illustrated in
Figure 1. It has training and deployment phases. In the
training phase, we take in as input a set of bugs along

Training Bug

Reports & Their

Reporting Latency

Bug Reports With
Unknown

Reporting Latency

Feature

Extraction

Feature
Extraction

Model
Construction

Model
Application

Model

Training Phase Deployment Phase

Predicted Reporting
Latency Label

1

2 3

1

Legend
Input

Process

Stored Intermediate Data

Output

Figure 1. Proposed Bug Latency Prediction Framework

with their reporting latency labels (early or late). The bug
reports are then subject to (1) feature extraction and (2)
model construction. In the feature extraction step, we extract
features from buggy code and use the features to build a
discriminative model in the model construction step via a
classifier. In the deployment phase, we take in as input a
set of bugs with unknown reporting latency labels. Again,
we extract features from the bugs as in the training phase.
The model application process (3) finally applies the learned
model to classify every bug with an unknown latency label,
based on its features, as to whether it is likely to be reported
in short or long period of time.

We present the feature extraction step in subsection II-C.
The model construction and application steps are discussed
in subsection II-D.

B. Latency Data Collection & Analysis

First, we need to get bug information from the bug
databases and the source code repositories of each software
system we investigate. From this information, we identify
root causes of a bug, i.e., the faulty program elements that
are responsible for the bug. We expect developers to have
this information when they encounter the failure during the
testing phase. Note that knowing where a fault is is just the
first step among the many steps needed to fix the bug.

We perform the identification by manually investigating
the differences between the fixed file and the buggy file
before fix. We use diff to make this process easier. We then
label the lines that we suspect are responsible for the bug.
Unfortunately, diff is unable to directly give us the code
responsible for the bug. diff only gives us information on
what changes are made to fix the bug. Thus, they are only
treatments of the bugs rather than the root causes of the
bugs. For example, a piece of code may be moved around
to make it easier to implement the actual fix. Also, not all
changed lines are meant for fixing the bug. For example,

previous studies (e.g., [25]) show that some changes are non-
essential, such as changing indentation, adding comments,
and code refactoring that do not change the behavior of a
program. Our manual labeling process is based on personal
investigation using the bug report message as guidance. We
do not use automated techniques (e.g., [30]) to identify bug-
inducing changes since we need all identified faulty lines to
be accurate and we want to avoid biases that may be caused
by possible false positives introduced by the tools. At the
end of this process, we shall have the faulty lines for each
bug. Using these faulty lines, we construct the features as
defined in Subsection II-C.

Next, we want to find the time each bug gets introduced
to the code. For this purpose, we use “git blame” or “cvs
annotate” or similar scripts in the corresponding source
control repositories for the software system to find out the
time when the latest time each faulty line is changed. The
result is a collection of the likely introduction dates for each
bug. Each date in the collection of likely introduction dates
corresponds to a labeled faulty line. This collection could
contain some outliers, and we remove some of these outliers
when we compute bug reporting latencies. Also, we need the
report time for each bug. We find this from the bug tracking
databases for each software system.

Then, we calculate bug reporting latencies as the time
difference between the bug report date and the dates in the
collection of likely bug introduction dates. If the likely bug
introduction date is after the bug report date, we remove
the date from the collection because this is likely to be an
outlier. As the result, we will have a collection of likely bug
reporting latencies. We choose to use the shortest latency in
the collection as the most likely reporting latency for the bug.
This is based on the intuition that the latest code changed
is more likely to be the direct cause of the bug, and the
fact that we noticed that the earliest faulty line introduction
date for a number of bugs is for a very old piece of code
that does not seem to be related to the bug. By taking the
shortest latency, we aim to minimize latency estimations and
it may lead to more fall-backs to Scenario 1 where reporting
latencies are not used for prioritizing bug fixing activities.

At this point, we have the features and the bug reporting
latencies which can be used for classification. We convert
each bug reporting latency into class label, either early or
late. Early is for bug reporting latencies shorter than or equal
to 30 days, and late is for bug reporting latencies longer than
30 days. Based on the data collected about the bug reporting
latencies and other bug characteristics (e.g., bug severity as
indicated by developers), we seek to understand the data
by investigating two research questions (RQ1 & RQ2) in
Section III-B.

C. Feature Extraction

We extract a number of features from faulty code to
facilitate the construction of prediction models. These fea-

tures are listed in Table I. We make use of the counts of
a number of program elements, and two measures taken
from social network analysis and web search, betweenness
centrality [14] and PageRank [5].

1) Program Elements Counts: Intuitively, bugs in
program elements of different types may be exhibited
differently. For example, a bug in a looping statement
might have more chances to be exhibited as the faulty
statement might be executed more frequently by users
than another bug at a simple assignment statement. We
would like to investigate the relationship between types of
program elements and bug reporting latencies. Thus, we
include a number of features that are the number of times
various program elements appear in the buggy code. These
include CountLine, MethodDeclarationNode,
MethodInvocationNode, ConditionNode,
LoopNode, AssignmentNode, FieldAccessNode,
ConditionExp, ReturnNode, and TryNode.
CountLine is the number of lines in the buggy code.

Similarly, the other features count the number of times
various types of program elements, including method decla-
rations, method invocations, conditional statements, looping
statements, assignment statements, field accesses, condi-
tional expressions, return statements, and try statements,
appear in the buggy code. We normalize these numbers by
dividing these counts by the corresponding CountLine.

2) Betweenness Centrality: Intuitively, bugs at “impor-
tant” program elements are likely to be discovered earlier
than those at unimportant program elements. We measure
the “importance” of a piece of code by using betweenness
centrality and PageRank, and investigate whether these mea-
surements are related to bug reporting latencies by using
them in our prediction engine.

Betweenness centrality is proposed in the social network
analysis community to measure how important a node is
in a graph [14]. The importance of a node in the graph is
measured by the number of shortest paths between pairs of
other nodes that pass through the node. The betweenness
centrality of a node 𝑛 is given by the following formula:

𝑏𝑐(𝑛) =
∑

𝑎 ∕=𝑏 ∕=𝑛

𝑠𝑝𝑎𝑡ℎ(𝑎, 𝑏, 𝑛)

𝑠𝑝𝑎𝑡ℎ(𝑎, 𝑏)

In the equation, spath(a, b,n) refers to the number of
shortest paths between node a and node b that pass through
node n . spath(a, b) refers to the number of shortest paths
between node a and node b.

To compute BetweennessScore for each bug, we
construct a call graph to connect all methods in the code
base and compute the betweenness centrality of the methods
that contain the faulty lines. BetweennessScore is the
logarithm of the summation of the betweenness centrality
of all methods containing the faulty lines. We take the
logarithm as the summation of the betweenness centralities
might be very large numbers.

3) PageRank Score: PageRank is a popular algorithm
used in web search to measure the importance of a web
page. It was proposed by Brin and Page [5] and has been
used inside Google search engine. Simply put, PageRank
assumes that web pages with more links pointing to them
are more important than pages with less links pointing to
them. PageRank computes the likelihood of a web surfer to
visit a web page starting from an arbitrary page.

PageRank is often calcluated in iterations. At the initial
iteration, all pages are assigned the same PageRank score.
At each of the following iterations, the score of a page 𝑝
is distributed to the pages that 𝑝 links to. Each linked page
receives 1

∣𝐿∣ of the score, where L is the set of pages that 𝑝
links to. The PageRank score of a web page p at iteration 𝑖
can be computed by the following equation:

𝑃𝑅(𝑝, 𝑖) =
1− 𝑟

𝑇
+ 𝑟

∑

𝑞∈𝐾(𝑝)

𝑃𝑅(𝑞, 𝑖− 1)

∣𝐿(𝑞)∣
In the equation, r is the probability that a web surfer
continues to surf (a.k.a. the damping factor), T is the
number of web pages in the database, K (p) is the set of
webpages that link to p, and L(q) is the set of webpages
that q links to.

To compute the value of PageRankScore for a bug,
we also build a call graph connecting all methods in the
code base. We then identify faulty methods that contain
the faulty lines. We then compute the PageRank of all
faulty methods. The PageRankScore value would be the
maximum of all thse PageRank scores. In the PageRank
score computation, the number of iterations depends on the
termination condition. This condition is fulfilled if the total
number of iterations is equal to or greater than maximum
iterations allowed or the difference between old and new
scores in one iteration is less than a tolerance.

D. Model Construction and Application

In model construction, we assume that we have a set of
training data composed of bugs and their reporting latencies
classified into two classes: short (within 30 days), and long
(more than 30 days). Each bug is represented as a vector of
feature values. We train models that can discriminate bugs
with short latencies from those with long latencies.

We train a discriminative model by employing a clas-
sification algorithm [17]. Various classification algorithms
have been proposed in the literature, such as decision trees,
support vector machines, neural networks, naive Bayes, and
many others. Given a training data, a classification algorithm
would produce a discriminative model in various formats
depending on the algorithm.

If the training data is imbalanced, we equalize the num-
bers of data points with the positive label and the negative
label. We follow the previous work by duplicating the
minority label because we do not want to lose any data
point. So, if the number of data points with the positive

Table I
FEATURES USED FOR PREDICTION MODEL

Feature Definition
CountLine Number of faulty lines

MethodDeclarationNode Number of method declarations containing the faulty lines divided by CountLine
MethodInvocationNode Number of method invocation in the faulty lines divided by CountLine

ConditionNode Number of conditional statement containing the faulty lines divided by CountLine
LoopNode Number of loop statement containing the faulty lines divided by CountLine

AssignmentNode Number of assignment in the faulty lines divided by CountLine
BetweennessScore Logarithm of the summation of the betweenness centralities of methods containing faulty lines
FieldAccessNode Number of field accesses in the faulty lines divided by CountLine

ConditionExp Number of conditional expressions in the faulty lines divided by CountLine
ReturnNode Number of return statements in the faulty lines divided by CountLine

TryNode Number of try statements containing the faulty lines divided by CountLine
PageRankScore Summation of the PageRank score of the methods containing the faulty lines

label is lower than that with the negative label, we duplicate
the data points with the positive label until the number is
equal to that with the negative label. We try to duplicate the
positive label as evenly as possible.

During the deployment phase, we classify a new bug with
unknown latency. To do so, we first extract features from this
new bug. We extract the same set of features as described
in the previous sub-sections. The resultant vector of feature
values is then fed to the discriminative model, which would
then output the latency label (short or long) for the new bug.

III. EMPIRICAL EVALUATION

In this section, we first describe our concrete dataset
taken from three Java software systems: AspectJ, Rhino, and
Lucene. Next, we present our research questions. Then we
then present our findings that answer each of the questions.
Along the way, we describe the evaluation metric, namely
AUC, which is used to measure the effectiveness of our
prediction. Finally, we present the threats to validity.

A. Dataset

We analyze two Java programs (Rhino and AspectJ) from
iBugs repository [1] and a third Java program Lucene from
JIRA [2]. Rhino is a Javascript interpreter written in Java
with a code size of about 49kLOC. AspectJ is a compiler
for aspect-oriented programming in Java with a code size of
about 75kLOC. Lucene (version 2.9) is a text search engine
library with a code size of about 88kLOC. The iBugs repos-
itory stores both pre-fix versions that contain bugs (buggy
versions) and the corresponding post-fix versions where the
bugs are fixed. Each of the buggy versions is assumed to
contain one bug that may span across multiple lines in
multiple files. Information about each fix is also provided,
e.g. the numbers of changed lines, changed methods, and
changed files, and the severity level of the bug. Also, we
can know which lines or files are actually changed based on
the differences between the pre-fix and the post-fix versions.
Similar information about bugs and corresponding fixes in
Lucene is collected from its JIRA repository.

As described in Subsection II-B, we process above dataset
to get bug reporting latencies. To generate features, we count

different types of program elements with JDT [22], build
call graph with Wala [53], and compute the betweenness
centralities and PageRank scores with JUNG [24]. When
computing RageRank, we use the default damping factor
1 and set the maximum number of iterations to 100 and
the tolerance to 0.001. We find the likely bug introduction
dates with “git blame” for Lucene and “cvs annotate” for
AspectJ and Rhino. We ignore bugs in the three systems
where their root causes are ambiguous according to our
manual analysis. We also ignore bugs having a latency less
than one day (similar to the study on bug fixes by Lamkanfi
and Demeyer [31]). At the end of the process, we collect
190 bugs (19 bugs from Rhino, 28 bugs from Lucene, and
143 bugs from Aspectj). 34 of them have short reporting
latencies, and 156 have long reporting latencies.

B. Research Questions

Our study investigates the following five research ques-
tions (RQ1-RQ5). In RQ1, we investigate the distribution of
bug reporting latencies. In RQ2, we explore the relationship
between bug reporting latency and bug severity. In RQ3, we
investigate the effectiveness of our approach in predicting
bug reporting latencies. We investigate the factors that
influence the effectiveness of our approach in RQ4. Finally,
we investigate the effectiveness of a number of classification
algorithms for building discriminative models to predict bug
reporting latencies in RQ5.

RQ1: What is the distribution of bug reporting latencies?
We are interested in investigating how bug reporting laten-
cies vary. If all bugs have similar reporting latencies, then
predicting reporting latencies would not be needed. On the
other hand, if bugs have widely varying latencies, it would
make the problem more challenging.

RQ2: What is the relationships between bug reporting laten-
cies and bug severity? Do bugs with a low latency have a
high severity? A bug report typically indicates the severity
of the bug. This severity could be one of the following:
blocker, critical, major, normal, minor, and
trivial. We would like to understand the correlation
between bug reporting latencies with severities.

RQ3: How accurate does our approach predict bug report-
ing latencies? We compare the accuracy of our approach
with a trivial, random classifier.

RQ4: What are the best features that could better discrim-
inate bugs with short and long reporting latencies? We
extract many features from bug reports. Some of the features
are likely to be better in discriminating bug reports than
other features. We would like to find features that are more
effective than the others.

RQ5: What are the effectiveness of various common classi-
fication algorithms in predicting bug reporting latencies?
When answering the previous research questions (RQ1-
RQ4), we only use Support Vector Machines (SVMs) as
the classifier, which have been used for many software
engineering problems. Our overall framework allows other
classification algorithms, and thus we investigate whether
SVMs could outperform other classification algorithms, such
as decision trees, naive bayes, and neural networks.

C. RQ1: Bug Reporting Latency Distribution

We show the distribution of bug reporting latencies in
Figure 2. From the histogram, we find that there are 34 bugs
reported in one month, 20 bugs reported between one to two
months, 12 bugs reported between two to three months, 33
bugs reported between three to six month, 38 bugs reported
between half a year to one year, and the remaining 53 bugs
reported after one year. We notice that 65.26% of bugs was
reported after 3 months. We also find that only 17.89% of
the bug reported early (within 30 days) and the others are
reported late (later than 30 days).

D. RQ2: Bug Reporting Latency versus Severity

We divide the bugs into several groups based on their
latency. For each group, we investigate the proportion of
bugs of various severity levels. We show the result in
Table II. From the table, we see that for each bug severity,
the highest number of bugs is in latency group >365 for
blocker severity, 91-180 for critical severity, 1-30, 31-60,
and 91-180 for major severity, >365 for normal severity,
>365 for minor severity, and >365 for trivial severity.

We also divide the bugs into those reported within 30
days and those reported more than the 30 days. For each
group, again we investigate the proportion of bug reports
of various severity labels. We show the result in Table III.
From the table we can note that 75% of blocker bug reported
late, 90.9% of critical bug reported late, 75.9% of major bug
reported late, 84.3% of normal bug reported late, 76.2% of
minor bug reported late, and 75% of trivial bug reported late.
Across different severity levels, we see that over 70% of the
bugs is reported late, even for bugs with blocker, critical,
and major severity.

We also calculate the correlation between bug reporting
latencies and their severities. Note that severity is ordinal

Table II
DISTRIBUTION OF SEVERITY PER LATENCY GROUP

Group Blocker Critical Major Normal Minor Trivial
1-30 1 1 7 19 5 1
31-60 0 1 7 9 3 0
61-90 0 0 0 7 4 1
91-180 0 4 7 19 3 0
181-365 1 2 4 31 0 0
>365 2 3 4 36 6 2

Table III
DISTRIBUTION OF SEVERITY PER LATENCY GROUP

Group Blocker Critical Major Normal Minor Trivial
≤ 30 days 1 1 7 19 5 1
> 30 days 3 10 22 102 16 3

categorial, we then treat different levels as an integer number
between 1 and 6, and compute Pearson product-moment
correlation coefficient for this purpose [9]. It is a measure
of linear dependence between two variables. The value is
ranged from -1 to 1. A value -1 means all instances of
variable X increase as variable Y decreases, and value 1
means all instances of variable X increase as variable Y
increases. A zero value means there are no linear correlation
between the two variables. We utilize SPSS [49] to compute
the correlation coefficient between latencies (in days) and
severities. We find that the Pearson coefficient is -0.013. This
number is lower than the critical value of Pearson coefficient
at the significance level of 0.05. It means there are almost no
correlation between bug reporting latencies and severities.

E. RQ3: Bug Report Latency Prediction Results

To measure the effectiveness of our latency prediction, we
adopt the Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC) [12], which is also a metric used
in previous studies in predicting bug severities [32], and
compare our prediction with a random prediction.

1) Evaluation Metric: We use Area Under the Receiver
Operating Characteristic Curve (AUC) [35] to evaluate our
prediction performance because our data is skewed. Receiver
Operating Characteristic Curve (ROC) is a two-dimensional
measure of classification performance. It is a plot of the true
positive rates versus false positive rates. For evaluation mea-
sure, when AUC is equal to 1, the classifier achieves perfect
accuracy. The higher the AUC, the better the performance
achieved by the classifier.

To compute AUC, we need to find the points in ROC curve
for each classifier. Each point corresponds to the true positive
and false positive rates of the classifier when a particular
classification threshold is used to decide whether a data point
would be labeled as positive or negative. From these points
(including (0,0) and (1,1)), we compute the AUC by using
trapezoid area formula as follows:

𝐴𝑈𝐶 =

𝑛−1∑

𝑖=1

(𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖+1) ∗ (𝐹𝑃𝑅𝑖+1 − 𝐹𝑃𝑅𝑖)

2

0

10

20

30

40

50

60

1-30 31-60 61-90 91-180 181-365 >365

Fr
eq

ue
nc

y

Latency (days)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

≤30 ≤60 ≤90 ≤180 ≤365 >365

C
um

ul
at

iv
e

Latency (days)

Figure 2. Bug Report Latency Time Histogram (Left) and Its Corresponding Cumulative Graph (Right)

where 𝑛 is the number of points we have in the ROC curve
including point (0,0). TPR𝑖 and FPR𝑖 is the true positive
rate and the false positive rate for point 𝑖 respectively.

In our evaluation, we perform 𝑘-fold cross validation to
evaluate the classifier. This approach randomly splits the
whole set of bugs into 𝑘 buckets and perform 𝑘 iterations.
In each iteration, one bucket is used as testing data and the
remaining buckets are used as training data. We train the
classifier using the training data and evaluate it using the
test data. We compute AUC for each of the iterations, and
take the average of these AUCs. This average AUC is used
as the performance measure of our classifier. We set 𝑘=10.

2) Prediction Effectiveness: The performance measure-
ment when SVM is used as a classifier is shown in Ta-
ble IV. We use svm perf implementation [23]. It achieves
on average an AUC of 70.869%. AUC of 0.5 indicates that
a technique is as good as a random technique, while higher
than 0.5 indicates that the technique performs better than the
random technique [34], [46]. Thus, compared with a random
classifier which randomly guesses the latency label for a bug,
a 41.738% improvement of AUC could be achieved. We use
the random classifier as baseline because as far as we know,
there are no other study on bug reporting latencies for us to
compare.

Table IV
PREDICTION MODEL PERFORMANCE MEASURE

Approach AUC
Ours 0.70869
Random 0.5

F. RQ4: Most Discriminative Features

We want to know which feature is the most discriminative
feature. We compute Fisher score for this purpose [7], [11],
[27], [36]. Fisher score is a classifier independent criterion to
measure the discrimination between a feature and the label.
Given data instances x𝑖, 𝑖= 1, . . . , 𝑛, the Fisher score 𝐹 (𝑗)
for 𝑗𝑡ℎ feature can be computed by this equation:

𝐹 (𝑗) =
(�̄�

(+)
𝑗 − �̄�𝑗)

2 + (�̄�
(−)
𝑗 − �̄�𝑗)

2

1
𝑛+−1

∑𝑛+

𝑖=1(𝑥
(+)
𝑖,𝑗 − �̄�

(+)
𝑗)2 + 1

𝑛−−1

∑𝑛−
𝑖=1(𝑥

(−)
𝑖,𝑗 − �̄�

(−)
𝑗)2

In above equation, n+ and n− are the numbers of data
points with positive and negative labels respectively. �̄�𝑗 ,
�̄�
(+)
𝑗 , and �̄�

(−)
𝑗 are the average of the 𝑗𝑡ℎ feature of all,

positive-labeled, and negative-labeled data points. 𝑥(+)
𝑖,𝑗 and

𝑥
(−)
𝑖,𝑗 is the 𝑗𝑡ℎ feature of the 𝑖𝑡ℎ positive/negative data point.
The score for each feature is in Table V. Based on Fisher

scores, the most discriminative feature to predict whether a
bug would be reported early or late is the normalized number
of loops contained in the bug. The second best feature is line
count. The third one is normalized number of try statements
contained in the bug. The fourth one is normalized number
of conditionals. The fifth is PageRank. Other special feature
we add for the classification is betweenness centralities. It
ranks ninth based on its Fisher score.

Table V
FISHER SCORE FOR EACH FEATURE

Feature Fisher Score
LoopNode 0.228958166
CountLine 0.090998204
TryNode 0.064501643
ConditionNode 0.040184208
PageRankScore 0.024143757
FieldAccessNode 0.016027146
MethodDeclarationNode 0.015991601
AssignmentNode 0.010149085
BetweennessScore 0.006147854
ConditionExpNode 0.002262019
MethodInvocationNode 0.000442194
ReturnNode 0.000028648

G. RQ5: Best Classification Algorithm

We want to compare the performance of other classi-
fication algorithms in classifying bug reporting latencies.
We choose ADTree, Naive Bayes, and Voted Perceptron
to be compared with SVM. ADTree (alternating decision
tree) is an algorithm that combines decision trees and
boosting [16]. It works like normal decision trees, but instead
of just following one path, it follows all paths in which the
condition is true. Each of the paths will give a score. The
sum of all these scores is used as the final score. A data
point is classified as positive if its final score is positive
and vice verse. Naive Bayes [45] is a classifier based on

Bayes theorem. The classifier computes the probability of
each class label for a data point. The label with the highest
probability is the predicted label for that data point. Voted
Perceptron is a single layer perceptron variant which apply
voting process to the original algorithm [15].

We use the Weka implementation of each of these algo-
rithms [56]. The performance of these algorithms is shown
in Table VI. None of these algorithms achieves a better AUC
score than SVM.

Table VI
OTHER CLASSIFICATION ALGORITHM PERFORMANCE MEASURE

Algorithm AUC
ADTree 0.6211
Naive Bayes 0.6552
Voted Perceptron 0.6252

We also investigate the efficiency of the classification
algorithms. We show the runtime of the classification algo-
rithms in Table VII. We calculate these values by running the
classification algorithm ten times and average the runtime
costs. We notice that Voted Perceptron is the fastest algo-
rithm followed by Naive Bayes, ADTree, and lastly SVM.
Even though SVM has the best performance, it takes a long
time to run. The time needed for SVM is about nine times
of that of Voted Perceptron. It is somewhat understandable
considering that SVM usually needs many iterations until it
finds the optimal solutions.

Table VII
RUNTIMES OF VARIOUS CLASSIFICATION ALGORITHM

Classification Algorithm Time (in Seconds)
SVM 21.16
ADTree 2.64
Naive Bayes 2.45
Voted Perceptron 2.36

H. Threats to Validity

There are threats to construct validity, threats to internal
validity, and threats to external validity.

Threats to construct validity refers to the suitability of our
evaluation measure. We use AUC [35], which is a standard
measure proposed to evaluate the accuracy of a classification
task for imbalanced data with two class labels and used by
Lamkanfi et al. [32] to evaluate the accuracy of predicting
the severity labels of bug reports.

Threats of internal validity refers to evaluation errors and
bias. We manually extract root causes of bugs and bug
introduce time from their fixes. This process might be error
prone. We have tried to reduce this error by re-checking
the resultant root causes. Also, the bug tracking systems we
use have no clear indication whether a bug reported is pre-
release or post-release, and thus we assume the distribution
of the predictors to use is the same between the pre-release
and post-release bugs.

Threats of external validity refers to the generalizability
of our findings. Due to the manual labor involved in the
identification of bugs, we only analyze 190 bugs. We have

tried to reduce this threat by analyzing bugs from various
software systems. In the future, we plan to reduce this threat
by investigating more bugs from more software systems.

IV. RELATED WORK

In the following, we present a number of related studies
on bug severity prediction, bug fix time prediction,

Bug Severity Prediction. This line of work tries to predict
the severity and priority of a bug report. Some examples of
this line of work are the work by Menzies and Marcus [40],
Lamkanfi et al. [32], [33], etc.

The pioneer of this work is Menzies and Marcus who
predict the severity of bug reports from NASA [40]. They
use information retrieval technique to extract a set of word
tokens from the reports and sort the tokens based on their
importance. To find the importance of the word tokens,
the term frequency, inverse document frequency, and infor-
mation gain of the word tokens are computed. The top-𝑘
important tokens are then input to a classification approach
Ripper [10] to produce a set of classification rules. Their
approach could predict the severity label of a new bug report.

Extending the work of Menzies and Marcus, Lamkanfi et
al. investigate bug reports of various open source projects
from their corresponding Bugzilla’s [32]. Instead of predict-
ing the exact severity label of a new bug report, they group
bug reports into severe and not severe. They group blocker,
critical, and major into severe bug reports. Minor and trivial
labels are grouped into non-severe bug reports. They drop
all bug reports classified as normal. Following the above
work, Lamkanfi et al. also investigate the effectiveness of a
number of classification algorithms in predicting the severity
of bugs [33]. Their experiments show that Naive Bayes
outperforms other classification algorithms on a dataset
containing 29,204 bug reports. The work by Herraiz et
al. [18] suggests that there are too many severity levels used
in Eclipse project and there is a need to simplify them.

Work by Kim et al. [30] identify the changes in the pro-
gram that potentially introduce bugs. Buse and Weimer [6]
propose a statistical model to predict the execution frequen-
cies of program paths in a program which may be used for
bug finding or bug latency prediction.

Different from the above studies, our work do not analyze
bug reports rather buggy code. We output information on
predicted bug reporting latency period which is not output
by any of the existing studies. Most importantly, we consider
another problem setting namely on the prioritization of bugs
that are found post-release. The above studies would be very
useful to prioritize post-release bugs. However, they could
not be used to prioritize pre-release bugs as there are not
bug reports to analyze prior to a release.

Bug Fix Time Prediction. This line of work predicts the
time needed to fix a particular bug. Weiß et al. predict the
number of developer hours needed to fix a bug by looking for

similar existing bug reports and investigate the time needed
to resolve the issues for prior similar bug reports [55]. These
times are used to predict the time needed to predict a new
bug report. A more recent study was performed by Hosseini
et al. [19]. An empirical study on how long developers took
to fix bugs has also been done by Kim and Whitehead [29].
They report some statistics of bug fixing time and highlight
the top files in terms of highest bug fixing time.

Duplicate Bug Report Prediction. This line of work tries
to detect if a new bug report is a duplicate of an existing
bug report. There are many studies that take in a new bug
report and returns the top-𝑘 most similar bug reports to it.
Developers then check if the new bug report is a duplicate
or not by looking at the top-𝑘 bug report list. This is referred
to as duplicate bug report retrieval problem. Studies work on
another problem that is referred to as duplicate bug report
identification problem, where the task is, given a new bug
report, to predict if it is a duplicate or not.

There are a number of existing studies on duplicate bug
report retrieval. One of the first study was performed by
Runeson et al. which proposes a formula that computes
the similarity of two bug reports based on the concept
of term frequency [47]. Wang et al. propose a formula
that consider both term frequency and inverse document
frequency [54]. Wang et al. not only consider the similarity
of words between two bug reports but also the similarity
of the execution traces corresponding to the bug reports.
Jalbert and Weimer propose yet another formula based
on term frequency for duplicate bug report retrieval; they
also propose a solution for bug report identification [21].
Recently Sun et al. make use of Support Vector Machine
(SVM) for finding similar bug reports [51]. Sun et al. later
extend this work by proposing a new measure based on
BM25F to compare two bug reports [50]. Tian et al. extend
the work of Jalbert and Weimer by proposing an effective
set of features that could better predict if a bug report is a
duplicate or not [52].

Warning Prioritization. This line of work tries to identify
whether a warning reported by an automated bug finding
tool is really true or just a false positive [3], [28], [41], [48].
In this work, we analyze real bugs rather than warnings and
our goal is to estimate how long it takes until the real bugs
get noticed and reported.

Bug Categorization. This line of work assign bugs into
various categories. Huang et al. propose a work that assign
bug reports into one of the following labels: capability, secu-
rity, performance, reliability, requirement, and usability [20].
Pordguski et al [44] and Francis et al. [13] group reported
software failures such that reports of each group share
the same or similar causes by analyzing the corresponding
execution traces. Kim et al. [26] predict top crashes that
occur before a new software release based on crashes that
frequently occur in past releases.

Empirical Study on Bugs. There are number of empirical
studies on bugs. Pan et al. perform an empirical study to find
out what kinds of bug fixes have been performed in a number
of open source software systems [43]. Chou et al. perform
an empirical study on errors in operating systems [8]. Palix
et al. investigate different faults in Linux ten years after the
study by Chou et al. [42]. Bird et al. [4] investigate bug
feature and commit feature bias in defect datasets used to
evaluate the performance of defect prediction techniques and
that bug feature bias could impact the performance of defect
prediction techniques.

V. CONCLUSION AND FUTURE WORK

We investigate the problem of prioritizing bugs by predict-
ing the latency between the time when a bug is introduced
to the code base and the time when a bug is likely to
be experienced and reported by end users. We refer to
this as bug reporting latency problem. We have collected
bug reporting latencies from three Java software systems:
AspectJ, Rhino, and Lucene, and find that reporting latencies
are diverse and not correlated with bug severities. We find
that only 17.89% of the bug reported early (within 30 days)
and the others are reported late.

We also propose a classification-based approach to predict
bug reporting latencies. To do that, we extract features from
buggy code and use these features to build discriminative
models via classifiers. The discriminative models are then
used to label future bugs to identify if they would be reported
in a short period of time (within 30 days) or not.

We have evaluated our prediction models on bugs from
AspectJ, Rhino, and Lucene. The results show that we could
predict bug reporting latencies with an AUC of 70.869%.
We also find that the best five most discriminative features
are the normalized number of loops contained in the bug,
the line count of the bug, the normalized number of try
statements contained in the bug, the normalized number of
conditionals contained in the bug, and the PageRank scores.
Lastly, we find that SVM is the most accurate classification
algorithm in our solution, even though it has the longest
runtime than others.

In the future, we plan to improve the accuracy of our
proposed approach by leveraging other features that we
could extract from bugs (e.g., semantics or functionality of
the related code) and by proposing a better classification
approach (e.g., by considering more fine grained labels
or even predicting actual reporting latencies). We could
potentially leverage frequent patterns and rules, c.f. [7],
[37]–[39]. We also plan to evaluate on a larger set of bugs
from more real programs.

REFERENCES

[1] “iBUGS,” http://www.st.cs.uni-saarland.de/ibugs/.
[2] “Lucene-JIRA,” https://issues.apache.org/jira/browse/LUCENE.
[3] N. Ayewah and W. Pugh, “The Google FindBugs fixit,” in

ISSTA, 2010, pp. 241–252.

[4] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. T. Devanbu, “Fair and balanced?: Bias in
bug-fix datasets,” in ESEC/SIGSOFT FSE, 2009.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual web search engine,” in WWW, 1998, pp. 107–117.

[6] R. P. L. Buse and W. Weimer, “The road not taken: Estimating
path execution frequency statically.” in ICSE, 2009.

[7] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative
frequent pattern analysis for effective classification,” in ICDE,
2007, pp. 716–725.

[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An
empirical study of operating system errors,” in SOSP, 2001,
pp. 73–88.

[9] J. Cohen, Statistical Power Analysis for the Behavioral Sci-
ences, 2nd ed. Routledge, 1988.

[10] W. Cohen, “Fast effective rule induction,” in ICML, 1995.
[11] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley

Interscience, 2000.
[12] T. Fawcett, “An introduction to roc analysis,” Pattern Recogn.

Lett., vol. 27, no. 8, pp. 861–874, Jun 2006.
[13] P. Francis, D. Leon, and M. Minch, “Tree-based methods for

classifying software failures,” in ISSRE, 2004.
[14] L. C. Freeman, “A set of measures of centrality based on

betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar
1977.

[15] Y. Freund and R. E. Schapire, “Large margin classification
using the perceptron algorithm,” in Proceedings of the 11th
Annual Conference on Computational Learning Theory, 1998.

[16] Y. Freund and L. Mason, “The alternating decision tree
learning algorithm,” in ICML, 1999, pp. 124–133.

[17] J. Han and M. Kamber, Data Mining Concepts and Tech-
niques, 2nd ed. Morgan Kaufmann, 2006.

[18] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and
G. Robles, “Towards a simplification of the bug report form
in eclipse,” in MSR, 2008, pp. 145–148.

[19] H. Hosseini, R. Nguyen, and M. Godfrey, “A market-based
bug allocation mechanism using predictive bug lifetimes,” in
CSMR, 2012.

[20] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian,
“AutoODC: Automated generation of orthogonal defect clas-
sifications,” in ASE, 2011.

[21] N. Jalbert and W. Weimer, “Automated duplicate detection
for bug tracking systems,” in DSN, 2008.

[22] JDT, “Java development tools,” http://www.eclipse.org/jdt/.
[23] T. Joachims, “Training linear SVMs in linear time,” in KDD,

2006. [Online]. Available: http://svmlight.joachims.org/
[24] JUNG, “Java universal network graph framework,”

http://jung.sourceforge.net/index.html.
[25] D. Kawrykow and M. P. Robillard, “Non-essential changes in

version histories,” in ICSE, 2011, pp. 351–360.
[26] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and

S. Park, “Which crashes should I fix first?: Predicting top
crashes at an early stage to prioritize debugging efforts.” in
TSE, 2011.

[27] H. Kim, S. Kim, T. Weninger, J. Han, and T. F. Abdelzaher,
“Ndpmine: Efficiently mining discriminative numerical fea-
tures for pattern-based classification,” in ECML/PKDD (2),
2010, pp. 35–50.

[28] S. Kim and M. D. Ernst, “Which warnings should I fix first?”
in ESEC/FSE, 2007, pp. 45–54.

[29] S. Kim and E. J. W. Jr., “How long did it take to fix bugs?”
in MSR, 2006, pp. 173–174.

[30] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr, “Automatic
identification of bug-introducing changes.” in ASE, 2006.

[31] A. Lamkanfi and S. Demeyer, “Filtering bug reports for fix-
time analysis,” in CSMR, 2012.

[32] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Pre-

dicting the severity of a reported bug,” in MSR, 2010.
[33] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck,

“Comparing mining algorithms for predicting the severity of
a reported bug,” in CSMR, 2011.

[34] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Bench-
marking classification models for software defect prediction:
A proposed framework and novel findings.” in TSE, 2008.

[35] C. X. Ling, J. Huang, and H. Zhang, “AUC: A better measure
than accuracy in comparing learning algorithms,” in Canadian
Conference on AI, 2003, pp. 329–341.

[36] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classifi-
cation of software behaviors for failure detection: a discrimi-
native pattern mining approach,” in KDD, 2009, pp. 557–566.

[37] D. Lo, S.-C. Khoo, and J. Li, “Mining and ranking generators
of sequential patterns,” in SDM, 2008, pp. 553–564.

[38] D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of recurrent
rules from a sequence database,” in DASFAA, 2008, pp. 67–
83.

[39] D. Lo, S.-C. Khoo, and L. Wong, “Non-redundant sequential
rules - theory and algorithm,” Inf. Syst., vol. 34, no. 4-5, pp.
438–453, 2009.

[40] T. Menzies and A. Marcus, “Automated severity assessment
of software defect reports,” in ICSM, 2008.

[41] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt,
and P. Balachandran, “Making defect-finding tools work for
you,” in ICSE, 2010, pp. 99–108.

[42] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, and
G. Muller, “Faults in linux: ten years later,” in ASPLOS, 2011,
pp. 305–318.

[43] K. Pan, S. Kim, and E. J. W. Jr., “Toward an understanding
of bug fix patterns,” Empirical Software Engineering, vol. 14,
no. 3, pp. 286–315, 2009.

[44] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang, “Automated support for classifying
software failure reports,” in ICSE, 2003, pp. 465–475.

[45] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tack-
ling the poor assumptions of naive bayes text classifiers,” in
ICML, 2003, pp. 616–623.

[46] D. Romano and M.Pinzger, “Using source code metrics to
predict change-prone java interfaces.” in ICSM, 2011.

[47] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,”
in ICSE, 2007, pp. 499–510.

[48] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,
and G. Rothermel, “Predicting accurate and actionable static
analysis warnings: An experimental approach,” in ICSE, 2008,
pp. 341–350.

[49] SPSS, “Predictive analytics software and solutions,”
http://www-01.ibm.com/software/analytics/spss/.

[50] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports,” in ASE, 2011.

[51] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A
discriminative model approach for accurate duplicate bug
report retrieval,” in ICSE, 2010.

[52] Y. Tian, D. Lo, and C. Sun, “Improved duplicate bug report
identification,” in CSMR, 2012.

[53] WALA, “T.J. watson libraries for analysis,”
http://wala.sourceforge.net/wiki/index.php.

[54] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in ICSE, 2008, pp. 461–
470.

[55] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?” in MSR, 2007, p. 1.

[56] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques, 2nd ed. Morgan Kaufmann,
2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

