
The Learning Curves in Open-Source Software (OSS)
Development Network

Youngsoo Kim
School of Information Systems

Singapore Management University
80 Stamford Road
Singapore, 178902

yskim@smu.edu.sg

Lingxiao Jiang
School of Information Systems

Singapore Management University
80 Stamford Road
Singapore, 178902

lxjiang@smu.edu.sg

ABSTRACT
We examine the learning curves of individual software de-
velopers in Open-Source Software (OSS) Development. We
collected the dataset of multi-year code change histories from
the repositories for five open source software projects in-
volving more than 100 developers. We build and estimate
regression models to assess individual developers’ learning
progress (in reducing the likelihood they may make a bug).
Our estimation results show that developer’s coding experi-
ence does not decrease bug ratios while cumulative bug-fixing
experience leads to learning progress. The results may have
implications and provoke future research on project man-
agement about allocating resources on tasks that add new
code versus tasks that debug and fix existing code. We also
find that different developers indeed make different kinds
of bug patterns, supporting personalized bug prediction in
OSS network. We found the moderating effects of bug types
on learning progress. Developers exhibit learning effects for
some simple bug types (e.g., wrong literals) or bug types
with many instances (e.g., wrong if conditionals).

1. INTRODUCTION
As the old saying goes, “practice makes perfect.” Learning

from actual coding can be effective for developers to gain
new knowledge and horn their skills. Such learning can be a
life-long journey for both novice and expert developers, with
continually appearing new technologies and new problem
domains. No matter whether a developer is a novice or an
expert, software bugs can inevitably occur in their code.

The generally encouraging consensus is that developers
would be able to reduce the number of bugs they make when
they accumulate more knowledge and skills. This implies
that the “patterns” of code (including bugs and bug fixes)
made by a developer may change over time. On the other
hand, many bug prediction techniques have been proposed
to identify likely locations in a code base that may contain
bugs [13, 15, 18, 21, 23, 29, 40, 51]. Some of the prediction
techniques are further “personalized” to take individual devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICEC ’14, August 05 - 06 2014, Philadelphia, PA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2618-6/14/08...$15.00.
http://dx.doi.org/10.1145/2617848.2617857

opers’ code patterns into consideration to improve prediction
accuracy [19,31]. Most of the techniques utilize information
about historical bugs happened in the code base, such as
code metrics, program dependencies among components, and
social factors in a software project [6, 7, 49], to make predic-
tions. Such studies then implicitly assume that the “patterns”
of bugs in a code base rarely change and past bugs can be
used to predict future ones, which may appear contradicting
with the above consensus.

In this paper, we examine such an implicit assumption
made by many bug prediction techniques, with the aim to
find a resolution for this contradiction. We attempt to answer
following research questions:

RQ1 Do developers exhibit learning effects in a project by
accumulating coding and/or bug fixing experience?

RQ2 Do developers show different learning curves depending
on bug types?

RQ3 Do developers show different distribution of bug types?
RQ4 What characteristics of a developer and a project may

affect the learning curved of the developer?

Our study have intriguing implications on project manage-
ment about how to split efforts on tasks that add new code
versus tasks that debug and fix existing code. For example,
within a short period of time (say, a month), when a lot of
new code is added by a developer, a manager may want to
assign more testing and debugging tasks to the developer
instead of coding more new code; it helps, on one hand,
to detect and fix possible bugs, and on the other hand, to
improve developers’ learning progress via bug fixing. It may
also be useful for a developer if she continually studies the
fixes for her bugs even though she is not the person who fixes
them. Our main contributions in this paper are as follows:

• We are the first to identify the implicit assumption
made by most bug prediction techniques that “patterns”
of bugs made by developers in different projects are
relatively stable, and present an empirical study to
investigate the validity of the assumption;

• We collect and calculate various measures for more
than 95K lines of buggy code made by more than 100
developers in five open source projects;

• We analyze developers’ learning effects in the data set
via empirical regression models, and reveal interest-
ing phenomena that may provide insights for project
management and future research on bug fixing.

The rest of this paper is organized as follows. Section 2
briefly surveys closely related work. Section 3 describes the
dataset collected and measures. We will show our empir-

ical models in Section 4. Section 5 presents our analysis
results. Section 6 discusses some implications of our results,
together with limitations and threats to validity, and possible
directions for future work. Section 7 concludes.

2. RELATED WORK
We discuss related work in the area of learning models in

software engineering, empirical studies on factors affecting
software project performance, and bug prediction.

2.1 Learning Models in Software Engineering
There are many studies on learning models in software

engineering. Hanakawa et al. [16] incorporates developers’
learning curve into a simulation model to make better project
plans. Singh et al. [41] develops a learning model for de-
velopers and finds that patterns of learning are different in
different learning states. Chouseinoglou et al. [11] uses a
model to assess the learning characteristics of a software
developer organizations (SDO). Abu et al. [2] proposes an
improved learning model for software test processes. Singh
et al. [41] examine the developer’s learning dynamics in OSS
utilizing hidden Markov Model (HMM). In their paper, the
performance measure is just the contribution to software
project. None of previous studies focus on the relationship
between bug-fixing code amount and learning effects. We are
the first to investigate the effect of bug-fixing on developers’
bug ratios.

2.2 Empirical Studies on Project Performance
The performance of a software project can be measured

in various ways, such as developer productivity, code qual-
ity, and maintenance costs. Many studies have analyzed
various factors that may affect project performance. Rama-
subbu and Balan [37] use regression models to identify that
geo-dispersion of developers has great impact on software
productivity and quality. Banker et al. [4] finds that the im-
provement of software development practices can improve the
maintenance performance. Harter et al. [17] finds that higher
process maturity can lead to higher software quality. Krish-
nan et al. [24] investigates the relationship between various
measures (e.g., product size, personnel capability, software
process) and the software quality. Abreu and Premraj [1]
propose that communication frequency of developers may af-
fect the amount of bug-introducing changes. Bettenburg and
Hassan [6] focus on the impact of social information of devel-
opers on software quality. Our study in this paper reveals the
relationship between bug-fixing amount and learning effects
and software quality indirectly.

2.3 Bug Prediction
There are many studies on bug prediction [13,15]. Some

focus on cross-project bugs [27,30,35,46,51], building predic-
tion models with data from different projects. Some build
prediction models for individual developers [19,31]. Many of
them rely on machine learning techniques to classify changes
or files as possible bugs [19,21,40]. To find bug-introducing
changes (bug-origin analysis), many studies [22,42,43,50] try
to identify the bug-fixing changes first, which is similar to our
work. These studies make it more effective to predict soft-
ware bugs, but they do not take developers’ learning effects
into consideration. They assume that “bug patterns” of de-
velopers in different projects and different years are relatively
stable. We are the first to identify this implicit assumption

and investigate it with empirical analysis. Some bug pre-
diction techniques use information beyond code. Some use
developer social networking [1,7,33,49]. Some [25] also use
developers’ micro-interaction patterns captured by the My-
lyn plugin for Eclipse to predict bugs. Our analysis focuses
on factors in code; we plan to extend our analysis to consider
factors beyond code as well.

3. DATA AND MEASURE

3.1 Data
We collect code change histories from the repositories for

five open source software projects mostly written in Java
(Apache Ant, Apache Commons Compress, Apache Commons
Lang, Apache Solr/Lucene, and Eclipse Platform). The data
spans multiple years from 2000 to 2013, involving more than
100 developers. We extract and calculate various measures
about the characteristics of the project and the code changes
(including bugs and bug fixes), such as the location of the
bug, the developer who introduces the bug or fixes the bug,
the introduction time of the bug, the type of the bug, the
complexity of the code involved, etc. The bugs we analyze
span more than 95K lines of code across different versions of
the projects.

3.2 Measures
We calculate basic measures for individual bugs, then use

them to calculate the measures for developers and projects.
Here we describe the measures for individual code changes,
and how we collect and calculate them. We focus on open
source projects mostly written in Java. We also use the git
repositories (http://git-scm.com/) of the projects [8].

In order to find a bug and its introducing commits, we
first locate a bug fix, then trace back to its origin, in a way
similar to previous studies [22,36,43]. To get a bug fix, we
search among all commit log messages for ones containing
the keyword “fix” or“bug.” Then we verify the search results
manually to ensure the selected commits are really source
code bug fixes. For example, if the log for a commit is “Fix
JavaDoc”, this commit is not a source code bug fix. After
verifying the bug fixes, we get the diff between each fix
commit and its parent commit (i.e., the last commit before
the fix commit) so that we can identify the changed lines
in the parent commit. These lines of code are treated as
buggy; newly added lines in the fix commit are ignored. And,
we count each buggy line as one bug. Then, we use the
command “git blame” to get information about each buggy
line (such as the last developer who changed the buggy line
and the date when the line was last changed). The measures
for individual bugs are described in more details below.

Locationj: This measure is for identification purpose. It
provides the project name, the commit id in the project
respository, the package name, the filename, and the
line number for the buggy line of code j identified as
above.

IntroDatej: It is the date when the buggy line of code
j was committed into the project repository for the
first time. Although there are threats to validity of
IntroDate obtained in this way [8], it seems to be
sufficient approximation as in other studies that use
information about bug origins [19,36,43].

IntroDeveloperj: It is the developer who introduced the
buggy line j into the repository. Similar to IntroDate,

http://git-scm.com/

we mostly rely on “git blame” of the diff to get the
developer who last changed j as the IntroDeveloperj .

FixDatej: It is the date when the bug j was fixed in the
repository, i.e., the date of the fix commit.

FixDeveloperj: It is the developer who fixed the bug i, i.e.,
the developer who committed the fix into the repository.

BugTypej: The type of the buggy line j is based on our
classification. We classify the type of each bug based
on the syntax of the bug, following the study on syntax-
based classification of bug fixes [32]. In this paper, to
decide the bug type, we first construct the abstract
syntax tree (AST) for the source file containing the
bug, then identify a minimum subtree that contains all
code in the buggy line. Then, we count the number
of occurrences of each tree node type in the subtree,
and give some node types (e.g., if and for nodes)
higher priorities based on common patterns shown in
[32]. Then, we choose the node type with the highest
weighted occurrence number as the type for the bug.
In the ASTs constructed by Eclipse JDT (http://www.
eclipse.org/jdt/), there are more than 80 node types.
With a preliminary study, many of the node types have
relatively small numbers of bugs. Thus, we merge some
“semantically” related node types. In the end, we have
13 bug types, which also helps to simplify some of our
empirical analysis as described in Section 4. Table 1
lists the 13 merged bug types and their descriptions.

Bug Type Descriptions
1 Types

Code for defining and using Java types (e.g., type casting, "instanceof", enum,
type parameters, etc.)

2 Def-use Code for defining and using variables (e.g., variable declarations, assignments,
array accesses, field accesses, "this", etc.)

3 Error handling Code for assertion, exception handling
4 Scoping Code for identifying scopes (e.g., "{", "}", etc.)
5 Literals Constants (e.g., "hello", "123", "null", etc.)
6 Change control Code that changes the control flow (e.g., "break", "continue", "return", etc.)
7 Branching Code involving conditionals (e.g., "if", "switch", etc.)
8 Looping Code involving loops (e.g., "for", "while", etc.)
9 Non-essentials Code that has little effect on functionality or easily caught by compilers (e.g.,

empty statement, annotations, comments, imports, labels, etc.)
10 Expressions Code involving expressions (e.g., infix expression, parenthesized expressions, etc.)
11 Methods Code involving method declarations and invocations
12 Synch Code involving synchronization
13 Modifiers Code involving modifiers (e.g., "public", "private", "static", etc.)

Bug Type Name Corresponding AST Node Types
1 Type defs & uses

ARRAY_TYPE, CAST_EXPRESSION, PRIMITIVE_TYPE, SIMPLE_TYPE,
TYPE_DECLARATION, TYPE_DECLARATION_STATEMENT,
INSTANCEOF_EXPRESSION, ENUM_DECLARATION,
ENUM_CONSTANT_DECLARATION, TYPE_PARAMETER, PARAMETERIZED_TYPE,
QUALIFIED_TYPE, WILDCARD_TYPE, UNION_TYPE

2 Var defs & uses ARRAY_ACCESS, ARRAY_CREATION, ASSIGNMENT,
CLASS_INSTANCE_CREATION, CONSTRUCTOR_INVOCATION, FIELD_ACCESS
FIELD_DECLARATION, QUALIFIED_NAME, SIMPLE_NAME,
SINGLE_VARIABLE_DECLARATION, SUPER_CONSTRUCTOR_INVOCATION
SUPER_FIELD_ACCESS, THIS_EXPRESSION,
VARIABLE_DECLARATION_EXPRESSION, VARIABLE_DECLARATION_FRAGMENT
VARIABLE_DECLARATION_STATEMENT

3 Error handling ASSERT_STATEMENT, CATCH_CLAUSE, THROW_STATEMENT, TRY_STATEMENT
4 scoping ANONYMOUS_CLASS_DECLARATION, ARRAY_INITIALIZER, BLOCK,

COMPILATION_UNIT, INITIALIZER
5 literals BOOLEAN_LITERAL, CHARACTER_LITERAL, NULL_LITERAL, NUMBER_LITERAL,

STRING_LITERAL, TYPE_LITERAL
6 Control changes BREAK_STATEMENT, CONTINUE_STATEMENT, RETURN_STATEMENT
7 Branching CONDITIONAL_EXPRESSION, IF_STATEMENT, SWITCH_CASE,

SWITCH_STATEMENT
8 Loop DO_STATEMENT, FOR_STATEMENT, WHILE_STATEMENT,

ENHANCED_FOR_STATEMENT

Table 1: Syntax-based Bug Types, classified from 80+ AST node
types from Eclipse JDT.

ContextFunctionalityj: The“functionality”of the surround-
ing code of the bug j. We classify the functionality of
the file containing the bug by applying topic modelling
on the comments contained in the file. We extract com-
ments as bags of words, apply stop-word removal (e.g.,
keywords in Java) and stemming, and use JGibbLDA
(http://jgibblda.sourceforge.net/) to identify topics. We
hypothesize that different packages/components in a
program may have different functionality, and thus pick
an arbitrary number 35 as the number of topics for
JGibbLDA within the range of numbers of packages in
our subject programs (between 13 and 302 as counted
by JavaNCSS (http://www.kclee.de/clemens/java/javancss/)
for their last versions in our data set). We use the topic
assigned by JGibbLDA to a file with the highest prob-
ability as the topic for the file.

We can calculate many measures for projects. Many of
them can be aggregated from the measures for individual
developers and individual code changes and bugs within given

time frames (months). When needed, we use the last commit
before the current time period t as the beginning of t, and
use the first commit as the beginning of the first period.

ProjectSizept: The amount of code (i.e., the total number
lines of code) in the project p at the beginning of the
time period t. A project size can be viewed as a proxy
for the accumulative effects of many code changes by
many developers in the project. To calculate these
numbers, we first “git checkout” the last commit before
the time t to get the specific revision of p, then use a
code metric tool JavaNCSS to count the code amount.

ProjectComplexitypt: The code complexity of the project
p at the beginning of the time period t. We also use
JavaNCSS to calculate the cyclomatic complexity (CC)
of Java code, and we use the sum of the CC of all func-
tions in a project as the complexity for the project. One
can see that ProjectComplexity is highly correlated
with ProjectSize.

DeveloperSizept: The number of developers who made some
commits into p during the time period t.

ProjectCodeAmountpt: The amount of code committed into
p during the time period of t. We can obtain these num-
bers by summing up the CodeAmount of all developers
in the project during the period of t.

ProjectBugAmountpt: The amount of bugs (i.e., the total
number of lines of buggy code) committed into the
project repository p during the time period of t. These
numbers can be the summation of the BugAmount of
all developers in the project during the period of t.

ProjectBugTypeAmountbpt: The amount of bugs of type b
committed into p during the time period of t. These
numbers can be the summation of theBugTypeAmount
of all developers in the project during the period of t.

ProjectBugRatiopt: The ratio of buggy code for the project
p during the time period of t. It is ProjectBugAmountpt
divided by ProjectCodeAmountpt.

Since each commit is often associated with a unique de-
veloper name or email, we can calculate most measures for
individual developers by aggregating the measures for individ-
ual code changes or bugs within given time frames (months).

CodeAmountipt: The amount of code (i.e., the total number
of lines of code, including deleted, added, changed lines)
committed by the developer i into p during the time
period of t. These numbers can be summed up from
the diffs of all commits made by the developer. We
omit diffs in non-Java files.

BugAmountipt: The amount of bugs (i.e., the total number
of lines of buggy code) committed by the developer i
into p during the time period of t. These numbers are
the sum of all bugs whose IntroDate is in the period
of t and IntroDeveloper is i.

BugTypeAmountibpt: The amount of bugs of type b com-
mitted by the developer i into p during the time period
of t. These numbers are calculated in a similar way as
BugAmount, except thatBugTypeAmount additionally
considers bug types.

BugFixAmountipt: The amount of code committed by the
developer i into p, for the purpose of fixing bugs, during
the time period of t. These numbers are the sum
of all bugs whose FixDate is in the period of t and
FixDeveloper is i.

http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://jgibblda.sourceforge.net/
http://www.kclee.de/clemens/java/javancss/

BugTypeF ixAmountibpt: The amount of code committed
by the developer i into p, for the purpose of fixing
bugs of type b, during the time period of t. These
numbers are similar to BugFixAmount, except that
BugTypeF ixAmount considers bug types too.

BugRatioipt: The ratio of buggy code for the developer i
in p during the time period of t. It is BugAmountipt
divided by CodeAmountipt.

4. ECONOMETRIC MODEL

4.1 Learning Curve Models
The form of the learning curve is formulated as y(x) = axb,

where y is a performance variable (one of the bug ratios in
this paper), x represents cumulative learning experience, a
is an initial bug ratio without learning activities, and b is
the learning rate of an individual. Learning experience in
this paper is measured by either the amount of codes of an
individual makes or the amount of buggy code an individual
fixes. Cumulative learning experience at a point of time t is
the total amount of codes or bug fixes made by an individual
through t−1 in a project. Taking a natural log transformation
of both sides and adding covariates of interest and control
variables, we obtain the following regression equation (1):

ln(BugRatioipt) = β0 + β1ln(CumulativeCodeAmountipt−1)
+ β2ln(CumulativeBugFixAmountipt−1)
+ β3CodeAmountipt
+ β4ln(BugFixAmountipt)
+ β5DeveloperSizept
+ β6ProjectCodeAmountpt
+ β7ProjectComplexitypt

(or + β7ProjectSizept)
+ ζi + δp + µipt

(1)
The unit of analysis is the bug ratio of individual develop-

ers. BugRatioipt is the bug ratio of ith developer during the
period of time (month) t in a project p; it is our key measure
for learning effects and the dependent variable in our regres-
sion model. We aim to explain the change in BugRatioipt
with respect to the independent (explanatory) variables at
the right hand side of Equation (1).

We have two variables as proxies to measure the transition
(increment) of project-specific knowledge stock:
CumulativeCodeAmountipt−1: It is the cumulative total of

CodeAmountipt that an individual i has committed
into p throughh time t− 1. The main objective of the
variable is to estimate learning progress induced from
cumulative coding experience. If β1 is negative and
statistically significant, then the developers show the
learning curve (i.e., decrease of bug ratios) as they
increase coding experience in a focal project.

CumulativeBugFixAmountipt−1: In a similar fashion, this
measures the cumulative total of bug-fix amounts an
individual i has made through time t− 1 in a project
p. We use it to test whether the individual developer’s
bug-fixing experience can induce the decrease of bug
ratios. Note that a developer can fix her own bugs as
well as bugs made by other developers.

Our regression model also includes CodeAmoutipt—the
amount of code a developer i commits into p during the pe-
riod of time t, and BugFixAmountipt—the amount of code
for bug fixes a developer i commits into p during the period
of time t. They are used to capture the scale effects. We also
have four project-specific variables in the model to check the

impact of project-related characteristics on the developers’
learning effects: DeveloperSizept, ProjectCodeAmountpt,
ProjectComplexitypt, and ProjectSizept. We find that
ProjectComplexity is highly correlated with ProjectSize
(correlation coefficient is 0.998); thus, we do not use them
together in the model to avoid a multicollinearity prob-
lem [14,44].

We adopt a fixed effects model ζi to control for individual
developer heterogeneity, and δp to control for the individual
project heterogeneity, respectively. The error component,
µipt is an idiosyncratic error term and it varies across t as
well as across developer i and project p.

4.2 The Moderating Effect of Bug Types on
Learning Progress

Our model assesses the overall learning curve of developers
in the deduction of bug ratios with respect to coding or bug-
fixing experience without distinguishing bug types, assuming
implicitly that developers’ learning progress is independent
of bug types. Relaxing the assumption, our next question is
whether learning curves differ according to bug types.

We cannot apply the same regression model as Equation (1)
to estimate the learning progress in each bug type because
some developers did make bugs in just a few bug types in
each time period. As described in Section 3.2, we have 13
different bug types. We empirically confirmed that a month
(our unit of time) is too short to calibrate the change of
bug ratios in each bug type. Therefore, we split individual
developers’ working periods into two periods, each period
with the same length of months, and calculate the bug ratios
in each bug type by individual developers in each of the two
time periods. Hence, we compare 13 multivariate means of
two period groups.

We first perform a multivariate analysis of variance (MANOVA [14,
44]) to test whether the bug ratios in every bug type are dif-
ferent across the two time periods. Furthermore, we perform
analysis of variance (ANOVA [14,44]) in order to evaluate
the individual learning progress in each bug type. We check
whether there is significant decrease of bug ratios between
the two periods.

Bug ratios can be affected by a life cycle of software de-
velopment. To overcome the potential spurious influence,
we apply differences–in–differences technique (DID [3]) in
measuring bug ratios in each bug type. That is, bug ratios
in each bug type represent the difference between individual
developer’s bug ratios and average bug ratios at the project
level, in each bug type, for the same time frames.

4.3 Different Bug Patterns Across Developers
Bug ratios of an individual developer may reflect devel-

oper’s knowledge stock and heterogeneous experiences. So
another analysis we perform is to test whether the bug ratios
in every bug type vary across developers. Because bug ratios
in bug types can be clarified as multiple dependent variables,
we perform a multivariate analysis of variance (MANOVA)
for this purpose.

5. EMPIRICAL RESULTS
Table 2 gives some statistics about the projects. In total,

the projects involve more than 200 developers who make
commits to the repositories. 117 of them, based on our mea-
sures, have committed buggy code. Table 2 also shows that

Project Name Time Span
Project

Size
Dev.
Size

Cumulative
Bug Amt.

Self-Fixed
Bug Amt.

% of Self-
Fixed

Apache Ant 2000.1–2013.12 93658 30 (46) 34817 8967 25.8%
Apache Commons
Compress

2003.11–2013.12 19967 9 (20) 3271 1499 45.8%

Apache Commons
Lang

2002.7–2013.12 44455 15 (41) 1549 759 49.0%

Apache Solr /
Lucene

2010.3–2013.12 421295 36 (40) 33812 8987 26.6%

Eclipse Platform 2001.5–2013.12 60252 27 (63) 22111 7576 34.3%

Table 2: Basic Project Descriptions. “Time Span” is the period
of time between the first commit and the last commit into the
project in our data set. “Project Size” is the number of lines of
code in the last commit. “Dev. Size” is the number of developers
who commit some buggy code into the project repository during
the time span; and the number in the parentheses is the total
number of developers who make a commit (no matter whether
the commit contains code or buggy code). “Cumulative Bug Amt.”
is the cumulative total amount of buggy code committed into
the project during the time span. “Self-Fixed Bug Amt.” is the
amount of buggy code fixed by the same developer who commits
it, and “% of Self-Fixed” is the corresponding percentage.

Project Cumulative CodeAmountjpt for
each developer (Lines of Code)

Mean Min Max Standard
Deviation

Ant

with NO bugs 4053 0 54713 13571
with bugs 73821 320 1014953 190611

Commons
Compress

with NO bugs 1385 0 10787 3385
with bugs 14691 231 65139 23265

Commons
Lang

with NO bugs 7077 0 171391 33533
with bugs 51101 332 473406 122483

Solr / Lucene with NO bugs 1702 0 5281 2484
with bugs 140698 263 1673065 318849

Eclipse Plat-
form

with NO bugs 5910 0 157791 26771
with bugs 53179 54 288889 75520

Table 3: Summary statistics (mean, min, max, standard deviation)
of the cumulative code amounts of every developer in projects.

only a small portion of buggy code (25%–50%) is fixed by the
same developer who commits it into the project repository.

Table 3 gives summary statistics about the cumulative
amount of code made by developers with and without bugs
in each project. It indicates that the developers without bugs
contribute much less code than developers with bugs, and
they do not exhibit learning effects (i.e., their bug ratios are
always zero), we leave those developers out of our analyses.

Table 4 lists some descriptive statistics for the variables
used in our regression model. The correlation matrix for the
variables are in Table 5. The baseline correlations provide
initial support for our learning curves of individual developers
in OSS. ln(BugRatioipt has a negative correlation with both
experience variables, ln(CumulativeCodeAmountipt) and
ln(CumulativeBugFixAmountipt). This indicates that an
increase in the experiences is associated with the reduction
in bug ratios. But the correlation cannot fully guarantee the
learning effects due to developer’s heterogeneity and so we
run the regression model with control variables and fixed
effects factors. In fact, our analysis shows that there are no
learning effects induced from cumulative coding experience
(see Section 5.1).

5.1 Learning Curve
Our estimation results are generally stable across different

model specifications as shown in the columns in Table 6, so we
focus on the results in the column for Model 3 which has all
of the control variables except ProjectSizept. As can be seen
in the rows in Table 6 for ln(CumulativeCodeAmountipt−1)
and ln(CumulativeBugFixAmountipt−1), the estimates in-
dicate that cumulative coding experience does not decrease

VID Variables # Mean Std. Dev. Min Max
V0 Date 200001 201312
V1 1084 -4.2 1.6 -11.6 0.0
V2 2200 10.0 2.2 0.0 14.3
V3 1332 5.6 2.0 1.8 9.7
V4 2330 4120.0 24745.1 1.0 634736.0
V5 2331 40.4 435.7 0.0 14448.0
V6 2331 46616.4 103869.9 2.0 664740.0
V7 2331 9.7 6.6 1.0 25.0
V8 2331 37364.8 32668.0 0.0 113839.0
V9 2331 126099.2 120569.3 0.0 413933.0

 Table 4: Summary statistics (mean, min, max, and standard

deviation) for the variables used in our regression model.

VID V1 V2 V3 V4 V5 V6 V7 V8 V9
V1 1.000

V2 -0.246 1.000
V3 -0.158 0.556 1.000
V4 -0.291 0.141 -0.005 1.000
V5 -0.029 0.062 0.040 0.049 1.000
V6 -0.050 0.038 -0.196 0.291 0.027 1.000
V7 -0.188 0.200 -0.125 0.076 0.029 0.433 1.000
V8 -0.254 0.282 0.046 0.024 0.020 0.225 0.867 1.000
V9 -0.251 0.281 0.025 0.029 0.021 0.241 0.878 0.998 1.000

 Table 5: Correlations between variables.

Independent Variables

Dependent Variable:
Model 1 Model 2 Model 3 Model 4

0.0076

(0.0386)

-0.0099
(0.0947)

-0.0132
(0.0943)

-0.2442***

(0.0458)
-0.2204***

(0.0665)
-0.2263***

(0.0660)

-0.0015***

(0.0000)
-0.0014***

(0.0000)
-0.0014***

(0.0000)
-0.0014***

(0.0000)

-0.0001
(0.0001)

0.0000
(0.0001)

0.0000
(0.0001)

0.0000
(0.0001)

0.0000

(0.0000)
0.0000

(0.0000)

0.0188

(0.0251)
0.0000

(0.0000)

0.0000

(0.0000)

0.0179

(0.0251)

Constant
-4.1688***

(0.3987)
-2.5939***

(0.2692)
-3.0593***

(0.9873)
-3.0387***

(0.9869)
N 1015 647 643 643

Within R2 0.0870 0.1203 0.1256 0.1253
Adjusted R2 0.2587 0.2428 0.2392 0.2390

Prob. > F (Prob. > χ2) 0.0000 0.0000 0.0000 0.0000

 Results significant at p < 0.01 are indicated by ***; results significant at p < 0.05 are
indicated by **; results significant at p < 0.1 are indicated by *.

Table 6: Learning Curve Estimates.

bug ratios while cumulative bug-fixing experience leads to
learning progress.

The coefficient of the cumulative coding experience is
negative (-0.0099) but “insignificant”, indicating that bug
ratios would not decrease even though the cumulative code
amount made by an individual increases. That is, there is
no learning relationship between coding experience alone
and the likelihood for a developer to make a bug. Whereas,
ln(CumulativeBugFixAmountipt shows a significant nega-
tive coefficient, supporting the learning curve that developers
are less likely to make bugs as their bug-fixing experience in-
creases. These findings give us the intriguing insight that de-
velopers’ performance (bug ratios) may not improve through
just coding experience, while their performance significantly
improves by fixing bugs made by either themselves or other
developers.

Our model with control variables is estimated to explore
and control alternative explanation for the results. The sig-

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

2003 2004 2005 2006

BugType1 For developer1

BugType1 For Developer2

BugType1 For Developer3

BugType2 For Developer1

BugType2 For Developer2

BugType2 For Developer3

Figure 1: Bug ratios for two bug types for different developers in
one project over years 2003–2006.

nificant and negative coefficient of CodeAmountipt shows
negative scale effects that a developer is likely to make rel-
atively less bugs (lower bug ratios) with more coding in a
period of time.

All the project-specific time variant variables (DeveloperSizept,
ProjectCodeAmountpt, ProjectComplexitypt, and ProjectSizept)
are not significant. We can partly conclude that project-
specific factors do not significantly affect an individual de-
veloper’s learning progress. However, we should be cautious
of this conclusion because our project fixed effects models
may capture the variation of bug ratios across projects.

5.2 Learning Curve by Bug Types
We explore whether different developers in one project

may reduce their bug ratios for a particular bug type over
periods of time. The bug ratios of three developers for two
bug types in one project over years 2003–2006 are shown in
Figure 1. It indicates that in the same project, the likelihood
for a developer to make a bug of some particular types may
change across different years.

The result from MANOVA is that the bug ratios of indi-
vidual developers across bug types are statistically different
between two time periods, supporting that there is learning
progress in some bug types. For sensitivity analysis, we
repeated the test with different ways to split time periods
(“40% versus 60%” and “60% versus 40%”, in addition to
“50% versus 50%”, see Section 4.2) and got the same results.

Furthermore, we identify developers’ learning effects for
each of the bug types with analysis of variance (ANOVA)
(Table 7). The columns under “Developers” summarize the
results of ANOVA, showing the difference of developers’ bug
ratio distribution for every bug types. Our analysis supports
the heterogeneous distributions of bug types across developers
and bug types. More than 100 developers show similar bug
ratios in only 4 out of 13 bug types. The columns under
“Learning” indicate that developers show learning effects in
6 out of 13 bug types. As a developer accumulates more
experience, the bug ratio in the 6 bug types significantly
decreases. We notice that developers exhibit clearer learning
effects in bug types (1) that are relatively simple, such as
Type 5 involving wrong literals and Type 9 involving bugs
that are non-essential for code functionality (e.g., importing
needed libraries, adding annotations, etc.), and (2) that
have relatively large numbers of instances, such as Type
7 involving errors in conditionals and Type 11 involving
method declarations and invocations. We plan in near future
to explore reasons for the phenomena observed in this analysis
and investigate possible effects of different ways for classifying
bug types (see the discussion in Section 6).

12/15

 Developers Learning

Bug Type
F-statistics
(Prob > F)

Results
F-statistics
(Prob > F)

Results

1 Types 2.50 (0.0000) Different 0.00 (0.9646) No Learning
2 Def-use 1.90 (0.0000) Different 1.67 (0.1970) No Learning
3 Error handling 0.75 (0.9717) Same 1.51 (0.2198) No Learning
4 Scoping 4.09 (0.0000) Different 4.43 (0.0355) Learning Effects
5 Literals 2.47 (0.0000) Different 4.35 (0.0373) Learning Effects
6 Change control 1.53 (0.0008) Different 4.62 (0.0319) Learning Effects
7 Branching 2.49 (0.0000) Different 6.12 (0.0135) Learning Effects
8 Looping 0.80 (0.9297) Same 1.36 (0.2444) No Learning
9 Non-essentials 2.12 (0.0000) Different 3.47 (0.0629) Learning Effects
10 Expressions 0.73 (0.9779) Same 2.63 (0.1054) No Learning
11 Methods 2.03 (0.0000) Different 2.96 (0.0858) Learning Effects
12 Synch 1.27 (0.0435) Different 0.10 (0.7502) No Learning
13 Modifiers 1.01 (0.4358) Same 0.06 (0.8085) No Learning

Between groups: 105
Within groups: 979

Between groups: 1
Within groups: 1083

Table 7: ANOVA Estimation Results.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Developer1

Developer2

Figure 2: Distributions of bug types made by different developers
in same project in the same year.

5.3 Different Bug Types across Developers
We explore whether different developers in the same project

may make different kinds of bugs. Figure 2 shows the distri-
butions (in %) of bugs of different types made by two different
developers in the same project in the same year. Different
developers may indeed make different kinds of bugs in the
same project during the same time period, justifying the need
of studies on personalized bug prediction [19,31]. In addition,
as shown in Table 2, most buggy code is fixed by a developer
different from the one who commits the buggy code. This
phenomenon provokes interesting future research to analyze
the relationship between learning effects and factors that
involve various forms of developer interaction.

We want to test the null hypothesis that bug ratio distribu-
tions are not statistically different across individuals. For this
purpose, we estimate a multivariate F value (Wilks’ λ) and
Hotelling’s trace [44], based on a comparison of the error vari-
ance/covariance matrix and the effect variance/covariance
matrix. The statistics reject the null hypothesis. That is,
different developers do overall make different kinds of bugs.

6. THREATS TO VALIDITY &
FUTURE WORK

We now discuss forms of threats to validity in our study
and our mitigation for the threats, and propose future work.

Threats to construct validity concern whether the measures
we use are really related to the characteristics of developers,
projects, and code changes they are supposed to measure.
One main source of this kind of threats in our study is
possible biases in bug identification. We follow common
practices used in the literature [22, 36, 43] to identify bug
fixes and discover bug origins to reduce biases. However,

each diff related to a bug may still contain non-buggy code;
we may need other techniques to help reduce falsely identified
bugs [20, 45]. We also follow the literature to classify the
types of bugs and bug fixes [32]; this kind of classification can
be easily scaled to large code bases, but is mostly based on
the syntax of code, not on the semantic or functionality of the
code, nor bug severity or priority or difficulty. Thus, we have
used topic modeling in the exploratory study to analyze bugs
with respect to code of different “functionality” (or, topics).
As future work, we can consider using more semantic-aware
classification or root-cause analysis techniques to identify
bug types [10,26,34,47]. There are likely other factors that
affect developers’ learning effects but not considered in our
analyses, such as the interactions among developers that
are not recorded in the project repositories and implicit
interactions happened through code (e.g., reading/changing
each other’s code). We plan in near future to extract such
implicit interactions from code and other kinds of interactions
captured in various data sources (e.g., bug reports, messages
in mailing lists and discussion fora, wiki edits, etc.) to have
further analyses on those factors.

Threats to internal validity concern the ability of our study
to establish a valid link between measures for learning ef-
fects and other measures considered as independent variables,
regardless of the validity of the measures themselves. We
ensure the scripts and analysis code used in our study are
implemented correctly. We use exploratory analyses to iden-
tify some factors that may affect learning effects, and then
use regression models to analyze learning effects while con-
trolling for those factors. As future work, we can try with
different empirical models with more comprehensive set of
data measures, including measures that consider interactions
among developers across projects to provide more statistically
significant analysis results.

Threats to external validity concern whether our analysis
results can be generalized. Our empirical study includes
multiple projects involving more than 100 developers over
multiple years, and our analysis results are similar for all
those projects. While these settings give evidences for the
generalizability of our results, we only used five open source
projects, mostly written in Java. More studies on projects
using different languages, different business model (close-
source), different development and maintenance processes
would help to increase our confidence in our results.

One particular interesting direction for future work is
to consider factors that can improve the effectiveness of
learning. For example, “social coding” is touted as a better
way to code [5, 6, 12,28,48,49], examining factors in socially
coded projects and comparing them with non-socially coded
ones may provide insights how developers can learn more
effectively from each other’s coding experience.

7. CONCLUSION
The results have intriguing implications on project man-

agement about how to split efforts on tasks that add new
code versus tasks that debug and fix existing code. Software
project managers may consider assigning more testing and
debugging tasks to a developer instead of coding new code,
if a lot of new code is added by a developer. It helps, on
one hand, to detect and fix possible bugs, and on the other
hand, to improve developers’ learning progress via bug fixing.
It may also be useful for a developer to consider studying
the fixes for her bugs more often even though she is not the

person who fixes them. It would be even better if there are
mechanisms available to facilitate collaboration and learning
on bug fixing among developers.

Our analysis results show different bug ratios and different
distributions of bug types in different projects, supporting
project-specific and/or developer-specific bug prediction ap-
proach. This implies the need of transferring knowledge
about bugs across projects for the purpose of bug predic-
tion, which also justifies related work on across-project bug
prediction [27,30,35,46,51].

8. REFERENCES
[1] R. Abreu and R. Premraj. How developer communication

frequency relates to bug introducing changes. In Joint
international and annual ERCIM workshops on Principles
of software evolution (IWPSE) and software evolution
(Evol) workshops, pages 153–158, 2009.

[2] G. Abu, J. W. Cangussu, and J. Turi. A quantitative
learning model for software test process. In 38th Annual
Hawaii International Conference on System Sciences
(HICSS), pages 78b–78b, 2005.

[3] J. D. Angrist and J.-S. Pischke. Mostly harmless
econometrics: An empiricist’s companion. Princeton
University Press, January 2009.

[4] R. D. Banker, G. B. Davis, and S. A. Slaughter. Software
development practices, software complexity, and software
maintenance performance: A field study. Management
Science, 44(4):433–450, Apr 1998.

[5] A. Begel, J. Bosch, and M.-A. Storey. Social networking
meets software development: Perspectives from github,
msdn, stack exchange, and topcoder. IEEE Software,
30(1):52–66, 2013.

[6] N. Bettenburg and A. E. Hassan. Studying the impact of
social structures on software quality. In IEEE ICPC, pages
124–133, 2010.

[7] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu.
Putting it all together: Using socio-technical networks to
predict failures. In ISSRE, pages 109–119, 2009.

[8] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
Germán, and P. T. Devanbu. The promises and perils of
mining git. In MSR, pages 1–10, 2009.

[9] B. W. Boehm. Software Engineering Economics. Prentice
Hall PTR, 1981.

[10] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,
D. S. Moebus, B. K. Ray, and M.-Y. Wong. Orthogonal
defect classification—a concept for in-process measurements.
IEEE TSE, 18(11):943–956, Nov 1992.

[11] O. Chouseinoglou, D. İren, N. A. Karagöz, and S. Bilgen.
AiOLoS: A model for assessing organizational learning in
software development organizations. Information and
Software Technology, 55(11):1904–1924, 2013.

[12] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb.
Social coding in GitHub: transparency and collaboration in
an open software repository. In Computer Supported
Cooperative Work (CSCW), pages 1277–1286, 2012.

[13] M. D’Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In MSR, pages
31–41, 2010.

[14] J. Fox. Applied Regression Analysis and Generalized Linear
Models. SAGE Publications, Inc, 2nd edition, 2008.

[15] E. Giger, M. Pinzger, and H. C. Gall. Comparing
fine-grained source code changes and code churn for bug
prediction. In MSR, pages 83–92, 2011.

[16] N. Hanakawa, S. Morisaki, and K.-i. Matsumoto. A learning
curve based simulation model for software development. In
ICSE, pages 350–359, 1998.

[17] D. E. Harter, M. S. Krishnan, and S. A. Slaughter. Effects
of process maturity on quality, cycle time, and effort in
software product development. Management Science,
46(4):451–466, Apr 2000.

[18] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based
on fine-grained module histories. In ICSE, pages 200–210,
2012.

[19] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction.
In ASE, pages 279–289, 2013.

[20] D. Kawrykow and M. P. Robillard. Non-essential changes in
version histories. In ICSE, pages 351–360, 2011.

[21] S. Kim, E. J. W. Jr., and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE TSE, 34(2):181–196, 2008.

[22] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr.
Automatic identification of bug-introducing changes. In
ASE, pages 81–90, 2006.

[23] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller.
Predicting faults from cached history. In ICSE, pages
489–498, 2007.

[24] M. S. Krishnan, C. H. Kriebel, S. Kekre, and
T. Mukhopadhyay. An empirical analysis of productivity
and quality in software products. Management Science,
46(6):745–759, Jun 2000.

[25] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro
interaction metrics for defect prediction. In SIGSOFT FSE,
pages 311–321, 2011.

[26] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of software behaviors for failure detection: a
discriminative pattern mining approach. In KDD, pages
557–566, 2009.

[27] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for
cross-company software defect prediction. Information and
Software Technology, 54(3):248–256, Mar 2012.

[28] G. Madey, V. Freeh, and R. Tynan. The open source
software development phenomenon: An analysis based on
social network theory. In Americas conf. on Information
Systems (AMCIS), pages 1806–1813, 2002.

[29] N. Nagappan, T. Ball, J. Anvik, L. Hiew, and G. C. Murphy.
Evidence-based failure prediction. Making Software: What
Really Works, and Why We Believe It, page 415, 2010.

[30] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In
ICSE, pages 382–391, 2013.

[31] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
Programmer-based fault prediction. In 6th International
Conference on Predictive Models in Software Engineering,
page 19, 2010.

[32] K. Pan, S. Kim, and E. J. W. Jr. Toward an understanding
of bug fix patterns. Empirical Software Engineering,
14(3):286–315, 2009.

[33] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In FSE, pages
2–12, 2008.

[34] R. Prieto-Diaz and P. Freeman. Classifying software for
reusability. IEEE Software, 4(1):6–16, Jan 1987.

[35] F. Rahman, D. Posnett, and P. T. Devanbu. Recalling the
“imprecision” of cross-project defect prediction. In SIGSOFT
FSE, page 61, 2012.

[36] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu.
Bugcache for inspections: Hit or miss? In ESEC/FSE,
pages 322–331, 2011.

[37] N. Ramasubbu and R. K. Balan. Globally distributed
software development project performance: an empirical
analysis. In ESEC/SIGSOFT FSE, pages 125–134, 2007.

[38] R. Reagans, L. Argote, and D. Brooks. Individual experience
and experience working together: Predicting learning rates
from knowing who knows what and knowing how to work
together. Management Science, 51(6):869–881, 2005.

[39] F. E. Ritter and L. J. Schooler. The learning curve. In
International encyclopedia of the social and behavioral
sciences. Pergamon, 2002.

[40] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim. Reducing
features to improve bug prediction. In ASE, pages 600–604,
2009.

[41] P. V. Singh, Y. Tan, and N. Youn. A hidden markov model
of developer learning dynamics in open source software
projects. Information Systems Research, 22(4):790–807,
2011.

[42] V. S. Sinha, S. Sinha, and S. Rao. BUGINNINGS:
Identifying the origins of a bug. In ISEC, 2010.

[43] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR, 2005.

[44] J. P. Stevens. Applied Multivariate Statistics for the Social
Sciences. Routledge, 5th edition, 2009.

[45] F. Thung, D. Lo, and L. Jiang. Automatic recovery of root
causes from bug-fixing changes. In WCRE, pages 92–101,
2013.

[46] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On
the relative value of cross-company and within-company
data for defect prediction. Empirical Software Engineering
(EMSE), 14(5):540–578, Oct 2009.

[47] S. Ugurel, R. Krovetz, and C. L. Giles. What’s the code?
automatic classification of source code archives. In KDD,
pages 632–638, 2002.

[48] B. Vasilescu, V. Filkov, and A. Serebrenik. StackOverflow
and GitHub: associations between software development
and crowdsourced knowledge. In International Conference
on Social Computing (SocialCom), pages 188–195, 2013.

[49] T. Wolf, A. Schroter, D. Damian, and T. Nguyen.
Predicting build failures using social network analysis on
developer communication. In ICSE, pages 1–11, 2009.

[50] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. ReLink:
Recovering links between bugs and changes. In SIGSOFT
FSE, pages 15–25, 2011.

[51] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process. In
ESEC/SIGSOFT FSE, pages 91–100, 2009.

	Introduction
	Related Work
	Learning Models in Software Engineering
	Empirical Studies on Project Performance
	Bug Prediction

	Data and Measure
	Data
	Measures

	Econometric Model
	Learning Curve Models
	The Moderating Effect of Bug Types on Learning Progress
	Different Bug Patterns Across Developers

	Empirical Results
	Learning Curve
	Learning Curve by Bug Types
	Different Bug Types across Developers

	Threats to Validity & Future Work
	Conclusion
	References

