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Abstract—In statistics and data mining communities, there
have been many measures proposed to gauge the strength of
association between two variables of interest, such as odds
ratio, confidence, Yule-Y, Yule-Q, Kappa, and gini index. These
association measures have been used in various domains, for
example, to evaluate whether a particular medical practice is
associated positively to a cure of a disease or whether a particular
marketing strategy is associated positively to an increase in
revenue, etc. This paper models the problem of locating faults
as association between the execution or non-execution of par-
ticular program elements with failures. There have been special
measures, termed as suspiciousness measures, proposed for the
task. Two state-of-the-art measures are Tarantula and Ochiai,
which are different from many other statistical measures. To the
best of our knowledge, there is no study that comprehensively
investigates the effectiveness of various association measures in
localizing faults. This paper fills in the gap by evaluating 20 well-
known association measures and compares their effectiveness in
fault localization tasks with Tarantula and Ochiai. Evaluation
on the Siemens programs show that a number of association
measures perform statistically comparable as Tarantula and
Ochiai.

I. INTRODUCTION

Software debugging is a difficult and expensive activity
to perform. When a program failure occurs in a program
execution, the execution traces may be long and contain
failure-irrelevant information. Locating the root cause of the
failure, which may be far away from the failure point, is non-
trivial. Often, full execution traces are not even available for
debugging if programs fail in the field. US National Institute
of Standards and Technology in 2002 has stated that software
bugs cost US economy 59.5 billion dollars annually [46], and
testing and debugging activities account for 30 to 90 percent
of labor expended for a project [8].

Many approaches have been proposed to help in automating
debugging processes, especially in localizing root causes of
failures (i.e., faults) in programs [20], [27], [29], [31], [33],
[34], [36], [38], [51]. One common kind of approaches is
spectrum-based fault localization [1], [11], [14], [27], [31],
where program traces or abstractions of traces (called program
spectra) are used to represent program behaviors and the
spectra of correct executions and failed executions are com-
pared. The comparison often employs statistical analysis, and
program elements (e.g., statements, basic blocks, functions,
components, etc.) that are observed more often in failed
executions than in correct executions (or statistically correlate
with failures) are located and deemed as suspicious and then
presented to developers.

Spectrum-based fault localization techniques are promising
as they are often lightweight and have good accuracy. Among
spectrum-based fault localization techniques, two state-of-the-
art techniques are Tarantula [26], [27] and Ochiai [1]–[3].
Both approaches propose suspiciousness measures that aim
to associate the execution of a particular program element
with program failures. A suspiciousness score is inferred for
each program element based on the suspiciousness measures,
and program elements are ranked and investigated for faults
according to their suspiciousness scores.

We observe that a certain program failure could be asso-
ciated with a non-execution of a particular program element.
A bug in the controlling program element (e.g. wrong condi-
tion in an if statement) could cause the non-execution of
a particular program element that will induce the program
failure. Therefore, we would like to model the association,
as the following question:

What is the association between the execution or
non-execution of a particular program element
with the occurrences of a failure?

Based on this view, a general solution for fault localization
can naturally emerge: measure the association of program
elements with failures and the stronger association an element
has with failures the more likely it is a fault.

Tarantula and Ochiai have been used as measures for fault
localization. In the data mining and statistics community, there
are various association measures, such as odds ratio [6], Yule
Q [47], and Yule Y [48]. They are proposed to measure the
strength of association of two variables. For example, one
might be interested in the association between the application
of a particular medical treatment with the recovery from an
illness, or in the association between a business strategy with
the revenue change. Unfortunately, there has not been any
study that investigates the effectiveness of the rich varieties
of association measures for fault localization.

This paper aims to fill this research gap by investigating the
effectiveness of 20 popular association measures for the pur-
pose of fault localization and comparing them with Tarantula
and Ochiai. In particular, we are interested in answering the
following research questions (RQs):

RQ 1. Are vanilla or off-the-shelf association measures ac-
curate enough in localizing faults?

RQ 2. Which of the off-the-shelf association measures pro-
vide better accuracy for fault localization?



RQ 3. What is the relative performance of the off-the-
shelf association measures as compared to well-
known suspiciousness measures for fault localization,
Tarantula and Ochiai in particular?

To answer the above questions, we investigate and compare
the accuracies of Tarantula, Ochiai, and the additional 20 asso-
ciation measures on the standard Siemens test program suite
obtained from the Aristotle Analysis System and Software-
artifact Infrastructure Repository [16], [41]. The Siemens suite
comes with seven programs seeded with bugs, a test oracle
to decide between failures and non-failures, and a set of test
cases. We compute various accuracy metrics to evaluate the
effectiveness of the association measures in localizing faults to
answer the above research questions. We show that a number
of association measures have similar performance as Tarantula
and Ochiai.

The contributions of this work are as follows:
1) We model the problem of fault localization as the

association between the execution or non-execution of
program elements and failures.

2) We comprehensively investigate the effectiveness of a
number of association measures on fault localization.

3) We highlight a few promising association measures
with statically comparable performance as Tarantula and
Ochiai.

4) We provide a partial order of association measures in
terms of their accuracies for fault localization.

The structure of this paper is as follows. Section II discusses
related work. Section III discusses the fundamental concepts
of spectrum-based fault localization and association measures.
Section IV discusses the particular association measures con-
sidered in the paper. Section V describes our empricial evalu-
ation and comparison of the association measures. Finally, we
conclude and discuss future work in Section VI.

II. RELATED WORK

In this section, we describe closely related studies on fault
localization and association measures. The survey here is by
no means a complete list of all related studies.

A. Fault Localization

Recently, there are a lot of studies on fault localization
and automated debugging. There are even different ways
to categorize these studies. Based on the data used in the
approaches, fault localization techniques can be classified
into spectrum-based and model-based. Spectrum-based fault
localization techniques often use program spectra, which are
program traces or abstractions of program traces that repre-
sent program runtime behaviors in certain ways, to correlate
program elements (e.g., statements, basic blocks, functions,
and components) with program failures (often with the help
of statistical analysis).

Many spectrum-based fault localization techniques [13],
[14], [27], [30], [38], [50] take as inputs two sets of spectra,
one for successful executions and the other for failed exe-
cutions, and report candidate locations where root causes of

program failures (i.e., faults) may reside. Given a failed pro-
gram spectrum and a set of correct spectra, Renieris and Reiss
present a fault localization tool WHITHER [38] that compares
the failed execution to the nearest correct execution and reports
the most suspicious locations in the program. Zeller and Hilde-
brandt propose a technique called Delta Debugging that can
simplify and isolate failure-inducing inputs in a binary-search-
like fashion [49], and Zeller applies Delta Debugging to search
for the minimum state differences between a failed execution
and a successful execution that may cause the failure [50].
Cleve and Zeller also extended the work by incorporating a
search capability for cause transitions, namely locations in
the program where new relevant variables become a failure
cause, in their tool called AskIgor [13]. Liblit et al. propose
a technique to search for predicates whose true evaluation
correlates with failures [30]. Chao et al. extend the work
by incorporating information on the outcomes of multiple
predicate evaluations in a program run in their tool called
SOBER [14]. All of these techniques need to compare spectra
of failed executions with those of successful executions in
some way. Evaluating the effectiveness of various association
measures can complement all of these techniques by helping
to locate the most failure-relevant program elements quickly
and improving their performance.

Other spectrum-based techniques [20], [25], [43], [52] only
use failed executions as the input and systematically alter
the program structure or program runtime states to locate
faults. Zhang et al. [52] search for faulty program predicates
by switching the states of program predicates at runtime.
Sterling and Olsson use the concept of program chipping [43]
to automatically remove parts of a program so that the part
that contributes to the failure may become more apparent.
While their tool, ChipperJ, works on syntax trees for Java
programs, Gupta et al. [20] work on program dependency
graphs and use the intersection of forward and backward
program slices to reduce the sizes of failure-relevant code
for further inspection. Jeffrey et al. use a value profile based
approach to rank program statements according to their likeli-
hood of being faulty [25]. These fault localization techniques
do not compare the spectra of failed executions with those of
successful executions, and association measures are generally
not applicable to them.

Compared with spectrum-based techniques, model-based
debugging techniques [17], [34] are often more accurate, but
heavyweight since they are based on more expensive logic
reasoning over formal models of programs. Many static and
dynamic analysis techniques [32], [33], [44] can be classified
as model-based debugging as well. Although few model-based
techniques have employed the concept of failure association,
incorporating association measures and other statistical analy-
ses into program models can be a future direction for improv-
ing the performance of model-based debugging techniques.

In our study, we focus on comparisons with two state-
of-the-art spectrum-based fault localization techniques in the
literature (to the best of our knowledge) that can be modeled
as the association question, namely Tarantula [26], [27] and



Ochiai [1]–[3]. Our study extends the work by Tarantula
and Ochiai in the sense that we systematically apply and
evaluate more than 20 association measures and find promising
measures for the task of fault localization.

B. Studies On Association Measures

There have been a number of studies proposed in the
statistics and data mining community on measures of asso-
ciation between variables since the early 20th century. These
include measures such as Yule’s Q and Yule’s Y [47], [48].
Other measures, such as odds ratio [6], are also commonly
considered and utilized in various domains, such as medi-
cal [7] and social science [23]. In the data mining community,
Agrawal and Srikant have proposed the work on association
rule mining which aims to infer associations from two itemsets
in a transaction dataset in the early 90’s [5]. In that work the
metrics of support and confidence for measuring the strength
of an association are proposed. Various other metrics, such as
interest and collective strength, are proposed later. We describe
these measures in detail in Section IV for our evaluations.

Tan et al. investigate various association measures, compare
their properties, and outline the benefits and limitations of
each from a computation point of view [45]. The measures
are revisited by Geng and Hamilton by including measures
for aggregated data summaries [18]. In this paper, we extend
their work in the specific domain of fault localization by
comparing the measures based on their ability to provide high
suspiciousness for buggy program elements.

III. CONCEPTS & DEFINITIONS

In this section we formally introduce the problem of
spectrum-based fault localization as an association question.
Next, we describe the concept of dichotomy matrix that will
be used to calculate the strength of the association between
two variables.

A. Spectrum-Based Fault Localization

This problem starts with a faulty program, a set of test cases,
and a test oracle. The set of test cases are run over the faulty
program and observations of how the program runs on each
of the test cases are recorded as program spectra. A program
spectrum [22], [39] is simply a set of data or values collected
at runtime; each value could be a program state, or a counter
or a flag for a program element. A test oracle is available to
label whether a particular output or execution of a test case is
correct or wrong. Wrong executions are classified as program
failures. The task of a fault localization tool is to find the
program elements that are responsible for the failures (i.e.,
the faults or the root causes) based on the program spectra of
both correct and wrong executions.

Definition 3.1 (Association Question): Given a program
P = {e1, ..., en} and a set of program spectra T = Ts ∪ Tf

for P , where P is comprised of n elements e1, ..., en and T
is comprised of the spectra for correct executions Ts and the
spectra for wrong executions Tf , the association question is
to measure (1) the strength of the association between the

Block ID Program Elements T15 T16 T17 T18 
1 int count; • • • • 

int n; 
Ele *proc; 
List *src_queue, *dest_queue; 

if (prio >= MAXPRIO) /*maxprio=3*/ 
2 

  {return;}  • • • 
3 src_queue = prio_queue[prio]; • • • • 

dest_queue = prio_queue[prio+1]; 

count = src_queue->mem_count; 
if (count > 1) /* Bug- supposed : count>0*/ { 

4 n = (int) (count*ratio + 1);  • •  
  proc = find_nth(src_queue, n); 
  if (proc) { 

5       src_queue = del_ele(src_queue, proc);  • •  
      proc->priority = prio; 
      dest_queue = append_ele(dest_queue, proc); } }} 

Pass/Fail of Test Case Execution :  Pass Pass Pass Fail  
Fig. 1. Example of block-hit program spectra

execution of each ei and the program failures and (2) the
strength of the association between the non-execution of each
ei and the program failures, and (3) assign a quantitative score
to each ei to indicate the likelihood that ei is a fault. We call
the score for each ei the suspiciousness score.

There have been various spectra proposed in the litera-
ture [1], [22], but we are particularly interested in block-hit
program spectra, each of which consists of a set of flags to
indicate whether each basic block is executed or not in each
test case.1 An example of block-hit program spectra is shown
in Figure 1. The second column is a code excerpt from the
Siemens test programs; the “Block ID” column indicates the
ID of the containing basic block of the statements. A bug lies
in the if condition in Block 3, causing Blocks 4–5 to be
skipped when the variable count is 1. The other columns
indicate whether each basic block is executed in each of test
cases 15, 16, 17, and 18 along with the information whether
the test case is pass or fail. In this example, • denotes a basic
block is executed by a test case and an empty cell denotes the
block is not executed by the test case.

There are also various ways to calculate the association
strengths based on various association measures. Evaluating
these association measures is the focus of this paper and is
presented in the following sections. In addition, transform-
ing association strengths into suspiciousness scores for ei
can be done in different ways. However, the transformation
functions involved in this step can often be very simple
(e.g., an identity function or a maximum function) as long
as the association measures can provide accurate association
strengths with failures for each ei. Separating the calculation
of suspiciousness scores from association strengths allows
more flexible combinations of the two association strengths
for each ei, but it is not our focus in this purpose to evaluate
different combinations.

1) Tarantula: Jones and Harrold propose Tarantula [27] to
rank program elements based on their suspiciousness measure.
Intuitively, a program element is more suspicious if it appears

1We acknowledge that different spectra may have different effects in fault
localization. We use block-hit program spectra in this paper mainly for
establishing the same ground for comparison with Tarantula and Ochiai. An
interesting future work will be to evaluate the applicability and effectiveness
of various association measures on different kinds of program spectra.



in failed executions more frequently than in correct executions.
Now we introduce the following common notations which are
used in the association and suspiciousness measures in the rest
of the paper: Given a program P and a test suite for P , n is
the total number of test cases in the test suite; n(e) is the
number of test cases that run through a particular element e
in P ; ns is the number of test cases that succeed; nf is the
number of test cases that fail; ns(e) is the number of test cases
that run through a particular element e and succeed; nf (e) is
the number of test cases that run through a particular element
e and fail.

Then, the suspiciousness score introduced by Tarantula for
each element e can be represented as the following:

suspiciousness(e) =

nf (e)
nf

ns(e)
ns

+
nf (e)
nf

Based on block-hit program spectra in Figure 1, the suspi-
ciousness score of Block 3 that contains the bug is 1/1

3/3+1/1 =
0.5. Block 1 also has the same suspiciousness score. Inter-
estingly, Block 2 receives the highest suspiciousness score:

1/1
2/3+1/1 = 0.6. Following the same calculation, Blocks 4 and
5 are not suspicious. There is no fail test case that executes
these blocks and hence Tarantula returns 0 score. The bug in
Block 3 can be localized after inspecting 3 blocks according
to the ranks of the scores and the source code order.

2) Ochiai: Abreu et al. [2] suggest Ochiai metric as the
suspiciousness score for a program element:

suspiciousness(e) =
nf (e)√

nf (nf (e) + ns(e))
=

nf (e)√
nfn(e)

Similar to Tarantula, Ochiai considers an element more
suspicious if it occurs more frequently in failed executions
than in correct executions (the

√
nf (e)
n(e) part). Using the same

example in Figure 1, Blocks 1 and 3 receive a suspicious-
ness score: 1/

√
1 ∗ (1 + 3) = 0.50. Similar to Tarantula,

Ochiai also returns Block 2 as the most suspicious block:
1/
√
1 ∗ (1 + 2) = 0.58, while the remaining blocks are not

suspicious. Same as Tarantula, Ochiai can help to localize the
bug after inspecting through 3 blocks. In our study, we are
interested to look for other measures that can localize the bug
earlier, and Section IV shows one such example.

B. Dichotomous Association

A common characteristics of the association measures eval-
uated in this paper is that they are all defined based on di-
chotomy matrices. The following are the necessary definitions.

Definition 3.2 (Dichotomy): A dichotomous outcome is an
outcome whose values could be split into two categories,
e.g., wrong or correct, executed or skipped, and married or
unmarried, etc. A dichotomous variable is a variable having a
dichotomous outcome. A dichotomy matrix is a 2× 2 matrix
that tries to associate two dichotomous variables in the form of
a 2×2 contingency table which records the bivariate frequency
distribution of the two variables.

An example of a dichotomy matrix D(A,B) relating vari-
ables A and B is shown in Table I. The value c00 corresponds
to the number of observations in which the value of variable
A=A0 and the value of variable B=B0. The values in the other
three entries in the dichotomy matrix are similar.

A = A0 A = A1

B = B0 c00 c01
B = B1 c10 c11

TABLE I
AN EXAMPLE OF A DICHOTOMY MATRIX. WE REFER TO IT AS D(A,B).

From a dichotomy matrix, dichotomous associations could
be defined.

Definition 3.3 (Dichotomous Association): A
dichotomous association is a special form of bivariate
association [23] which measures the strength of association
between two dichotomous variables, e.g., application of
a medical treatment and recovery from the disease, job
satisfaction and productivity, and program element execution
and program failure. The formulae for calculating dichotomous
associations depend on the four entries in dichotomy matrices.

Two questions are often asked:
1) Is there a (dichotomous) association between the two

variables?
2) How strong is the association between the two variables?
A common way to answer these two questions is to define a

formula, called association measure, to calculate a score based
on the four entries in a dichotomy matrix and consider the
association exist or strong if the score is beyond a particular
threshold. Then, an accuracy criteria is established to evaluate
the quality of the formula. Many well-known formulae based
dichotomy matrices have been proposed in the literature since
the early 20th century. The following sections describe and
evaluate these association measures in more details.

Definition 3.4 (Association Measure): An association
measure M is a mathematical function of the four
entries of a dichotomy matrix D(A,B), and denoted as
M(A,B,D(A,B)) or simply M(A,B,D) if causing no
confusion.

In our paper, we focus on fault localization and thus are
especially interested in the accuracies of these association
measures in measuring the strength of the association between
the execution or non-execution of a program element and
the occurrence of a failure. Thus, we need to consider three
random variables for each program element e:

Variable Definition
E A program element e is executed
E A program element e is not executed
F A program failure occurs

Also, we are interested in both M(E,F,De(E,F )) (i.e.,
the association between the execution of e and a failure) and
M(E,F,De(E,F )) (i.e., the association between the non-
execution of e and a failure), where De(E,F ) represents the
dichotomy matrix of the two variables E and F for e. The next



section presents the construction of the dichotomy matrices
and it should be easy to see that De(E,F ) and De(E,F ) are
actually the same since E and E are mutually exclusive.

IV. ASSOCIATION MEASURES

We investigate the effectiveness of 20 association measures
in fault localization and compare them against Tarantula and
Ochiai. In this section, we first introduce how we establish
the dichotomy matrices. We then describe the 20 association
measures computed from the dichotomy matrices. Finally,
we describe how we transform the association measures to
suspiciousness scores for fault localization.

A. Constructing a Dichotomy Matrix

Consider a program element e, which is a basic block in our
paper. For each test case, a trace is generated when a subject
program is executed on the test case. Some traces go through
e (i.e., e is executed), others do not (i.e., e is not executed).
Some traces exhibit failures, some produce correct outputs.
After the test cases are run, we construct a dichotomy matrix
as in Table II for every program element e:

e Executed e Not Executed
Test Passed ns(e) ns(e)
Test Failed nf (e) nf (e)

TABLE II
DICHOTOMY MATRIX FOR FAULT LOCALIZATION.

The notation e means e is not executed, and other notations
are similar to those mentioned in Section III-A1: ns(e) corre-
sponds to the number of traces that execute e but do not fail;
nf (e) corresponds to the number of traces that execute e and
fail; ns(e) is the number of traces that do not execute e and
do not fail; nf (e) corresponds to the number of traces that do
not execute e but fail. Using the notations from Section III-B,
De(E,F ) is obviously the same as De(E,F ) besides the
ordering of the columns in the matrices. We simply refer to
the two dichotomy matrices associated with the element e as
De when there is no confusion.

B. Association Measures

The 20 association measures that we consider are: ϕ-
coefficient [23], odds ratio [6], Yule’s Q [47], Yule’s Y [48],
Kappa [15], J-Measure [42], gini index [19], support [5],
confidence [5], Clark and Boswell’s Laplace accuracy [12],
conviction [9], interest [9], cosine [45], Piatetsky-Shapiro’s
Leverage [35], certainty factor [40], added value [45], collec-
tive strength [4], Jaccard [21], Klosgen [28], and information
gain [10], [37].

The mathematical formulae for calculating these 20 associa-
tion measures are given in Table III. The formulae are defined
in terms of probabilities, instead of frequencies, but we can
substitute frequencies recorded in dichotomous matrices for
probabilities during actual calculations. The ranges of values
that these association measures can take are given in Table IV.

C. From Association to Suspiciousness

Based on the previous subsections, we define the suspicious-
ness measure for each element e in Definition 4.1.

Definition 4.1 (Suspiciousness(e)): An element e can be a
control block (e.g., if, while, for statements) or a non-
control block. If e is a non-control block, the suspiciousness
of e can be defined as the association between the execution of
e with failure (M(E,F,De)). Otherwise, if e is a control block
and children is the list of direct children of e in the control
flow graph of the containing program, the suspiciousness of e
is the maximum of the following values:

1 M(E,F,De)
2 maxc∈children. M(E,F,Dc)

The definition uses M(E,F,De) to measure the suspi-
ciousness of element e when it is executed. As a matter of
experience from previous studies, there are program failures
associated with program elements that are not executed, and
these errors are often due to faults in the controlling program
element (e.g., a wrong condition used in an if statement).
In this case, the non-executed program elements are the
direct children of the controlling program elements. Thus, we
calculate the association between the non-execution of the chil-
dren of a program element with failure (M(E,F,Dc)). The
suspiciousness of e is the maximum of the association strength
among the children compared to the value of M(E,F,De).

Definition 4.2 (Example): Using the example in Figure 1,
we observe that Blocks 1, 3, and 4 are the control block
of Blocks 2, 4, and 5 respectively, while Blocks 2 and 5
are non-control block. The bug resides at the if condition
belongs to Block 3. The suspiciousness score of Block 3
is determined by the maximum of the association strength
between the execution of Block 3 with the failure and the
association strength between the non-execution of Block 4
with the failure. For example, by using one of the association
measures, e.g. cosine, the suspiciousness score of Block 3
is max( 0.25√

1×0.25
, 0.25√

0.5×0.25
) = 0.71. Following the similar

way, the suspiciousness score of control Blocks 1 and 4 are
0.50 and 0.71 respectively. Since Blocks 2 and 5 are non-
control block, the suspiciousness score of Block 2 is calculated
as 0.25√

0.75×0.25
= 0.50, and Block 5 is also calculated as

0√
0.5×0.25

= 0 score. Thus, this particular measure with the
source code order can help to rank the block that contains the
bug receives the highest, while Tarantula and Ochiai do not.

V. EXPERIMENTS

To further evaluate the wide range of association mea-
sures, we analyze different programs from Siemens Test
Suite [24]. The test suite was originally used for re-
search in test coverage adequacy and was developed by
Siemens Corporation Research. We use the variant provided
at www.cc.gatech.edu/aristotle/Tools/subjects/. The test suite
contains several programs. Each program contains many dif-
ferent versions where each version has one bug. These bugs
comprise a wide array of realistic bugs.



Name Formula
ϕ-Coefficient (M1)

P (A,B)−P (A)P (B)√
P (A)P (B)(1−P (A))(1−P (B))

Odds ratio (M2)
P (A,B)P (A,B)

P (A,B)P (A,B)

Yule’s Q (M3)
P (A,B)P (AB)−P (A,B)P (A,B)

P (A,B)P (AB)+P (A,B)P (A,B)
= α−1

α+1

Yule’s Y (M4)

√
P (A,B)P (AB)−

√
P (A,B)P (A,B)√

P (A,B)P (AB)+

√
P (A,B)P (A,B)

=
√

α−1√
α+1

Kappa(M5)
P (A,B)+P (A,B)−P (A)P (B)−P (A)P (B)

1−P (A)P (B)−P (A)P (B)

J-Measure(M6) max(P (A,B) log(
P (B|A)
P (B)

) + P (AB) log(
P (B|A)

P (B)
),

P (A,B) log(
P (A|B)
P (A)

) + P (AB) log(
P (A|B)

P (A)
))

Gini Index(M7) max(P (A)[P (B|A)2 + P (B|A)2] + P (A)[P (B|A)2 + P (B|A)2]− P (B)2 − P (B)2,
P (B)[P (A|B)2 + P (A|B)2] + P (B)[P (A|B)2 + P (A|B)2]− P (A)2 − P (A)2)

Support(M8) P (A,B)
Confidence(M9) max(P (B|A), P (A|B))

Laplace(M10) max(
P (A,B)+1
P (A)+2

,
P (A,B)+1
P (B)+2

)

Conviction(M11) max(
P (A)P (B)

P (AB)
,
P (B)P (A)

P (BA)
)

Interest(M12)
P (A,B)

P (A)P (B)

Cosine(M13)
P (A,B)√
P (A)P (B)

Piatetsky-Shapiro’s(M14) P (A,B)− P (A)P (B)

Certainty Factor(M15) max(
P (B|A)−P (B)

1−P (B)
,
P (A|B)−P (A)

1−P (A)
)

Added Value(M16) max(P (B|A)− P (B), P (A|B)− P (A))

Collective Strength(M17)
P (A,B)+P (AB)

P (A)P (B)+P (A)P (B)
× 1−P (A)P (B)−P (A)P (B)

1−P (A,B)−P (AB)

Jaccard(M18)
P (A,B)

P (A)+P (B)−P (A,B)

Klosgen(M19)
√

P (A,B)max(P (B|A)− P (B), P (A|B)− P (A))

Information Gain (M20) (−P (B) logP (B)− P (B) logP (B))−
(P (A)× (−P (B|A) logP (B|A))− P (B|A) logP (B|A)−
P (A)× (−P (B|A) logP (B|A))− P (B|A) logP (B|A)))

TABLE III
DEFINITIONS OF ASSOCIATION MEASURES. A AND B ARE THE TWO VARIABLES IN THE DICHOTOMY MATRIX. P (A) AND P (B) CORRESPOND TO THE

PROBABILITIES OF A AND B RESPECTIVELY. OTHER NOTATIONS FOLLOW STANDARD NOTATIONS IN PROBABILITY AND STATISTICS: P (A) IS THE
PROBABILITY OF not A; P (A,B) IS THE JOINT PROBABILITY OF A AND B; P (A|B) AND P (B|A) ARE CONDITIONAL PROBABILITIES.

Name Range No Perfect
ϕ-Coefficient (M1) −1 . . . 0 . . . 1 0.0 1.0
Odds ratio (M2) 0 . . . 1 . . .∞ 1.0 ∞
Yule’s Q (M3) −1 . . . 0 . . . 1 0.0 1.0
Yule’s Y (M4) −1 . . . 0 . . . 1 0.0 1.0
Kappa (M5) −1 . . . 0 . . . 1 0.0 1.0
J Measure (M6) 0 . . . 1 0.0 1.0
Gini index (M7) 0 . . . 1 0.0 1.0
Support (M8) 0 . . . 1 0.0 1.0
Confidence (M9) 0 . . . 1 0.0 1.0
Laplace (M10) 0 . . . 1 0.0 1.0
Conviction (M11) 0.5 . . . 1 . . .∞ 1 ∞
Interest (M12) 0 . . . 1 . . .∞ 1.0 ∞
Cosine (M13) 0 . . .

√
P (A,B) . . . 1

√
P (A,B) 1.0

Piatetsky-Shapiro’s (M14) −0.25 . . . 0 . . . 0.25 0 0.25
Certainty factor (M15) −1 . . . 0 . . . 1 0.0 1.0
Added Value (M16) −0.5 . . . 0 . . . 1 0.0 1.0
Collective strength (M17) 0 . . . 1 . . .∞ 1 ∞
Jaccard (M18) 0 . . . 1 0.0 1.0
Klosgen (M19) ( 2√

3
− 1)1/2[2−

√
3− 1√

3
] . . . 0 . . . 2

3
√

3
0 2

3
√

3
Information Gain (M20) 0 . . . 1 0.0 1.0

TABLE IV
ASSOCIATION MEASURE RANGES. THE THIRD AND FOURTH COLUMNS GIVE THE VALUE CORRESPONDING TO NO ASSOCIATION AND PERFECT

ASSOCIATION RESPECTIVELY. MEASURES THAT HAVE TWO VALUES AS THEIR RANGE (E.G., J-MEASURE,ETC.), INDICATE POSITIVE ASSOCIATION WITH
FAILURES. A LARGER VALUE WITHIN THE RANGE INDICATES A STRONGER ASSOCIATION WITH FAILURES. MEASURES THAT HAVE THREE VALUES AS
THEIR RANGE (E.G., ϕ-COEFFICIENT (-1..0..1)), INDICATES POSITIVE ASSOCIATION WITH FAILURES FOR VALUES BETWEEN 0 TO 1, AND NEGATIVE

ASSOCIATION FOR VALUES BETWEEN -1 TO 0. SMALLER NEGATIVE VALUES IMPLY A STRONGER ASSOCIATED WITH SUCCESSFUL EXECUTIONS.



Dataset LOC No. of Faulty Version No. of Test cases
print token 478 7 4130
print token2 399 10 4115
replace 512 32 5542
schedule 292 9 2650
schedule2 301 10 2710
tcas 141 41 1608
tot info 440 23 1052

TABLE V
EXPERIMENT DATASET

Association Measures Mean StdDev
ϕ-Coefficient (M1) 0.31 0.30
Odds ratio (M2) 0.55 0.18
Yule’s Q (M3) 0.54 0.18
Yule’s Y (M4) 0.54 0.18
Kappa (M5) 0.34 0.29
J-Measure (M6) 0.47 0.26
Gini Index (M7) 0.62 0.29
Support (M8) 0.55 0.17
Confidence (M9) 0.34 0.29
Laplace (M10) 0.55 0.17
Conviction (M11) 0.54 0.18
Interest (M12) 0.34 0.29
Cosine (M13) 0.29 0.28
Piatetsky-Shapiro’s (M14) 0.84 0.27
Certainty Factor (M15) 0.52 0.18
Added Value (M16) 0.31 0.30
Collective Strength (M17) 0.31 0.29
Jaccard (M18) 0.32 0.29
Klosgen (M19) 0.30 0.29
Information Gain (M20) 0.28 0.29
Tarantula 0.32 0.29
Ochiai 0.28 0.28

TABLE VI
OVERALL MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF

ACCURACY VALUES (SMALLER THE BETTER)

The Siemens Test Suite comes with 7 programs:
print tokens, print tokens2, replace, schedule, schedule2, tcas,
and tot info. The total number of buggy versions are 132,
as shown in Table V. We manually instrumented the buggy
versions using basic block level. Since our instrumentation
cannot reach the bug that resides in variable declaration, we
exclude versions that contain this type of bug e.g. version 6,
10, 19, 21 of tot info dataset, version 12 of replace dataset,
and version 13, 14, 15, 36, 38 of tcas dataset. We also exclude
version 4 and 6 of print token because they are identical with
the original version. Thus, we use 120 buggy versions in total.

A. Evaluation Metric

We evaluate the performance of the measures by the number
of elements that are ranked as high or higher than the program
element containing the fault/the bug. For each version, the
suspiciousness score of all program elements are sorted in
descending order. For a suspiciousness score to be effective,
buggy program elements should have a relatively larger value
of suspiciousness scores than the non-buggy elements. Based
on the descending order of suspiciousness scores, we then rank
the various program elements.

When a buggy program element has the same suspicious-
ness score with several other elements, the largest rank of the
elements that has this suspiciousness score is used as the rank

M1,M5,M9,M12,M13, 
M16,M17,M18,M19,M20,Tarantula, 

Ochiai

M15
M2,M3,M4,M8,M10,M11

M7

M14

M6

Fig. 2. Accuracy Partial Order

of the buggy element. For example, consider the case where
the two highest suspiciousness scores are 0.92 and 0.91 where
each score has two and three elements that have the same score
respectively. If a buggy element is given the suspiciousness
score of 0.91, then the rank of this buggy element is 5, instead
of 3. Since we do not know how the programmer will traverse
elements that have the same suspiciousness score, we use the
worst case scenario where the programmer inspects the buggy
element at the last position. In the situation when a version
contains a bug that covers several program elements, we use
the largest rank among the buggy elements as the rank of this
version.

Suspiciousness measures that rank the buggy elements first
are more effective than those that rank them last. We then use
this rank to compute the percentage of the program elements
that need to be inspected to find the bug by the formula:

rank

total elements

In our experiment, we use basic block as the granularity of the
element and the above percentage is applied as the accuracy
criterion of the association measures.

B. Experiment Results

The overall mean and standard deviation of the accuracy
values of the 20 association measures along with those of
Ochiai and Tarantula for the 7 programs in Siemens Test
Suite are shown in Table VI. The smallest mean of accuracy
value (0.28) is achieved by Ochiai and information gain, while
Tarantula achieved 0.32. Some measures that have similar
accuracy as the above are cosine(0.29), Klosgen(0.30) and
three measures with accuracy equals to 0.31 (i.e., collective
strength, added value, ϕ-coefficient). The detail of the accuracy
values for each dataset are shown in Table VII.

We also plot the curve showing the size of the code that
needs to be traversed to find the bug (x-axis) vs. the proportion
of bugs localized (y-axis). We split the large graphs into sev-
eral smaller graphs as shown in Figures 3, 4, 5, and 6. For each
graph, we compare several association measures with Taran-
tula and Ochiai. Association measures included in Figure 3 and
Figure 4 do not perform better as compare to Tarantula and
Ochiai. Some of the association measures (e.g. odds ratio(M2),
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print token print token2 replace schedule schedule2 tcas tot info
ϕ-Coefficient (M1) 0.18 (0.23) 0.12 (0.17) 0.14 (0.21) 0.23 (0.32) 0.59 (0.32) 0.51 (0.28) 0.24 (0.16)
Odds ratio (M2) 0.41 (0.08) 0.44 (0.03) 0.42 (0.15) 0.64 (0.23) 0.66 (0.20) 0.66 (0.13) 0.53 (0.17)
Yule’s Q (M3) 0.41 (0.08) 0.43 (0.03) 0.42 (0.15) 0.64 (0.23) 0.66 (0.20) 0.65 (0.13) 0.53 (0.17)
Yule’s Y (M4) 0.42 (0.07) 0.43 (0.03) 0.42 (0.15) 0.64 (0.23) 0.66 (0.20) 0.65 (0.13) 0.53 (0.17)
Kappa (M5) 0.27 (0.25) 0.14 (0.20) 0.17 (0.22) 0.23 (0.30) 0.62 (0.32) 0.52 (0.28) 0.29 (0.18)
J-Measure (M6) 0.28 (0.25) 0.45 (0.08) 0.43 (0.26) 0.77 (0.21) 0.40 (0.30) 0.45 (0.24) 0.50 (0.28)
Gini Index (M7) 0.47 (0.27) 0.67 (0.18) 0.63 (0.27) 0.93 (0.10) 0.48 (0.30) 0.61 (0.29) 0.54 (0.31)
Support (M8) 0.44 (0.08) 0.45 (0.03) 0.43 (0.14) 0.62 (0.21) 0.60 (0.18) 0.65 (0.13) 0.54 (0.17)
Confidence (M9) 0.28 (0.25) 0.10 (0.15) 0.18 (0.22) 0.22 (0.26) 0.55 (0.31) 0.53 (0.28) 0.31 (0.18)
Laplace (M10) 0.44 (0.08) 0.45 (0.03) 0.45 (0.16) 0.62 (0.21) 0.60 (0.18) 0.65 (0.13) 0.54 (0.18)
Conviction (M11) 0.41 (0.08) 0.43 (0.03) 0.42 (0.15) 0.63 (0.23) 0.65 (0.20) 0.65 (0.13) 0.53 (0.17)
Interest (M12) 0.28 (0.25) 0.15 (0.19) 0.18 (0.22) 0.23 (0.26) 0.55 (0.31) 0.52 (0.28) 0.30 (0.18)
Cosine (M13) 0.14 (0.17) 0.09 (0.11) 0.14 (0.20) 0.26 (0.36) 0.49 (0.29) 0.49 (0.26) 0.21 (0.14)
Piatetsky-Shapiro’s (M14) 0.56 (0.46) 0.89 (0.11) 0.89 (0.24) 0.94 (0.08) 0.84 (0.28) 0.82 (0.32) 0.78 (0.22)
Certainty Factor (M15) 0.38 (0.10) 0.43 (0.03) 0.39 (0.15) 0.60 (0.25) 0.65 (0.21) 0.62 (0.13) 0.52 (0.17)
Added Value (M16) 0.17 (0.23) 0.12 (0.18) 0.14 (0.21) 0.21 (0.31) 0.62 (0.33) 0.52 (0.29) 0.23 (0.17)
Collective Strength (M17) 0.19 (0.21) 0.13 (0.17) 0.15 (0.21) 0.25 (0.34) 0.56 (0.32) 0.51 (0.27) 0.23 (0.16)
Jaccard (M18) 0.26 (0.25) 0.09 (0.15) 0.17 (0.22) 0.22 (0.26) 0.55 (0.31) 0.52 (0.28) 0.27 (0.16)
Klosgen (M19) 0.22 (0.27) 0.09 (0.13) 0.13 (0.21) 0.21 (0.32) 0.62 (0.29) 0.50 (0.28) 0.22 (0.15)
Information Gain (M20) 0.04 (0.04) 0.10 (0.11) 0.16 (0.24) 0.23 (0.31) 0.47 (0.37) 0.47 (0.28) 0.19 (0.12)
Tarantula 0.30 (0.27) 0.15 (0.18) 0.16 (0.22) 0.17 (0.28) 0.62 (0.30) 0.51 (0.27) 0.22 (0.16)
Ochiai 0.14 (0.16) 0.09 (0.11) 0.12 (0.20) 0.23 (0.37) 0.55 (0.32) 0.48 (0.24) 0.17 (0.12)

TABLE VII
DETAILED MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF ACCURACY VALUES

0.00.10.20.30.40.50.60.70.80.91.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
M2

M3

M4

M6

M7

Ochiai

Tarantula

Percentage of Inspected ElementProportionof bug
 localized M2,M3,M4

are aligned

Fig. 3. Comparing M2, M3, M4, M6, M7 With Ochiai and Tarantula

Yule’s Q(M3), Yule’s Y (M3), J-Measure(M6), support(M8),
laplace(M10), conviction(M11), certainty factor (M15) ) can
localize more bugs compare to Tarantula when after 70%
program elements have been inspected.

In Figures 5 and 6, most of the association measures
perform comparably to Tarantula and Ochiai. Based on the
proportion of bugs localized, Kappa(M5), confidence(M9),
and interest(M12) perform slightly worse than Tarantula. On
the other hand, ϕ-coefficient(M1), added value(M16), collec-
tive strength(M17), Jaccard(M18), and Klosgen(M19) perform
slightly better than Tarantula even though not as good as
Ochiai. We also notice that added value(M16) has a similar
performance with Ochiai when 10% of the program elements
are inspected. At 10%, the proportion of bugs localized by
added value (M16) is 42%, while Ochiai achieves 43%.
Other measure that performs almost similarly to Ochiai is
cosine(M13). Information gain(M20) performs slightly worse
than Ochiai when less than 10% of the program elements are
inspected. At 10%, Information gain (M20) localizes 37%
of the bugs. However, at 20%, it localizes 4% more bugs
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Fig. 4. Comparing M8, M10, M11, M14, M15 With Ochiai and Tarantula

than Ochiai. At 50%, 83% of the bugs are localized by in-
formation gain, which is 8% higher than that of Ochiai. Thus,
based on this result, a number of association measures can
perform better than Tarantula. Also, information gain(M20)
outperforms both Tarantula and Ochiai when more than 10%
program elements are inspected.

We also perform statistical tests for each pair of measures
including Tarantula and Ochiai (i.e., two sample unpooled t-
test at 0.05 statistical significance threshold) to see if some
measures are statistically significantly better than others. We
plot this as a partial order in Figure 2. It is interesting to
note Tarantula and Ochiai are comparable (no one statistically
significantly outperforms the other). It is also interesting to
note that 10 measures perform comparably as Tarantula and
Ochiai. These are: ϕ-coefficient (M1), Kappa (M5), confi-
dence (M9), interest (M12), cosine (M13), added value (M16),
collective strength (M17)), Jaccard (M18), Klosgen (M19)),
and information gain (M20). Based on partial order, certainty
factor(M15) is not comparable with odds ratio(M2), neither
with J-Measure (M6). Also it could be noted that Piatetsky-
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Shapiro’s (M14) performs worse than other association mea-
sures for bug localization.

C. Discussion

In this section, we discuss the answer to the research
questions mentioned in Section I.

RQ1. We are interested to find if off-the-shelf association
measures are powerful enough to locate bugs. Based on the
mean accuracy values of the measures, it could be noted that
the various association measures could find the bugs when 28
- 84% of the program elements have been inspected. Fifty
percent of the association measures are able to find bugs by
inspecting 28-35% of elements, while Tarantula and Ochiai
require to inspect approximately 28% and 32% of the elements
respectively.

RQ2. Next, we are interested to find which association mea-
sures are better than others. The answer to this research
question is the partial order shown in Figure 2. At the top
of the partial order there are 10 off-the-shelf association
measures namely: ϕ-coefficient, Kappa, confidence, interest,
cosine, added value, collective strength, Jaccard, Klosgen, and
information gain. They are statistically significantly better than
the other off-the-shelf association measures.

RQ3. Finally, we would like to know the relative improvement
of the association measures versus well-known suspicious-
ness measures for bug localization. By applying statistical
significance tests under 0.05 significance threshold, the top

10 association measures are comparable to Tarantula and
Ochiai. They are not statistically significantly worse than the
two measures. Based on the proportion of bugs localized,
information gain localizes 4% more bugs as compared to
Ochiai when 20% of the program elements are inspected; when
50% of the program elements are inspected, 83% of the bugs
are localized which is 8% more than those localized by Ochiai.

D. Threats to Validity

The accuracy of a measure to localize a bug based on
spectrum fault localization is influenced by the granularity
level of the instrumented program (e.g. statement, basic block,
or method level). Different granularity levels may produce
different accuracies since they would have different total
number of elements that would affect the percentage value
of inspected elements. In our paper, we only instrument basic
blocks. The instrumented versions that we use in this work are
manually instrumented. To maintain the consistency, only one
person manually instruments the versions. Although another
check was performed, human error is still possible. In addition,
we only analyze Siemens programs which are a collection
of small C programs. This poses a threat to external validity
especially on the generalizability of our approach to larger
programs written in various programming languages.

VI. CONCLUSION & FUTURE WORK

In this work, we investigate a comprehensive number of
association measures proposed in the literature. These mea-
sures gauge the strength of association between two variables
expressible as a dichotomy matrix. We consider and compare
20 association measures. The well-known fault-localization
measures namely Tarantula and Ochiai are used as baselines.
We have conducted a number of statistical significant tests.
Interestingly, Tarantula and Ochiai are comparable to each
other; one does not statistically significantly outperforms the
other. We also notice that 10 of the association measures
are comparable (not statistically significantly under performs
Tarantula and Ochiai). The comparable association measures
with Tarantula and Ochiai are cosine, ϕ-coefficient, added
value, collective strength, Klosgen, Kappa, Jaccard, confi-
dence, interest, and information gain. Thus, we can conclude
that association measures are also promising to be used in fault
localization problem.

In the future, we plan to investigate the association measures
on larger programs and characterize the effectiveness of each
measures on different types of bugs.
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