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Abstract—We examine the learning curves of individual soft-
ware developers in Open-Source Software (OSS) Development.
We collected the dataset of multi-year code change histories
from the repositories for 38 open source software projects
involving more than 400 developers. We build and estimate
regression models to assess individual developers’ learning
progress (in reducing the likelihood they make a bug). Our
estimation results show that developer’s coding and indirect
bug-fixing experiences do not decrease bug ratios while cumu-
lative bug-fixing experience leads to learning progress. We also
find that developer’s coding and bug-fixing experiences in other
projects do not decrease the developer’s bug ratio in a focal
project. Our estimation shows that in addition to developer’s
bug-fixing experiences, as a developer become aware of his/her
own bug in a project, the developer is likely to make less bug
in the project. We empirically confirm the moderating effects
of bug types on learning progress. Developers exhibit learning
effects for some simple bug types (e.g., wrong literals) or bug
types with many instances (e.g., wrong if conditionals). The
results may have implications and provoke future research on
project management about allocating resources on tasks that
add new code versus tasks that debug and fix existing code.

Keywords-learning model; developer learning; software
repositories;

I. INTRODUCTION

As the old saying goes, “practice makes perfect.” Learning
from actual coding and bug-fixing experiences in software
development may be effective for developers to gain new
knowledge and increase their skills. No matter whether
a developer is a novice or an expert, software bugs can
inevitably occur in their codes. Such learning from their
experience can be a life-long journey for both almost all
developers, with continually appearing new technologies and
new problem domains.

In this study, we explore whether a developer can reduce
their bug ratios over time (years 2003–2006). Figure 1
shows the trajectories of three developers’ bug ratios in
a project against year. It indicates that in the same project,
the likelihood for a developer to make a bug may change
across different years. In particular, the figure shows overall
the downward trend of the bug ratios.

We also aim to examine the knowledge transfer across
projects and bug types. We attempt to answer following
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Figure 1: Bug ratios for two bug types for different developers in
one project over years 2003–2006.

research questions:
RQ1 Does developer’s coding / indirect bug-fixing / bug-

fixing experience in a project decrease the developer’s
bug ratio in the project?

RQ2 Does developer’s coding / bug-fixing experience in other
projects decrease the developer’s bug ratio in a focal
project?

RQ3 Is a developer likely to make less bugs in a project as
the developer becomes aware of his/her own bugs in
the project?

RQ4 Does the learning progress depend on project character-
istics (e.g., project complexity)?

Another interesting observation based on the Figure 1 is
that the overall slope of the trajectories depend on the bug
type. The bug ratio in bug type 1 shows steeper decrease than
that in bug type 2, indicating there could be different learning
progress depending on bug types. We aim to examine the
learning effects in each bug type:

RQ1 Do developers show different learning curves depending
on bug types in reducing their bug ratios?

RQ2 Do developers show knowledge transfer across bug types
in reducing their bug ratios?

In addition to different learning progress across bug types,
developers show different reduction rate of the bug ratios
across developers. Practically, the third developer’s trajectory
of bug ratio in bug type 1 is almost flat (or a little upward
trend) indicating that learning progress may vary across
developers. In order to control them, we build and estimate
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the regression models to measure overall learning effects
with spurious correlations controlled.

This work makes the important contribution of studying
learning progress in the context of OSS development. There
are many studies on open source software projects [4], [17],
[32]. Many commercial firms today are inclined to utilize and
contribute to OSS resources. Hence, there is huge potential to
address managerial issues pertaining to increasing developer
competence in OSS projects that are of value to firms. An
underlying motivation behind OSS developers’ participation
is their desire to learn (i.e., to enhance their knowledge and
skills through participation in OSS projects). Learning creates
a growing stock of knowledge and skills that can be applied
in the future to improve productivity. Developers build long-
term capabilities through participation in OSS that can be
transferred to new environments, resulting in increased job
wages. Hence, a potential way to influence developer behavior
and motivate contributions is to provide a richer environment
for developer learning in an OSS project. Although learning
from one’s own experience and from peers has been studied
in a commercial software development environment, prior
research has not investigated learning in OSS environments.

We collect and calculate various measures for more than
95K lines of buggy code made by more than 400 developers
in 38 open source projects. We analyze developers’ learning
effects in the data set via empirical regression models, and
reveal interesting phenomena that may provide insights for
project management and future research on bug fixing. We
make substantial contributions in understanding knowledge
accumulation and transfer in OSS development.

The rest of this paper is organized as follows. Section II
briefly surveys closely related work. Section III describes the
dataset collected and measures. We will show our empirical
models in Section IV. Section V presents our analysis results
and discusses some implications of our results, together with
limitations. Section VI concludes.

II. RELATED WORK

We discuss related work in the area of learning models
in software engineering and empirical studies on software
project performance.

A. Learning in Software Engineering

There are many studies on learning models in software
engineering. Hanakawa et al. [10] incorporate developers’
learning into a simulation model to make better project plans.
Singh et al. [27] examine the developer’s learning dynamics in
open source software (OSS) projects utilizing hidden Markov
Model (HMM). They find that the developers’ learning
patterns depends on their learning states. Chouseinoglou
et al. [8] assess the learning characteristics of a software
developer organizations (SDO). Abu et al. [2] propose an
model to consider learning for software test processes. Even
though previous studies on learning in software engineering

identify/incorporate the change of developer’s productivity in
their models, most of them do not estimate the developer’s
learning progress.

B. Empirical Studies on Project Performance

The performance of a software project can be measured
in various ways, such as developer productivity, code quality,
and maintenance costs. Many studies have analyzed various
factors that may affect project performance. Ramasubbu
and Balan [24] use regression models to identify that
geo-dispersion of developers has great impact on software
productivity and quality. Banker et al. [3] finds that the
improvement of software development practices can improve
the maintenance performance. Harter et al. [11] finds that
higher process maturity can lead to higher software quality.
Krishnan et al. [14] investigates the relationship between
various measures (e.g., product size, personnel capability,
software process) and the software quality. Abreu and Premraj
[1] propose that communication frequency of developers may
affect the amount of bug-introducing changes. Bettenburg
and Hassan [5] focus on the impact of social information
of developers on software quality. Some studies examine
the impact of developer social network/interactions on
productivity, software quality, code quality, etc. [1], [5], [15],
[19], [21].

There are diverse developer’s performance measures in
previous studies (e.g., coding speed, the amount of coding
and bug ratio). In the studies, focusing on the dynamics of
developer’s performance, we select the bug ratio in a project
as our performance measure. Then, we referred to techniques
to identify both bug-introducing and bug-fixing change/codes
[13], [28], [29], [33]. None of previous studies focus on
the relationship between coding/bug-fixing experience and
learning. Particularly, we are the first to investigate the effect
of bug-fixing on developers’ bug ratios.

III. DATA AND MEASURE

A. Data

We use data available from the open-source software
projects hosted on The Apache Software Foundation (ASF).
We collect code change histories from the repositories
for 38 open source software projects mostly written in
Java (Apache Ant, Apache Commons Compress, Apache
Commons Lang, Apache Solr/Lucene, and Eclipse Platform).
The data spans multiple years from 2000 to 2014, involving
more than 400 developers. We extract various information
about the code changes (including bugs and bug fixes) and
the projects (including the location of the bug, the developer
who introduces the bug or fixes the bug, the introduction
time of the bug, the type of the bug and the complexity of
the code involved). The bugs we analyze span more than
95K lines of codes across different versions of the projects.
The data collection has the following steps.
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1) Collect code change histories from Git repository:
Git is a free and open source distributed version control
system used by many open source software developers
to manage development process. (see http://en.wikipedia.
org/wiki/Git (software) for more). Git records traces of
numerous interlaced and collaborative activities carried out
by developers (including bug-introducing and bug-fixing). In
order to find a bug and its introducing commits, we first
locate a bug fix and then trace back to its original commits,
in a way similar to previous studies [13], [23], [29]. We
searched all commit log messages with the keyword “fix” or
“bug” to identifies bug-fixing commits. Then we manually
verified the search results to ensure the selected commits
involve bug-fixing codes. For example, if the log for a commit
is “Fix JavaDoc”, this commit is not a source code bug fix.
After verifying the bug fixes, we used the command git diff
to compare bug-fixing commits with their parent commits
with bug in order to identify buggy lines. Diff files can tell
us which lines of the old file are deleted and which lines are
added to the new file. The identified code lines are treated as
buggy lines and we count each buggy line as one bug. We
identified a bug introducer (modification author) and bug-
introducing date (modification date) to each identified buggy
line, by using the command git blame. Research has shown
that this approach has a precision of 80% in identifying bug-
fixing commits. After this, we have finished code change
collections from the chosen project’s Git repository.

We describe the measures to identify individual bugs, and
how we collect and calculate them.

Locationj: The line number for individual buggy code j in
a specific project/package/file.

IntroDatej: The date when the buggy code j was com-
mitted into a project repository. We mostly rely on
“git blame” of the diff to get the information about
bug origins. Although there are threats to validity of
IntroDate obtained in this way [6], it is sufficient
approximation in collecting the information as shown
in previous studies [12], [23], [29].

IntroDeveloperj: The developer who introduced the buggy
code j into the repository. Similar to IntroDate, we
use “git blame” of the diff.

FixDatej: The date when the bug code j was fixed in the
repository (i.e., the date of the fix commit).

FixDeveloperj: The developer who fixed the buggy code
i (i.e., the developer who committed the fix into the
repository).

BugTypej: The type of the buggy line j. We classify the
type of each bug based on the syntax of the bug,
following the study on syntax-based classification of bug
fixes [20]. To decide the bug type, we first construct the
abstract syntax tree (AST) for the source file containing
the bug, then identify a minimum subtree that contains
all code in the buggy line. Secondly, we count the

number of occurrences of each tree node type in the
subtree, and give some node types (e.g., if and for
nodes) higher priorities based on common patterns
shown in [20]. Thrid, we choose the node type with
the highest weighted occurrence number as the type
for the bug. In the ASTs constructed by Eclipse JDT
(http://www.eclipse.org/jdt/), there are more than 80
node types. With a preliminary study, many of the node
types have relatively small numbers of bugs. Therefore,
we merge some “semantically” related node types and
thus we classify 13 bug types. The classification also
helps to simplify some of our empirical analysis as
described in Section IV. Table I lists the 13 merged bug
types and their descriptions.

# Bug Type Descriptions 
1 Types 

 
Code for defining and using Java types (e.g., type casting, "instanceof", enum, 
type parameters, etc.) 

2 Def-use Code for defining and using variables (e.g., variable declarations, assignments, array 
accesses, field accesses, "this", etc.) 

3 Error handling Code for assertion, exception handling 
4 Scoping Code for identifying scopes (e.g., "{", "}", etc.) 
5 Literals Constants (e.g., "hello", "123", "null", etc.) 
6 Change control Code that changes the control flow (e.g., "break", "continue", "return", etc.) 
7 Branching  Code involving conditionals (e.g., "if", "switch", etc.) 
8 Looping Code involving loops (e.g., "for", "while", etc.) 

9 Non-essentials Code that has little effect on functionality or easily caught by compilers (e.g., empty 
statement, annotations, comments, imports, labels, etc.) 

10 Expressions Code involving expressions (e.g., infix expression, parenthesized expressions, etc.)  
11 Methods Code involving method declarations and invocations 
12 Synch  Code involving synchronization 
13 Modifiers Code involving modifiers (e.g., "public", "private", "static", etc.) 

 
Table I: Syntax-based Bug Types, classified from 80+ AST node
types from Eclipse JDT.

2) Collect bug reports from Jira: Most open source
software projects use bug tracking systems to manage their
bug reports. All of our chosen projects use a bug tracking
system called Jira. We downloaded all bug reports of the
chosen projects from Jira in xml format. In those xml format
bug reports, developers only appear with their Jira usernames,
but they usually appear with their true names in Git commit
logs. Jira usernames are used as our only identification for
developers, so we generate a name map from one’s true name
to Jira username. We automatically inspect the commit logs
to identify pointers to issue reports. Issue reports have ID
in the format of PEJECT-NUMBER, so each string in that
format mentioned in a commit log is treated as a potential
link to an entry in the bug database. We generate URL using
the extracted issue ID to connect Jira web site to analyze
the html elements which contain both true name and Jira
username. Then we can map developers between Jira and
Git. In our experiments, this approach can automatically map
70% of developers between Jira and Git, the remaining 30%
need to be finished by our manual work.

3) Collect Individual developer information (e.g., repu-
tation and contributions) from Github: GitHub is a Git
repository web-based hosting service which offers all of
the functionality of Git as well as adding many of its own
features. (see http://en.wikipedia.org/wiki/GitHub for more).
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It’s also used as a social network service among developers.
If a developer is followed by many people on Github and
many of his commits are stared and he has been involved in
many projects, we should consider him as a very experienced
developer. As we use Jira usernames as our only identification
for developers, we need to build another name map from
Github usernames to Jira usernames. We discover that most
people’s usernames of these two web sites are the same, so
we just use Jira username to generate URL to visit Github
web site. If no such profile page is found, we manually search
by their true names and map.

Figure 2 shows the data collection process from three data
sources. Table II lists basic statistics about some projects
selected for our empirical analysis.

1.  Go to Git (git-scm.com, 
version control system of 
OSS) 

2.  Select a OSS project 

1.  Search the commits related to 
a bug fix in the code change 
history 

2.  Verify the search results 

1.  Compare bug-fix commit and 
its parent commit 

2.  Identify the buggy lines 
(changed lines in the parent 
commit) 

1.  Identify  
who made the bug, 
when it was made, 
who fixed the bug, 
when it was corrected, 
What type of bug it is 

1.  Collect project-level 
information by aggregating 
individual-level information 

1.  Go to Jira 
(issues.apache.org, bug 
tracking system) 

2.  Download all bug reports of 
the chosen projects 

1.  Match developers between 
Jira and Git (based on the Jira 
usernames and names in Git 
commit logs) 

2.  Identify who participated in 
all bug reports 

1.  Go to Github 
(github.com, Git 
repository web-based hosting 
service) 

1.  Match Github user name and 
Jira usernames 

2.  Collect developer’s 
information 

Figure 2: Data Collection Process.

B. Individual Developer Measure

Since each commit is associated with a unique developer
name or email, we can calculate measures for individual
developers by aggregating the measures defined above (e.g.,
code changes and bugs) in a unit time (month). We define
the measures for individual developers as follows.
Bugsipt: The total number of buggy lines committed by the

developer i in project p at time t. These numbers are
the sum of all buggy lines whose IntroDate is t and
IntroDeveloper is i in project p.

Codesipt: The total number of lines of codes (including
deleted, added and changed lines) committed by the
developer i in project p at time t. These numbers can
be summed up from the diffs of all commits made
by the developer. We omit diffs in non-Java files.

Codesipct: The total number of lines of codes committed
by the developer i in all the projects except project p
at time t.

Fixesipt: The total number of buggy lines that developer i
fixed in project p at time t. These numbers are the sum
of all bugs whose FixDate is t and FixDeveloper is
i in project p. A developer can fix his/her own bugs as
well as bugs created by other developers.

Fixesipct: The total number of buggy lines that developer
i fixed in all the projects except project p at time t.

IndirectF ixesipt: The total number of activities or contri-
butions (suggestions and comments) that developer i
made to help another developer fix a bug in project p
at time t. A developer can make multiple comments on
a buggy line.

Fixedipt: The total number of buggy lines that developer i
made and fixed in project p at time t.

FixedSelfipt: The total number of buggy lines that devel-
oper i made and fixed himself/herself in project p at
time t.

FixedOthersipt: The total number of buggy lines that
developer i made and are fixed by other developers
in project p at time t.

BugRatioipt: The ratio of buggy lines over the total number
of lines of codes for developer i in project p at time t.
It is Bugsipt divided by Codesipt.

CumCodesipt−1: The cumulative number of Codesipt that
developer i has committed in project p through time
t− 1.

CumCodesipct−1: The cumulative number of Codesipt that
developer i has committed in all the projects except
project p through time t− 1.

CumFixesipt−1: The cumulative number of Fixesipt that
developer i has made in project p through time t− 1.

CumFixesipct−1: The cumulative number of Fixesipt that
developer i has made in all the projects except project
p through time t− 1.

CumIndirectF ixesipt−1: The cumulative number of
IndirectF ixesipt that developer i has made in project
p through time t− 1.

CumFixedSelfipt−1: The cumulative number of
FixedSelfipt that developer i has made in project p
through time t− 1.

CumFixedOthersipt−1: The cumulative number of
FixedOthersipt that developer i has made in project
p through time t− 1.

C. Project Measures

Individual developer’s performance including bug ratios
may be affected by the nature of projects. We develop
the measure to control the project heterogeneity. Many of
them can be aggregated from the measures for individual
developers and individual code changes and bugs in a unit
time (month). In the aggregation process, we use the last
commit before the current time t as the beginning of time
t, and use the first commit as the beginning of the first
time period 1. Here is the summary of variables used in our
regression model.
ProjectCodespt: The total number of lines of codes in

project p at the beginning of the time t. A project codes
(size) can be viewed as a proxy for the accumulative
effects of many code changes by many developers in the
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Project Name Start Date Last
version
Size (LoC)

Cumulative
Developer
Size

Cumulative
Bug
Amount

Cumulative
Added LoC

Self-
Fixed Bug
Amount

% of Self-
Fixed Bug
Amount

Program
Language

Project Type

Ace 2009.05.08 45539 13 7004 445340 1993 28.5% java Framework
Activemq 2005.12.12 248913 37 17459 1681013 7310 41.9% java Server
Ant 2000.01.13 94129 48 20459 1272108 5822 28.5% java Builder
Any23 2008.10.18 17922 13 1005 218226 803 79.9% java DataTool
Aries 2009.09.29 104542 32 439 617334 176 40.1% java OSGi
Avro 2009.04.09 42994 17 1137 275452 376 33.1% java,C,C++,Python DataTool
Bval 2010.03.12 12247 12 2460 73982 334 13.6% java Other
Camel 2007.03.19 413332 59 5183 1531929 1759 33.9% java Framework
Commons-
Compress

2003.11.23 20504 21 2815 105773 1689 60.0% java API

Commons-
Lang

2002.07.19 45707 45 582 539759 229 39.9% java API

Felix 2005.07.19 290994 47 17127 2633187 13649 79.7% java OSGi,Framework
Geronimo 2003.08.07 192712 61 7698 3119852 1758 22.8% java Server
Karaf 2007.11.26 55604 31 509 394659 190 37.3% java OSGi
Lucene-Solr 2010.03.17 422960 42 97571 3089964 48574 49.8% java API
Tomee 2006.01.02 276851 28 11154 1463729 4929 44.2% java Server

Table II: Basic Project Descriptions.

project. We first “git checkout” the last commit before
the time t to get the specific revision of p to calculate
these numbers. We use a code metric tool JavaNCSS
to count the code amount.

ProjectF ixespt: The total number of fixes made in project
p at time t. We can obtain these numbers by summing
up the Fixes from all developers in project at time t.

ProjectIndirectF ixespt: The total number of activities
or contributions (suggestions and comments) made in
project p at time t. We can obtain these numbers by
summing up the IndirectF ixes from all developers
in the project at time t. These numbers can be the
summation of the Bugs from all developers in project
at time t.

ProjectComplexitypt: The code complexity of project p
at the beginning of the time period t. We use JavaNCSS
to calculate the cyclomatic complexity (CC) of Java
code. We use the sum of the CC of all functions in
a project as the complexity for the project. One can
see that ProjectComplexity is highly correlated with
ProjectSize.

ProjectDeveloperSizept: The number of developers who
made some commits in project p at time t.

ProjectBugspt: The total number of buggy lines made in
project p at time t.

ProjectBugRatiopt: The ratio of buggy lines over the total
number of lines of codes for project p at time t. It is
ProjectBugspt divided by ProjectCodespt.

IV. ECONOMETRIC MODEL

A. Learning Curve Models

We aim to assess the learning progress of individual
developers engaged in open source software (OSS) projects.
We also attempt to examine the knowledge transfer across
projects and bug types.

We perform the empirical analysis by employing a learning
curve power function [9], [26], [30], following models used
in the literature to analyze various phenomena in software

development [3], [7], [11], [14], [24]. The form of the learning
curve is formulated as y(x) = axb, where y is a performance
variable (the bug ratio), x represents cumulative learning
experience, a is an initial bug ratio without learning activities,
and b is the individual developer’s learning rate. Taking a
natural log transformation of both sides and adding covariates
of interest and control variables, we obtain the following
regression equation (1):

ln(BugRatioipt) = β0

+ β1ln(CumCodesipt−1)
(or β1ln(CumIndirectF ixesipt−1))
(or β1ln(CumFixesipt−1))

+ β2Codesipt
(or β2IndirectF ixesipt)
(or β2Fixesipt)

+ β3ProjectCodespt
(or β3ProjectIndirectF ixespt))
(or β3ProjectF ixespt))

+ β4ProjectDeveloperSizept
+ ζi + δp + ηi + µipt

(1)

The bug ratio of individual developers is our target obser-
vation and dependent variable in Equation (1). BugRatioipt
is the bug ratio of ith developer at time t in a project p,
as performance measure. We aim to explain the change in
BugRatioipt with respect to the independent (explanatory)
variables at the right hand side of Equation (1).

Given the bug ratio as the performance (dependent)
variable, we quantify learning experience three ways con-
sidering our research context. The three learning variables
as proxies to measure the transition (increment) of project-
specific knowledge stock. Specifically, we examine whether
developers can improve their performance (i.e., reduction
of bug ratios) through (1) coding experience, (2) indirect
bug-fixing experience, and (3) direct bug-fixing experience.
In contrast to coding experience of individual developers,
we found out that bug-fixing experience can be categorized
into two types: (1) a developer helped another developer fixe
a bug (indirect bug-fixing experience) and (2) a developer
finally fixed a bug. Given the context we developed three
learning variables: CumCodesipt−1, CumFixesipt−1, and
CumIndirectF ixesipt−1 (Refer to Section III-B).
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Project Cumulative CodeAmountjpt for 
each developer (Lines of Code) 

Mean Min Max Standard 
Deviation 

Ant 
  

with NO bugs                                 4053 0 54713 13571 
with bugs 73821 320 1014953 190611 

Commons 
Compress 

with NO bugs                                 1385 0 10787 3385 
with bugs 14691 231 65139 23265 

Commons 
Lang 

with NO bugs                                 7077 0 171391 33533 
with bugs 51101 332 473406 122483 

Solr / Lucene with NO bugs                                 1702 0 5281 2484 
with bugs 140698 263 1673065 318849 

Eclipse Plat- 
form 

with NO bugs                                  5910  0  157791  26771 
with bugs 53179 54 288889 75520 

 
Table III: Summary statistics (mean, min, max, standard deviation)
of the cumulative code amounts of every developer in projects.

The main objective of the learning variables is to estimate
learning progress induced from the cumulative learning
experience. If β1 is negative and statistically significant,
then the developers show the learning curve (i.e., decrease
of bug ratios) as they increase the coding experience in a
project. As shown in the parentheses (CumFixesipt−1, and
CumIndirectF ixesipt−1), we can assess whether the indi-
vidual developer’s (indirect and direct) bug-fixing experience
can induce the decrease of the bug ratio.

Besides developers’ own learning experience, their per-
formance may be related to working environment as well
as the projects they are working on (e.g., the number of
developers in a project, the code size and complexity of a
project). First of all, Table III gives summary statistics about
the cumulative amount of code made by developers with
and without bugs in each project. It raises the possibility of
the scaling effects showing that the developers without bugs
contribute much less code than developers with bugs. Our
regression model also includes Codesipt, IndirectF ixesipt
or Fixesipt to capture the scale effects.

We also include project-specific measures into our em-
pirical models in the model to check the impact of
project-related characteristics on the developers’ learn-
ing effects: : ProjectCodespt (, ProjectIndirectF ixespt
or ProjectF ixespt) and ProjectDeveloperSizept. We
find that ProjectComplexitypt is highly correlated with
ProjectCodespt (correlation coefficient is 0.998). Therefore,
we do not use them together in the model to avoid a multi-
collinearity problem [9], [30]. We include ProjectCodespt
in Equation (1) but we confirmed that both will give us
qualitatively the same results.

We adopt a fixed effects model ζi to control for individual
developer heterogeneity, and δp to control for the individual
project heterogeneity, respectively. Equation (1) also has
project dummies ηi to control for the bug type heterogeneity.
The error component, µipt is an idiosyncratic error term and it
varies across t as well as across developer i and project p. To
control for serial correlation, we incorporate autocorrelation
in calculating the variance-covariance matrix, allowing for a
maximum four periods of lag, AR(2).

The data structure for all the models is a cross-sectional
time series data (individual developer-level panel data). Given
that our sample data contains individuals and projects, we

considered using a hierarchical linear model (HLM), but
HLM is appropriate only when the units of analysis are
nested within higher units of analysis and the dynamics at the
higher level influence outcomes of the lower level [25]. HLM
does not appear to be appropriate because some developers
made contributions in multiple projects simultaneously.

B. Knowledge Transfer across Projects

We aim to assess the knowledge transfer across projects.
we build the regression model to assess whether an individual
developer’s bug ratio in a specific project is affected by his/her
coding/bug-fixing experiences in the other projects. Plugging
the modified measures in the right hand side of the equation,
we have the following equation:

ln(BugRatioipt) = β0

+ β1ln(CumCodesipct−1)
(or β1ln(CumFixesipct−1))

+ β2Codesipct
(or β2Fixesipct))

+ β3ProjectCodespt
(or β3ProjectF ixespt))

+ β4ProjectDeveloperSizept
+ ζi + δp + ηi + µipt

(2)

The regressor of principal interest, CumCodesipct−1

and CumFixesipct−1 is the cumulative coding and bug-
fixing experiences an individual developer i has accumulated
through j − 1 outside a project p. These is to model the
transition of individual developer? knowledge stock induced
from the other projects. Equation (2)., If β1 is positive and
significant, then it supports our knowledge transfer models
across projects. Developers can decrease their bug ratios
as they increase coding or bug-fixing experiences in other
projects. In a similar fashion, the regression model includes
control variables for scaling effects and project-specific
noises.

C. Learning from Developer Own Bug vs. from Other’s Bug

We examined the impact of bug-fixing experience on bug
ratio in Equation (1). Then a developer can fix the bug created
by the developer or the bug made by another developer.
Developers can increase their knowledge stock by recognizing
the their own mistake (bugs) and/or fixing other developers’
mistake (bugs). In order to examine learning from finding
developer own bug and learning from fixing other developer’s
bug, we build the following equation:

ln(BugRatioipt) = β0

+ β1ln(CumFixedipt−1)
(or β1ln(CumFixedSelfipt−1))
(or β1ln(CumFixedOthersipt−1))

+ β2Fixedipt
(or β2FixedSelfipt)
(or β2FixedOthersipt)

+ β3ProjectF ixespt
+ β4ProjectDeveloperSizept
+ ζi + δp + ηi + µipt

(3)

The significant negative coefficient of ln(CumFixedipt−1

shows that a developer can decrease his/her bug ratio as
the developer’s bug is fixed. That is, a developer can
increase the knowledge stock by learning from his/her
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bugs. We can evaluate the learning progress induced from
either bugs fixed by himself/herself or bugs fixed by other
developers with the coefficients of ln(CumFixedSelfipt−1

and ln(CumFixedOthersipt−1. If If β1 in the third model
is significant, then the developers demonstrate an overall
learning-curve effect induced from his/her own mistakes
(bugs).

We also include project-specific measures into our em-
pirical models in the model to check the impact of
project-related characteristics on the developers’ learn-
ing effects: : ProjectCodespt (, ProjectIndirectF ixespt
or ProjectF ixespt) and ProjectDeveloperSizept. We
find that ProjectComplexitypt is highly correlated with
ProjectCodespt (correlation coefficient is 0.998). There-
fore, we do not use them together in the model to
avoid a multicollinearity problem [9], [30]. We include
ProjectComplexitypt rather than ProjectCodespt in
Equation (1) and we confirmed that both will give us
qualitatively the same results.

We adopt a fixed effects model ζi to control for individual
developer heterogeneity, and δp to control for the individual
project heterogeneity, respectively. Equation (1) also has
project dummies ηi to control for the bug type heterogeneity.
The error component, µipt is an idiosyncratic error term and it
varies across t as well as across developer i and project p. To
control for serial correlation, we incorporate autocorrelation
in calculating the variance-covariance matrix, allowing for a
maximum four periods of lag, AR(2).

D. Learning Curves in Each Bug Type

Equation (1) assesses the overall learning curve of de-
velopers in the deduction of bug ratios with respect to
coding / indirect / indirect bug-fixing experience without
distinguishing bug types, assuming implicitly that developers’
learning progress is independent of bug types. Relaxing the
assumption, our next question is to examine whether learning
curves differ according to bug types. We apply the same
regression model as Equation (1) to estimate the learning
progress in each bug type.

E. Moderating Effects of Project Complexity

Another primary research question is to examine whether
learning progress is affected by project complexity. We
applies dummy variables (D0 = low project complexity
and D1 = high project complexity) to both intercept and
slope coefficients into Equation (1). Thus we can test the
moderating effects of project complexity on the average bug
ratios and the decrease of bug ratios. Here, we assume that
the moderating effects are fixed over time.

V. EMPIRICAL RESULTS

Table II gives general information about the projects. In
total, the projects involve more than 400 developers who
make commits to the repositories. Most of them, based on

our measures, have committed buggy code. Table II also
shows that around half of total buggy lines (25%–80%) are
fixed by the same developer.

The right columns of Table IV show some descriptive
statistics for the variables used in our regression model. The
baseline correlations provide initial support for our learning
curves of individual developers in OSS. ln(BugRatioipt)
has a negative correlation with experience variables:
ln(CumCodesipt−1), ln(CumIndirectF ixesipt−1) and
ln(CumFixesipt−1). This indicates that an increase in the
experiences is associated with the reduction in bug ratios.
But the correlation cannot fully guarantee the learning effects
due to developer’s heterogeneity and so we run the regression
model with control variables and several fixed effects factors.

A. Knowledge Accumulation

As can be seen in the rows in Table IV for
ln(CumCodesipt−1), ln(CumIndirectF ixesipt−1), and
ln(CumFixesipt−1) the estimates indicate that cumulative
coding and indirect bug-fixing experience in a project do not
decrease bug ratios while cumulative bug-fixing experience
leads to learning progress in the project.

The coefficient of the cumulative coding experience is
negative (-0.0023) but “insignificant”, indicating that bug
ratios would not decrease even though the cumulative
cods made by an individual increases. That is, there is no
learning relationship between coding experience alone and
the likelihood for a developer to make a bug. Based on the
findings, we can infer that developers cannot gain knowledge
enough to reduce the bug ratio by simply accumulating coding
experience as measures by coding lines, because coding can
be just repetitive routines. Particularly, developers have their
own coding styles and preferred coding approach and thus
they apply their own coding routine to a given context. These
routines may allow developers to speed up their coding speed
but it might not offer an opportunity that developers achieve
the more efficiency of less bug.

Developer’s indirect bug-fixing experience in a project
does not decrease the developer’s bug ratio in the project.
Indirect bug-finding experiences are mostly discussions in
natural languages, rarely about coding. Therefore, those
activities may not directly help with code quality. Another
interpretation of the findings is that a developer may not
look into the bug till line level to make the indirect bug-
fixing contribution. Therefore, the developer would not know
the root cause of the bug and gains knowledge enough to
decrease the developer’s bug ratio.
ln(CumFixesipt) shows a significant negative coefficient,

supporting the learning curve that developers are less likely
to make bugs as their bug-fixing experience increases. The
findings show that a developer can learn from bug fixes
and thus is less likely to make bugs from the bug-fixing
experience. By fixing bugs, developer will get very detailed
information about the project. The developers may not change
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Independent Variables Dependent Variable: ࡸ൫ࢍ࢛  ൯ Descriptive Statistics࢚࢚ࢇࡾ
Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 # Mean S.D. Min Max 

൯ି࢚࢙ࢋࢊ࢛൫ࡸ -0.0023 
(0.0206)           200001 201403 

 ൯    0.0070ି࢚ࢉ࢙ࢋࢊ࢛൫ࡸ
(0.0300)     11494 10.0 2.5 0 15.85 

൯ି࢚࢙ࢋ࢞ࡲ࢚ࢉࢋ࢘ࢊࡵ࢛൫ࡸ  0.0246 
(0.0292)       4884 9.6 2.8 0.69 15.04 

൯ି࢚࢙ࢋ࢞ࡲ࢛൫ࡸ   -0.0915*** 
(0.0243)      9293 3.4 1.6 0 7.53 

 ൯     0.0017ି࢚ࢉ࢙ࢋ࢞ࡲ࢛൫ࡸ
(0.0433)    6125 4.8 2.2 0 10.55 

 ***൯      -0.0591ି࢚ࢊࢋ࢞ࡲ࢛൫ࡸ
(0.0220)   2222 4.6 2.1 0 8.26 

 ***൯       -0.1003ି࢚ࢌࢋࡿࢊࢋ࢞ࡲ࢛൫ࡸ
(0.0274)  5994 4.6 2.3 0 10.53 

 ***൯        -0.1022ି࢚࢙࢘ࢋࢎ࢚ࡻࢊࢋ࢞ࡲ࢛൫ࡸ
(0.0247) 4991 4.4 2.2 0 10.53 

࢚࢙ࢋࢊ 0.0000*** 
(0.0000)        5256 3.8 2.2 0 10.23 

 ***0.0000    ࢚ࢉ࢙ࢋࢊ
(0.0000)     12477 5415.3 37125.1 1 1930033 

࢚࢙ࢋ࢞ࡲ࢚ࢉࢋ࢘ࢊࡵ  -0.0264*** 
(0.0061)       12477 2062.8 21619.5 0 1269243 

 **0.0001   ࢚࢙ࢋ࢞ࡲ
(0.0000)      12477 3.0 5.2 0 73 

 0.0001     ࢚ࢉ࢙ࢋ࢞ࡲ
(0.0009)    12477 20.9 429.9 0 36765 

 ***0.0001      ࢚ࢊࢋ࢞ࡲ
(0.0000)   12477 4.0 49.9 0 2351 

 ***0.0013       ࢚ࢌࢋࡿࢊࢋ࢞ࡲ
(0.0003)  12477 18.0 393.0 0 36783 

 0.0001        ࢚࢙࢘ࢋࢎ࢚ࡻࢊࢋ࢞ࡲ
(0.0001) 12477 10.3 334.6 0 36762 

 *0.0000 ࢚࢙ࢋࢊ࢚ࢉࢋ࢘ࡼ
(0.0000) 

0.0000*** 
(0.0000) 

0.0000*** 
(0.0000) 

0.0000*** 
(0.0000) 

0.0000*** 
(0.0000) 

0.0000*** 
(0.0000) 

0.0000*** 
(0.0000) 

0.0000*** 
(0.0000) 12477 7.7 205.3 0 21831 

 0.0075 ࢚ࢋࢠࡿ࢘ࢋࢋ࢜ࢋࡰ࢚ࢉࢋ࢘ࡼ
(0.0107) 

0.0177 
(0.0124) 

-0.0069 
(0.0136) 

-0.0247 
(0.0230) 

-0.0201 
(0.0344) 

-0.0032 
(0.0135) 

-0.0127 
(0.0142) 

0.0070 
(0.0140) 12477 17947.9 43459.6 0 772147 

N 4015 3268 2586 1439 778 2569 2270 2252      
Within R2 0.08 0.04 0.04 0.11 0.12 0.04 0.05 0.03      

Prob. > F (Prob. > Ȥ2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000      
All regressions include individual developer and project dummies (individual developer and project fixed effects model). 
VIF and condition number indicate that multicollinearity is not a problem for our estimation. Mean VIF is 2.37 and the highest VIF is 5.86 (less than 10) and condition index is 27.5394  (smaller than 30). Within R2 exclude the 
variations captured by individual consumer dummies while adjusted R2 include those variations. 
Columns include parameter estimates with standard error in parentheses. 
***Significant at p < 0.01  **Significant at p < 0.05  *Significant at p < 0.1 

Table IV: Learning Curve Estimates.

their style until they come to recognize the coding style is
problematic. The developer will know what kind of code
may lead to bugs and thus the developer could avoid making
bugs when writing similar methods or code blocks.

Learning curves are often characterized in terms of a
progress ratio p, which is calculated based on the estimated
learning rates b, where p = 2b. The progress ratio indicates
how much performance increases for each doubling of
cumulative experience. The bug ratio for developers is
p = 0.94 since the effect for developers’ cumulative bug-
fixing experience is -0.0915 in Model 3. This implies that
when developers double their bug-fixing experience, their
bug ratios can decrease by approximately 6%.

These findings regarding the learning effects of
ln(CumCodesipt−1), ln(CumIndirectF ixesipt−1), and
ln(CumFixesipt−1) give us the intriguing insight that de-
velopers’ performance (bug ratios) may not improve through
just coding experience and indirect bug-fixing experiences,
while their performance significantly improves by fixing bugs
made by either themselves or other developers.

Our model with control variables is estimated to explore
and control alternative explanation for the results. The
significant negative coefficient of CodeAmountipt shows
negative scale effects that a developer is likely to make
relatively less bugs (lower bug ratios) with more coding in a
period of time.

All the project-specific time variant variables
(ProjectDeveloperSizept and ProjectCodespt are
not significant. We can partly conclude that project-specific
factors do not significantly affect an individual developer’s
learning progress. However, we should be cautious of this
conclusion because our project fixed effects models may
capture the variation of bug ratios across projects.

B. Knowledge Transfer across Projects

The both coefficients of ln(CumCodesipct−1) and
ln(CumFixesipct−1) in Models 4 and 5 are significant.
These findings show that there is no knowledge transfer
across projects. That is, developer’s coding and bug-fixing
experiences in other projects do not decrease the developer’s
bug ratio in a focal project.

Every project has its own background and style and thus
each project needs specific domain knowledge. Although
a developer may write many codes or fix many bugs in
project A, if projects A and B are totally different (in terms
of complexity, difficulty, functionality, bug types, etc.), the
developer could not bring this knowledge from project A
to project B. But we should be cautious of the conclusion
that there is no knowledge transfer effects across projects.
Knowledge transfer effect could be observed across the
similar projects.
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  Learning within a bug type Knowledge Transfer across bug types 
 Bug Type Observations Results Observations Results 

1 Types 992 YES 1116 YES 
2 Def-Use 1233 YES 1346 YES 
3 Error Handling 335 NO 462 NO 
4 Scoping 1278 NO 1275 YES 
5 Literals 29 NO 83 NO 
6 Change Control 244 NO 353 NO 
7 Branching 1301 YES 1422 NO 
8 Looping 463 NO 595 NO 
9 Non-essentials 1271 YES 1396 YES 

10 Expressions 209 NO 315 NO 
11 Methods 1542 YES 1623 NO 
12 Synchronization 29 NO 61 YES 
13 Modifiers 166 NO 254 NO 

Table V: Learning in Each Bug Type and Knowledge Transfer
across Bug Types.

C. Knowledge Accumulation from Own Mistakes and Other’s
Mistakes

The coefficients of CumIndirectF ixesipt−1,
CumFixedSelfipt−1 and CumFixedOthersipt−1 are all
negative and significant (refer to Models 6, 7 and 8 in
Table IV). This shows that as a developer’s bug is fixed
(a developer become aware of her own bug) in a project,
the developer is likely to make less bug in the project.
Particularly, the developer is supposed to make less bug
regardless of who fix the bug (himself/herself or other
developers).

When a developer come to recognize his/her bug (mistake),
the mistakes help the developer to better understand project
and gain knowledge about what kind of codes may cause
bug in a specific project. In sum, they can learn from their
own errors as well as other’s errors (bug, mistakes).

D. Learning Curve by Bug Types

We examin learning effects in each bug type with Model 3
(with ln(CumFixesipt−1) as a learning variable), because
we confirmed that bug-fixing experience is only the driver
to decrease the bug ratio. The columns under “Learning
within a Bug Type” in the Table V summarize the results of
our separate regression models in each bug type, showing
the learning curves depend on a bug type. Overall, the
estimation results show that developers exhibit learning
effects in bug types (1) that are relatively simple, such as Type
5 involving wrong literals and Type 9 involving bugs that are
non-essential for code functionality (e.g., importing needed
libraries, adding annotations, etc.), and (2) that have relatively
large numbers of instances, such as Type 7 involving errors
in conditionals and Type 11 involving method declarations
and invocations.

E. Knowledge Transfer across Bug Types

The columns under “Knowledge Transfer across bug types”
in the Table V indicate that developers show knowledge
transfer across bug types in 6 out of 13 bug types. As a
developer accumulates more experience in a bug type, the
bug ratio in the 6 bug types significantly decreases.

For bug types 1, 2 and 4, these bug types are general
and so the bugs could be similar even in different projects.

There is no knowledge transfer for bug types 3, 5, 10 and 13
because they are very specific bugs to projects. Even though
they are in the same project, they are specific to scenarios
and thus there is no learning effects within a project.

F. Developers’ Interpretation of Empirical Results

We showed our estimation results to several developers in
order to understand how they can interpret our empirical
results from developer’s perspective. Here is the short
summary.
Bug type 1 (Types): Types are basic elements in Java and

so this type of bugs is quite basic. They can often be
caught by Java compilers. It is easy to learn and transfer
the relevant knowledge.

Bug type 2 (Def-Use): It is about to define variables and
very simple. Compiler can catch some of the bugs. It
is easy to learn and transfer the relevant knowledge.

Bug type 3 (Error Handling): Each error case is quite
specific to different situation. Therefore, it is not easy to
transfer experience from one project to another project.

Bug type 4 (Scoping): It is scoping about using blocks ”
” in codes. It is so simple that developers ignore them
(i.e., error due to negligence, not ignorance) whirling
they are programing. This type of bugs may often occur
together with other types of bugs and so developers can
learn to fix them together with other types of bugs.

Bug type 5 (Literals): It is the use of wrong literals and
really simple. But every case uses a different literal and
so it is not to transfer experience from one literal to
another literal.

Bug type 6. (Change Control): It involves the changes of
execution logic of code. It is situation-specific and so
difficult to learn.

Bug type 7 (Branching): It involves creating different code
branches for different situations. The same creation logic
may often be shared across different code locations and
so learning effect within the bug type are expected.

Bug type 8 (Looping): It involve creating loops in codes.
Usually, it is challenging to avoid the mistakes.

Bug type 9 (Non-essentials): It involves non-functioning
code (e.g., annotations in code). It is easy to learn and
transfer the relevant knowledge.

Bug type 10 (Expressions): It is quite basic elements in
Java. But compiler doesn’t check this type of bugs and
error symptoms may appear as different computation
results for different situations. Therefore, it is not easy
to transfer experience from one situation to another
situation.

Bug type 11 (Methods): It involve wrong method invocation,
which may mean mis-understanding of the functionality
of invoked methods. Developers can learn and invoke
correct methods next time.

Bug type 12 (Synch): This type of bug is often complex
and so it is hard to understand and learn.
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Bug type 13 (Modifiers): It is only change code in minor
ways. The results are a little counterintuitive.

G. Learning Condition

The learning progress is observed only when the project is
complex. Small/simple projects may only have small/simple
bugs and so the bugs are not enough experience for developers
to learn. In complicated projects, the bug-fixing activities
may give learning to developers.

H. Managerial Implication

Our study have intriguing implications on project manage-
ment about how to split efforts on tasks that add new code
versus tasks that debug and fix existing code. For example,
when a lot of new code is added by a developer, a manager
may want to occasionally assign testing and debugging tasks
to the developer to induce developers’ learning progress via
bug fixing. It may also be useful for a developer if she studies
the fixes for her bugs even though she is not the person who
fixes them.

VI. CONCLUSION

The results have intriguing implications on project man-
agement about how to split efforts on tasks that add new
code versus tasks that debug and fix existing code. Software
project managers may consider assigning more testing and
debugging tasks to a developer instead of coding new code,
if a lot of new code is added by a developer. It helps, on one
hand, to detect and fix possible bugs, and on the other hand,
to improve developers’ learning progress via bug fixing. It
may also be useful for a developer to consider studying the
fixes for her bugs more often even though she is not the
person who fixes them. It would be even better if there are
mechanisms available to facilitate collaboration and learning
on bug fixing among developers.

Our analysis results show different bug ratios and different
distributions of bug types in different projects, supporting
project-specific and/or developer-specific bug prediction
approach. This implies the need of transferring knowledge
about bugs across projects for the purpose of bug prediction,
which also justifies related work on across-project bug
prediction [16], [18], [22], [31], [34].
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