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ABSTRACT

Symbolic execution (SE) has been widely adopted for automatic
program analysis and software testing. Many SE engines (e.g., KLEE
or Angr) need to interpret certain Intermediate Representations (IR)
of code during execution, which may be slow and costly. Although
a plurality of studies is proposed to accelerate SE, few of them con-
sider optimizing the internal interpretation operations. In this paper,
we propose FastKLEE, a faster SE engine that aims to speed up exe-
cution via reducing redundant bound checking of type-safe pointers
during IR code interpretation. Our two key insights are: (1) the num-
ber of interpreted instructions can be tremendous and reducing the
interpretation overheads of the extensively interpreted ones (e.g.,
read/write) could potentially accelerate the execution; (2) a large
portion of the pointers in C programs can be statically verified to
be type-safe, but existing SE engines treat all the pointers equally,
which indicates that those engines may slow down the execution
due to unnecessary bound checking. Specifically, in FastKLEE, a
type inference system is first leveraged to classify pointer types
(i.e., safe or unsafe) for the most frequently interpreted read/write
instructions. Then, a customized memory operation is designed
to perform bound checking for only the unsafe pointers and omit
redundant checking on safe pointers. We implement FastKLEE on
top of the well-known SE engine KLEE and combined it with the no-
table type inference system CCured. Evaluation results demonstrate
that FastKLEE is able to reduce by up to 9.1% (5.6% on average) as
the state-of-the-art approach KLEE in terms of the time to explore
the same number (i.e., 10k) of execution paths. FastKLEE is open-
sourced at https://github.com/haoxintu/FastKLEE. A video demo
of FastKLEE is available at https://youtu.be/fjV_a3kt-mo.
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1 INTRODUCTION

Symbolic execution (SE) is a prominent technique that has been
applied in many areas, such as software engineering [2, 5, 12], pro-
gramming language [16, 17, 22], and security [1, 6, 8, 30]. The key
idea of SE is to simulate program executions by using symbolic
values for inputs and then each execution path will be encoded as
path constraints during execution. A constraint solver (e.g., STP
[25] or Z3 [31]) later is used to determine the feasibility of each
path constraint, and the solved paths are further explored. Among
all the existing SE engines, the IR-based ones (e.g, KLEE [5], S2E [8],
or Angr [24]), whose execution is conducted by interpreting the
Intermediate Representations (IR) of the target program under test,
are prevalent and widely used. Typically, traditional IR-based SE
first transforms the program (either source code or binary) under
analysis into IR, and then it interprets the IR to execute the program,
which follows the design in routes 1 → 2 → 3 in Figure 1.
Such a design can have manifest benefits from the implementation
perspective. Instead of interpreting numerous instruction sets of
popular CPU architectures, IRs typically represent program behav-
ior at a high level with fewer instructions, thus making it easier to
implement an instruction interpreter for architecture-independent
instruction sets than manipulating complex instructions directly.

Although the design of IR-based SE is convenient in terms of
implementation, existing studies [22, 23] point out that such a de-
sign carries out significant performance downsides and slows down
the execution. To mitigate such a problem, two major flavors of
studies are devoted to accelerating SE. Based on the fact that IR
code can be transformed by aggressive optimizations, the first pro-
mote directions are dedicated to either selecting existing compiler
optimizations [7, 11] that could help accelerate SE or designing
a stand-alone customized optimization [29] for program verifica-
tion (e.g., symbolic execution). Apart from the IR optimization side,
other solutions such as reducing the number of paths to be explored
[3, 27] or optimizing the constraint solving [15, 21] are considered
for speeding up the execution process. However, most of the exist-
ing studies neglect the internal interpretation downside of IR-based
SE in terms of performance. That is, IR code interpretation alone
could slow down the performance of SE engines.

In this study, we propose FastKLEE, a tool that aims to support
faster SE by reducing the interpretation overheads of redundant
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Figure 1: Overview of IR-based Traditional SE and Fast SE

bound checking of type-safe pointers. We design FastKLEE based
on the following two intuitions. First, the number of interpreted
instructions tends to be stupendous (usually billions only in one
hour’s run), and reducing overhead for the most frequently inter-
preted ones (i.e., read/write) could potentially accelerate the execu-
tion. Second, type-safe is an important property in the program for
preventing certain errors such as memory out-of-bound assessing.
As proven by prior studies [14, 19, 20], a large portion of pointers
in C programs to be read/write can be statically verified to be type-
safe. However, most of the existing IR-based SE engines treat all
the pointers (memory addresses) equally and perform the bound
checking for every pointer when interpreting read/write instruc-
tion. Thus, a plethora number of bound checking performed during
the interpretation is unnecessary, which may induce performance
downsides. Based on the above intuitions, we propose FastKLEE to
support faster SE. Specifically, in FastKLEE, a type inference sys-
tem is leveraged to perform type inference before executing the SE
engine (which follows the design in routes 1 → 2 → 4 → 5
in Figure 1, where the latter two are designed for faster SE). The
type inference system (i.e., 4 ) is first used to statically verify point-
ers to be safe or unsafe and produce a checking list CheckList for
unsafe pointers. Then, during the execution in 5 , a customized
memory operation is designed to perform bound checking only
for unsafe pointers (stored in CheckList), while safe pointers are
no longer needed to perform any redundant checking. In this way,
FastKLEE could reduce the interpretation overheads of redundant
bound checking of type-safe pointers for faster SE.

We implement FastKLEE on top of the well-known SE engine
KLEE [5] and the type inference system CCured [20]. To demon-
strate the effectiveness of FastKLEE, we compare it with the state-
of-the-art approach KLEE over widely-adopted GNU Coreutils
datasets. The evaluation results demonstrate that FastKLEE is able
to reduce by up to 9.1% (5.6% on average) as KLEE in terms of the
time to explore the same number (i.e., 10k) of execution paths.

In summary, this paper makes the following contributions:
• To our best knowledge, FastKLEE is the first SE engine that aims
to accelerate IR-based SE by reducing interpretation overheads.
• We leverage a type inference system to classify pointers and
design a customized memory operation in the SE engine to avoid
redundant checking of type-safe pointers, thus facilitating the
reduction of interpretation overheads for IR-based SE.
• We open-source the tool FastKLEE and demonstrate its usability
and effectiveness. We also discuss several important implications
of FastKLEE, such as facilitating valuable path exploration.

Organizations. Section 2 describes the workflow of FastKLEE for
end-users. Section 3 gives the most related works to our approach.

Sections 4 and 5 describe the design and implementation of FastK-
LEE. Section 6 presents the evaluation results. Section 7 discusses
potential implications, threats to the validity, and limitations of our
approach. Section 8 concludes this paper with future work.

2 USAGE EXAMPLE

Users can execute “./setup.sh” in the code repository to set up FastK-
LEE. To prepare the test programs under test, it is recommendable
for users to follow the official instruction [9] to get the LLVM bit-
code files of test programs to be analyzed (e.g., cat.bc utility in
GNU Coreutils). After setting up the tool and the test program,
the following two major phases are considered to use FastKLEE
through a command-line interface.

2.1 Phase I: perform type inference

In the first phase, the target test program cat-linked.bc under
testing will be first instrumented to be a new bitcode file named
cat-linked.bc by invoking LLVM tool-chain llvm-link. Then,
the ccured pass will be applied on the cat-linked.bc by invoking
the tool opt. After the type inference of interpreted pointers, a text
file cat-checklist.txt will be produced in the current folder,
which will be used later in the next phase.

$llvm-link cat.bc neschecklib.bc -o cat-linked.bc
$opt -load libccured.so -nescheck -stats -time-passes < cat-linked.

bc >& /dev/null

2.2 Phase II: conduct faster symbolic execution

In the second phase, users can utilize the same command line with
the original KLEE to perform SE upon the test program. Specifi-
cally, users may follow the official document [10] to opt for the
applicable options. During the running of FastKLEE, the file
cat-checklist.txt will be loaded first and then will be used to
guide the customized memory operation in FastKLEE.

$fastklee [options] ./cat.bc --sym-args 0 1 10 --sym-args 0 2 2 --
sym-files 1 8 --sym-stdout

3 RELATEDWORK

The most related work to us can be broadly divided into two cate-
gories: compiler optimization-based and compiler optimization ag-
nostic. In the former, Dong et.al [11] study the influence of standard
compiler optimizations on SE, and Chen et.al [7] further leverage
machine-learning-based compiler optimization tuning to select a
set of optimizations to accelerate SE. Jonas et.al [29] later design
a stand-alone optimization for optimizing programs for fast ver-
ification, which includes accelerating SE. In the latter, different
approaches are proposed to reduce the number of paths to be ex-
plored [5, 17, 18, 27] or optimize the constraint solving [5, 21, 28]
in SE, thus speeding up the execution process.

Unlike the existing approaches, our goal is to make IR-based SE
more efficient by reducing the internal interpretation overheads, i.e.,
we aim to reduce redundant bound checking of type-safe pointers
during IR code interpretation. It is worth noting that our approach
can be complementary to existing approaches and further boost
faster SE by combing them with our proposed approach.
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Algorithm 1: Type Inference System in FastKLEE
Input: a IR code file bc
Output: a checking list of unsafe pointers CheckList

1 Function typeInferenceFunc(bc):
2 CheckList←− ∅ // initialize a checking list

3 Instruction *i = processInst(bc)
4 switch i->getOpcode() do
5 ... // other instructions

6 case Instruction::Load do

7 ptr = classifyPointer(i)
8 if ptr.type != SAFE then

9 key = generateKey(ptr, i)
10 CheckList.append(key)

11 case Instruction::Store do
12 ptr = classifyPointer(i)
13 if ptr.type != SAFE then

14 key = generateKey(ptr, i)
15 CheckList.append(key)

16 ... // other instructions

17 return CheckList

4 APPROACH

In this section, we present the detailed design of FastKLEE. As
shown in routes 1 → 2 → 4 → 5 in Figure 1, after obtaining
the IR code, FastKLEE first leverages a type inference system in 4
to classify different kinds of pointers and store the unsafe pointers
in a checking list (i.e., CheckList). Then, the CheckList is passed
to 5 and will be used in the customized memory operation in
FastKLEE. More specifically, if a pointer under read/write opera-
tion is in the checking list, a normal bound checking is conducted.
Otherwise, FastKLEE omits the bound checking and continues to
the interpretation. In short, the omitted portion of bound checking
during memory operation is the weapon inside FastKLEE to make
faster SE. Next, we describe the details of the type inference system
and customized memory operation designed in FastKLEE.

4.1 Type Inference System

The type inference system in FastKLEE is designed for classifying
pointer types. Typically pointer types in a type inference system
are in the following three forms: (1) SAFE pointer can only be null
and only needs a null-pointer check at runtime, (2) SEQ pointer
can be null, be interpreted as an integer, or be manipulated via
pointer arithmetic. At runtime, it needs a null-pointer and bounds
check, and (3)WILD pointer cannot be statically typed and it needs
null-pointer, bounds, and dynamic type checks at runtime.

Since most IR-based SE engines lack runtime information during
execution, i.e., programs are not executed like native runs, we
categorize pointer types only into safe and unsafe (i.e., SEQ and
WILD) in FastKLEE. Specifically, the safe pointers can be statically
verified to be type-safe so they do not need bound checking during
interpretation, while only the unsafe pointers are needed to be
bound-checked. Therefore, the functionality of the type inference
system in FastKLEE is, given an IR code of the program under test,
it records the unsafe pointers when the pointer is performed in

Algorithm2:CustomizedMemory Operation in FastKLEE
Input: a checking list of unsafe pointers CheckList

1 Function MemoryOperation(state, ki, CheckList):
2 inBound←− ∅ // initialize a Boolean value

3 key = generateKey(ki)
4 if CheckList.find(key) then
5 inBound = normalChecking(state, ki)

6 else

7 inBound = 1

8 ... // the following handling

the read/write operations. When all the instructions are inferred,
a checking list CheckList that stores all the unsafe pointers is
returned. Such a checking list will be the guidance for reducing
redundant bound checking of type-safe pointers in FastKLEE.

Algorithm 1 presents the detail of the type inference system
introduced in FastKLEE. The function typeInferenceFunc is re-
sponsible for classifying different types of pointers. It takes an IR
code file bc as input and outputs a checking list CheckList. In-
side the function, it first initializes the CheckList in Line 2 and
accordingly processes instructions in the bc file in Line 2. Then,
when encountering a read (Line 6) or write (Line 11) instruction,
the pointer (i.e., the memory address under read/write) is classified
by invoking the function classifyPointer (in Line 7 or 12). Later,
an if-branch is performed to check whether the ptr under handling
is an unsafe pointer (in Line 8 or 13). If the answer is yes, a key that
represents a unique pointer is generated by calling the function
generateKey and will be stored in the CheckList later (in Lines
9-10 or Lines 14-15). Finally, the checking list is returned in Line 17
and will be used in the customized memory operation in FastKLEE.

4.2 Customized Memory Operation

The purpose of the customized memory operation in FastKLEE
is to take the output (i.e., CheckList) from the type inference sys-
tem and use it to guide the customized memory operation during
interpretation. Algorithm 2 describes the details. First, a Boolean
variable inBound is initialized in Line 2 and the key is retrieved
by calling the function generateKey in Line 3 when a read/write
instructions are interpreted. Then, a checking of whether the key
is in the CheckList is performed in Line 4 to process either normal
checking in traditional execution in Line 5 if the checking returns
true or assignment of inBound to 1 in Line 7 if the checking returns
false. Later, the normal execution continues after Line 8.

By equipping the type inference system and the customizedmem-
ory operation, FastKLEE is capable of reducing the interpretation
overheads of redundant bound checking of type-safe pointers.

5 IMPLEMENTATION

We implemented FastKLEE on top of KLEE (version 2.1) and com-
bined it with the well-known CCured type inference system [20].
Specifically, for the CCured system, we implement it on top of
DataGrad [13]. In particular, due to the unmapped IR informa-
tion between analysis and original IR (refers to an issue1 for more

1https://github.com/Lightninghkm/DataGuard/issues/2

https://github.com/Lightninghkm/DataGuard/issues/2
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Figure 2: Scatter plot of the improvement in speedups

details), we first use the debug information (i.e., file name, func-
tion name, the line number of instruction, and column number of
instruction) inside the instruction to represent a unique key (imple-
mented in Algorithm 1). Then, we reuse the APIs from DataGrad
to record/store the unsafe pointers into a checking list CheckList.
For the implementation of the customized memory operation in
FastKLEE, we modified KLEE’s memory operation API to leverage
the information (i.e., CheckList) from type inference analysis, and
decide whether the bound checking of a pointer is needed.

6 EVALUATION

This section presents our evaluation setup and results. Specifically,
we demonstrate the benefits of FastKLEE in terms of the time
spent on exploring the same number (i.e., 10k) of execution paths.

6.1 Experimental setup

Benchmark. We evaluate FastKLEE on the widely used GNU
Coreutils (version 9.0) benchmarks. Specifically, we select 40 pro-
grams in it, and the excluded utilities can be categorized into the
following types: (1) cause non-deterministic behaviors (e.g., kill,
ptx, and yes), following existing studies [12, 18], (2) exit early due
to the unsupported assembly code or external function call, and (3)
can not successfully explore 10k execution paths in 2 hours (i.e.,
the timeout to run each test program we set in the experiment).
Approach under comparison.We adopt the notable SE engine
KLEE as our baseline, as we built on top of it.
Running settings. We followed prior work [5, 18] to set symbolic
inputs for GNU Coreutils programs. Besides, we use Breadth First
Search to deterministically guide the path exploration in KLEE
and FastKLEE. The experiments are conducted on a Linux PC with
Intel(R) Xeon(R) W-2133 CPU@ 3.60GHz × 12 processors and 64GB
RAM running Ubuntu 18.04 operating system.

6.2 Evaluation Results

To demonstrate the effectiveness of FastKLEE, we run FastKLEE
against KLEE in terms of the time spent on exploring the same
number of explored paths over GNU Coreutils. We set a timeout of
2 hours to run each program and count the time spent on exploring
certain execution paths. Specifically, we follow the formula below

Figure 4: Box plot of the

improvement in speedups

Figure 5: Box plot of the

time spent on type inference

to calculate the speedups:
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −𝑇𝐴

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100%

where 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents the time spent by the baseline KLEE
on exploring 10k paths and 𝑇𝐴 describes the time spent by our
proposed FastKLEE on exploring the same number of paths.

The scatter plot in Figure 2 shows the distribution of the speedups
achieved by FastKLEE. The labels under the x-axis correspond to
the 40 utilities used in our evaluation, and the values on the y-axis
represent the number of speedups by percentage. We can observe
that most of the points in the scatter plot fall from 5% to 6%, and
the highest point is up to 9.1%. Further, in Figure 4, we present the
box plot depicting the distribution of the percentage number of the
speedups achieved by FastKLEE in detail over 40 test programs.
We could confirm that for the majority of the packages, the number
of speedups ranges within [4.8%, 6.2%]. We also calculate the aver-
age of the speedups, which goes to 5.6% over those test programs.
Interestingly, from Figure 2, it seems there is no discernible trend
for the destruction of the speedups. This is because the benefits
gained under FastKLEEmay differ based on different test programs.
Specifically, if a test program extensively checks safe pointers dur-
ing execution, FastKLEE would be able to significantly reduce its
checking overhead and greatly speed up the execution.

To further understand the overhead reduction achieved by FastK-
LEE, we also evaluate the time used for the type inference in FastK-
LEE. Figure 5 describes the trend of the time spent on CCured
analysis over 40 test programs. We can see that the time speed of
the analysis is within the range of [4.0s, 5.0s], which can be ne-
glected compared with the whole time (usually taking hundreds or
thousands of seconds to explore the 10k execution paths).

7 DISCUSSION

Potential implications of FastKLEE. Although we only show
the performance benefits of FastKLEE in this paper, FastKLEE can
have other important implications for path exploration in SE. For
example, users can extend FastKLEE to assist SE to explore only
valuable execution paths due to the time limit or path explosion
challenge. The valuable paths can have at least two important
forms. First, a path exploration strategy in FastKLEE can be guided
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by the results of type inferences, meaning the paths that involve
more unsafe pointers are more valuable (i.e., more likely to be
buggy). That is, an unsafe-pointer-guided path exploration can
be applied to explore valuable execution paths. Second, instead
of targeting exploring multiple buggy execution paths, one may
further leverage type inference results to explore the most valuable
buggy path, i.e., paths that are more likely to be exploitable. Both
the above implications can help improve the reliability and security
of software systems. We leave this direction as our future work.

Threats to validity. One threat lies in the implementation of
FastKLEE. We only implement FastKLEE on a source code-based
symbolic executor. Since it is feasible to introduce a type inference
system into binary code [4], we consider extending the support for
other SE engines (e.g., Angr [24]) into FastKLEE in the future. An-
other threat comes from the test programs. We only used selected
utilities in GNU Coreutils, and these programs may not be rep-
resentative enough for various software systems. However, those
test programs have been widely used for evaluating SE engines
[5, 12, 18, 26, 28], and we consider expanding the program sets for
more extensive evaluation in the future.

Limitation. FastKLEE has a limitation in terms of implementation,
i.e., we only implement FastKLEE on top of a source code-based SE
engine KLEE. Other binary code-based SE executors such as Angr
[24] are not supported yet for the time we submit the paper. We
plan to add the above support in future work.

8 CONCLUSION AND FUTUREWORK

We present FastKLEE, a tool that aims to reduce the interpretation
overheads of redundant bound checking of type-safe pointers for
faster SE. In FastKLEE, a type inference system is first leveraged
to classify pointer types before interpretation. Then, a customized
memory operation is designed to perform bound checking only for
unsafe pointers during interpretation. Evaluation results demon-
strate that FastKLEE outperforms the state-of-the-art KLEE in
terms of the time spent on exploring the same number of execu-
tion paths. For future work, we are actively pursuing to (1) extend
FastKLEE to support more SE engines and (2) leverage the abilities
in FastKLEE to facilitate more comprehensive path exploration.
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